2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
30 #include "xhci-trace.h"
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
39 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
,
40 unsigned int cycle_state
,
41 unsigned int max_packet
,
44 struct xhci_segment
*seg
;
48 seg
= kzalloc(sizeof *seg
, flags
);
52 seg
->trbs
= dma_pool_zalloc(xhci
->segment_pool
, flags
, &dma
);
59 seg
->bounce_buf
= kzalloc(max_packet
, flags
);
60 if (!seg
->bounce_buf
) {
61 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, dma
);
66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 if (cycle_state
== 0) {
68 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
69 seg
->trbs
[i
].link
.control
|= cpu_to_le32(TRB_CYCLE
);
77 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
80 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
83 kfree(seg
->bounce_buf
);
87 static void xhci_free_segments_for_ring(struct xhci_hcd
*xhci
,
88 struct xhci_segment
*first
)
90 struct xhci_segment
*seg
;
93 while (seg
!= first
) {
94 struct xhci_segment
*next
= seg
->next
;
95 xhci_segment_free(xhci
, seg
);
98 xhci_segment_free(xhci
, first
);
102 * Make the prev segment point to the next segment.
104 * Change the last TRB in the prev segment to be a Link TRB which points to the
105 * DMA address of the next segment. The caller needs to set any Link TRB
106 * related flags, such as End TRB, Toggle Cycle, and no snoop.
108 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
109 struct xhci_segment
*next
, enum xhci_ring_type type
)
116 if (type
!= TYPE_EVENT
) {
117 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
118 cpu_to_le64(next
->dma
);
120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
122 val
&= ~TRB_TYPE_BITMASK
;
123 val
|= TRB_TYPE(TRB_LINK
);
124 /* Always set the chain bit with 0.95 hardware */
125 /* Set chain bit for isoc rings on AMD 0.96 host */
126 if (xhci_link_trb_quirk(xhci
) ||
127 (type
== TYPE_ISOC
&&
128 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
130 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
135 * Link the ring to the new segments.
136 * Set Toggle Cycle for the new ring if needed.
138 static void xhci_link_rings(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
139 struct xhci_segment
*first
, struct xhci_segment
*last
,
140 unsigned int num_segs
)
142 struct xhci_segment
*next
;
144 if (!ring
|| !first
|| !last
)
147 next
= ring
->enq_seg
->next
;
148 xhci_link_segments(xhci
, ring
->enq_seg
, first
, ring
->type
);
149 xhci_link_segments(xhci
, last
, next
, ring
->type
);
150 ring
->num_segs
+= num_segs
;
151 ring
->num_trbs_free
+= (TRBS_PER_SEGMENT
- 1) * num_segs
;
153 if (ring
->type
!= TYPE_EVENT
&& ring
->enq_seg
== ring
->last_seg
) {
154 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
155 &= ~cpu_to_le32(LINK_TOGGLE
);
156 last
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
157 |= cpu_to_le32(LINK_TOGGLE
);
158 ring
->last_seg
= last
;
163 * We need a radix tree for mapping physical addresses of TRBs to which stream
164 * ID they belong to. We need to do this because the host controller won't tell
165 * us which stream ring the TRB came from. We could store the stream ID in an
166 * event data TRB, but that doesn't help us for the cancellation case, since the
167 * endpoint may stop before it reaches that event data TRB.
169 * The radix tree maps the upper portion of the TRB DMA address to a ring
170 * segment that has the same upper portion of DMA addresses. For example, say I
171 * have segments of size 1KB, that are always 1KB aligned. A segment may
172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
174 * pass the radix tree a key to get the right stream ID:
176 * 0x10c90fff >> 10 = 0x43243
177 * 0x10c912c0 >> 10 = 0x43244
178 * 0x10c91400 >> 10 = 0x43245
180 * Obviously, only those TRBs with DMA addresses that are within the segment
181 * will make the radix tree return the stream ID for that ring.
183 * Caveats for the radix tree:
185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
190 * extended systems (where the DMA address can be bigger than 32-bits),
191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 static int xhci_insert_segment_mapping(struct radix_tree_root
*trb_address_map
,
194 struct xhci_ring
*ring
,
195 struct xhci_segment
*seg
,
201 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
202 /* Skip any segments that were already added. */
203 if (radix_tree_lookup(trb_address_map
, key
))
206 ret
= radix_tree_maybe_preload(mem_flags
);
209 ret
= radix_tree_insert(trb_address_map
,
211 radix_tree_preload_end();
215 static void xhci_remove_segment_mapping(struct radix_tree_root
*trb_address_map
,
216 struct xhci_segment
*seg
)
220 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
221 if (radix_tree_lookup(trb_address_map
, key
))
222 radix_tree_delete(trb_address_map
, key
);
225 static int xhci_update_stream_segment_mapping(
226 struct radix_tree_root
*trb_address_map
,
227 struct xhci_ring
*ring
,
228 struct xhci_segment
*first_seg
,
229 struct xhci_segment
*last_seg
,
232 struct xhci_segment
*seg
;
233 struct xhci_segment
*failed_seg
;
236 if (WARN_ON_ONCE(trb_address_map
== NULL
))
241 ret
= xhci_insert_segment_mapping(trb_address_map
,
242 ring
, seg
, mem_flags
);
248 } while (seg
!= first_seg
);
256 xhci_remove_segment_mapping(trb_address_map
, seg
);
257 if (seg
== failed_seg
)
260 } while (seg
!= first_seg
);
265 static void xhci_remove_stream_mapping(struct xhci_ring
*ring
)
267 struct xhci_segment
*seg
;
269 if (WARN_ON_ONCE(ring
->trb_address_map
== NULL
))
272 seg
= ring
->first_seg
;
274 xhci_remove_segment_mapping(ring
->trb_address_map
, seg
);
276 } while (seg
!= ring
->first_seg
);
279 static int xhci_update_stream_mapping(struct xhci_ring
*ring
, gfp_t mem_flags
)
281 return xhci_update_stream_segment_mapping(ring
->trb_address_map
, ring
,
282 ring
->first_seg
, ring
->last_seg
, mem_flags
);
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
291 trace_xhci_ring_free(ring
);
293 if (ring
->first_seg
) {
294 if (ring
->type
== TYPE_STREAM
)
295 xhci_remove_stream_mapping(ring
);
296 xhci_free_segments_for_ring(xhci
, ring
->first_seg
);
302 static void xhci_initialize_ring_info(struct xhci_ring
*ring
,
303 unsigned int cycle_state
)
305 /* The ring is empty, so the enqueue pointer == dequeue pointer */
306 ring
->enqueue
= ring
->first_seg
->trbs
;
307 ring
->enq_seg
= ring
->first_seg
;
308 ring
->dequeue
= ring
->enqueue
;
309 ring
->deq_seg
= ring
->first_seg
;
310 /* The ring is initialized to 0. The producer must write 1 to the cycle
311 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
312 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 * New rings are initialized with cycle state equal to 1; if we are
315 * handling ring expansion, set the cycle state equal to the old ring.
317 ring
->cycle_state
= cycle_state
;
320 * Each segment has a link TRB, and leave an extra TRB for SW
323 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
326 /* Allocate segments and link them for a ring */
327 static int xhci_alloc_segments_for_ring(struct xhci_hcd
*xhci
,
328 struct xhci_segment
**first
, struct xhci_segment
**last
,
329 unsigned int num_segs
, unsigned int cycle_state
,
330 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
332 struct xhci_segment
*prev
;
334 prev
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
340 while (num_segs
> 0) {
341 struct xhci_segment
*next
;
343 next
= xhci_segment_alloc(xhci
, cycle_state
, max_packet
, flags
);
348 xhci_segment_free(xhci
, prev
);
353 xhci_link_segments(xhci
, prev
, next
, type
);
358 xhci_link_segments(xhci
, prev
, *first
, type
);
365 * Create a new ring with zero or more segments.
