mm, debug: replace dump_flags() with the new printk formats
[linux/fpc-iii.git] / drivers / nvme / host / core.c
blob03c46412fff4d602477239d0672cbdeb54c13dfb
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
32 #include "nvme.h"
34 #define NVME_MINORS (1U << MINORBITS)
36 static int nvme_major;
37 module_param(nvme_major, int, 0);
39 static int nvme_char_major;
40 module_param(nvme_char_major, int, 0);
42 static LIST_HEAD(nvme_ctrl_list);
43 DEFINE_SPINLOCK(dev_list_lock);
45 static struct class *nvme_class;
47 static void nvme_free_ns(struct kref *kref)
49 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
51 if (ns->type == NVME_NS_LIGHTNVM)
52 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
54 spin_lock(&dev_list_lock);
55 ns->disk->private_data = NULL;
56 spin_unlock(&dev_list_lock);
58 put_disk(ns->disk);
59 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
60 nvme_put_ctrl(ns->ctrl);
61 kfree(ns);
64 static void nvme_put_ns(struct nvme_ns *ns)
66 kref_put(&ns->kref, nvme_free_ns);
69 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
71 struct nvme_ns *ns;
73 spin_lock(&dev_list_lock);
74 ns = disk->private_data;
75 if (ns && !kref_get_unless_zero(&ns->kref))
76 ns = NULL;
77 spin_unlock(&dev_list_lock);
79 return ns;
82 void nvme_requeue_req(struct request *req)
84 unsigned long flags;
86 blk_mq_requeue_request(req);
87 spin_lock_irqsave(req->q->queue_lock, flags);
88 if (!blk_queue_stopped(req->q))
89 blk_mq_kick_requeue_list(req->q);
90 spin_unlock_irqrestore(req->q->queue_lock, flags);
93 struct request *nvme_alloc_request(struct request_queue *q,
94 struct nvme_command *cmd, unsigned int flags)
96 bool write = cmd->common.opcode & 1;
97 struct request *req;
99 req = blk_mq_alloc_request(q, write, flags);
100 if (IS_ERR(req))
101 return req;
103 req->cmd_type = REQ_TYPE_DRV_PRIV;
104 req->cmd_flags |= REQ_FAILFAST_DRIVER;
105 req->__data_len = 0;
106 req->__sector = (sector_t) -1;
107 req->bio = req->biotail = NULL;
109 req->cmd = (unsigned char *)cmd;
110 req->cmd_len = sizeof(struct nvme_command);
111 req->special = (void *)0;
113 return req;
117 * Returns 0 on success. If the result is negative, it's a Linux error code;
118 * if the result is positive, it's an NVM Express status code
120 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
121 void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
123 struct request *req;
124 int ret;
126 req = nvme_alloc_request(q, cmd, 0);
127 if (IS_ERR(req))
128 return PTR_ERR(req);
130 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
132 if (buffer && bufflen) {
133 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
134 if (ret)
135 goto out;
138 blk_execute_rq(req->q, NULL, req, 0);
139 if (result)
140 *result = (u32)(uintptr_t)req->special;
141 ret = req->errors;
142 out:
143 blk_mq_free_request(req);
144 return ret;
147 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
148 void *buffer, unsigned bufflen)
150 return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
153 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
154 void __user *ubuffer, unsigned bufflen,
155 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
156 u32 *result, unsigned timeout)
158 bool write = cmd->common.opcode & 1;
159 struct nvme_ns *ns = q->queuedata;
160 struct gendisk *disk = ns ? ns->disk : NULL;
161 struct request *req;
162 struct bio *bio = NULL;
163 void *meta = NULL;
164 int ret;
166 req = nvme_alloc_request(q, cmd, 0);
167 if (IS_ERR(req))
168 return PTR_ERR(req);
170 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
172 if (ubuffer && bufflen) {
173 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
174 GFP_KERNEL);
175 if (ret)
176 goto out;
177 bio = req->bio;
179 if (!disk)
180 goto submit;
181 bio->bi_bdev = bdget_disk(disk, 0);
182 if (!bio->bi_bdev) {
183 ret = -ENODEV;
184 goto out_unmap;
187 if (meta_buffer && meta_len) {
188 struct bio_integrity_payload *bip;
190 meta = kmalloc(meta_len, GFP_KERNEL);
191 if (!meta) {
192 ret = -ENOMEM;
193 goto out_unmap;
196 if (write) {
197 if (copy_from_user(meta, meta_buffer,
198 meta_len)) {
199 ret = -EFAULT;
200 goto out_free_meta;
204 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
205 if (IS_ERR(bip)) {
206 ret = PTR_ERR(bip);
207 goto out_free_meta;
210 bip->bip_iter.bi_size = meta_len;
211 bip->bip_iter.bi_sector = meta_seed;
213 ret = bio_integrity_add_page(bio, virt_to_page(meta),
214 meta_len, offset_in_page(meta));
215 if (ret != meta_len) {
216 ret = -ENOMEM;
217 goto out_free_meta;
221 submit:
222 blk_execute_rq(req->q, disk, req, 0);
223 ret = req->errors;
224 if (result)
225 *result = (u32)(uintptr_t)req->special;
226 if (meta && !ret && !write) {
227 if (copy_to_user(meta_buffer, meta, meta_len))
228 ret = -EFAULT;
230 out_free_meta:
231 kfree(meta);
232 out_unmap:
233 if (bio) {
234 if (disk && bio->bi_bdev)
235 bdput(bio->bi_bdev);
