Merge tag 'ceph-for-4.13-rc8' of git://github.com/ceph/ceph-client
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blob2a82c927ded21d7b6c44b67239265044b2fa93e6
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
29 #include "xhci.h"
30 #include "xhci-trace.h"
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state,
41 unsigned int max_packet,
42 gfp_t flags)
44 struct xhci_segment *seg;
45 dma_addr_t dma;
46 int i;
48 seg = kzalloc(sizeof *seg, flags);
49 if (!seg)
50 return NULL;
52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 if (!seg->trbs) {
54 kfree(seg);
55 return NULL;
58 if (max_packet) {
59 seg->bounce_buf = kzalloc(max_packet, flags);
60 if (!seg->bounce_buf) {
61 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 kfree(seg);
63 return NULL;
66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 if (cycle_state == 0) {
68 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
71 seg->dma = dma;
72 seg->next = NULL;
74 return seg;
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
79 if (seg->trbs) {
80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 seg->trbs = NULL;
83 kfree(seg->bounce_buf);
84 kfree(seg);
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 struct xhci_segment *first)
90 struct xhci_segment *seg;
92 seg = first->next;
93 while (seg != first) {
94 struct xhci_segment *next = seg->next;
95 xhci_segment_free(xhci, seg);
96 seg = next;
98 xhci_segment_free(xhci, first);
102 * Make the prev segment point to the next segment.
104 * Change the last TRB in the prev segment to be a Link TRB which points to the
105 * DMA address of the next segment. The caller needs to set any Link TRB
106 * related flags, such as End TRB, Toggle Cycle, and no snoop.
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 struct xhci_segment *next, enum xhci_ring_type type)
111 u32 val;
113 if (!prev || !next)
114 return;
115 prev->next = next;
116 if (type != TYPE_EVENT) {
117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 cpu_to_le64(next->dma);
120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 val &= ~TRB_TYPE_BITMASK;
123 val |= TRB_TYPE(TRB_LINK);
124 /* Always set the chain bit with 0.95 hardware */
125 /* Set chain bit for isoc rings on AMD 0.96 host */
126 if (xhci_link_trb_quirk(xhci) ||
127 (type == TYPE_ISOC &&
128 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 val |= TRB_CHAIN;
130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
135 * Link the ring to the new segments.
136 * Set Toggle Cycle for the new ring if needed.
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 struct xhci_segment *first, struct xhci_segment *last,
140 unsigned int num_segs)
142 struct xhci_segment *next;
144 if (!ring || !first || !last)
145 return;
147 next = ring->enq_seg->next;
148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 xhci_link_segments(xhci, last, next, ring->type);
150 ring->num_segs += num_segs;
151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 &= ~cpu_to_le32(LINK_TOGGLE);
156 last->trbs[TRBS_PER_SEGMENT-1].link.control
157 |= cpu_to_le32(LINK_TOGGLE);
158 ring->last_seg = last;
163 * We need a radix tree for mapping physical addresses of TRBs to which stream
164 * ID they belong to. We need to do this because the host controller won't tell
165 * us which stream ring the TRB came from. We could store the stream ID in an
166 * event data TRB, but that doesn't help us for the cancellation case, since the
167 * endpoint may stop before it reaches that event data TRB.
169 * The radix tree maps the upper portion of the TRB DMA address to a ring
170 * segment that has the same upper portion of DMA addresses. For example, say I
171 * have segments of size 1KB, that are always 1KB aligned. A segment may
172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
174 * pass the radix tree a key to get the right stream ID:
176 * 0x10c90fff >> 10 = 0x43243
177 * 0x10c912c0 >> 10 = 0x43244
178 * 0x10c91400 >> 10 = 0x43245
180 * Obviously, only those TRBs with DMA addresses that are within the segment
181 * will make the radix tree return the stream ID for that ring.
183 * Caveats for the radix tree:
185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
190 * extended systems (where the DMA address can be bigger than 32-bits),
191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 struct xhci_ring *ring,
195 struct xhci_segment *seg,
196 gfp_t mem_flags)
198 unsigned long key;
199 int ret;
201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 /* Skip any segments that were already added. */
203 if (radix_tree_lookup(trb_address_map, key))
204 return 0;
206 ret = radix_tree_maybe_preload(mem_flags);
207 if (ret)
208 return ret;
209 ret = radix_tree_insert(trb_address_map,
210 key, ring);
211 radix_tree_preload_end();
212 return ret;
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 struct xhci_segment *seg)
218 unsigned long key;
220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 if (radix_tree_lookup(trb_address_map, key))
222 radix_tree_delete(trb_address_map, key);
225 static int xhci_update_stream_segment_mapping(
226 struct radix_tree_root *trb_address_map,
227 struct xhci_ring *ring,
228 struct xhci_segment *first_seg,
229 struct xhci_segment *last_seg,
230 gfp_t mem_flags)
232 struct xhci_segment *seg;
233 struct xhci_segment *failed_seg;
234 int ret;
236 if (WARN_ON_ONCE(trb_address_map == NULL))
237 return 0;
239 seg = first_seg;
240 do {
241 ret = xhci_insert_segment_mapping(trb_address_map,
242 ring, seg, mem_flags);
243 if (ret)
244 goto remove_streams;
245 if (seg == last_seg)
246 return 0;
247 seg = seg->next;
248 } while (seg != first_seg);
250 return 0;
252 remove_streams:
253 failed_seg = seg;
254 seg = first_seg;
255 do {
256 xhci_remove_segment_mapping(trb_address_map, seg);
257 if (seg == failed_seg)
258 return ret;
259 seg = seg->next;
260 } while (seg != first_seg);
262 return ret;
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 struct xhci_segment *seg;
269 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 return;
272 seg = ring->first_seg;
273 do {
274 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 seg = seg->next;
276 } while (seg != ring->first_seg);
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 ring->first_seg, ring->last_seg, mem_flags);
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 if (!ring)
289 return;
291 trace_xhci_ring_free(ring);
293 if (ring->first_seg) {
294 if (ring->type == TYPE_STREAM)
295 xhci_remove_stream_mapping(ring);
296 xhci_free_segments_for_ring(xhci, ring->first_seg);
299 kfree(ring);
302 static void xhci_initialize_ring_info(struct xhci_ring *ring,
303 unsigned int cycle_state)
305 /* The ring is empty, so the enqueue pointer == dequeue pointer */
306 ring->enqueue = ring->first_seg->trbs;
307 ring->enq_seg = ring->first_seg;
308 ring->dequeue = ring->enqueue;
309 ring->deq_seg = ring->first_seg;
310 /* The ring is initialized to 0. The producer must write 1 to the cycle
311 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
312 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 * New rings are initialized with cycle state equal to 1; if we are
315 * handling ring expansion, set the cycle state equal to the old ring.
317 ring->cycle_state = cycle_state;
320 * Each segment has a link TRB, and leave an extra TRB for SW
321 * accounting purpose
323 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
326 /* Allocate segments and link them for a ring */
327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
328 struct xhci_segment **first, struct xhci_segment **last,
329 unsigned int num_segs, unsigned int cycle_state,
330 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 struct xhci_segment *prev;
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
351 return -ENOMEM;
353 xhci_link_segments(xhci, prev, next, type);
355 prev = next;
356 num_segs--;
358 xhci_link_segments(xhci, prev, *first, type);
359 *last = prev;
361 return 0;
365 * Create a new ring with zero or more segments.
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 struct xhci_ring *ring;
376 int ret;
378 ring = kzalloc(sizeof *(ring), flags);
379 if (!ring)
380 return NULL;
382 ring->num_segs = num_segs;
383 ring->bounce_buf_len = max_packet;
384 INIT_LIST_HEAD(&ring->td_list);
385 ring->type = type;
386 if (num_segs == 0)
387 return ring;
389 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
390 &ring->last_seg, num_segs, cycle_state, type,
391 max_packet, flags);
392 if (ret)
393 goto fail;
395 /* Only event ring does not use link TRB */
396 if (type != TYPE_EVENT) {
397 /* See section 4.9.2.1 and 6.4.4.1 */
398 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
399 cpu_to_le32(LINK_TOGGLE);
401 xhci_initialize_ring_info(ring, cycle_state);
402 trace_xhci_ring_alloc(ring);
403 return ring;
405 fail:
406 kfree(ring);
407 return NULL;
410 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
411 struct xhci_virt_device *virt_dev,
412 unsigned int ep_index)
414 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 virt_dev->eps[ep_index].ring = NULL;
419 * Expand an existing ring.
420 * Allocate a new ring which has same segment numbers and link the two rings.