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
371 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
372 unsigned int num_segs
, unsigned int cycle_state
,
373 enum xhci_ring_type type
, unsigned int max_packet
, gfp_t flags
)
375 struct xhci_ring
*ring
;
378 ring
= kzalloc(sizeof *(ring
), flags
);
382 ring
->num_segs
= num_segs
;
383 ring
->bounce_buf_len
= max_packet
;
384 INIT_LIST_HEAD(&ring
->td_list
);
389 ret
= xhci_alloc_segments_for_ring(xhci
, &ring
->first_seg
,
390 &ring
->last_seg
, num_segs
, cycle_state
, type
,
395 /* Only event ring does not use link TRB */
396 if (type
!= TYPE_EVENT
) {
397 /* See section 4.9.2.1 and 6.4.4.1 */
398 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
|=
399 cpu_to_le32(LINK_TOGGLE
);
401 xhci_initialize_ring_info(ring
, cycle_state
);
402 trace_xhci_ring_alloc(ring
);
410 void xhci_free_endpoint_ring(struct xhci_hcd
*xhci
,
411 struct xhci_virt_device
*virt_dev
,
412 unsigned int ep_index
)
414 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
415 virt_dev
->eps
[ep_index
].ring
= NULL
;
419 * Expand an existing ring.
420 * Allocate a new ring which has same segment numbers and link the two rings.
422 int xhci_ring_expansion(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
423 unsigned int num_trbs
, gfp_t flags
)
425 struct xhci_segment
*first
;
426 struct xhci_segment
*last
;
427 unsigned int num_segs
;
428 unsigned int num_segs_needed
;
431 num_segs_needed
= (num_trbs
+ (TRBS_PER_SEGMENT
- 1) - 1) /
432 (TRBS_PER_SEGMENT
- 1);
434 /* Allocate number of segments we needed, or double the ring size */
435 num_segs
= ring
->num_segs
> num_segs_needed
?
436 ring
->num_segs
: num_segs_needed
;
438 ret
= xhci_alloc_segments_for_ring(xhci
, &first
, &last
,
439 num_segs
, ring
->cycle_state
, ring
->type
,
440 ring
->bounce_buf_len
, flags
);
444 if (ring
->type
== TYPE_STREAM
)
445 ret
= xhci_update_stream_segment_mapping(ring
->trb_address_map
,
446 ring
, first
, last
, flags
);
448 struct xhci_segment
*next
;
451 xhci_segment_free(xhci
, first
);
459 xhci_link_rings(xhci
, ring
, first
, last
, num_segs
);
460 trace_xhci_ring_expansion(ring
);
461 xhci_dbg_trace(xhci
, trace_xhci_dbg_ring_expansion
,
462 "ring expansion succeed, now has %d segments",
468 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
470 static struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
471 int type
, gfp_t flags
)
473 struct xhci_container_ctx
*ctx
;
475 if ((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
))
478 ctx
= kzalloc(sizeof(*ctx
), flags
);
483 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
484 if (type
== XHCI_CTX_TYPE_INPUT
)
485 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
487 ctx
->bytes
= dma_pool_zalloc(xhci
->device_pool
, flags
, &ctx
->dma
);
495 static void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
496 struct xhci_container_ctx
*ctx
)
500 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
504 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(
505 struct xhci_container_ctx
*ctx
)
507 if (ctx
->type
!= XHCI_CTX_TYPE_INPUT
)
510 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
513 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
514 struct xhci_container_ctx
*ctx
)
516 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
517 return (struct xhci_slot_ctx
*)ctx
->bytes
;
519 return (struct xhci_slot_ctx
*)
520 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
523 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
524 struct xhci_container_ctx
*ctx
,
525 unsigned int ep_index
)
527 /* increment ep index by offset of start of ep ctx array */
529 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
532 return (struct xhci_ep_ctx
*)
533 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
537 /***************** Streams structures manipulation *************************/
539 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
540 unsigned int num_stream_ctxs
,
541 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
543 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
544 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
546 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
547 dma_free_coherent(dev
, size
,
549 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
550 return dma_pool_free(xhci
->small_streams_pool
,
553 return dma_pool_free(xhci
->medium_streams_pool
,
558 * The stream context array for each endpoint with bulk streams enabled can
559 * vary in size, based on:
560 * - how many streams the endpoint supports,
561 * - the maximum primary stream array size the host controller supports,
562 * - and how many streams the device driver asks for.
564 * The stream context array must be a power of 2, and can be as small as
565 * 64 bytes or as large as 1MB.
567 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
568 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
571 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
572 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
574 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
575 return dma_alloc_coherent(dev
, size
,
577 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
578 return dma_pool_alloc(xhci
->small_streams_pool
,
581 return dma_pool_alloc(xhci
->medium_streams_pool
,
585 struct xhci_ring
*xhci_dma_to_transfer_ring(
586 struct xhci_virt_ep
*ep
,
589 if (ep
->ep_state
& EP_HAS_STREAMS
)
590 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
591 address
>> TRB_SEGMENT_SHIFT
);
595 struct xhci_ring
*xhci_stream_id_to_ring(
596 struct xhci_virt_device
*dev
,
597 unsigned int ep_index
,
598 unsigned int stream_id
)
600 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
604 if (!ep
->stream_info
)
607 if (stream_id
> ep
->stream_info
->num_streams
)
609 return ep
->stream_info
->stream_rings
[stream_id
];
613 * Change an endpoint's internal structure so it supports stream IDs. The
614 * number of requested streams includes stream 0, which cannot be used by device
617 * The number of stream contexts in the stream context array may be bigger than
618 * the number of streams the driver wants to use. This is because the number of
619 * stream context array entries must be a power of two.
621 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
622 unsigned int num_stream_ctxs
,
623 unsigned int num_streams
,
624 unsigned int max_packet
, gfp_t mem_flags
)
626 struct xhci_stream_info
*stream_info
;
628 struct xhci_ring
*cur_ring
;
632 xhci_dbg(xhci
, "Allocating %u streams and %u "
633 "stream context array entries.\n",
634 num_streams
, num_stream_ctxs
);
635 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
636 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
639 xhci
->cmd_ring_reserved_trbs
++;
641 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
645 stream_info
->num_streams
= num_streams
;
646 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
648 /* Initialize the array of virtual pointers to stream rings. */
649 stream_info
->stream_rings
= kzalloc(
650 sizeof(struct xhci_ring
*)*num_streams
,
652 if (!stream_info
->stream_rings
)
655 /* Initialize the array of DMA addresses for stream rings for the HW. */
656 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
657 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
659 if (!stream_info
->stream_ctx_array
)
661 memset(stream_info
->stream_ctx_array
, 0,
662 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
664 /* Allocate everything needed to free the stream rings later */
665 stream_info
->free_streams_command
=
666 xhci_alloc_command(xhci
, true, true, mem_flags
);
667 if (!stream_info
->free_streams_command
)
670 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
672 /* Allocate rings for all the streams that the driver will use,
673 * and add their segment DMA addresses to the radix tree.
674 * Stream 0 is reserved.
677 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
678 stream_info
->stream_rings
[cur_stream
] =
679 xhci_ring_alloc(xhci
, 2, 1, TYPE_STREAM
, max_packet
,
681 cur_ring
= stream_info
->stream_rings
[cur_stream
];
684 cur_ring
->stream_id
= cur_stream
;
685 cur_ring
->trb_address_map
= &stream_info
->trb_address_map
;
686 /* Set deq ptr, cycle bit, and stream context type */
687 addr
= cur_ring
->first_seg
->dma
|
688 SCT_FOR_CTX(SCT_PRI_TR
) |
689 cur_ring
->cycle_state
;
690 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
692 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
693 cur_stream
, (unsigned long long) addr
);
695 ret
= xhci_update_stream_mapping(cur_ring
, mem_flags
);
697 xhci_ring_free(xhci
, cur_ring
);
698 stream_info
->stream_rings
[cur_stream
] = NULL
;
702 /* Leave the other unused stream ring pointers in the stream context
703 * array initialized to zero. This will cause the xHC to give us an
704 * error if the device asks for a stream ID we don't have setup (if it
705 * was any other way, the host controller would assume the ring is
706 * "empty" and wait forever for data to be queued to that stream ID).
712 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
713 cur_ring
= stream_info
->stream_rings
[cur_stream
];
715 xhci_ring_free(xhci
, cur_ring
);
716 stream_info
->stream_rings
[cur_stream
] = NULL
;
719 xhci_free_command(xhci
, stream_info
->free_streams_command
);
721 kfree(stream_info
->stream_rings
);
725 xhci
->cmd_ring_reserved_trbs
--;
729 * Sets the MaxPStreams field and the Linear Stream Array field.
730 * Sets the dequeue pointer to the stream context array.