236 blk_rq_unmap_user(bio);
238 out:
239 blk_mq_free_request(req);
240 return ret;
243 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
244 void __user *ubuffer, unsigned bufflen, u32 *result,
245 unsigned timeout)
247 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
248 result, timeout);
251 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
253 struct nvme_command c = { };
254 int error;
256 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
257 c.identify.opcode = nvme_admin_identify;
258 c.identify.cns = cpu_to_le32(1);
260 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
261 if (!*id)
262 return -ENOMEM;
264 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
265 sizeof(struct nvme_id_ctrl));
266 if (error)
267 kfree(*id);
268 return error;
271 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
273 struct nvme_command c = { };
275 c.identify.opcode = nvme_admin_identify;
276 c.identify.cns = cpu_to_le32(2);
277 c.identify.nsid = cpu_to_le32(nsid);
278 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
281 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
282 struct nvme_id_ns **id)
284 struct nvme_command c = { };
285 int error;
287 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
288 c.identify.opcode = nvme_admin_identify,
289 c.identify.nsid = cpu_to_le32(nsid),
291 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
292 if (!*id)
293 return -ENOMEM;
295 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
296 sizeof(struct nvme_id_ns));
297 if (error)
298 kfree(*id);
299 return error;
302 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
303 dma_addr_t dma_addr, u32 *result)
305 struct nvme_command c;
307 memset(&c, 0, sizeof(c));
308 c.features.opcode = nvme_admin_get_features;
309 c.features.nsid = cpu_to_le32(nsid);
310 c.features.prp1 = cpu_to_le64(dma_addr);
311 c.features.fid = cpu_to_le32(fid);
313 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
316 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
317 dma_addr_t dma_addr, u32 *result)
319 struct nvme_command c;
321 memset(&c, 0, sizeof(c));
322 c.features.opcode = nvme_admin_set_features;
323 c.features.prp1 = cpu_to_le64(dma_addr);
324 c.features.fid = cpu_to_le32(fid);
325 c.features.dword11 = cpu_to_le32(dword11);
327 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
330 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
332 struct nvme_command c = { };
333 int error;
335 c.common.opcode = nvme_admin_get_log_page,
336 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
337 c.common.cdw10[0] = cpu_to_le32(
338 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
339 NVME_LOG_SMART),
341 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
342 if (!*log)
343 return -ENOMEM;
345 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
346 sizeof(struct nvme_smart_log));
347 if (error)
348 kfree(*log);
349 return error;
352 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
354 u32 q_count = (*count - 1) | ((*count - 1) << 16);
355 u32 result;
356 int status, nr_io_queues;
358 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
359 &result);
360 if (status)
361 return status;
363 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
364 *count = min(*count, nr_io_queues);
365 return 0;
368 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
370 struct nvme_user_io io;
371 struct nvme_command c;
372 unsigned length, meta_len;
373 void __user *metadata;
375 if (copy_from_user(&io, uio, sizeof(io)))
376 return -EFAULT;
377 if (io.flags)
378 return -EINVAL;
380 switch (io.opcode) {
381 case nvme_cmd_write:
382 case nvme_cmd_read:
383 case nvme_cmd_compare:
384 break;
385 default:
386 return -EINVAL;
389 length = (io.nblocks + 1) << ns->lba_shift;
390 meta_len = (io.nblocks + 1) * ns->ms;
391 metadata = (void __user *)(uintptr_t)io.metadata;
393 if (ns->ext) {
394 length += meta_len;
395 meta_len = 0;
396 } else if (meta_len) {
397 if ((io.metadata & 3) || !io.metadata)
398 return -EINVAL;
401 memset(&c, 0, sizeof(c));
402 c.rw.opcode = io.opcode;
403 c.rw.flags = io.flags;
404 c.rw.nsid = cpu_to_le32(ns->ns_id);
405 c.rw.slba = cpu_to_le64(io.slba);
406 c.rw.length = cpu_to_le16(io.nblocks);
407 c.rw.control = cpu_to_le16(io.control);
408 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
409 c.rw.reftag = cpu_to_le32(io.reftag);
410 c.rw.apptag = cpu_to_le16(io.apptag);
411 c.rw.appmask = cpu_to_le16(io.appmask);
413 return __nvme_submit_user_cmd(ns->queue, &c,
414 (void __user *)(uintptr_t)io.addr, length,
415 metadata, meta_len, io.slba, NULL, 0);
418 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
419 struct nvme_passthru_cmd __user *ucmd)
421 struct nvme_passthru_cmd cmd;
422 struct nvme_command c;
423 unsigned timeout = 0;
424 int status;
426 if (!capable(CAP_SYS_ADMIN))
427 return -EACCES;
428 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