422 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
423 unsigned int num_trbs, gfp_t flags)
425 struct xhci_segment *first;
426 struct xhci_segment *last;
427 unsigned int num_segs;
428 unsigned int num_segs_needed;
429 int ret;
431 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
432 (TRBS_PER_SEGMENT - 1);
434 /* Allocate number of segments we needed, or double the ring size */
435 num_segs = ring->num_segs > num_segs_needed ?
436 ring->num_segs : num_segs_needed;
438 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439 num_segs, ring->cycle_state, ring->type,
440 ring->bounce_buf_len, flags);
441 if (ret)
442 return -ENOMEM;
444 if (ring->type == TYPE_STREAM)
445 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 ring, first, last, flags);
447 if (ret) {
448 struct xhci_segment *next;
449 do {
450 next = first->next;
451 xhci_segment_free(xhci, first);
452 if (first == last)
453 break;
454 first = next;
455 } while (true);
456 return ret;
459 xhci_link_rings(xhci, ring, first, last, num_segs);
460 trace_xhci_ring_expansion(ring);
461 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462 "ring expansion succeed, now has %d segments",
463 ring->num_segs);
465 return 0;
468 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
470 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471 int type, gfp_t flags)
473 struct xhci_container_ctx *ctx;
475 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476 return NULL;
478 ctx = kzalloc(sizeof(*ctx), flags);
479 if (!ctx)
480 return NULL;
482 ctx->type = type;
483 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484 if (type == XHCI_CTX_TYPE_INPUT)
485 ctx->size += CTX_SIZE(xhci->hcc_params);
487 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488 if (!ctx->bytes) {
489 kfree(ctx);
490 return NULL;
492 return ctx;
495 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
496 struct xhci_container_ctx *ctx)
498 if (!ctx)
499 return;
500 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501 kfree(ctx);
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505 struct xhci_container_ctx *ctx)
507 if (ctx->type != XHCI_CTX_TYPE_INPUT)
508 return NULL;
510 return (struct xhci_input_control_ctx *)ctx->bytes;
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514 struct xhci_container_ctx *ctx)
516 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517 return (struct xhci_slot_ctx *)ctx->bytes;
519 return (struct xhci_slot_ctx *)
520 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524 struct xhci_container_ctx *ctx,
525 unsigned int ep_index)
527 /* increment ep index by offset of start of ep ctx array */
528 ep_index++;
529 if (ctx->type == XHCI_CTX_TYPE_INPUT)
530 ep_index++;
532 return (struct xhci_ep_ctx *)
533 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
537 /***************** Streams structures manipulation *************************/
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540 unsigned int num_stream_ctxs,
541 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
543 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
546 if (size > MEDIUM_STREAM_ARRAY_SIZE)
547 dma_free_coherent(dev, size,
548 stream_ctx, dma);
549 else if (size <= SMALL_STREAM_ARRAY_SIZE)
550 return dma_pool_free(xhci->small_streams_pool,
551 stream_ctx, dma);
552 else
553 return dma_pool_free(xhci->medium_streams_pool,
554 stream_ctx, dma);
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568 unsigned int num_stream_ctxs, dma_addr_t *dma,
569 gfp_t mem_flags)
571 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
574 if (size > MEDIUM_STREAM_ARRAY_SIZE)
575 return dma_alloc_coherent(dev, size,
576 dma, mem_flags);
577 else if (size <= SMALL_STREAM_ARRAY_SIZE)
578 return dma_pool_alloc(xhci->small_streams_pool,
579 mem_flags, dma);
580 else
581 return dma_pool_alloc(xhci->medium_streams_pool,
582 mem_flags, dma);
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep *ep,
587 u64 address)
589 if (ep->ep_state & EP_HAS_STREAMS)
590 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591 address >> TRB_SEGMENT_SHIFT);
592 return ep->ring;
595 struct xhci_ring *xhci_stream_id_to_ring(
596 struct xhci_virt_device *dev,
597 unsigned int ep_index,
598 unsigned int stream_id)
600 struct xhci_virt_ep *ep = &dev->eps[ep_index];
602 if (stream_id == 0)
603 return ep->ring;
604 if (!ep->stream_info)
605 return NULL;
607 if (stream_id > ep->stream_info->num_streams)
608 return NULL;
609 return ep->stream_info->stream_rings[stream_id];
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
615 * drivers.
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622 unsigned int num_stream_ctxs,
623 unsigned int num_streams,
624 unsigned int max_packet, gfp_t mem_flags)
626 struct xhci_stream_info *stream_info;
627 u32 cur_stream;
628 struct xhci_ring *cur_ring;
629 u64 addr;
630 int ret;
632 xhci_dbg(xhci, "Allocating %u streams and %u "
633 "stream context array entries.\n",
634 num_streams, num_stream_ctxs);
635 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
636 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
637 return NULL;
639 xhci->cmd_ring_reserved_trbs++;
641 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
642 if (!stream_info)
643 goto cleanup_trbs;
645 stream_info->num_streams = num_streams;
646 stream_info->num_stream_ctxs = num_stream_ctxs;
648 /* Initialize the array of virtual pointers to stream rings. */
649 stream_info->stream_rings = kzalloc(
650 sizeof(struct xhci_ring *)*num_streams,
651 mem_flags);
652 if (!stream_info->stream_rings)
653 goto cleanup_info;
655 /* Initialize the array of DMA addresses for stream rings for the HW. */
656 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
657 num_stream_ctxs, &stream_info->ctx_array_dma,
658 mem_flags);
659 if (!stream_info->stream_ctx_array)
660 goto cleanup_ctx;
661 memset(stream_info->stream_ctx_array, 0,
662 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
664 /* Allocate everything needed to free the stream rings later */
665 stream_info->free_streams_command =
666 xhci_alloc_command(xhci, true, true, mem_flags);
667 if (!stream_info->free_streams_command)
668 goto cleanup_ctx;
670 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
672 /* Allocate rings for all the streams that the driver will use,
673 * and add their segment DMA addresses to the radix tree.
674 * Stream 0 is reserved.
677 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678 stream_info->stream_rings[cur_stream] =
679 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
680 mem_flags);
681 cur_ring = stream_info->stream_rings[cur_stream];
682 if (!cur_ring)
683 goto cleanup_rings;
684 cur_ring->stream_id = cur_stream;
685 cur_ring->trb_address_map = &stream_info->trb_address_map;
686 /* Set deq ptr, cycle bit, and stream context type */
687 addr = cur_ring->first_seg->dma |
688 SCT_FOR_CTX(SCT_PRI_TR) |
689 cur_ring->cycle_state;
690 stream_info->stream_ctx_array[cur_stream].stream_ring =
691 cpu_to_le64(addr);
692 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
693 cur_stream, (unsigned long long) addr);
695 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
696 if (ret) {
697 xhci_ring_free(xhci, cur_ring);
698 stream_info->stream_rings[cur_stream] = NULL;
699 goto cleanup_rings;
702 /* Leave the other unused stream ring pointers in the stream context
703 * array initialized to zero. This will cause the xHC to give us an
704 * error if the device asks for a stream ID we don't have setup (if it
705 * was any other way, the host controller would assume the ring is
706 * "empty" and wait forever for data to be queued to that stream ID).
709 return stream_info;
711 cleanup_rings:
712 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
713 cur_ring = stream_info->stream_rings[cur_stream];
714 if (cur_ring) {
715 xhci_ring_free(xhci, cur_ring);
716 stream_info->stream_rings[cur_stream] = NULL;
719 xhci_free_command(xhci, stream_info->free_streams_command);
720 cleanup_ctx:
721 kfree(stream_info->stream_rings);
722 cleanup_info:
723 kfree(stream_info);
724 cleanup_trbs:
725 xhci->cmd_ring_reserved_trbs--;
726 return NULL;
729 * Sets the MaxPStreams field and the Linear Stream Array field.
730 * Sets the dequeue pointer to the stream context array.
732 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
733 struct xhci_ep_ctx *ep_ctx,
734 struct xhci_stream_info *stream_info)
736 u32 max_primary_streams;
737 /* MaxPStreams is the number of stream context array entries, not the
738 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
739 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
741 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
742 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
743 "Setting number of stream ctx array entries to %u",
744 1 << (max_primary_streams + 1));
745 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
746 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
747 | EP_HAS_LSA);
748 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
752 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
753 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
754 * not at the beginning of the ring).
756 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
757 struct xhci_virt_ep *ep)
759 dma_addr_t addr;
760 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
761 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
762 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
765 /* Frees all stream contexts associated with the endpoint,
767 * Caller should fix the endpoint context streams fields.