732 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
733 struct xhci_ep_ctx
*ep_ctx
,
734 struct xhci_stream_info
*stream_info
)
736 u32 max_primary_streams
;
737 /* MaxPStreams is the number of stream context array entries, not the
738 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
739 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
741 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
742 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
743 "Setting number of stream ctx array entries to %u",
744 1 << (max_primary_streams
+ 1));
745 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
746 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
748 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
752 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
753 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
754 * not at the beginning of the ring).
756 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx
*ep_ctx
,
757 struct xhci_virt_ep
*ep
)
760 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
761 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
762 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
765 /* Frees all stream contexts associated with the endpoint,
767 * Caller should fix the endpoint context streams fields.
769 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
770 struct xhci_stream_info
*stream_info
)
773 struct xhci_ring
*cur_ring
;
778 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
780 cur_ring
= stream_info
->stream_rings
[cur_stream
];
782 xhci_ring_free(xhci
, cur_ring
);
783 stream_info
->stream_rings
[cur_stream
] = NULL
;
786 xhci_free_command(xhci
, stream_info
->free_streams_command
);
787 xhci
->cmd_ring_reserved_trbs
--;
788 if (stream_info
->stream_ctx_array
)
789 xhci_free_stream_ctx(xhci
,
790 stream_info
->num_stream_ctxs
,
791 stream_info
->stream_ctx_array
,
792 stream_info
->ctx_array_dma
);
794 kfree(stream_info
->stream_rings
);
799 /***************** Device context manipulation *************************/
801 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
802 struct xhci_virt_ep
*ep
)
804 setup_timer(&ep
->stop_cmd_timer
, xhci_stop_endpoint_command_watchdog
,
809 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
810 struct xhci_virt_device
*virt_dev
,
813 struct list_head
*tt_list_head
;
814 struct xhci_tt_bw_info
*tt_info
, *next
;
815 bool slot_found
= false;
817 /* If the device never made it past the Set Address stage,
818 * it may not have the real_port set correctly.
820 if (virt_dev
->real_port
== 0 ||
821 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
822 xhci_dbg(xhci
, "Bad real port.\n");
826 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
827 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
828 /* Multi-TT hubs will have more than one entry */
829 if (tt_info
->slot_id
== slot_id
) {
831 list_del(&tt_info
->tt_list
);
833 } else if (slot_found
) {
839 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
840 struct xhci_virt_device
*virt_dev
,
841 struct usb_device
*hdev
,
842 struct usb_tt
*tt
, gfp_t mem_flags
)
844 struct xhci_tt_bw_info
*tt_info
;
845 unsigned int num_ports
;
851 num_ports
= hdev
->maxchild
;
853 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
854 struct xhci_interval_bw_table
*bw_table
;
856 tt_info
= kzalloc(sizeof(*tt_info
), mem_flags
);
859 INIT_LIST_HEAD(&tt_info
->tt_list
);
860 list_add(&tt_info
->tt_list
,
861 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
862 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
864 tt_info
->ttport
= i
+1;
865 bw_table
= &tt_info
->bw_table
;
866 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
867 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
872 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
877 /* All the xhci_tds in the ring's TD list should be freed at this point.
878 * Should be called with xhci->lock held if there is any chance the TT lists
879 * will be manipulated by the configure endpoint, allocate device, or update
880 * hub functions while this function is removing the TT entries from the list.
882 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
884 struct xhci_virt_device
*dev
;
886 int old_active_eps
= 0;
888 /* Slot ID 0 is reserved */
889 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
892 dev
= xhci
->devs
[slot_id
];
894 trace_xhci_free_virt_device(dev
);
896 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
901 old_active_eps
= dev
->tt_info
->active_eps
;
903 for (i
= 0; i
< 31; i
++) {
904 if (dev
->eps
[i
].ring
)
905 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
906 if (dev
->eps
[i
].stream_info
)
907 xhci_free_stream_info(xhci
,
908 dev
->eps
[i
].stream_info
);
909 /* Endpoints on the TT/root port lists should have been removed
910 * when usb_disable_device() was called for the device.
911 * We can't drop them anyway, because the udev might have gone
912 * away by this point, and we can't tell what speed it was.
914 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
915 xhci_warn(xhci
, "Slot %u endpoint %u "
916 "not removed from BW list!\n",
919 /* If this is a hub, free the TT(s) from the TT list */
920 xhci_free_tt_info(xhci
, dev
, slot_id
);
921 /* If necessary, update the number of active TTs on this root port */
922 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
925 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
927 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
929 kfree(xhci
->devs
[slot_id
]);
930 xhci
->devs
[slot_id
] = NULL
;
934 * Free a virt_device structure.
935 * If the virt_device added a tt_info (a hub) and has children pointing to
936 * that tt_info, then free the child first. Recursive.
937 * We can't rely on udev at this point to find child-parent relationships.
939 void xhci_free_virt_devices_depth_first(struct xhci_hcd
*xhci
, int slot_id
)
941 struct xhci_virt_device
*vdev
;
942 struct list_head
*tt_list_head
;
943 struct xhci_tt_bw_info
*tt_info
, *next
;
946 vdev
= xhci
->devs
[slot_id
];
950 tt_list_head
= &(xhci
->rh_bw
[vdev
->real_port
- 1].tts
);
951 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
952 /* is this a hub device that added a tt_info to the tts list */
953 if (tt_info
->slot_id
== slot_id
) {
954 /* are any devices using this tt_info? */
955 for (i
= 1; i
< HCS_MAX_SLOTS(xhci
->hcs_params1
); i
++) {
956 vdev
= xhci
->devs
[i
];
957 if (vdev
&& (vdev
->tt_info
== tt_info
))
958 xhci_free_virt_devices_depth_first(
963 /* we are now at a leaf device */
964 xhci_free_virt_device(xhci
, slot_id
);
967 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
968 struct usb_device
*udev
, gfp_t flags
)
970 struct xhci_virt_device
*dev
;
973 /* Slot ID 0 is reserved */
974 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
975 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
979 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
980 if (!xhci
->devs
[slot_id
])
982 dev
= xhci
->devs
[slot_id
];
984 /* Allocate the (output) device context that will be used in the HC. */
985 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
989 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
990 (unsigned long long)dev
->out_ctx
->dma
);
992 /* Allocate the (input) device context for address device command */
993 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
997 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
998 (unsigned long long)dev
->in_ctx
->dma
);
1000 /* Initialize the cancellation list and watchdog timers for each ep */
1001 for (i
= 0; i
< 31; i
++) {
1002 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
1003 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
1004 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
1007 /* Allocate endpoint 0 ring */
1008 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 2, 1, TYPE_CTRL
, 0, flags
);
1009 if (!dev
->eps
[0].ring
)
1014 /* Point to output device context in dcbaa. */
1015 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
1016 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1018 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
1019 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
1021 trace_xhci_alloc_virt_device(dev
);
1025 xhci_free_virt_device(xhci
, slot_id
);
1029 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
1030 struct usb_device
*udev
)
1032 struct xhci_virt_device
*virt_dev
;
1033 struct xhci_ep_ctx
*ep0_ctx
;
1034 struct xhci_ring
*ep_ring
;
1036 virt_dev
= xhci
->devs
[udev
->slot_id
];
1037 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
1038 ep_ring
= virt_dev
->eps
[0].ring
;
1040 * FIXME we don't keep track of the dequeue pointer very well after a
1041 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1042 * host to our enqueue pointer. This should only be called after a
1043 * configured device has reset, so all control transfers should have
1044 * been completed or cancelled before the reset.
1046 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
1048 | ep_ring
->cycle_state
);
1052 * The xHCI roothub may have ports of differing speeds in any order in the port
1053 * status registers. xhci->port_array provides an array of the port speed for
1054 * each offset into the port status registers.
1056 * The xHCI hardware wants to know the roothub port number that the USB device
1057 * is attached to (or the roothub port its ancestor hub is attached to). All we
1058 * know is the index of that port under either the USB 2.0 or the USB 3.0
1059 * roothub, but that doesn't give us the real index into the HW port status
1060 * registers. Call xhci_find_raw_port_number() to get real index.