429 return -EFAULT;
430 if (cmd.flags)
431 return -EINVAL;
433 memset(&c, 0, sizeof(c));
434 c.common.opcode = cmd.opcode;
435 c.common.flags = cmd.flags;
436 c.common.nsid = cpu_to_le32(cmd.nsid);
437 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
438 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
439 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
440 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
441 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
442 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
443 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
444 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
446 if (cmd.timeout_ms)
447 timeout = msecs_to_jiffies(cmd.timeout_ms);
449 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
450 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
451 &cmd.result, timeout);
452 if (status >= 0) {
453 if (put_user(cmd.result, &ucmd->result))
454 return -EFAULT;
457 return status;
460 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
461 unsigned int cmd, unsigned long arg)
463 struct nvme_ns *ns = bdev->bd_disk->private_data;
465 switch (cmd) {
466 case NVME_IOCTL_ID:
467 force_successful_syscall_return();
468 return ns->ns_id;
469 case NVME_IOCTL_ADMIN_CMD:
470 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
471 case NVME_IOCTL_IO_CMD:
472 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
473 case NVME_IOCTL_SUBMIT_IO:
474 return nvme_submit_io(ns, (void __user *)arg);
475 #ifdef CONFIG_BLK_DEV_NVME_SCSI
476 case SG_GET_VERSION_NUM:
477 return nvme_sg_get_version_num((void __user *)arg);
478 case SG_IO:
479 return nvme_sg_io(ns, (void __user *)arg);
480 #endif
481 default:
482 return -ENOTTY;
486 #ifdef CONFIG_COMPAT
487 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
488 unsigned int cmd, unsigned long arg)
490 switch (cmd) {
491 case SG_IO:
492 return -ENOIOCTLCMD;
494 return nvme_ioctl(bdev, mode, cmd, arg);
496 #else
497 #define nvme_compat_ioctl NULL
498 #endif
500 static int nvme_open(struct block_device *bdev, fmode_t mode)
502 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
505 static void nvme_release(struct gendisk *disk, fmode_t mode)
507 nvme_put_ns(disk->private_data);
510 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
512 /* some standard values */
513 geo->heads = 1 << 6;
514 geo->sectors = 1 << 5;
515 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
516 return 0;
519 #ifdef CONFIG_BLK_DEV_INTEGRITY
520 static void nvme_init_integrity(struct nvme_ns *ns)
522 struct blk_integrity integrity;
524 switch (ns->pi_type) {
525 case NVME_NS_DPS_PI_TYPE3:
526 integrity.profile = &t10_pi_type3_crc;
527 break;
528 case NVME_NS_DPS_PI_TYPE1:
529 case NVME_NS_DPS_PI_TYPE2:
530 integrity.profile = &t10_pi_type1_crc;
531 break;
532 default:
533 integrity.profile = NULL;
534 break;
536 integrity.tuple_size = ns->ms;
537 blk_integrity_register(ns->disk, &integrity);
538 blk_queue_max_integrity_segments(ns->queue, 1);
540 #else
541 static void nvme_init_integrity(struct nvme_ns *ns)
544 #endif /* CONFIG_BLK_DEV_INTEGRITY */
546 static void nvme_config_discard(struct nvme_ns *ns)
548 u32 logical_block_size = queue_logical_block_size(ns->queue);
549 ns->queue->limits.discard_zeroes_data = 0;
550 ns->queue->limits.discard_alignment = logical_block_size;
551 ns->queue->limits.discard_granularity = logical_block_size;
552 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
553 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
556 static int nvme_revalidate_disk(struct gendisk *disk)
558 struct nvme_ns *ns = disk->private_data;
559 struct nvme_id_ns *id;
560 u8 lbaf, pi_type;
561 u16 old_ms;
562 unsigned short bs;
564 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
565 set_capacity(disk, 0);
566 return -ENODEV;
568 if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
569 dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
570 __func__, ns->ctrl->instance, ns->ns_id);
571 return -ENODEV;
573 if (id->ncap == 0) {
574 kfree(id);
575 return -ENODEV;
578 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
579 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
580 dev_warn(ns->ctrl->dev,
581 "%s: LightNVM init failure\n", __func__);
582 kfree(id);
583 return -ENODEV;
585 ns->type = NVME_NS_LIGHTNVM;
588 if (ns->ctrl->vs >= NVME_VS(1, 1))
589 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
590 if (ns->ctrl->vs >= NVME_VS(1, 2))
591 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
593 old_ms = ns->ms;
594 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
595 ns->lba_shift = id->lbaf[lbaf].ds;
596 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
597 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
600 * If identify namespace failed, use default 512 byte block size so
601 * block layer can use before failing read/write for 0 capacity.