769 void xhci_free_stream_info(struct xhci_hcd *xhci,
770 struct xhci_stream_info *stream_info)
772 int cur_stream;
773 struct xhci_ring *cur_ring;
775 if (!stream_info)
776 return;
778 for (cur_stream = 1; cur_stream < stream_info->num_streams;
779 cur_stream++) {
780 cur_ring = stream_info->stream_rings[cur_stream];
781 if (cur_ring) {
782 xhci_ring_free(xhci, cur_ring);
783 stream_info->stream_rings[cur_stream] = NULL;
786 xhci_free_command(xhci, stream_info->free_streams_command);
787 xhci->cmd_ring_reserved_trbs--;
788 if (stream_info->stream_ctx_array)
789 xhci_free_stream_ctx(xhci,
790 stream_info->num_stream_ctxs,
791 stream_info->stream_ctx_array,
792 stream_info->ctx_array_dma);
794 kfree(stream_info->stream_rings);
795 kfree(stream_info);
799 /***************** Device context manipulation *************************/
801 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
802 struct xhci_virt_ep *ep)
804 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
805 (unsigned long)ep);
806 ep->xhci = xhci;
809 static void xhci_free_tt_info(struct xhci_hcd *xhci,
810 struct xhci_virt_device *virt_dev,
811 int slot_id)
813 struct list_head *tt_list_head;
814 struct xhci_tt_bw_info *tt_info, *next;
815 bool slot_found = false;
817 /* If the device never made it past the Set Address stage,
818 * it may not have the real_port set correctly.
820 if (virt_dev->real_port == 0 ||
821 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
822 xhci_dbg(xhci, "Bad real port.\n");
823 return;
826 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
827 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
828 /* Multi-TT hubs will have more than one entry */
829 if (tt_info->slot_id == slot_id) {
830 slot_found = true;
831 list_del(&tt_info->tt_list);
832 kfree(tt_info);
833 } else if (slot_found) {
834 break;
839 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
840 struct xhci_virt_device *virt_dev,
841 struct usb_device *hdev,
842 struct usb_tt *tt, gfp_t mem_flags)
844 struct xhci_tt_bw_info *tt_info;
845 unsigned int num_ports;
846 int i, j;
848 if (!tt->multi)
849 num_ports = 1;
850 else
851 num_ports = hdev->maxchild;
853 for (i = 0; i < num_ports; i++, tt_info++) {
854 struct xhci_interval_bw_table *bw_table;
856 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
857 if (!tt_info)
858 goto free_tts;
859 INIT_LIST_HEAD(&tt_info->tt_list);
860 list_add(&tt_info->tt_list,
861 &xhci->rh_bw[virt_dev->real_port - 1].tts);
862 tt_info->slot_id = virt_dev->udev->slot_id;
863 if (tt->multi)
864 tt_info->ttport = i+1;
865 bw_table = &tt_info->bw_table;
866 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
867 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
869 return 0;
871 free_tts:
872 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
873 return -ENOMEM;
877 /* All the xhci_tds in the ring's TD list should be freed at this point.
878 * Should be called with xhci->lock held if there is any chance the TT lists
879 * will be manipulated by the configure endpoint, allocate device, or update
880 * hub functions while this function is removing the TT entries from the list.
882 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
884 struct xhci_virt_device *dev;
885 int i;
886 int old_active_eps = 0;
888 /* Slot ID 0 is reserved */
889 if (slot_id == 0 || !xhci->devs[slot_id])
890 return;
892 dev = xhci->devs[slot_id];
894 trace_xhci_free_virt_device(dev);
896 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
897 if (!dev)
898 return;
900 if (dev->tt_info)
901 old_active_eps = dev->tt_info->active_eps;
903 for (i = 0; i < 31; i++) {
904 if (dev->eps[i].ring)
905 xhci_ring_free(xhci, dev->eps[i].ring);
906 if (dev->eps[i].stream_info)
907 xhci_free_stream_info(xhci,
908 dev->eps[i].stream_info);
909 /* Endpoints on the TT/root port lists should have been removed
910 * when usb_disable_device() was called for the device.
911 * We can't drop them anyway, because the udev might have gone
912 * away by this point, and we can't tell what speed it was.
914 if (!list_empty(&dev->eps[i].bw_endpoint_list))
915 xhci_warn(xhci, "Slot %u endpoint %u "
916 "not removed from BW list!\n",
917 slot_id, i);
919 /* If this is a hub, free the TT(s) from the TT list */
920 xhci_free_tt_info(xhci, dev, slot_id);
921 /* If necessary, update the number of active TTs on this root port */
922 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
924 if (dev->in_ctx)
925 xhci_free_container_ctx(xhci, dev->in_ctx);
926 if (dev->out_ctx)
927 xhci_free_container_ctx(xhci, dev->out_ctx);
929 kfree(xhci->devs[slot_id]);
930 xhci->devs[slot_id] = NULL;
934 * Free a virt_device structure.
935 * If the virt_device added a tt_info (a hub) and has children pointing to
936 * that tt_info, then free the child first. Recursive.
937 * We can't rely on udev at this point to find child-parent relationships.
939 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
941 struct xhci_virt_device *vdev;
942 struct list_head *tt_list_head;
943 struct xhci_tt_bw_info *tt_info, *next;
944 int i;
946 vdev = xhci->devs[slot_id];
947 if (!vdev)
948 return;
950 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
951 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
952 /* is this a hub device that added a tt_info to the tts list */
953 if (tt_info->slot_id == slot_id) {
954 /* are any devices using this tt_info? */
955 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
956 vdev = xhci->devs[i];
957 if (vdev && (vdev->tt_info == tt_info))
958 xhci_free_virt_devices_depth_first(
959 xhci, i);
963 /* we are now at a leaf device */
964 xhci_free_virt_device(xhci, slot_id);
967 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
968 struct usb_device *udev, gfp_t flags)
970 struct xhci_virt_device *dev;
971 int i;
973 /* Slot ID 0 is reserved */
974 if (slot_id == 0 || xhci->devs[slot_id]) {
975 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
976 return 0;
979 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
980 if (!xhci->devs[slot_id])
981 return 0;
982 dev = xhci->devs[slot_id];
984 /* Allocate the (output) device context that will be used in the HC. */
985 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
986 if (!dev->out_ctx)
987 goto fail;
989 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
990 (unsigned long long)dev->out_ctx->dma);
992 /* Allocate the (input) device context for address device command */
993 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
994 if (!dev->in_ctx)
995 goto fail;
997 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
998 (unsigned long long)dev->in_ctx->dma);
1000 /* Initialize the cancellation list and watchdog timers for each ep */
1001 for (i = 0; i < 31; i++) {
1002 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1007 /* Allocate endpoint 0 ring */
1008 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009 if (!dev->eps[0].ring)
1010 goto fail;
1012 dev->udev = udev;
1014 /* Point to output device context in dcbaa. */
1015 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017 slot_id,
1018 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1021 trace_xhci_alloc_virt_device(dev);
1023 return 1;
1024 fail:
1025 xhci_free_virt_device(xhci, slot_id);
1026 return 0;
1029 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1030 struct usb_device *udev)
1032 struct xhci_virt_device *virt_dev;
1033 struct xhci_ep_ctx *ep0_ctx;
1034 struct xhci_ring *ep_ring;
1036 virt_dev = xhci->devs[udev->slot_id];
1037 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1038 ep_ring = virt_dev->eps[0].ring;
1040 * FIXME we don't keep track of the dequeue pointer very well after a
1041 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1042 * host to our enqueue pointer. This should only be called after a
1043 * configured device has reset, so all control transfers should have
1044 * been completed or cancelled before the reset.
1046 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1047 ep_ring->enqueue)
1048 | ep_ring->cycle_state);
1052 * The xHCI roothub may have ports of differing speeds in any order in the port
1053 * status registers. xhci->port_array provides an array of the port speed for
1054 * each offset into the port status registers.
1056 * The xHCI hardware wants to know the roothub port number that the USB device
1057 * is attached to (or the roothub port its ancestor hub is attached to). All we
1058 * know is the index of that port under either the USB 2.0 or the USB 3.0
1059 * roothub, but that doesn't give us the real index into the HW port status
1060 * registers. Call xhci_find_raw_port_number() to get real index.