1062 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
1063 struct usb_device
*udev
)
1065 struct usb_device
*top_dev
;
1066 struct usb_hcd
*hcd
;
1068 if (udev
->speed
>= USB_SPEED_SUPER
)
1069 hcd
= xhci
->shared_hcd
;
1071 hcd
= xhci
->main_hcd
;
1073 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1074 top_dev
= top_dev
->parent
)
1075 /* Found device below root hub */;
1077 return xhci_find_raw_port_number(hcd
, top_dev
->portnum
);
1080 /* Setup an xHCI virtual device for a Set Address command */
1081 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
1083 struct xhci_virt_device
*dev
;
1084 struct xhci_ep_ctx
*ep0_ctx
;
1085 struct xhci_slot_ctx
*slot_ctx
;
1088 struct usb_device
*top_dev
;
1090 dev
= xhci
->devs
[udev
->slot_id
];
1091 /* Slot ID 0 is reserved */
1092 if (udev
->slot_id
== 0 || !dev
) {
1093 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
1097 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
1098 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
1100 /* 3) Only the control endpoint is valid - one endpoint context */
1101 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1102 switch (udev
->speed
) {
1103 case USB_SPEED_SUPER_PLUS
:
1104 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SSP
);
1105 max_packets
= MAX_PACKET(512);
1107 case USB_SPEED_SUPER
:
1108 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1109 max_packets
= MAX_PACKET(512);
1111 case USB_SPEED_HIGH
:
1112 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1113 max_packets
= MAX_PACKET(64);
1115 /* USB core guesses at a 64-byte max packet first for FS devices */
1116 case USB_SPEED_FULL
:
1117 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1118 max_packets
= MAX_PACKET(64);
1121 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1122 max_packets
= MAX_PACKET(8);
1124 case USB_SPEED_WIRELESS
:
1125 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1129 /* Speed was set earlier, this shouldn't happen. */
1132 /* Find the root hub port this device is under */
1133 port_num
= xhci_find_real_port_number(xhci
, udev
);
1136 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1137 /* Set the port number in the virtual_device to the faked port number */
1138 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1139 top_dev
= top_dev
->parent
)
1140 /* Found device below root hub */;
1141 dev
->fake_port
= top_dev
->portnum
;
1142 dev
->real_port
= port_num
;
1143 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1144 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1146 /* Find the right bandwidth table that this device will be a part of.
1147 * If this is a full speed device attached directly to a root port (or a
1148 * decendent of one), it counts as a primary bandwidth domain, not a
1149 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1150 * will never be created for the HS root hub.
1152 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1153 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1155 struct xhci_root_port_bw_info
*rh_bw
;
1156 struct xhci_tt_bw_info
*tt_bw
;
1158 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1159 /* Find the right TT. */
1160 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1161 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1164 if (!dev
->udev
->tt
->multi
||
1166 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1167 dev
->bw_table
= &tt_bw
->bw_table
;
1168 dev
->tt_info
= tt_bw
;
1173 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1176 /* Is this a LS/FS device under an external HS hub? */
1177 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1178 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1179 (udev
->ttport
<< 8));
1180 if (udev
->tt
->multi
)
1181 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1183 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1184 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1186 /* Step 4 - ring already allocated */
1188 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1190 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1191 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1194 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1195 dev
->eps
[0].ring
->cycle_state
);
1197 trace_xhci_setup_addressable_virt_device(dev
);
1199 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1205 * Convert interval expressed as 2^(bInterval - 1) == interval into
1206 * straight exponent value 2^n == interval.
1209 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1210 struct usb_host_endpoint
*ep
)
1212 unsigned int interval
;
1214 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1215 if (interval
!= ep
->desc
.bInterval
- 1)
1216 dev_warn(&udev
->dev
,
1217 "ep %#x - rounding interval to %d %sframes\n",
1218 ep
->desc
.bEndpointAddress
,
1220 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1222 if (udev
->speed
== USB_SPEED_FULL
) {
1224 * Full speed isoc endpoints specify interval in frames,
1225 * not microframes. We are using microframes everywhere,
1226 * so adjust accordingly.
1228 interval
+= 3; /* 1 frame = 2^3 uframes */
1235 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1236 * microframes, rounded down to nearest power of 2.
1238 static unsigned int xhci_microframes_to_exponent(struct usb_device
*udev
,
1239 struct usb_host_endpoint
*ep
, unsigned int desc_interval
,
1240 unsigned int min_exponent
, unsigned int max_exponent
)
1242 unsigned int interval
;
1244 interval
= fls(desc_interval
) - 1;
1245 interval
= clamp_val(interval
, min_exponent
, max_exponent
);
1246 if ((1 << interval
) != desc_interval
)
1248 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1249 ep
->desc
.bEndpointAddress
,
1256 static unsigned int xhci_parse_microframe_interval(struct usb_device
*udev
,
1257 struct usb_host_endpoint
*ep
)
1259 if (ep
->desc
.bInterval
== 0)
1261 return xhci_microframes_to_exponent(udev
, ep
,
1262 ep
->desc
.bInterval
, 0, 15);
1266 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1267 struct usb_host_endpoint
*ep
)
1269 return xhci_microframes_to_exponent(udev
, ep
,
1270 ep
->desc
.bInterval
* 8, 3, 10);
1273 /* Return the polling or NAK interval.
1275 * The polling interval is expressed in "microframes". If xHCI's Interval field
1276 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1278 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1281 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1282 struct usb_host_endpoint
*ep
)
1284 unsigned int interval
= 0;
1286 switch (udev
->speed
) {
1287 case USB_SPEED_HIGH
:
1289 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1290 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1291 interval
= xhci_parse_microframe_interval(udev
, ep
);
1294 /* Fall through - SS and HS isoc/int have same decoding */
1296 case USB_SPEED_SUPER_PLUS
:
1297 case USB_SPEED_SUPER
:
1298 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1299 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1300 interval
= xhci_parse_exponent_interval(udev
, ep
);
1304 case USB_SPEED_FULL
:
1305 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1306 interval
= xhci_parse_exponent_interval(udev
, ep
);
1310 * Fall through for interrupt endpoint interval decoding
1311 * since it uses the same rules as low speed interrupt
1316 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1317 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1319 interval
= xhci_parse_frame_interval(udev
, ep
);
1329 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1330 * High speed endpoint descriptors can define "the number of additional
1331 * transaction opportunities per microframe", but that goes in the Max Burst
1332 * endpoint context field.
1334 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1335 struct usb_host_endpoint
*ep
)
1337 if (udev
->speed
< USB_SPEED_SUPER
||
1338 !usb_endpoint_xfer_isoc(&ep
->desc
))
1340 return ep
->ss_ep_comp
.bmAttributes
;
1343 static u32
xhci_get_endpoint_max_burst(struct usb_device
*udev
,
1344 struct usb_host_endpoint
*ep
)
1346 /* Super speed and Plus have max burst in ep companion desc */
1347 if (udev
->speed
>= USB_SPEED_SUPER
)
1348 return ep
->ss_ep_comp
.bMaxBurst
;
1350 if (udev
->speed
== USB_SPEED_HIGH
&&
1351 (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1352 usb_endpoint_xfer_int(&ep
->desc
)))
1353 return usb_endpoint_maxp_mult(&ep
->desc
) - 1;
1358 static u32
xhci_get_endpoint_type(struct usb_host_endpoint
*ep
)
1362 in
= usb_endpoint_dir_in(&ep
->desc
);
1364 switch (usb_endpoint_type(&ep
->desc
)) {
1365 case USB_ENDPOINT_XFER_CONTROL
:
1367 case USB_ENDPOINT_XFER_BULK
:
1368 return in
? BULK_IN_EP
: BULK_OUT_EP
;
1369 case USB_ENDPOINT_XFER_ISOC
:
1370 return in
? ISOC_IN_EP
: ISOC_OUT_EP
;
1371 case USB_ENDPOINT_XFER_INT
:
1372 return in
? INT_IN_EP
: INT_OUT_EP
;
1377 /* Return the maximum endpoint service interval time (ESIT) payload.
1378 * Basically, this is the maxpacket size, multiplied by the burst size
1381 static u32
xhci_get_max_esit_payload(struct usb_device
*udev
,
1382 struct usb_host_endpoint
*ep
)
1387 /* Only applies for interrupt or isochronous endpoints */
1388 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1389 usb_endpoint_xfer_bulk(&ep
->desc
))
1392 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1393 if ((udev
->speed
>= USB_SPEED_SUPER_PLUS
) &&
1394 USB_SS_SSP_ISOC_COMP(ep
->ss_ep_comp
.bmAttributes
))
1395 return le32_to_cpu(ep
->ssp_isoc_ep_comp
.dwBytesPerInterval
);
1396 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1397 else if (udev
->speed
>= USB_SPEED_SUPER
)
1398 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1400 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1401 max_burst
= usb_endpoint_maxp_mult(&ep
->desc
);
1402 /* A 0 in max burst means 1 transfer per ESIT */
1403 return max_packet
* max_burst
;
1406 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1407 * Drivers will have to call usb_alloc_streams() to do that.