603 if (ns->lba_shift == 0)
604 ns->lba_shift = 9;
605 bs = 1 << ns->lba_shift;
606 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
607 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
608 id->dps & NVME_NS_DPS_PI_MASK : 0;
610 blk_mq_freeze_queue(disk->queue);
611 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
612 ns->ms != old_ms ||
613 bs != queue_logical_block_size(disk->queue) ||
614 (ns->ms && ns->ext)))
615 blk_integrity_unregister(disk);
617 ns->pi_type = pi_type;
618 blk_queue_logical_block_size(ns->queue, bs);
620 if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
621 nvme_init_integrity(ns);
622 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
623 set_capacity(disk, 0);
624 else
625 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
627 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
628 nvme_config_discard(ns);
629 blk_mq_unfreeze_queue(disk->queue);
631 kfree(id);
632 return 0;
635 static char nvme_pr_type(enum pr_type type)
637 switch (type) {
638 case PR_WRITE_EXCLUSIVE:
639 return 1;
640 case PR_EXCLUSIVE_ACCESS:
641 return 2;
642 case PR_WRITE_EXCLUSIVE_REG_ONLY:
643 return 3;
644 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
645 return 4;
646 case PR_WRITE_EXCLUSIVE_ALL_REGS:
647 return 5;
648 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
649 return 6;
650 default:
651 return 0;
655 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
656 u64 key, u64 sa_key, u8 op)
658 struct nvme_ns *ns = bdev->bd_disk->private_data;
659 struct nvme_command c;
660 u8 data[16] = { 0, };
662 put_unaligned_le64(key, &data[0]);
663 put_unaligned_le64(sa_key, &data[8]);
665 memset(&c, 0, sizeof(c));
666 c.common.opcode = op;
667 c.common.nsid = cpu_to_le32(ns->ns_id);
668 c.common.cdw10[0] = cpu_to_le32(cdw10);
670 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
673 static int nvme_pr_register(struct block_device *bdev, u64 old,
674 u64 new, unsigned flags)
676 u32 cdw10;
678 if (flags & ~PR_FL_IGNORE_KEY)
679 return -EOPNOTSUPP;
681 cdw10 = old ? 2 : 0;
682 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
683 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
684 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
687 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
688 enum pr_type type, unsigned flags)
690 u32 cdw10;
692 if (flags & ~PR_FL_IGNORE_KEY)
693 return -EOPNOTSUPP;
695 cdw10 = nvme_pr_type(type) << 8;
696 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
697 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
700 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
701 enum pr_type type, bool abort)
703 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
704 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
707 static int nvme_pr_clear(struct block_device *bdev, u64 key)
709 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
710 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
713 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
715 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
716 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
719 static const struct pr_ops nvme_pr_ops = {
720 .pr_register = nvme_pr_register,
721 .pr_reserve = nvme_pr_reserve,
722 .pr_release = nvme_pr_release,
723 .pr_preempt = nvme_pr_preempt,
724 .pr_clear = nvme_pr_clear,
727 static const struct block_device_operations nvme_fops = {
728 .owner = THIS_MODULE,
729 .ioctl = nvme_ioctl,
730 .compat_ioctl = nvme_compat_ioctl,
731 .open = nvme_open,
732 .release = nvme_release,
733 .getgeo = nvme_getgeo,
734 .revalidate_disk= nvme_revalidate_disk,
735 .pr_ops = &nvme_pr_ops,
738 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
740 unsigned long timeout =
741 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
742 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
743 int ret;
745 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
746 if ((csts & NVME_CSTS_RDY) == bit)
747 break;
749 msleep(100);
750 if (fatal_signal_pending(current))
751 return -EINTR;
752 if (time_after(jiffies, timeout)) {
753 dev_err(ctrl->dev,
754 "Device not ready; aborting %s\n", enabled ?
755 "initialisation" : "reset");
756 return -ENODEV;
760 return ret;
764 * If the device has been passed off to us in an enabled state, just clear
765 * the enabled bit. The spec says we should set the 'shutdown notification
766 * bits', but doing so may cause the device to complete commands to the
767 * admin queue ... and we don't know what memory that might be pointing at!