1062 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1063 struct usb_device *udev)
1065 struct usb_device *top_dev;
1066 struct usb_hcd *hcd;
1068 if (udev->speed >= USB_SPEED_SUPER)
1069 hcd = xhci->shared_hcd;
1070 else
1071 hcd = xhci->main_hcd;
1073 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1074 top_dev = top_dev->parent)
1075 /* Found device below root hub */;
1077 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1080 /* Setup an xHCI virtual device for a Set Address command */
1081 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1083 struct xhci_virt_device *dev;
1084 struct xhci_ep_ctx *ep0_ctx;
1085 struct xhci_slot_ctx *slot_ctx;
1086 u32 port_num;
1087 u32 max_packets;
1088 struct usb_device *top_dev;
1090 dev = xhci->devs[udev->slot_id];
1091 /* Slot ID 0 is reserved */
1092 if (udev->slot_id == 0 || !dev) {
1093 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1094 udev->slot_id);
1095 return -EINVAL;
1097 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1098 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1100 /* 3) Only the control endpoint is valid - one endpoint context */
1101 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1102 switch (udev->speed) {
1103 case USB_SPEED_SUPER_PLUS:
1104 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1105 max_packets = MAX_PACKET(512);
1106 break;
1107 case USB_SPEED_SUPER:
1108 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1109 max_packets = MAX_PACKET(512);
1110 break;
1111 case USB_SPEED_HIGH:
1112 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1113 max_packets = MAX_PACKET(64);
1114 break;
1115 /* USB core guesses at a 64-byte max packet first for FS devices */
1116 case USB_SPEED_FULL:
1117 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1118 max_packets = MAX_PACKET(64);
1119 break;
1120 case USB_SPEED_LOW:
1121 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1122 max_packets = MAX_PACKET(8);
1123 break;
1124 case USB_SPEED_WIRELESS:
1125 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1126 return -EINVAL;
1127 break;
1128 default:
1129 /* Speed was set earlier, this shouldn't happen. */
1130 return -EINVAL;
1132 /* Find the root hub port this device is under */
1133 port_num = xhci_find_real_port_number(xhci, udev);
1134 if (!port_num)
1135 return -EINVAL;
1136 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1137 /* Set the port number in the virtual_device to the faked port number */
1138 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1139 top_dev = top_dev->parent)
1140 /* Found device below root hub */;
1141 dev->fake_port = top_dev->portnum;
1142 dev->real_port = port_num;
1143 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1144 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1146 /* Find the right bandwidth table that this device will be a part of.
1147 * If this is a full speed device attached directly to a root port (or a
1148 * decendent of one), it counts as a primary bandwidth domain, not a
1149 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1150 * will never be created for the HS root hub.
1152 if (!udev->tt || !udev->tt->hub->parent) {
1153 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1154 } else {
1155 struct xhci_root_port_bw_info *rh_bw;
1156 struct xhci_tt_bw_info *tt_bw;
1158 rh_bw = &xhci->rh_bw[port_num - 1];
1159 /* Find the right TT. */
1160 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1161 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1162 continue;
1164 if (!dev->udev->tt->multi ||
1165 (udev->tt->multi &&
1166 tt_bw->ttport == dev->udev->ttport)) {
1167 dev->bw_table = &tt_bw->bw_table;
1168 dev->tt_info = tt_bw;
1169 break;
1172 if (!dev->tt_info)
1173 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1176 /* Is this a LS/FS device under an external HS hub? */
1177 if (udev->tt && udev->tt->hub->parent) {
1178 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1179 (udev->ttport << 8));
1180 if (udev->tt->multi)
1181 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1184 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186 /* Step 4 - ring already allocated */
1187 /* Step 5 */
1188 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1191 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1192 max_packets);
1194 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1195 dev->eps[0].ring->cycle_state);
1197 trace_xhci_setup_addressable_virt_device(dev);
1199 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1201 return 0;
1205 * Convert interval expressed as 2^(bInterval - 1) == interval into
1206 * straight exponent value 2^n == interval.
1209 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1210 struct usb_host_endpoint *ep)
1212 unsigned int interval;
1214 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1215 if (interval != ep->desc.bInterval - 1)
1216 dev_warn(&udev->dev,
1217 "ep %#x - rounding interval to %d %sframes\n",
1218 ep->desc.bEndpointAddress,
1219 1 << interval,
1220 udev->speed == USB_SPEED_FULL ? "" : "micro");
1222 if (udev->speed == USB_SPEED_FULL) {
1224 * Full speed isoc endpoints specify interval in frames,
1225 * not microframes. We are using microframes everywhere,
1226 * so adjust accordingly.
1228 interval += 3; /* 1 frame = 2^3 uframes */
1231 return interval;
1235 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1236 * microframes, rounded down to nearest power of 2.
1238 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1239 struct usb_host_endpoint *ep, unsigned int desc_interval,
1240 unsigned int min_exponent, unsigned int max_exponent)
1242 unsigned int interval;
1244 interval = fls(desc_interval) - 1;
1245 interval = clamp_val(interval, min_exponent, max_exponent);
1246 if ((1 << interval) != desc_interval)
1247 dev_dbg(&udev->dev,
1248 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1249 ep->desc.bEndpointAddress,
1250 1 << interval,
1251 desc_interval);
1253 return interval;
1256 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1257 struct usb_host_endpoint *ep)
1259 if (ep->desc.bInterval == 0)
1260 return 0;
1261 return xhci_microframes_to_exponent(udev, ep,
1262 ep->desc.bInterval, 0, 15);
1266 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1267 struct usb_host_endpoint *ep)
1269 return xhci_microframes_to_exponent(udev, ep,
1270 ep->desc.bInterval * 8, 3, 10);
1273 /* Return the polling or NAK interval.
1275 * The polling interval is expressed in "microframes". If xHCI's Interval field
1276 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1278 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1279 * is set to 0.
1281 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1282 struct usb_host_endpoint *ep)
1284 unsigned int interval = 0;
1286 switch (udev->speed) {
1287 case USB_SPEED_HIGH:
1288 /* Max NAK rate */
1289 if (usb_endpoint_xfer_control(&ep->desc) ||
1290 usb_endpoint_xfer_bulk(&ep->desc)) {
1291 interval = xhci_parse_microframe_interval(udev, ep);
1292 break;
1294 /* Fall through - SS and HS isoc/int have same decoding */
1296 case USB_SPEED_SUPER_PLUS:
1297 case USB_SPEED_SUPER:
1298 if (usb_endpoint_xfer_int(&ep->desc) ||
1299 usb_endpoint_xfer_isoc(&ep->desc)) {
1300 interval = xhci_parse_exponent_interval(udev, ep);
1302 break;
1304 case USB_SPEED_FULL:
1305 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1306 interval = xhci_parse_exponent_interval(udev, ep);
1307 break;
1310 * Fall through for interrupt endpoint interval decoding
1311 * since it uses the same rules as low speed interrupt
1312 * endpoints.
1315 case USB_SPEED_LOW:
1316 if (usb_endpoint_xfer_int(&ep->desc) ||
1317 usb_endpoint_xfer_isoc(&ep->desc)) {
1319 interval = xhci_parse_frame_interval(udev, ep);
1321 break;
1323 default:
1324 BUG();
1326 return interval;
1329 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1330 * High speed endpoint descriptors can define "the number of additional
1331 * transaction opportunities per microframe", but that goes in the Max Burst
1332 * endpoint context field.
1334 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1335 struct usb_host_endpoint *ep)
1337 if (udev->speed < USB_SPEED_SUPER ||
1338 !usb_endpoint_xfer_isoc(&ep->desc))
1339 return 0;
1340 return ep->ss_ep_comp.bmAttributes;
1343 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1344 struct usb_host_endpoint *ep)
1346 /* Super speed and Plus have max burst in ep companion desc */
1347 if (udev->speed >= USB_SPEED_SUPER)
1348 return ep->ss_ep_comp.bMaxBurst;
1350 if (udev->speed == USB_SPEED_HIGH &&
1351 (usb_endpoint_xfer_isoc(&ep->desc) ||
1352 usb_endpoint_xfer_int(&ep->desc)))
1353 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1355 return 0;
1358 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1360 int in;
1362 in = usb_endpoint_dir_in(&ep->desc);
1364 switch (usb_endpoint_type(&ep->desc)) {
1365 case USB_ENDPOINT_XFER_CONTROL:
1366 return CTRL_EP;
1367 case USB_ENDPOINT_XFER_BULK:
1368 return in ? BULK_IN_EP : BULK_OUT_EP;
1369 case USB_ENDPOINT_XFER_ISOC:
1370 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1371 case USB_ENDPOINT_XFER_INT:
1372 return in ? INT_IN_EP : INT_OUT_EP;
1374 return 0;
1377 /* Return the maximum endpoint service interval time (ESIT) payload.
1378 * Basically, this is the maxpacket size, multiplied by the burst size
1379 * and mult size.