1409 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1410 struct xhci_virt_device
*virt_dev
,
1411 struct usb_device
*udev
,
1412 struct usb_host_endpoint
*ep
,
1415 unsigned int ep_index
;
1416 struct xhci_ep_ctx
*ep_ctx
;
1417 struct xhci_ring
*ep_ring
;
1418 unsigned int max_packet
;
1419 enum xhci_ring_type ring_type
;
1420 u32 max_esit_payload
;
1422 unsigned int max_burst
;
1423 unsigned int interval
;
1425 unsigned int avg_trb_len
;
1426 unsigned int err_count
= 0;
1428 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1429 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1431 endpoint_type
= xhci_get_endpoint_type(ep
);
1435 ring_type
= usb_endpoint_type(&ep
->desc
);
1438 * Get values to fill the endpoint context, mostly from ep descriptor.
1439 * The average TRB buffer lengt for bulk endpoints is unclear as we
1440 * have no clue on scatter gather list entry size. For Isoc and Int,
1441 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1443 max_esit_payload
= xhci_get_max_esit_payload(udev
, ep
);
1444 interval
= xhci_get_endpoint_interval(udev
, ep
);
1446 /* Periodic endpoint bInterval limit quirk */
1447 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1448 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1449 if ((xhci
->quirks
& XHCI_LIMIT_ENDPOINT_INTERVAL_7
) &&
1450 udev
->speed
>= USB_SPEED_HIGH
&&
1456 mult
= xhci_get_endpoint_mult(udev
, ep
);
1457 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1458 max_burst
= xhci_get_endpoint_max_burst(udev
, ep
);
1459 avg_trb_len
= max_esit_payload
;
1461 /* FIXME dig Mult and streams info out of ep companion desc */
1463 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1464 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1466 /* Some devices get this wrong */
1467 if (usb_endpoint_xfer_bulk(&ep
->desc
) && udev
->speed
== USB_SPEED_HIGH
)
1469 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1470 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
>= 0x100)
1472 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1473 if ((xhci
->hci_version
> 0x100) && HCC2_LEC(xhci
->hcc_params2
))
1476 /* Set up the endpoint ring */
1477 virt_dev
->eps
[ep_index
].new_ring
=
1478 xhci_ring_alloc(xhci
, 2, 1, ring_type
, max_packet
, mem_flags
);
1479 if (!virt_dev
->eps
[ep_index
].new_ring
)
1482 virt_dev
->eps
[ep_index
].skip
= false;
1483 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1485 /* Fill the endpoint context */
1486 ep_ctx
->ep_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload
) |
1487 EP_INTERVAL(interval
) |
1489 ep_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(endpoint_type
) |
1490 MAX_PACKET(max_packet
) |
1491 MAX_BURST(max_burst
) |
1492 ERROR_COUNT(err_count
));
1493 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
|
1494 ep_ring
->cycle_state
);
1496 ep_ctx
->tx_info
= cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload
) |
1497 EP_AVG_TRB_LENGTH(avg_trb_len
));
1499 /* FIXME Debug endpoint context */
1503 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1504 struct xhci_virt_device
*virt_dev
,
1505 struct usb_host_endpoint
*ep
)
1507 unsigned int ep_index
;
1508 struct xhci_ep_ctx
*ep_ctx
;
1510 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1511 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1513 ep_ctx
->ep_info
= 0;
1514 ep_ctx
->ep_info2
= 0;
1516 ep_ctx
->tx_info
= 0;
1517 /* Don't free the endpoint ring until the set interface or configuration
1522 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1524 bw_info
->ep_interval
= 0;
1526 bw_info
->num_packets
= 0;
1527 bw_info
->max_packet_size
= 0;
1529 bw_info
->max_esit_payload
= 0;
1532 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1533 struct xhci_container_ctx
*in_ctx
,
1534 struct xhci_input_control_ctx
*ctrl_ctx
,
1535 struct xhci_virt_device
*virt_dev
)
1537 struct xhci_bw_info
*bw_info
;
1538 struct xhci_ep_ctx
*ep_ctx
;
1539 unsigned int ep_type
;
1542 for (i
= 1; i
< 31; i
++) {
1543 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1545 /* We can't tell what endpoint type is being dropped, but
1546 * unconditionally clearing the bandwidth info for non-periodic
1547 * endpoints should be harmless because the info will never be
1548 * set in the first place.
1550 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1551 /* Dropped endpoint */
1552 xhci_clear_endpoint_bw_info(bw_info
);
1556 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1557 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1558 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1560 /* Ignore non-periodic endpoints */
1561 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1562 ep_type
!= ISOC_IN_EP
&&
1563 ep_type
!= INT_IN_EP
)
1566 /* Added or changed endpoint */
1567 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1568 le32_to_cpu(ep_ctx
->ep_info
));
1569 /* Number of packets and mult are zero-based in the
1570 * input context, but we want one-based for the
1573 bw_info
->mult
= CTX_TO_EP_MULT(
1574 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1575 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1576 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1577 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1578 le32_to_cpu(ep_ctx
->ep_info2
));
1579 bw_info
->type
= ep_type
;
1580 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1581 le32_to_cpu(ep_ctx
->tx_info
));
1586 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1587 * Useful when you want to change one particular aspect of the endpoint and then
1588 * issue a configure endpoint command.
1590 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1591 struct xhci_container_ctx
*in_ctx
,
1592 struct xhci_container_ctx
*out_ctx
,
1593 unsigned int ep_index
)
1595 struct xhci_ep_ctx
*out_ep_ctx
;
1596 struct xhci_ep_ctx
*in_ep_ctx
;
1598 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1599 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1601 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1602 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1603 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1604 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1607 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1608 * Useful when you want to change one particular aspect of the endpoint and then
1609 * issue a configure endpoint command. Only the context entries field matters,
1610 * but we'll copy the whole thing anyway.