769 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
771 int ret;
773 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
774 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
776 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
777 if (ret)
778 return ret;
779 return nvme_wait_ready(ctrl, cap, false);
782 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
785 * Default to a 4K page size, with the intention to update this
786 * path in the future to accomodate architectures with differing
787 * kernel and IO page sizes.
789 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
790 int ret;
792 if (page_shift < dev_page_min) {
793 dev_err(ctrl->dev,
794 "Minimum device page size %u too large for host (%u)\n",
795 1 << dev_page_min, 1 << page_shift);
796 return -ENODEV;
799 ctrl->page_size = 1 << page_shift;
801 ctrl->ctrl_config = NVME_CC_CSS_NVM;
802 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
803 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
804 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
805 ctrl->ctrl_config |= NVME_CC_ENABLE;
807 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
808 if (ret)
809 return ret;
810 return nvme_wait_ready(ctrl, cap, true);
813 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
815 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
816 u32 csts;
817 int ret;
819 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
820 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
822 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
823 if (ret)
824 return ret;
826 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
827 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
828 break;
830 msleep(100);
831 if (fatal_signal_pending(current))
832 return -EINTR;
833 if (time_after(jiffies, timeout)) {
834 dev_err(ctrl->dev,
835 "Device shutdown incomplete; abort shutdown\n");
836 return -ENODEV;
840 return ret;
843 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
844 struct request_queue *q)
846 if (ctrl->max_hw_sectors) {
847 u32 max_segments =
848 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
850 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
851 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
853 if (ctrl->stripe_size)
854 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
855 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
856 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
857 blk_queue_virt_boundary(q, ctrl->page_size - 1);
861 * Initialize the cached copies of the Identify data and various controller
862 * register in our nvme_ctrl structure. This should be called as soon as
863 * the admin queue is fully up and running.
865 int nvme_init_identify(struct nvme_ctrl *ctrl)
867 struct nvme_id_ctrl *id;
868 u64 cap;
869 int ret, page_shift;
871 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
872 if (ret) {
873 dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
874 return ret;
877 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
878 if (ret) {
879 dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
880 return ret;
882 page_shift = NVME_CAP_MPSMIN(cap) + 12;
884 if (ctrl->vs >= NVME_VS(1, 1))
885 ctrl->subsystem = NVME_CAP_NSSRC(cap);
887 ret = nvme_identify_ctrl(ctrl, &id);
888 if (ret) {
889 dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
890 return -EIO;
893 ctrl->oncs = le16_to_cpup(&id->oncs);
894 atomic_set(&ctrl->abort_limit, id->acl + 1);
895 ctrl->vwc = id->vwc;
896 memcpy(ctrl->serial, id->sn, sizeof(id->sn));
897 memcpy(ctrl->model, id->mn, sizeof(id->mn));
898 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
899 if (id->mdts)
900 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
901 else
902 ctrl->max_hw_sectors = UINT_MAX;
904 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
905 unsigned int max_hw_sectors;
907 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
908 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
909 if (ctrl->max_hw_sectors) {
910 ctrl->max_hw_sectors = min(max_hw_sectors,
911 ctrl->max_hw_sectors);
912 } else {
913 ctrl->max_hw_sectors = max_hw_sectors;
917 nvme_set_queue_limits(ctrl, ctrl->admin_q);
919 kfree(id);
920 return 0;
923 static int nvme_dev_open(struct inode *inode, struct file *file)
925 struct nvme_ctrl *ctrl;
926 int instance = iminor(inode);
927 int ret = -ENODEV;
929 spin_lock(&dev_list_lock);
930 list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
931 if (ctrl->instance != instance)
932 continue;
934 if (!ctrl->admin_q) {
935 ret = -EWOULDBLOCK;
936 break;
938 if (!kref_get_unless_zero(&ctrl->kref))
939 break;
940 file->private_data = ctrl;
941 ret = 0;
942 break;
944 spin_unlock(&dev_list_lock);
946 return ret;
949 static int nvme_dev_release(struct inode *inode, struct file *file)
951 nvme_put_ctrl(file->private_data);
952 return 0;
955 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
957 struct nvme_ns *ns;
958 int ret;
960 mutex_lock(&ctrl->namespaces_mutex);
961 if (list_empty(&ctrl->namespaces)) {
962 ret = -ENOTTY;
963 goto out_unlock;
966 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