1381 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1382 struct usb_host_endpoint *ep)
1384 int max_burst;
1385 int max_packet;
1387 /* Only applies for interrupt or isochronous endpoints */
1388 if (usb_endpoint_xfer_control(&ep->desc) ||
1389 usb_endpoint_xfer_bulk(&ep->desc))
1390 return 0;
1392 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1393 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1394 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1395 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1396 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1397 else if (udev->speed >= USB_SPEED_SUPER)
1398 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1400 max_packet = usb_endpoint_maxp(&ep->desc);
1401 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1402 /* A 0 in max burst means 1 transfer per ESIT */
1403 return max_packet * max_burst;
1406 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1407 * Drivers will have to call usb_alloc_streams() to do that.
1409 int xhci_endpoint_init(struct xhci_hcd *xhci,
1410 struct xhci_virt_device *virt_dev,
1411 struct usb_device *udev,
1412 struct usb_host_endpoint *ep,
1413 gfp_t mem_flags)
1415 unsigned int ep_index;
1416 struct xhci_ep_ctx *ep_ctx;
1417 struct xhci_ring *ep_ring;
1418 unsigned int max_packet;
1419 enum xhci_ring_type ring_type;
1420 u32 max_esit_payload;
1421 u32 endpoint_type;
1422 unsigned int max_burst;
1423 unsigned int interval;
1424 unsigned int mult;
1425 unsigned int avg_trb_len;
1426 unsigned int err_count = 0;
1428 ep_index = xhci_get_endpoint_index(&ep->desc);
1429 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1431 endpoint_type = xhci_get_endpoint_type(ep);
1432 if (!endpoint_type)
1433 return -EINVAL;
1435 ring_type = usb_endpoint_type(&ep->desc);
1438 * Get values to fill the endpoint context, mostly from ep descriptor.
1439 * The average TRB buffer lengt for bulk endpoints is unclear as we
1440 * have no clue on scatter gather list entry size. For Isoc and Int,
1441 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1443 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1444 interval = xhci_get_endpoint_interval(udev, ep);
1446 /* Periodic endpoint bInterval limit quirk */
1447 if (usb_endpoint_xfer_int(&ep->desc) ||
1448 usb_endpoint_xfer_isoc(&ep->desc)) {
1449 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1450 udev->speed >= USB_SPEED_HIGH &&
1451 interval >= 7) {
1452 interval = 6;
1456 mult = xhci_get_endpoint_mult(udev, ep);
1457 max_packet = usb_endpoint_maxp(&ep->desc);
1458 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1459 avg_trb_len = max_esit_payload;
1461 /* FIXME dig Mult and streams info out of ep companion desc */
1463 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1464 if (!usb_endpoint_xfer_isoc(&ep->desc))
1465 err_count = 3;
1466 /* Some devices get this wrong */
1467 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1468 max_packet = 512;
1469 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1470 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1471 avg_trb_len = 8;
1472 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1473 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1474 mult = 0;
1476 /* Set up the endpoint ring */
1477 virt_dev->eps[ep_index].new_ring =
1478 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1479 if (!virt_dev->eps[ep_index].new_ring)
1480 return -ENOMEM;
1482 virt_dev->eps[ep_index].skip = false;
1483 ep_ring = virt_dev->eps[ep_index].new_ring;
1485 /* Fill the endpoint context */
1486 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1487 EP_INTERVAL(interval) |
1488 EP_MULT(mult));
1489 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1490 MAX_PACKET(max_packet) |
1491 MAX_BURST(max_burst) |
1492 ERROR_COUNT(err_count));
1493 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1494 ep_ring->cycle_state);
1496 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1497 EP_AVG_TRB_LENGTH(avg_trb_len));
1499 /* FIXME Debug endpoint context */
1500 return 0;
1503 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1504 struct xhci_virt_device *virt_dev,
1505 struct usb_host_endpoint *ep)
1507 unsigned int ep_index;
1508 struct xhci_ep_ctx *ep_ctx;
1510 ep_index = xhci_get_endpoint_index(&ep->desc);
1511 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1513 ep_ctx->ep_info = 0;
1514 ep_ctx->ep_info2 = 0;
1515 ep_ctx->deq = 0;
1516 ep_ctx->tx_info = 0;
1517 /* Don't free the endpoint ring until the set interface or configuration
1518 * request succeeds.
1522 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1524 bw_info->ep_interval = 0;
1525 bw_info->mult = 0;
1526 bw_info->num_packets = 0;
1527 bw_info->max_packet_size = 0;
1528 bw_info->type = 0;
1529 bw_info->max_esit_payload = 0;
1532 void xhci_update_bw_info(struct xhci_hcd *xhci,
1533 struct xhci_container_ctx *in_ctx,
1534 struct xhci_input_control_ctx *ctrl_ctx,
1535 struct xhci_virt_device *virt_dev)
1537 struct xhci_bw_info *bw_info;
1538 struct xhci_ep_ctx *ep_ctx;
1539 unsigned int ep_type;
1540 int i;
1542 for (i = 1; i < 31; i++) {
1543 bw_info = &virt_dev->eps[i].bw_info;
1545 /* We can't tell what endpoint type is being dropped, but
1546 * unconditionally clearing the bandwidth info for non-periodic
1547 * endpoints should be harmless because the info will never be
1548 * set in the first place.
1550 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1551 /* Dropped endpoint */
1552 xhci_clear_endpoint_bw_info(bw_info);
1553 continue;
1556 if (EP_IS_ADDED(ctrl_ctx, i)) {
1557 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1558 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1560 /* Ignore non-periodic endpoints */
1561 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1562 ep_type != ISOC_IN_EP &&
1563 ep_type != INT_IN_EP)
1564 continue;
1566 /* Added or changed endpoint */
1567 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1568 le32_to_cpu(ep_ctx->ep_info));
1569 /* Number of packets and mult are zero-based in the
1570 * input context, but we want one-based for the
1571 * interval table.
1573 bw_info->mult = CTX_TO_EP_MULT(
1574 le32_to_cpu(ep_ctx->ep_info)) + 1;
1575 bw_info->num_packets = CTX_TO_MAX_BURST(
1576 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1577 bw_info->max_packet_size = MAX_PACKET_DECODED(
1578 le32_to_cpu(ep_ctx->ep_info2));
1579 bw_info->type = ep_type;
1580 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1581 le32_to_cpu(ep_ctx->tx_info));
1586 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1587 * Useful when you want to change one particular aspect of the endpoint and then
1588 * issue a configure endpoint command.
1590 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1591 struct xhci_container_ctx *in_ctx,
1592 struct xhci_container_ctx *out_ctx,
1593 unsigned int ep_index)
1595 struct xhci_ep_ctx *out_ep_ctx;
1596 struct xhci_ep_ctx *in_ep_ctx;
1598 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1599 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1601 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1602 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1603 in_ep_ctx->deq = out_ep_ctx->deq;
1604 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1607 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1608 * Useful when you want to change one particular aspect of the endpoint and then
1609 * issue a configure endpoint command. Only the context entries field matters,
1610 * but we'll copy the whole thing anyway.