1612 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1613 struct xhci_container_ctx
*in_ctx
,
1614 struct xhci_container_ctx
*out_ctx
)
1616 struct xhci_slot_ctx
*in_slot_ctx
;
1617 struct xhci_slot_ctx
*out_slot_ctx
;
1619 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1620 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1622 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1623 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1624 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1625 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1628 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1629 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1632 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1633 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1635 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1636 "Allocating %d scratchpad buffers", num_sp
);
1641 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1642 if (!xhci
->scratchpad
)
1645 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1646 num_sp
* sizeof(u64
),
1647 &xhci
->scratchpad
->sp_dma
, flags
);
1648 if (!xhci
->scratchpad
->sp_array
)
1651 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1652 if (!xhci
->scratchpad
->sp_buffers
)
1655 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1656 for (i
= 0; i
< num_sp
; i
++) {
1658 void *buf
= dma_zalloc_coherent(dev
, xhci
->page_size
, &dma
,
1663 xhci
->scratchpad
->sp_array
[i
] = dma
;
1664 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1670 for (i
= i
- 1; i
>= 0; i
--) {
1671 dma_free_coherent(dev
, xhci
->page_size
,
1672 xhci
->scratchpad
->sp_buffers
[i
],
1673 xhci
->scratchpad
->sp_array
[i
]);
1676 kfree(xhci
->scratchpad
->sp_buffers
);
1679 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1680 xhci
->scratchpad
->sp_array
,
1681 xhci
->scratchpad
->sp_dma
);
1684 kfree(xhci
->scratchpad
);
1685 xhci
->scratchpad
= NULL
;
1691 static void scratchpad_free(struct xhci_hcd
*xhci
)
1695 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1697 if (!xhci
->scratchpad
)
1700 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1702 for (i
= 0; i
< num_sp
; i
++) {
1703 dma_free_coherent(dev
, xhci
->page_size
,
1704 xhci
->scratchpad
->sp_buffers
[i
],
1705 xhci
->scratchpad
->sp_array
[i
]);
1707 kfree(xhci
->scratchpad
->sp_buffers
);
1708 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1709 xhci
->scratchpad
->sp_array
,
1710 xhci
->scratchpad
->sp_dma
);
1711 kfree(xhci
->scratchpad
);
1712 xhci
->scratchpad
= NULL
;
1715 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1716 bool allocate_in_ctx
, bool allocate_completion
,
1719 struct xhci_command
*command
;
1721 command
= kzalloc(sizeof(*command
), mem_flags
);
1725 if (allocate_in_ctx
) {
1727 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1729 if (!command
->in_ctx
) {
1735 if (allocate_completion
) {
1736 command
->completion
=
1737 kzalloc(sizeof(struct completion
), mem_flags
);
1738 if (!command
->completion
) {
1739 xhci_free_container_ctx(xhci
, command
->in_ctx
);
1743 init_completion(command
->completion
);
1746 command
->status
= 0;
1747 INIT_LIST_HEAD(&command
->cmd_list
);
1751 void xhci_urb_free_priv(struct urb_priv
*urb_priv
)
1756 void xhci_free_command(struct xhci_hcd
*xhci
,
1757 struct xhci_command
*command
)
1759 xhci_free_container_ctx(xhci
,
1761 kfree(command
->completion
);
1765 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1767 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
1769 int i
, j
, num_ports
;
1771 cancel_delayed_work_sync(&xhci
->cmd_timer
);
1773 /* Free the Event Ring Segment Table and the actual Event Ring */
1774 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
1775 if (xhci
->erst
.entries
)
1776 dma_free_coherent(dev
, size
,
1777 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
1778 xhci
->erst
.entries
= NULL
;
1779 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed ERST");
1780 if (xhci
->event_ring
)
1781 xhci_ring_free(xhci
, xhci
->event_ring
);
1782 xhci
->event_ring
= NULL
;
1783 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed event ring");
1785 if (xhci
->lpm_command
)
1786 xhci_free_command(xhci
, xhci
->lpm_command
);
1787 xhci
->lpm_command
= NULL
;
1789 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1790 xhci
->cmd_ring
= NULL
;
1791 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed command ring");
1792 xhci_cleanup_command_queue(xhci
);
1794 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1795 for (i
= 0; i
< num_ports
&& xhci
->rh_bw
; i
++) {
1796 struct xhci_interval_bw_table
*bwt
= &xhci
->rh_bw
[i
].bw_table
;
1797 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++) {
1798 struct list_head
*ep
= &bwt
->interval_bw
[j
].endpoints
;
1799 while (!list_empty(ep
))
1800 list_del_init(ep
->next
);
1804 for (i
= HCS_MAX_SLOTS(xhci
->hcs_params1
); i
> 0; i
--)
1805 xhci_free_virt_devices_depth_first(xhci
, i
);
1807 dma_pool_destroy(xhci
->segment_pool
);
1808 xhci
->segment_pool
= NULL
;
1809 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed segment pool");
1811 dma_pool_destroy(xhci
->device_pool
);
1812 xhci
->device_pool
= NULL
;
1813 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed device context pool");
1815 dma_pool_destroy(xhci
->small_streams_pool
);
1816 xhci
->small_streams_pool
= NULL
;
1817 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1818 "Freed small stream array pool");
1820 dma_pool_destroy(xhci
->medium_streams_pool
);
1821 xhci
->medium_streams_pool
= NULL
;
1822 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1823 "Freed medium stream array pool");
1826 dma_free_coherent(dev
, sizeof(*xhci
->dcbaa
),
1827 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1830 scratchpad_free(xhci
);
1835 for (i
= 0; i
< num_ports
; i
++) {
1836 struct xhci_tt_bw_info
*tt
, *n
;
1837 list_for_each_entry_safe(tt
, n
, &xhci
->rh_bw
[i
].tts
, tt_list
) {
1838 list_del(&tt
->tt_list
);
1844 xhci
->cmd_ring_reserved_trbs
= 0;
1845 xhci
->num_usb2_ports
= 0;
1846 xhci
->num_usb3_ports
= 0;
1847 xhci
->num_active_eps
= 0;
1848 kfree(xhci
->usb2_ports
);
1849 kfree(xhci
->usb3_ports
);
1850 kfree(xhci
->port_array
);
1852 kfree(xhci
->ext_caps
);
1854 xhci
->usb2_ports
= NULL
;
1855 xhci
->usb3_ports
= NULL
;
1856 xhci
->port_array
= NULL
;
1858 xhci
->ext_caps
= NULL
;
1860 xhci
->page_size
= 0;
1861 xhci
->page_shift
= 0;
1862 xhci
->bus_state
[0].bus_suspended
= 0;
1863 xhci
->bus_state
[1].bus_suspended
= 0;
1866 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1867 struct xhci_segment
*input_seg
,
1868 union xhci_trb
*start_trb
,
1869 union xhci_trb
*end_trb
,
1870 dma_addr_t input_dma
,
1871 struct xhci_segment
*result_seg
,
1872 char *test_name
, int test_number
)
1874 unsigned long long start_dma
;
1875 unsigned long long end_dma
;
1876 struct xhci_segment
*seg
;
1878 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1879 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1881 seg
= trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
, false);
1882 if (seg
!= result_seg
) {
1883 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1884 test_name
, test_number
);
1885 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1886 "input DMA 0x%llx\n",
1888 (unsigned long long) input_dma
);
1889 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1890 "ending TRB %p (0x%llx DMA)\n",
1891 start_trb
, start_dma
,
1893 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1895 trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
,
1902 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1903 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
)
1906 dma_addr_t input_dma
;
1907 struct xhci_segment
*result_seg
;
1908 } simple_test_vector
[] = {
1909 /* A zeroed DMA field should fail */
1911 /* One TRB before the ring start should fail */
1912 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1913 /* One byte before the ring start should fail */
1914 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1915 /* Starting TRB should succeed */
1916 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1917 /* Ending TRB should succeed */
1918 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1919 xhci
->event_ring
->first_seg
},
1920 /* One byte after the ring end should fail */
1921 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1922 /* One TRB after the ring end should fail */
1923 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1924 /* An address of all ones should fail */
1925 { (dma_addr_t
) (~0), NULL
},
1928 struct xhci_segment
*input_seg
;
1929 union xhci_trb
*start_trb
;
1930 union xhci_trb
*end_trb
;
1931 dma_addr_t input_dma
;
1932 struct xhci_segment
*result_seg
;
1933 } complex_test_vector
[] = {
1934 /* Test feeding a valid DMA address from a different ring */
1935 { .input_seg
= xhci
->event_ring
->first_seg
,
1936 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1937 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1938 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1941 /* Test feeding a valid end TRB from a different ring */
1942 { .input_seg
= xhci
->event_ring
->first_seg
,
1943 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1944 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1945 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1948 /* Test feeding a valid start and end TRB from a different ring */
1949 { .input_seg
= xhci
->event_ring
->first_seg
,
1950 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1951 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1952 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1955 /* TRB in this ring, but after this TD */
1956 { .input_seg
= xhci
->event_ring
->first_seg
,
1957 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1958 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1959 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1962 /* TRB in this ring, but before this TD */
1963 { .input_seg
= xhci
->event_ring
->first_seg
,
1964 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1965 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1966 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1969 /* TRB in this ring, but after this wrapped TD */
1970 { .input_seg
= xhci
->event_ring
->first_seg
,
1971 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1972 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1973 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1976 /* TRB in this ring, but before this wrapped TD */
1977 { .input_seg
= xhci
->event_ring
->first_seg
,
1978 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1979 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1980 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
1983 /* TRB not in this ring, and we have a wrapped TD */
1984 { .input_seg
= xhci
->event_ring
->first_seg
,
1985 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1986 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1987 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
1992 unsigned int num_tests
;
1995 num_tests
= ARRAY_SIZE(simple_test_vector
);
1996 for (i
= 0; i
< num_tests
; i
++) {
1997 ret
= xhci_test_trb_in_td(xhci
,
1998 xhci
->event_ring
->first_seg
,
1999 xhci
->event_ring
->first_seg
->trbs
,
2000 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2001 simple_test_vector
[i
].input_dma
,
2002 simple_test_vector
[i
].result_seg
,
2008 num_tests
= ARRAY_SIZE(complex_test_vector
);
2009 for (i
= 0; i
< num_tests
; i
++) {
2010 ret
= xhci_test_trb_in_td(xhci
,
2011 complex_test_vector
[i
].input_seg
,
2012 complex_test_vector
[i
].start_trb
,
2013 complex_test_vector
[i
].end_trb
,
2014 complex_test_vector
[i
].input_dma
,
2015 complex_test_vector
[i
].result_seg
,
2020 xhci_dbg(xhci
, "TRB math tests passed.\n");
2024 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
2029 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2030 xhci
->event_ring
->dequeue
);
2031 if (deq
== 0 && !in_interrupt())
2032 xhci_warn(xhci
, "WARN something wrong with SW event ring "
2034 /* Update HC event ring dequeue pointer */
2035 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2036 temp
&= ERST_PTR_MASK
;
2037 /* Don't clear the EHB bit (which is RW1C) because
2038 * there might be more events to service.