967 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
968 dev_warn(ctrl->dev,
969 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
970 ret = -EINVAL;
971 goto out_unlock;
974 dev_warn(ctrl->dev,
975 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
976 kref_get(&ns->kref);
977 mutex_unlock(&ctrl->namespaces_mutex);
979 ret = nvme_user_cmd(ctrl, ns, argp);
980 nvme_put_ns(ns);
981 return ret;
983 out_unlock:
984 mutex_unlock(&ctrl->namespaces_mutex);
985 return ret;
988 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
989 unsigned long arg)
991 struct nvme_ctrl *ctrl = file->private_data;
992 void __user *argp = (void __user *)arg;
994 switch (cmd) {
995 case NVME_IOCTL_ADMIN_CMD:
996 return nvme_user_cmd(ctrl, NULL, argp);
997 case NVME_IOCTL_IO_CMD:
998 return nvme_dev_user_cmd(ctrl, argp);
999 case NVME_IOCTL_RESET:
1000 dev_warn(ctrl->dev, "resetting controller\n");
1001 return ctrl->ops->reset_ctrl(ctrl);
1002 case NVME_IOCTL_SUBSYS_RESET:
1003 return nvme_reset_subsystem(ctrl);
1004 default:
1005 return -ENOTTY;
1009 static const struct file_operations nvme_dev_fops = {
1010 .owner = THIS_MODULE,
1011 .open = nvme_dev_open,
1012 .release = nvme_dev_release,
1013 .unlocked_ioctl = nvme_dev_ioctl,
1014 .compat_ioctl = nvme_dev_ioctl,
1017 static ssize_t nvme_sysfs_reset(struct device *dev,
1018 struct device_attribute *attr, const char *buf,
1019 size_t count)
1021 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1022 int ret;
1024 ret = ctrl->ops->reset_ctrl(ctrl);
1025 if (ret < 0)
1026 return ret;
1027 return count;
1029 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1031 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1032 char *buf)
1034 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1035 return sprintf(buf, "%pU\n", ns->uuid);
1037 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1039 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1040 char *buf)
1042 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1043 return sprintf(buf, "%8phd\n", ns->eui);
1045 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1047 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1048 char *buf)
1050 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1051 return sprintf(buf, "%d\n", ns->ns_id);
1053 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1055 static struct attribute *nvme_ns_attrs[] = {
1056 &dev_attr_uuid.attr,
1057 &dev_attr_eui.attr,
1058 &dev_attr_nsid.attr,
1059 NULL,
1062 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1063 struct attribute *a, int n)
1065 struct device *dev = container_of(kobj, struct device, kobj);
1066 struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1068 if (a == &dev_attr_uuid.attr) {
1069 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1070 return 0;
1072 if (a == &dev_attr_eui.attr) {
1073 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1074 return 0;
1076 return a->mode;
1079 static const struct attribute_group nvme_ns_attr_group = {
1080 .attrs = nvme_ns_attrs,
1081 .is_visible = nvme_attrs_are_visible,
1084 #define nvme_show_function(field) \
1085 static ssize_t field##_show(struct device *dev, \
1086 struct device_attribute *attr, char *buf) \
1088 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
1089 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
1091 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1093 nvme_show_function(model);
1094 nvme_show_function(serial);
1095 nvme_show_function(firmware_rev);
1097 static struct attribute *nvme_dev_attrs[] = {
1098 &dev_attr_reset_controller.attr,
1099 &dev_attr_model.attr,
1100 &dev_attr_serial.attr,
1101 &dev_attr_firmware_rev.attr,
1102 NULL
1105 static struct attribute_group nvme_dev_attrs_group = {
1106 .attrs = nvme_dev_attrs,
1109 static const struct attribute_group *nvme_dev_attr_groups[] = {
1110 &nvme_dev_attrs_group,
1111 NULL,
1114 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1116 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1117 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1119 return nsa->ns_id - nsb->ns_id;
1122 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1124 struct nvme_ns *ns;
1126 lockdep_assert_held(&ctrl->namespaces_mutex);
1128 list_for_each_entry(ns, &ctrl->namespaces, list) {
1129 if (ns->ns_id == nsid)
1130 return ns;
1131 if (ns->ns_id > nsid)
1132 break;
1134 return NULL;
1137 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1139 struct nvme_ns *ns;
1140 struct gendisk *disk;
1141 int node = dev_to_node(ctrl->dev);
1143 lockdep_assert_held(&ctrl->namespaces_mutex);
1145 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1146 if (!ns)
1147 return;
1149 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1150 if (ns->instance < 0)
1151 goto out_free_ns;
1153 ns->queue = blk_mq_init_queue(ctrl->tagset);
1154 if (IS_ERR(ns->queue))
1155 goto out_release_instance;
1156 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1157 ns->queue->queuedata = ns;
1158 ns->ctrl = ctrl;
1160 disk = alloc_disk_node(0, node);
1161 if (!disk)
1162 goto out_free_queue;