1612 void xhci_slot_copy(struct xhci_hcd *xhci,
1613 struct xhci_container_ctx *in_ctx,
1614 struct xhci_container_ctx *out_ctx)
1616 struct xhci_slot_ctx *in_slot_ctx;
1617 struct xhci_slot_ctx *out_slot_ctx;
1619 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1620 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1622 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1623 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1624 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1625 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1628 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1629 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1631 int i;
1632 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1633 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1635 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1636 "Allocating %d scratchpad buffers", num_sp);
1638 if (!num_sp)
1639 return 0;
1641 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1642 if (!xhci->scratchpad)
1643 goto fail_sp;
1645 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1646 num_sp * sizeof(u64),
1647 &xhci->scratchpad->sp_dma, flags);
1648 if (!xhci->scratchpad->sp_array)
1649 goto fail_sp2;
1651 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1652 if (!xhci->scratchpad->sp_buffers)
1653 goto fail_sp3;
1655 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1656 for (i = 0; i < num_sp; i++) {
1657 dma_addr_t dma;
1658 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1659 flags);
1660 if (!buf)
1661 goto fail_sp4;
1663 xhci->scratchpad->sp_array[i] = dma;
1664 xhci->scratchpad->sp_buffers[i] = buf;
1667 return 0;
1669 fail_sp4:
1670 for (i = i - 1; i >= 0; i--) {
1671 dma_free_coherent(dev, xhci->page_size,
1672 xhci->scratchpad->sp_buffers[i],
1673 xhci->scratchpad->sp_array[i]);
1676 kfree(xhci->scratchpad->sp_buffers);
1678 fail_sp3:
1679 dma_free_coherent(dev, num_sp * sizeof(u64),
1680 xhci->scratchpad->sp_array,
1681 xhci->scratchpad->sp_dma);
1683 fail_sp2:
1684 kfree(xhci->scratchpad);
1685 xhci->scratchpad = NULL;
1687 fail_sp:
1688 return -ENOMEM;
1691 static void scratchpad_free(struct xhci_hcd *xhci)
1693 int num_sp;
1694 int i;
1695 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1697 if (!xhci->scratchpad)
1698 return;
1700 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1702 for (i = 0; i < num_sp; i++) {
1703 dma_free_coherent(dev, xhci->page_size,
1704 xhci->scratchpad->sp_buffers[i],
1705 xhci->scratchpad->sp_array[i]);
1707 kfree(xhci->scratchpad->sp_buffers);
1708 dma_free_coherent(dev, num_sp * sizeof(u64),
1709 xhci->scratchpad->sp_array,
1710 xhci->scratchpad->sp_dma);
1711 kfree(xhci->scratchpad);
1712 xhci->scratchpad = NULL;
1715 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1716 bool allocate_in_ctx, bool allocate_completion,
1717 gfp_t mem_flags)
1719 struct xhci_command *command;
1721 command = kzalloc(sizeof(*command), mem_flags);
1722 if (!command)
1723 return NULL;
1725 if (allocate_in_ctx) {
1726 command->in_ctx =
1727 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1728 mem_flags);
1729 if (!command->in_ctx) {
1730 kfree(command);
1731 return NULL;
1735 if (allocate_completion) {
1736 command->completion =
1737 kzalloc(sizeof(struct completion), mem_flags);
1738 if (!command->completion) {
1739 xhci_free_container_ctx(xhci, command->in_ctx);
1740 kfree(command);
1741 return NULL;
1743 init_completion(command->completion);
1746 command->status = 0;
1747 INIT_LIST_HEAD(&command->cmd_list);
1748 return command;
1751 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1753 kfree(urb_priv);
1756 void xhci_free_command(struct xhci_hcd *xhci,
1757 struct xhci_command *command)
1759 xhci_free_container_ctx(xhci,
1760 command->in_ctx);
1761 kfree(command->completion);
1762 kfree(command);
1765 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1767 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1768 int size;
1769 int i, j, num_ports;
1771 cancel_delayed_work_sync(&xhci->cmd_timer);
1773 /* Free the Event Ring Segment Table and the actual Event Ring */
1774 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1775 if (xhci->erst.entries)
1776 dma_free_coherent(dev, size,
1777 xhci->erst.entries, xhci->erst.erst_dma_addr);
1778 xhci->erst.entries = NULL;
1779 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1780 if (xhci->event_ring)
1781 xhci_ring_free(xhci, xhci->event_ring);
1782 xhci->event_ring = NULL;
1783 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1785 if (xhci->lpm_command)
1786 xhci_free_command(xhci, xhci->lpm_command);
1787 xhci->lpm_command = NULL;
1788 if (xhci->cmd_ring)
1789 xhci_ring_free(xhci, xhci->cmd_ring);
1790 xhci->cmd_ring = NULL;
1791 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1792 xhci_cleanup_command_queue(xhci);
1794 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1795 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1796 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1797 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1798 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1799 while (!list_empty(ep))
1800 list_del_init(ep->next);
1804 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1805 xhci_free_virt_devices_depth_first(xhci, i);
1807 dma_pool_destroy(xhci->segment_pool);
1808 xhci->segment_pool = NULL;
1809 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1811 dma_pool_destroy(xhci->device_pool);
1812 xhci->device_pool = NULL;
1813 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1815 dma_pool_destroy(xhci->small_streams_pool);
1816 xhci->small_streams_pool = NULL;
1817 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1818 "Freed small stream array pool");
1820 dma_pool_destroy(xhci->medium_streams_pool);
1821 xhci->medium_streams_pool = NULL;
1822 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1823 "Freed medium stream array pool");
1825 if (xhci->dcbaa)
1826 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1827 xhci->dcbaa, xhci->dcbaa->dma);
1828 xhci->dcbaa = NULL;
1830 scratchpad_free(xhci);
1832 if (!xhci->rh_bw)
1833 goto no_bw;
1835 for (i = 0; i < num_ports; i++) {
1836 struct xhci_tt_bw_info *tt, *n;
1837 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1838 list_del(&tt->tt_list);
1839 kfree(tt);
1843 no_bw:
1844 xhci->cmd_ring_reserved_trbs = 0;
1845 xhci->num_usb2_ports = 0;
1846 xhci->num_usb3_ports = 0;
1847 xhci->num_active_eps = 0;
1848 kfree(xhci->usb2_ports);
1849 kfree(xhci->usb3_ports);
1850 kfree(xhci->port_array);
1851 kfree(xhci->rh_bw);
1852 kfree(xhci->ext_caps);
1854 xhci->usb2_ports = NULL;
1855 xhci->usb3_ports = NULL;
1856 xhci->port_array = NULL;
1857 xhci->rh_bw = NULL;
1858 xhci->ext_caps = NULL;
1860 xhci->page_size = 0;
1861 xhci->page_shift = 0;
1862 xhci->bus_state[0].bus_suspended = 0;
1863 xhci->bus_state[1].bus_suspended = 0;
1866 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1867 struct xhci_segment *input_seg,
1868 union xhci_trb *start_trb,
1869 union xhci_trb *end_trb,
1870 dma_addr_t input_dma,
1871 struct xhci_segment *result_seg,
1872 char *test_name, int test_number)
1874 unsigned long long start_dma;
1875 unsigned long long end_dma;
1876 struct xhci_segment *seg;
1878 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1879 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1881 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1882 if (seg != result_seg) {
1883 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1884 test_name, test_number);
1885 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1886 "input DMA 0x%llx\n",
1887 input_seg,
1888 (unsigned long long) input_dma);
1889 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1890 "ending TRB %p (0x%llx DMA)\n",
1891 start_trb, start_dma,
1892 end_trb, end_dma);
1893 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1894 result_seg, seg);
1895 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1896 true);
1897 return -1;
1899 return 0;
1902 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1903 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1905 struct {
1906 dma_addr_t input_dma;
1907 struct xhci_segment *result_seg;
1908 } simple_test_vector [] = {
1909 /* A zeroed DMA field should fail */
1910 { 0, NULL },
1911 /* One TRB before the ring start should fail */
1912 { xhci->event_ring->first_seg->dma - 16, NULL },
1913 /* One byte before the ring start should fail */
1914 { xhci->event_ring->first_seg->dma - 1, NULL },
1915 /* Starting TRB should succeed */
1916 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1917 /* Ending TRB should succeed */
1918 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1919 xhci->event_ring->first_seg },
1920 /* One byte after the ring end should fail */
1921 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1922 /* One TRB after the ring end should fail */
1923 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1924 /* An address of all ones should fail */
1925 { (dma_addr_t) (~0), NULL },
1927 struct {
1928 struct xhci_segment *input_seg;
1929 union xhci_trb *start_trb;
1930 union xhci_trb *end_trb;
1931 dma_addr_t input_dma;
1932 struct xhci_segment *result_seg;
1933 } complex_test_vector [] = {
1934 /* Test feeding a valid DMA address from a different ring */
1935 { .input_seg = xhci->event_ring->first_seg,
1936 .start_trb = xhci->event_ring->first_seg->trbs,
1937 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1938 .input_dma = xhci->cmd_ring->first_seg->dma,
1939 .result_seg = NULL,
1941 /* Test feeding a valid end TRB from a different ring */
1942 { .input_seg = xhci->event_ring->first_seg,
1943 .start_trb = xhci->event_ring->first_seg->trbs,
1944 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1945 .input_dma = xhci->cmd_ring->first_seg->dma,
1946 .result_seg = NULL,
1948 /* Test feeding a valid start and end TRB from a different ring */
1949 { .input_seg = xhci->event_ring->first_seg,
1950 .start_trb = xhci->cmd_ring->first_seg->trbs,
1951 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1952 .input_dma = xhci->cmd_ring->first_seg->dma,
1953 .result_seg = NULL,
1955 /* TRB in this ring, but after this TD */
1956 { .input_seg = xhci->event_ring->first_seg,
1957 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1958 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1959 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1960 .result_seg = NULL,
1962 /* TRB in this ring, but before this TD */
1963 { .input_seg = xhci->event_ring->first_seg,
1964 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1965 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1966 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1967 .result_seg = NULL,
1969 /* TRB in this ring, but after this wrapped TD */
1970 { .input_seg = xhci->event_ring->first_seg,
1971 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1972 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1973 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1974 .result_seg = NULL,
1976 /* TRB in this ring, but before this wrapped TD */
1977 { .input_seg = xhci->event_ring->first_seg,
1978 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1979 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1980 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1981 .result_seg = NULL,
1983 /* TRB not in this ring, and we have a wrapped TD */
1984 { .input_seg = xhci->event_ring->first_seg,
1985 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1986 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1987 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1988 .result_seg = NULL,
1992 unsigned int num_tests;
1993 int i, ret;
1995 num_tests = ARRAY_SIZE(simple_test_vector);
1996 for (i = 0; i < num_tests; i++) {
1997 ret = xhci_test_trb_in_td(xhci,
1998 xhci->event_ring->first_seg,
1999 xhci->event_ring->first_seg->trbs,
2000 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2001 simple_test_vector[i].input_dma,
2002 simple_test_vector[i].result_seg,
2003 "Simple", i);
2004 if (ret < 0)
2005 return ret;
2008 num_tests = ARRAY_SIZE(complex_test_vector);
2009 for (i = 0; i < num_tests; i++) {
2010 ret = xhci_test_trb_in_td(xhci,
2011 complex_test_vector[i].input_seg,
2012 complex_test_vector[i].start_trb,
2013 complex_test_vector[i].end_trb,
2014 complex_test_vector[i].input_dma,
2015 complex_test_vector[i].result_seg,
2016 "Complex", i);
2017 if (ret < 0)
2018 return ret;
2020 xhci_dbg(xhci, "TRB math tests passed.\n");
2021 return 0;
2024 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2026 u64 temp;
2027 dma_addr_t deq;
2029 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2030 xhci->event_ring->dequeue);
2031 if (deq == 0 && !in_interrupt())
2032 xhci_warn(xhci, "WARN something wrong with SW event ring "
2033 "dequeue ptr.\n");
2034 /* Update HC event ring dequeue pointer */
2035 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2036 temp &= ERST_PTR_MASK;
2037 /* Don't clear the EHB bit (which is RW1C) because
2038 * there might be more events to service.