2041 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2042 "// Write event ring dequeue pointer, "
2043 "preserving EHB bit");
2044 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
2045 &xhci
->ir_set
->erst_dequeue
);
2048 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
2049 __le32 __iomem
*addr
, int max_caps
)
2051 u32 temp
, port_offset
, port_count
;
2053 u8 major_revision
, minor_revision
;
2054 struct xhci_hub
*rhub
;
2057 major_revision
= XHCI_EXT_PORT_MAJOR(temp
);
2058 minor_revision
= XHCI_EXT_PORT_MINOR(temp
);
2060 if (major_revision
== 0x03) {
2061 rhub
= &xhci
->usb3_rhub
;
2062 } else if (major_revision
<= 0x02) {
2063 rhub
= &xhci
->usb2_rhub
;
2065 xhci_warn(xhci
, "Ignoring unknown port speed, "
2066 "Ext Cap %p, revision = 0x%x\n",
2067 addr
, major_revision
);
2068 /* Ignoring port protocol we can't understand. FIXME */
2071 rhub
->maj_rev
= XHCI_EXT_PORT_MAJOR(temp
);
2073 if (rhub
->min_rev
< minor_revision
)
2074 rhub
->min_rev
= minor_revision
;
2076 /* Port offset and count in the third dword, see section 7.2 */
2077 temp
= readl(addr
+ 2);
2078 port_offset
= XHCI_EXT_PORT_OFF(temp
);
2079 port_count
= XHCI_EXT_PORT_COUNT(temp
);
2080 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2081 "Ext Cap %p, port offset = %u, "
2082 "count = %u, revision = 0x%x",
2083 addr
, port_offset
, port_count
, major_revision
);
2084 /* Port count includes the current port offset */
2085 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
2086 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2089 rhub
->psi_count
= XHCI_EXT_PORT_PSIC(temp
);
2090 if (rhub
->psi_count
) {
2091 rhub
->psi
= kcalloc(rhub
->psi_count
, sizeof(*rhub
->psi
),
2094 rhub
->psi_count
= 0;
2096 rhub
->psi_uid_count
++;
2097 for (i
= 0; i
< rhub
->psi_count
; i
++) {
2098 rhub
->psi
[i
] = readl(addr
+ 4 + i
);
2100 /* count unique ID values, two consecutive entries can
2101 * have the same ID if link is assymetric
2103 if (i
&& (XHCI_EXT_PORT_PSIV(rhub
->psi
[i
]) !=
2104 XHCI_EXT_PORT_PSIV(rhub
->psi
[i
- 1])))
2105 rhub
->psi_uid_count
++;
2107 xhci_dbg(xhci
, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2108 XHCI_EXT_PORT_PSIV(rhub
->psi
[i
]),
2109 XHCI_EXT_PORT_PSIE(rhub
->psi
[i
]),
2110 XHCI_EXT_PORT_PLT(rhub
->psi
[i
]),
2111 XHCI_EXT_PORT_PFD(rhub
->psi
[i
]),
2112 XHCI_EXT_PORT_LP(rhub
->psi
[i
]),
2113 XHCI_EXT_PORT_PSIM(rhub
->psi
[i
]));
2116 /* cache usb2 port capabilities */
2117 if (major_revision
< 0x03 && xhci
->num_ext_caps
< max_caps
)
2118 xhci
->ext_caps
[xhci
->num_ext_caps
++] = temp
;
2120 /* Check the host's USB2 LPM capability */
2121 if ((xhci
->hci_version
== 0x96) && (major_revision
!= 0x03) &&
2122 (temp
& XHCI_L1C
)) {
2123 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2124 "xHCI 0.96: support USB2 software lpm");
2125 xhci
->sw_lpm_support
= 1;
2128 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03)) {
2129 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2130 "xHCI 1.0: support USB2 software lpm");
2131 xhci
->sw_lpm_support
= 1;
2132 if (temp
& XHCI_HLC
) {
2133 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2134 "xHCI 1.0: support USB2 hardware lpm");
2135 xhci
->hw_lpm_support
= 1;
2140 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
2141 /* Duplicate entry. Ignore the port if the revisions differ. */
2142 if (xhci
->port_array
[i
] != 0) {
2143 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
2144 " port %u\n", addr
, i
);
2145 xhci_warn(xhci
, "Port was marked as USB %u, "
2146 "duplicated as USB %u\n",
2147 xhci
->port_array
[i
], major_revision
);
2148 /* Only adjust the roothub port counts if we haven't
2149 * found a similar duplicate.
2151 if (xhci
->port_array
[i
] != major_revision
&&
2152 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
2153 if (xhci
->port_array
[i
] == 0x03)
2154 xhci
->num_usb3_ports
--;
2156 xhci
->num_usb2_ports
--;
2157 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
2159 /* FIXME: Should we disable the port? */
2162 xhci
->port_array
[i
] = major_revision
;
2163 if (major_revision
== 0x03)
2164 xhci
->num_usb3_ports
++;
2166 xhci
->num_usb2_ports
++;
2168 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2172 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2173 * specify what speeds each port is supposed to be. We can't count on the port
2174 * speed bits in the PORTSC register being correct until a device is connected,
2175 * but we need to set up the two fake roothubs with the correct number of USB
2176 * 3.0 and USB 2.0 ports at host controller initialization time.
2178 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2182 unsigned int num_ports
;
2183 int i
, j
, port_index
;
2187 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2188 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
2189 if (!xhci
->port_array
)
2192 xhci
->rh_bw
= kzalloc(sizeof(*xhci
->rh_bw
)*num_ports
, flags
);
2195 for (i
= 0; i
< num_ports
; i
++) {
2196 struct xhci_interval_bw_table
*bw_table
;
2198 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2199 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2200 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2201 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2203 base
= &xhci
->cap_regs
->hc_capbase
;
2205 cap_start
= xhci_find_next_ext_cap(base
, 0, XHCI_EXT_CAPS_PROTOCOL
);
2207 xhci_err(xhci
, "No Extended Capability registers, unable to set up roothub\n");
2212 /* count extended protocol capability entries for later caching */
2215 offset
= xhci_find_next_ext_cap(base
, offset
,
2216 XHCI_EXT_CAPS_PROTOCOL
);
2219 xhci
->ext_caps
= kzalloc(sizeof(*xhci
->ext_caps
) * cap_count
, flags
);
2220 if (!xhci
->ext_caps
)
2226 xhci_add_in_port(xhci
, num_ports
, base
+ offset
, cap_count
);
2227 if (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
== num_ports
)
2229 offset
= xhci_find_next_ext_cap(base
, offset
,
2230 XHCI_EXT_CAPS_PROTOCOL
);
2233 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
2234 xhci_warn(xhci
, "No ports on the roothubs?\n");
2237 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2238 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2239 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
2241 /* Place limits on the number of roothub ports so that the hub
2242 * descriptors aren't longer than the USB core will allocate.
2244 if (xhci
->num_usb3_ports
> USB_SS_MAXPORTS
) {
2245 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2246 "Limiting USB 3.0 roothub ports to %u.",
2248 xhci
->num_usb3_ports
= USB_SS_MAXPORTS
;
2250 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
2251 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2252 "Limiting USB 2.0 roothub ports to %u.",
2254 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
2258 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2259 * Not sure how the USB core will handle a hub with no ports...