1164 kref_init(&ns->kref);
1165 ns->ns_id = nsid;
1166 ns->disk = disk;
1167 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1170 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1171 nvme_set_queue_limits(ctrl, ns->queue);
1173 disk->major = nvme_major;
1174 disk->first_minor = 0;
1175 disk->fops = &nvme_fops;
1176 disk->private_data = ns;
1177 disk->queue = ns->queue;
1178 disk->driverfs_dev = ctrl->device;
1179 disk->flags = GENHD_FL_EXT_DEVT;
1180 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1182 if (nvme_revalidate_disk(ns->disk))
1183 goto out_free_disk;
1185 list_add_tail(&ns->list, &ctrl->namespaces);
1186 kref_get(&ctrl->kref);
1187 if (ns->type == NVME_NS_LIGHTNVM)
1188 return;
1190 add_disk(ns->disk);
1191 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1192 &nvme_ns_attr_group))
1193 pr_warn("%s: failed to create sysfs group for identification\n",
1194 ns->disk->disk_name);
1195 return;
1196 out_free_disk:
1197 kfree(disk);
1198 out_free_queue:
1199 blk_cleanup_queue(ns->queue);
1200 out_release_instance:
1201 ida_simple_remove(&ctrl->ns_ida, ns->instance);
1202 out_free_ns:
1203 kfree(ns);
1206 static void nvme_ns_remove(struct nvme_ns *ns)
1208 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1209 return;
1211 if (ns->disk->flags & GENHD_FL_UP) {
1212 if (blk_get_integrity(ns->disk))
1213 blk_integrity_unregister(ns->disk);
1214 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1215 &nvme_ns_attr_group);
1216 del_gendisk(ns->disk);
1217 blk_mq_abort_requeue_list(ns->queue);
1218 blk_cleanup_queue(ns->queue);
1220 mutex_lock(&ns->ctrl->namespaces_mutex);
1221 list_del_init(&ns->list);
1222 mutex_unlock(&ns->ctrl->namespaces_mutex);
1223 nvme_put_ns(ns);
1226 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1228 struct nvme_ns *ns;
1230 ns = nvme_find_ns(ctrl, nsid);
1231 if (ns) {
1232 if (revalidate_disk(ns->disk))
1233 nvme_ns_remove(ns);
1234 } else
1235 nvme_alloc_ns(ctrl, nsid);
1238 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1240 struct nvme_ns *ns;
1241 __le32 *ns_list;
1242 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1243 int ret = 0;
1245 ns_list = kzalloc(0x1000, GFP_KERNEL);
1246 if (!ns_list)
1247 return -ENOMEM;
1249 for (i = 0; i < num_lists; i++) {
1250 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1251 if (ret)
1252 goto out;
1254 for (j = 0; j < min(nn, 1024U); j++) {
1255 nsid = le32_to_cpu(ns_list[j]);
1256 if (!nsid)
1257 goto out;
1259 nvme_validate_ns(ctrl, nsid);
1261 while (++prev < nsid) {
1262 ns = nvme_find_ns(ctrl, prev);
1263 if (ns)
1264 nvme_ns_remove(ns);
1267 nn -= j;
1269 out:
1270 kfree(ns_list);
1271 return ret;
1274 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1276 struct nvme_ns *ns, *next;
1277 unsigned i;
1279 lockdep_assert_held(&ctrl->namespaces_mutex);
1281 for (i = 1; i <= nn; i++)
1282 nvme_validate_ns(ctrl, i);
1284 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1285 if (ns->ns_id > nn)
1286 nvme_ns_remove(ns);
1290 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1292 struct nvme_id_ctrl *id;
1293 unsigned nn;
1295 if (nvme_identify_ctrl(ctrl, &id))
1296 return;
1298 mutex_lock(&ctrl->namespaces_mutex);
1299 nn = le32_to_cpu(id->nn);
1300 if (ctrl->vs >= NVME_VS(1, 1) &&
1301 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1302 if (!nvme_scan_ns_list(ctrl, nn))
1303 goto done;
1305 __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1306 done:
1307 list_sort(NULL, &ctrl->namespaces, ns_cmp);
1308 mutex_unlock(&ctrl->namespaces_mutex);
1309 kfree(id);
1312 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1314 struct nvme_ns *ns, *next;
1316 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1317 nvme_ns_remove(ns);
1320 static DEFINE_IDA(nvme_instance_ida);
1322 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1324 int instance, error;
1326 do {
1327 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1328 return -ENODEV;
1330 spin_lock(&dev_list_lock);
1331 error = ida_get_new(&nvme_instance_ida, &instance);
1332 spin_unlock(&dev_list_lock);
1333 } while (error == -EAGAIN);
1335 if (error)
1336 return -ENODEV;
1338 ctrl->instance = instance;
1339 return 0;
1342 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1344 spin_lock(&dev_list_lock);
1345 ida_remove(&nvme_instance_ida, ctrl->instance);
1346 spin_unlock(&dev_list_lock);
1349 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1351 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1353 spin_lock(&dev_list_lock);
1354 list_del(&ctrl->node);
1355 spin_unlock(&dev_list_lock);
1358 static void nvme_free_ctrl(struct kref *kref)
1360 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1362 put_device(ctrl->device);
1363 nvme_release_instance(ctrl);
1364 ida_destroy(&ctrl->ns_ida);
1366 ctrl->ops->free_ctrl(ctrl);
1369 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1371 kref_put(&ctrl->kref, nvme_free_ctrl);
1375 * Initialize a NVMe controller structures. This needs to be called during
1376 * earliest initialization so that we have the initialized structured around
1377 * during probing.