2040 temp &= ~ERST_EHB;
2041 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2042 "// Write event ring dequeue pointer, "
2043 "preserving EHB bit");
2044 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2045 &xhci->ir_set->erst_dequeue);
2048 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2049 __le32 __iomem *addr, int max_caps)
2051 u32 temp, port_offset, port_count;
2052 int i;
2053 u8 major_revision, minor_revision;
2054 struct xhci_hub *rhub;
2056 temp = readl(addr);
2057 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2058 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2060 if (major_revision == 0x03) {
2061 rhub = &xhci->usb3_rhub;
2062 } else if (major_revision <= 0x02) {
2063 rhub = &xhci->usb2_rhub;
2064 } else {
2065 xhci_warn(xhci, "Ignoring unknown port speed, "
2066 "Ext Cap %p, revision = 0x%x\n",
2067 addr, major_revision);
2068 /* Ignoring port protocol we can't understand. FIXME */
2069 return;
2071 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2073 if (rhub->min_rev < minor_revision)
2074 rhub->min_rev = minor_revision;
2076 /* Port offset and count in the third dword, see section 7.2 */
2077 temp = readl(addr + 2);
2078 port_offset = XHCI_EXT_PORT_OFF(temp);
2079 port_count = XHCI_EXT_PORT_COUNT(temp);
2080 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2081 "Ext Cap %p, port offset = %u, "
2082 "count = %u, revision = 0x%x",
2083 addr, port_offset, port_count, major_revision);
2084 /* Port count includes the current port offset */
2085 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2086 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2087 return;
2089 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2090 if (rhub->psi_count) {
2091 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2092 GFP_KERNEL);
2093 if (!rhub->psi)
2094 rhub->psi_count = 0;
2096 rhub->psi_uid_count++;
2097 for (i = 0; i < rhub->psi_count; i++) {
2098 rhub->psi[i] = readl(addr + 4 + i);
2100 /* count unique ID values, two consecutive entries can
2101 * have the same ID if link is assymetric
2103 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2104 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2105 rhub->psi_uid_count++;
2107 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2108 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2109 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2110 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2111 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2112 XHCI_EXT_PORT_LP(rhub->psi[i]),
2113 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2116 /* cache usb2 port capabilities */
2117 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2118 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2120 /* Check the host's USB2 LPM capability */
2121 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2122 (temp & XHCI_L1C)) {
2123 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124 "xHCI 0.96: support USB2 software lpm");
2125 xhci->sw_lpm_support = 1;
2128 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2129 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2130 "xHCI 1.0: support USB2 software lpm");
2131 xhci->sw_lpm_support = 1;
2132 if (temp & XHCI_HLC) {
2133 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2134 "xHCI 1.0: support USB2 hardware lpm");
2135 xhci->hw_lpm_support = 1;
2139 port_offset--;
2140 for (i = port_offset; i < (port_offset + port_count); i++) {
2141 /* Duplicate entry. Ignore the port if the revisions differ. */
2142 if (xhci->port_array[i] != 0) {
2143 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2144 " port %u\n", addr, i);
2145 xhci_warn(xhci, "Port was marked as USB %u, "
2146 "duplicated as USB %u\n",
2147 xhci->port_array[i], major_revision);
2148 /* Only adjust the roothub port counts if we haven't
2149 * found a similar duplicate.
2151 if (xhci->port_array[i] != major_revision &&
2152 xhci->port_array[i] != DUPLICATE_ENTRY) {
2153 if (xhci->port_array[i] == 0x03)
2154 xhci->num_usb3_ports--;
2155 else
2156 xhci->num_usb2_ports--;
2157 xhci->port_array[i] = DUPLICATE_ENTRY;
2159 /* FIXME: Should we disable the port? */
2160 continue;
2162 xhci->port_array[i] = major_revision;
2163 if (major_revision == 0x03)
2164 xhci->num_usb3_ports++;
2165 else
2166 xhci->num_usb2_ports++;
2168 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2172 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2173 * specify what speeds each port is supposed to be. We can't count on the port
2174 * speed bits in the PORTSC register being correct until a device is connected,
2175 * but we need to set up the two fake roothubs with the correct number of USB
2176 * 3.0 and USB 2.0 ports at host controller initialization time.
2178 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2180 void __iomem *base;
2181 u32 offset;
2182 unsigned int num_ports;
2183 int i, j, port_index;
2184 int cap_count = 0;
2185 u32 cap_start;
2187 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2188 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2189 if (!xhci->port_array)
2190 return -ENOMEM;
2192 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2193 if (!xhci->rh_bw)
2194 return -ENOMEM;
2195 for (i = 0; i < num_ports; i++) {
2196 struct xhci_interval_bw_table *bw_table;
2198 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2199 bw_table = &xhci->rh_bw[i].bw_table;
2200 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2201 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2203 base = &xhci->cap_regs->hc_capbase;
2205 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2206 if (!cap_start) {
2207 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2208 return -ENODEV;
2211 offset = cap_start;
2212 /* count extended protocol capability entries for later caching */
2213 while (offset) {
2214 cap_count++;
2215 offset = xhci_find_next_ext_cap(base, offset,
2216 XHCI_EXT_CAPS_PROTOCOL);
2219 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2220 if (!xhci->ext_caps)
2221 return -ENOMEM;
2223 offset = cap_start;
2225 while (offset) {
2226 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2227 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2228 break;
2229 offset = xhci_find_next_ext_cap(base, offset,
2230 XHCI_EXT_CAPS_PROTOCOL);
2233 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2234 xhci_warn(xhci, "No ports on the roothubs?\n");
2235 return -ENODEV;
2237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2238 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2239 xhci->num_usb2_ports, xhci->num_usb3_ports);
2241 /* Place limits on the number of roothub ports so that the hub
2242 * descriptors aren't longer than the USB core will allocate.
2244 if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2246 "Limiting USB 3.0 roothub ports to %u.",
2247 USB_SS_MAXPORTS);
2248 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2250 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2251 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2252 "Limiting USB 2.0 roothub ports to %u.",
2253 USB_MAXCHILDREN);
2254 xhci->num_usb2_ports = USB_MAXCHILDREN;
2258 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2259 * Not sure how the USB core will handle a hub with no ports...