2261 if (xhci
->num_usb2_ports
) {
2262 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
2263 xhci
->num_usb2_ports
, flags
);
2264 if (!xhci
->usb2_ports
)
2268 for (i
= 0; i
< num_ports
; i
++) {
2269 if (xhci
->port_array
[i
] == 0x03 ||
2270 xhci
->port_array
[i
] == 0 ||
2271 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
2274 xhci
->usb2_ports
[port_index
] =
2275 &xhci
->op_regs
->port_status_base
+
2277 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2278 "USB 2.0 port at index %u, "
2280 xhci
->usb2_ports
[port_index
]);
2282 if (port_index
== xhci
->num_usb2_ports
)
2286 if (xhci
->num_usb3_ports
) {
2287 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
2288 xhci
->num_usb3_ports
, flags
);
2289 if (!xhci
->usb3_ports
)
2293 for (i
= 0; i
< num_ports
; i
++)
2294 if (xhci
->port_array
[i
] == 0x03) {
2295 xhci
->usb3_ports
[port_index
] =
2296 &xhci
->op_regs
->port_status_base
+
2298 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2299 "USB 3.0 port at index %u, "
2301 xhci
->usb3_ports
[port_index
]);
2303 if (port_index
== xhci
->num_usb3_ports
)
2310 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2313 struct device
*dev
= xhci_to_hcd(xhci
)->self
.sysdev
;
2314 unsigned int val
, val2
;
2316 struct xhci_segment
*seg
;
2317 u32 page_size
, temp
;
2320 INIT_LIST_HEAD(&xhci
->cmd_list
);
2322 /* init command timeout work */
2323 INIT_DELAYED_WORK(&xhci
->cmd_timer
, xhci_handle_command_timeout
);
2324 init_completion(&xhci
->cmd_ring_stop_completion
);
2326 page_size
= readl(&xhci
->op_regs
->page_size
);
2327 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2328 "Supported page size register = 0x%x", page_size
);
2329 for (i
= 0; i
< 16; i
++) {
2330 if ((0x1 & page_size
) != 0)
2332 page_size
= page_size
>> 1;
2335 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2336 "Supported page size of %iK", (1 << (i
+12)) / 1024);
2338 xhci_warn(xhci
, "WARN: no supported page size\n");
2339 /* Use 4K pages, since that's common and the minimum the HC supports */
2340 xhci
->page_shift
= 12;
2341 xhci
->page_size
= 1 << xhci
->page_shift
;
2342 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2343 "HCD page size set to %iK", xhci
->page_size
/ 1024);
2346 * Program the Number of Device Slots Enabled field in the CONFIG
2347 * register with the max value of slots the HC can handle.
2349 val
= HCS_MAX_SLOTS(readl(&xhci
->cap_regs
->hcs_params1
));
2350 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2351 "// xHC can handle at most %d device slots.", val
);
2352 val2
= readl(&xhci
->op_regs
->config_reg
);
2353 val
|= (val2
& ~HCS_SLOTS_MASK
);
2354 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2355 "// Setting Max device slots reg = 0x%x.", val
);
2356 writel(val
, &xhci
->op_regs
->config_reg
);
2359 * xHCI section 5.4.6 - doorbell array must be
2360 * "physically contiguous and 64-byte (cache line) aligned".
2362 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2366 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2367 xhci
->dcbaa
->dma
= dma
;
2368 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2369 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2370 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2371 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2374 * Initialize the ring segment pool. The ring must be a contiguous
2375 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2376 * however, the command ring segment needs 64-byte aligned segments
2377 * and our use of dma addresses in the trb_address_map radix tree needs
2378 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2380 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2381 TRB_SEGMENT_SIZE
, TRB_SEGMENT_SIZE
, xhci
->page_size
);
2383 /* See Table 46 and Note on Figure 55 */
2384 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2385 2112, 64, xhci
->page_size
);
2386 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2389 /* Linear stream context arrays don't have any boundary restrictions,
2390 * and only need to be 16-byte aligned.
2392 xhci
->small_streams_pool
=
2393 dma_pool_create("xHCI 256 byte stream ctx arrays",
2394 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2395 xhci
->medium_streams_pool
=
2396 dma_pool_create("xHCI 1KB stream ctx arrays",
2397 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2398 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2399 * will be allocated with dma_alloc_coherent()
2402 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2405 /* Set up the command ring to have one segments for now. */
2406 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, 1, TYPE_COMMAND
, 0, flags
);
2407 if (!xhci
->cmd_ring
)
2409 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2410 "Allocated command ring at %p", xhci
->cmd_ring
);
2411 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "First segment DMA is 0x%llx",
2412 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2414 /* Set the address in the Command Ring Control register */
2415 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2416 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2417 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2418 xhci
->cmd_ring
->cycle_state
;
2419 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2420 "// Setting command ring address to 0x%016llx", val_64
);
2421 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2422 xhci_dbg_cmd_ptrs(xhci
);
2424 xhci
->lpm_command
= xhci_alloc_command(xhci
, true, true, flags
);
2425 if (!xhci
->lpm_command
)
2428 /* Reserve one command ring TRB for disabling LPM.
2429 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2430 * disabling LPM, we only need to reserve one TRB for all devices.
2432 xhci
->cmd_ring_reserved_trbs
++;
2434 val
= readl(&xhci
->cap_regs
->db_off
);
2436 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2437 "// Doorbell array is located at offset 0x%x"
2438 " from cap regs base addr", val
);
2439 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2440 xhci_dbg_regs(xhci
);
2441 xhci_print_run_regs(xhci
);
2442 /* Set ir_set to interrupt register set 0 */
2443 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2446 * Event ring setup: Allocate a normal ring, but also setup
2447 * the event ring segment table (ERST). Section 4.9.3.
2449 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Allocating event ring");
2450 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, 1, TYPE_EVENT
,
2452 if (!xhci
->event_ring
)
2454 if (xhci_check_trb_in_td_math(xhci
) < 0)
2457 xhci
->erst
.entries
= dma_alloc_coherent(dev
,
2458 sizeof(struct xhci_erst_entry
) * ERST_NUM_SEGS
, &dma
,
2460 if (!xhci
->erst
.entries
)
2462 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2463 "// Allocated event ring segment table at 0x%llx",
2464 (unsigned long long)dma
);
2466 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
2467 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
2468 xhci
->erst
.erst_dma_addr
= dma
;
2469 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2470 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2471 xhci
->erst
.num_entries
,
2473 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2475 /* set ring base address and size for each segment table entry */
2476 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
2477 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
2478 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
2479 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
2484 /* set ERST count with the number of entries in the segment table */
2485 val
= readl(&xhci
->ir_set
->erst_size
);
2486 val
&= ERST_SIZE_MASK
;
2487 val
|= ERST_NUM_SEGS
;
2488 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2489 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2491 writel(val
, &xhci
->ir_set
->erst_size
);
2493 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2494 "// Set ERST entries to point to event ring.");
2495 /* set the segment table base address */
2496 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2497 "// Set ERST base address for ir_set 0 = 0x%llx",
2498 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2499 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2500 val_64
&= ERST_PTR_MASK
;
2501 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2502 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2504 /* Set the event ring dequeue address */
2505 xhci_set_hc_event_deq(xhci
);
2506 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2507 "Wrote ERST address to ir_set 0.");
2508 xhci_print_ir_set(xhci
, 0);
2511 * XXX: Might need to set the Interrupter Moderation Register to
2512 * something other than the default (~1ms minimum between interrupts).
2513 * See section 5.5.1.2.
2515 for (i
= 0; i
< MAX_HC_SLOTS
; i
++)
2516 xhci
->devs
[i
] = NULL
;
2517 for (i
= 0; i
< USB_MAXCHILDREN
; i
++) {
2518 xhci
->bus_state
[0].resume_done
[i
] = 0;
2519 xhci
->bus_state
[1].resume_done
[i
] = 0;
2520 /* Only the USB 2.0 completions will ever be used. */
2521 init_completion(&xhci
->bus_state
[1].rexit_done
[i
]);
2524 if (scratchpad_alloc(xhci
, flags
))
2526 if (xhci_setup_port_arrays(xhci
, flags
))
2529 /* Enable USB 3.0 device notifications for function remote wake, which
2530 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2531 * U3 (device suspend).
2533 temp
= readl(&xhci
->op_regs
->dev_notification
);
2534 temp
&= ~DEV_NOTE_MASK
;
2535 temp
|= DEV_NOTE_FWAKE
;
2536 writel(temp
, &xhci
->op_regs
->dev_notification
);
2543 xhci_mem_cleanup(xhci
);