1379 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1380 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1382 int ret;
1384 INIT_LIST_HEAD(&ctrl->namespaces);
1385 mutex_init(&ctrl->namespaces_mutex);
1386 kref_init(&ctrl->kref);
1387 ctrl->dev = dev;
1388 ctrl->ops = ops;
1389 ctrl->quirks = quirks;
1391 ret = nvme_set_instance(ctrl);
1392 if (ret)
1393 goto out;
1395 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1396 MKDEV(nvme_char_major, ctrl->instance),
1397 dev, nvme_dev_attr_groups,
1398 "nvme%d", ctrl->instance);
1399 if (IS_ERR(ctrl->device)) {
1400 ret = PTR_ERR(ctrl->device);
1401 goto out_release_instance;
1403 get_device(ctrl->device);
1404 dev_set_drvdata(ctrl->device, ctrl);
1405 ida_init(&ctrl->ns_ida);
1407 spin_lock(&dev_list_lock);
1408 list_add_tail(&ctrl->node, &nvme_ctrl_list);
1409 spin_unlock(&dev_list_lock);
1411 return 0;
1412 out_release_instance:
1413 nvme_release_instance(ctrl);
1414 out:
1415 return ret;
1419 * nvme_kill_queues(): Ends all namespace queues
1420 * @ctrl: the dead controller that needs to end
1422 * Call this function when the driver determines it is unable to get the
1423 * controller in a state capable of servicing IO.
1425 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1427 struct nvme_ns *ns;
1429 mutex_lock(&ctrl->namespaces_mutex);
1430 list_for_each_entry(ns, &ctrl->namespaces, list) {
1431 if (!kref_get_unless_zero(&ns->kref))
1432 continue;
1435 * Revalidating a dead namespace sets capacity to 0. This will
1436 * end buffered writers dirtying pages that can't be synced.
1438 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1439 revalidate_disk(ns->disk);
1441 blk_set_queue_dying(ns->queue);
1442 blk_mq_abort_requeue_list(ns->queue);
1443 blk_mq_start_stopped_hw_queues(ns->queue, true);
1445 nvme_put_ns(ns);
1447 mutex_unlock(&ctrl->namespaces_mutex);
1450 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1452 struct nvme_ns *ns;
1454 mutex_lock(&ctrl->namespaces_mutex);
1455 list_for_each_entry(ns, &ctrl->namespaces, list) {
1456 spin_lock_irq(ns->queue->queue_lock);
1457 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1458 spin_unlock_irq(ns->queue->queue_lock);
1460 blk_mq_cancel_requeue_work(ns->queue);
1461 blk_mq_stop_hw_queues(ns->queue);
1463 mutex_unlock(&ctrl->namespaces_mutex);
1466 void nvme_start_queues(struct nvme_ctrl *ctrl)
1468 struct nvme_ns *ns;
1470 mutex_lock(&ctrl->namespaces_mutex);
1471 list_for_each_entry(ns, &ctrl->namespaces, list) {
1472 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1473 blk_mq_start_stopped_hw_queues(ns->queue, true);
1474 blk_mq_kick_requeue_list(ns->queue);
1476 mutex_unlock(&ctrl->namespaces_mutex);
1479 int __init nvme_core_init(void)
1481 int result;
1483 result = register_blkdev(nvme_major, "nvme");
1484 if (result < 0)
1485 return result;
1486 else if (result > 0)
1487 nvme_major = result;
1489 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1490 &nvme_dev_fops);
1491 if (result < 0)
1492 goto unregister_blkdev;
1493 else if (result > 0)
1494 nvme_char_major = result;
1496 nvme_class = class_create(THIS_MODULE, "nvme");
1497 if (IS_ERR(nvme_class)) {
1498 result = PTR_ERR(nvme_class);
1499 goto unregister_chrdev;
1502 return 0;
1504 unregister_chrdev:
1505 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1506 unregister_blkdev:
1507 unregister_blkdev(nvme_major, "nvme");
1508 return result;
1511 void nvme_core_exit(void)
1513 unregister_blkdev(nvme_major, "nvme");
1514 class_destroy(nvme_class);
1515 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");