2261 if (xhci->num_usb2_ports) {
2262 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2263 xhci->num_usb2_ports, flags);
2264 if (!xhci->usb2_ports)
2265 return -ENOMEM;
2267 port_index = 0;
2268 for (i = 0; i < num_ports; i++) {
2269 if (xhci->port_array[i] == 0x03 ||
2270 xhci->port_array[i] == 0 ||
2271 xhci->port_array[i] == DUPLICATE_ENTRY)
2272 continue;
2274 xhci->usb2_ports[port_index] =
2275 &xhci->op_regs->port_status_base +
2276 NUM_PORT_REGS*i;
2277 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2278 "USB 2.0 port at index %u, "
2279 "addr = %p", i,
2280 xhci->usb2_ports[port_index]);
2281 port_index++;
2282 if (port_index == xhci->num_usb2_ports)
2283 break;
2286 if (xhci->num_usb3_ports) {
2287 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2288 xhci->num_usb3_ports, flags);
2289 if (!xhci->usb3_ports)
2290 return -ENOMEM;
2292 port_index = 0;
2293 for (i = 0; i < num_ports; i++)
2294 if (xhci->port_array[i] == 0x03) {
2295 xhci->usb3_ports[port_index] =
2296 &xhci->op_regs->port_status_base +
2297 NUM_PORT_REGS*i;
2298 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2299 "USB 3.0 port at index %u, "
2300 "addr = %p", i,
2301 xhci->usb3_ports[port_index]);
2302 port_index++;
2303 if (port_index == xhci->num_usb3_ports)
2304 break;
2307 return 0;
2310 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2312 dma_addr_t dma;
2313 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2314 unsigned int val, val2;
2315 u64 val_64;
2316 struct xhci_segment *seg;
2317 u32 page_size, temp;
2318 int i;
2320 INIT_LIST_HEAD(&xhci->cmd_list);
2322 /* init command timeout work */
2323 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2324 init_completion(&xhci->cmd_ring_stop_completion);
2326 page_size = readl(&xhci->op_regs->page_size);
2327 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2328 "Supported page size register = 0x%x", page_size);
2329 for (i = 0; i < 16; i++) {
2330 if ((0x1 & page_size) != 0)
2331 break;
2332 page_size = page_size >> 1;
2334 if (i < 16)
2335 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 "Supported page size of %iK", (1 << (i+12)) / 1024);
2337 else
2338 xhci_warn(xhci, "WARN: no supported page size\n");
2339 /* Use 4K pages, since that's common and the minimum the HC supports */
2340 xhci->page_shift = 12;
2341 xhci->page_size = 1 << xhci->page_shift;
2342 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2343 "HCD page size set to %iK", xhci->page_size / 1024);
2346 * Program the Number of Device Slots Enabled field in the CONFIG
2347 * register with the max value of slots the HC can handle.
2349 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2350 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2351 "// xHC can handle at most %d device slots.", val);
2352 val2 = readl(&xhci->op_regs->config_reg);
2353 val |= (val2 & ~HCS_SLOTS_MASK);
2354 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355 "// Setting Max device slots reg = 0x%x.", val);
2356 writel(val, &xhci->op_regs->config_reg);
2359 * xHCI section 5.4.6 - doorbell array must be
2360 * "physically contiguous and 64-byte (cache line) aligned".
2362 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2363 flags);
2364 if (!xhci->dcbaa)
2365 goto fail;
2366 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2367 xhci->dcbaa->dma = dma;
2368 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2369 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2370 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2371 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2374 * Initialize the ring segment pool. The ring must be a contiguous
2375 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2376 * however, the command ring segment needs 64-byte aligned segments
2377 * and our use of dma addresses in the trb_address_map radix tree needs
2378 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2380 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2381 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2383 /* See Table 46 and Note on Figure 55 */
2384 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2385 2112, 64, xhci->page_size);
2386 if (!xhci->segment_pool || !xhci->device_pool)
2387 goto fail;
2389 /* Linear stream context arrays don't have any boundary restrictions,
2390 * and only need to be 16-byte aligned.
2392 xhci->small_streams_pool =
2393 dma_pool_create("xHCI 256 byte stream ctx arrays",
2394 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2395 xhci->medium_streams_pool =
2396 dma_pool_create("xHCI 1KB stream ctx arrays",
2397 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2398 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2399 * will be allocated with dma_alloc_coherent()
2402 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2403 goto fail;
2405 /* Set up the command ring to have one segments for now. */
2406 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2407 if (!xhci->cmd_ring)
2408 goto fail;
2409 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2410 "Allocated command ring at %p", xhci->cmd_ring);
2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2412 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2414 /* Set the address in the Command Ring Control register */
2415 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2416 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2417 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2418 xhci->cmd_ring->cycle_state;
2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 "// Setting command ring address to 0x%016llx", val_64);
2421 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2422 xhci_dbg_cmd_ptrs(xhci);
2424 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2425 if (!xhci->lpm_command)
2426 goto fail;
2428 /* Reserve one command ring TRB for disabling LPM.
2429 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2430 * disabling LPM, we only need to reserve one TRB for all devices.
2432 xhci->cmd_ring_reserved_trbs++;
2434 val = readl(&xhci->cap_regs->db_off);
2435 val &= DBOFF_MASK;
2436 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2437 "// Doorbell array is located at offset 0x%x"
2438 " from cap regs base addr", val);
2439 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2440 xhci_dbg_regs(xhci);
2441 xhci_print_run_regs(xhci);
2442 /* Set ir_set to interrupt register set 0 */
2443 xhci->ir_set = &xhci->run_regs->ir_set[0];
2446 * Event ring setup: Allocate a normal ring, but also setup
2447 * the event ring segment table (ERST). Section 4.9.3.
2449 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2450 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2451 0, flags);
2452 if (!xhci->event_ring)
2453 goto fail;
2454 if (xhci_check_trb_in_td_math(xhci) < 0)
2455 goto fail;
2457 xhci->erst.entries = dma_alloc_coherent(dev,
2458 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2459 flags);
2460 if (!xhci->erst.entries)
2461 goto fail;
2462 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2463 "// Allocated event ring segment table at 0x%llx",
2464 (unsigned long long)dma);
2466 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2467 xhci->erst.num_entries = ERST_NUM_SEGS;
2468 xhci->erst.erst_dma_addr = dma;
2469 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2471 xhci->erst.num_entries,
2472 xhci->erst.entries,
2473 (unsigned long long)xhci->erst.erst_dma_addr);
2475 /* set ring base address and size for each segment table entry */
2476 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2477 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2478 entry->seg_addr = cpu_to_le64(seg->dma);
2479 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2480 entry->rsvd = 0;
2481 seg = seg->next;
2484 /* set ERST count with the number of entries in the segment table */
2485 val = readl(&xhci->ir_set->erst_size);
2486 val &= ERST_SIZE_MASK;
2487 val |= ERST_NUM_SEGS;
2488 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2489 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2490 val);
2491 writel(val, &xhci->ir_set->erst_size);
2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 "// Set ERST entries to point to event ring.");
2495 /* set the segment table base address */
2496 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497 "// Set ERST base address for ir_set 0 = 0x%llx",
2498 (unsigned long long)xhci->erst.erst_dma_addr);
2499 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2500 val_64 &= ERST_PTR_MASK;
2501 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2502 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2504 /* Set the event ring dequeue address */
2505 xhci_set_hc_event_deq(xhci);
2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507 "Wrote ERST address to ir_set 0.");
2508 xhci_print_ir_set(xhci, 0);
2511 * XXX: Might need to set the Interrupter Moderation Register to
2512 * something other than the default (~1ms minimum between interrupts).
2513 * See section 5.5.1.2.
2515 for (i = 0; i < MAX_HC_SLOTS; i++)
2516 xhci->devs[i] = NULL;
2517 for (i = 0; i < USB_MAXCHILDREN; i++) {
2518 xhci->bus_state[0].resume_done[i] = 0;
2519 xhci->bus_state[1].resume_done[i] = 0;
2520 /* Only the USB 2.0 completions will ever be used. */
2521 init_completion(&xhci->bus_state[1].rexit_done[i]);
2524 if (scratchpad_alloc(xhci, flags))
2525 goto fail;
2526 if (xhci_setup_port_arrays(xhci, flags))
2527 goto fail;
2529 /* Enable USB 3.0 device notifications for function remote wake, which
2530 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2531 * U3 (device suspend).
2533 temp = readl(&xhci->op_regs->dev_notification);
2534 temp &= ~DEV_NOTE_MASK;
2535 temp |= DEV_NOTE_FWAKE;
2536 writel(temp, &xhci->op_regs->dev_notification);
2538 return 0;
2540 fail:
2541 xhci_halt(xhci);
2542 xhci_reset(xhci);
2543 xhci_mem_cleanup(xhci);
2544 return -ENOMEM;