2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION
);
82 MODULE_LICENSE("GPL");
84 static int hpsa_allow_any
;
85 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
86 MODULE_PARM_DESC(hpsa_allow_any
,
87 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode
;
89 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
90 MODULE_PARM_DESC(hpsa_simple_mode
,
91 "Use 'simple mode' rather than 'performant mode'");
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id
[] = {
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
147 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
151 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
153 /* board_id = Subsystem Device ID & Vendor ID
154 * product = Marketing Name for the board
155 * access = Address of the struct of function pointers
157 static struct board_type products
[] = {
158 {0x3241103C, "Smart Array P212", &SA5_access
},
159 {0x3243103C, "Smart Array P410", &SA5_access
},
160 {0x3245103C, "Smart Array P410i", &SA5_access
},
161 {0x3247103C, "Smart Array P411", &SA5_access
},
162 {0x3249103C, "Smart Array P812", &SA5_access
},
163 {0x324A103C, "Smart Array P712m", &SA5_access
},
164 {0x324B103C, "Smart Array P711m", &SA5_access
},
165 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
166 {0x3350103C, "Smart Array P222", &SA5_access
},
167 {0x3351103C, "Smart Array P420", &SA5_access
},
168 {0x3352103C, "Smart Array P421", &SA5_access
},
169 {0x3353103C, "Smart Array P822", &SA5_access
},
170 {0x3354103C, "Smart Array P420i", &SA5_access
},
171 {0x3355103C, "Smart Array P220i", &SA5_access
},
172 {0x3356103C, "Smart Array P721m", &SA5_access
},
173 {0x1921103C, "Smart Array P830i", &SA5_access
},
174 {0x1922103C, "Smart Array P430", &SA5_access
},
175 {0x1923103C, "Smart Array P431", &SA5_access
},
176 {0x1924103C, "Smart Array P830", &SA5_access
},
177 {0x1926103C, "Smart Array P731m", &SA5_access
},
178 {0x1928103C, "Smart Array P230i", &SA5_access
},
179 {0x1929103C, "Smart Array P530", &SA5_access
},
180 {0x21BD103C, "Smart Array P244br", &SA5_access
},
181 {0x21BE103C, "Smart Array P741m", &SA5_access
},
182 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
183 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
184 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
185 {0x21C2103C, "Smart Array P440", &SA5_access
},
186 {0x21C3103C, "Smart Array P441", &SA5_access
},
187 {0x21C4103C, "Smart Array", &SA5_access
},
188 {0x21C5103C, "Smart Array P841", &SA5_access
},
189 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
190 {0x21C7103C, "Smart HBA H240", &SA5_access
},
191 {0x21C8103C, "Smart HBA H241", &SA5_access
},
192 {0x21C9103C, "Smart Array", &SA5_access
},
193 {0x21CA103C, "Smart Array P246br", &SA5_access
},
194 {0x21CB103C, "Smart Array P840", &SA5_access
},
195 {0x21CC103C, "Smart Array", &SA5_access
},
196 {0x21CD103C, "Smart Array", &SA5_access
},
197 {0x21CE103C, "Smart HBA", &SA5_access
},
198 {0x05809005, "SmartHBA-SA", &SA5_access
},
199 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
200 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
201 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
202 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
203 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
204 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
205 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
206 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
207 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
208 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
209 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
212 static struct scsi_transport_template
*hpsa_sas_transport_template
;
213 static int hpsa_add_sas_host(struct ctlr_info
*h
);
214 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
215 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
216 struct hpsa_scsi_dev_t
*device
);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
218 static struct hpsa_scsi_dev_t
219 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
220 struct sas_rphy
*rphy
);
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy
;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle
;
226 static int number_of_controllers
;
228 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
229 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
230 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
233 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
237 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
238 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
239 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
240 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
241 struct scsi_cmnd
*scmd
);
242 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
243 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
245 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
249 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
250 static void hpsa_scan_start(struct Scsi_Host
*);
251 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
252 unsigned long elapsed_time
);
253 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
257 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
258 static int hpsa_slave_configure(struct scsi_device
*sdev
);
259 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
261 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
262 static int check_for_unit_attention(struct ctlr_info
*h
,
263 struct CommandList
*c
);
264 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
265 struct CommandList
*c
);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket
, int num_buckets
,
268 int nsgs
, int min_blocks
, u32
*bucket_map
);
269 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
271 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
272 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
273 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
275 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
276 unsigned long *memory_bar
);
277 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
278 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
280 static inline void finish_cmd(struct CommandList
*c
);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
285 static void hpsa_flush_cache(struct ctlr_info
*h
);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
287 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
288 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
289 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
290 static u32
lockup_detected(struct ctlr_info
*h
);
291 static int detect_controller_lockup(struct ctlr_info
*h
);
292 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
294 struct ReportExtendedLUNdata
*buf
, int bufsize
);
295 static int hpsa_luns_changed(struct ctlr_info
*h
);
297 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
299 unsigned long *priv
= shost_priv(sdev
->host
);
300 return (struct ctlr_info
*) *priv
;
303 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
305 unsigned long *priv
= shost_priv(sh
);
306 return (struct ctlr_info
*) *priv
;
309 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
311 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
314 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
316 return c
->abort_pending
|| c
->reset_pending
;
319 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
320 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
321 u8
*sense_key
, u8
*asc
, u8
*ascq
)
323 struct scsi_sense_hdr sshdr
;
330 if (sense_data_len
< 1)
333 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
335 *sense_key
= sshdr
.sense_key
;
341 static int check_for_unit_attention(struct ctlr_info
*h
,
342 struct CommandList
*c
)
344 u8 sense_key
, asc
, ascq
;
347 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
348 sense_len
= sizeof(c
->err_info
->SenseInfo
);
350 sense_len
= c
->err_info
->SenseLen
;
352 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
353 &sense_key
, &asc
, &ascq
);
354 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
359 dev_warn(&h
->pdev
->dev
,
360 "%s: a state change detected, command retried\n",
364 dev_warn(&h
->pdev
->dev
,
365 "%s: LUN failure detected\n", h
->devname
);
367 case REPORT_LUNS_CHANGED
:
368 dev_warn(&h
->pdev
->dev
,
369 "%s: report LUN data changed\n", h
->devname
);
371 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372 * target (array) devices.
376 dev_warn(&h
->pdev
->dev
,
377 "%s: a power on or device reset detected\n",
380 case UNIT_ATTENTION_CLEARED
:
381 dev_warn(&h
->pdev
->dev
,
382 "%s: unit attention cleared by another initiator\n",
386 dev_warn(&h
->pdev
->dev
,
387 "%s: unknown unit attention detected\n",
394 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
396 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
397 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
398 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
400 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
404 static u32
lockup_detected(struct ctlr_info
*h
);
405 static ssize_t
host_show_lockup_detected(struct device
*dev
,
406 struct device_attribute
*attr
, char *buf
)
410 struct Scsi_Host
*shost
= class_to_shost(dev
);
412 h
= shost_to_hba(shost
);
413 ld
= lockup_detected(h
);
415 return sprintf(buf
, "ld=%d\n", ld
);
418 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
419 struct device_attribute
*attr
,
420 const char *buf
, size_t count
)
424 struct Scsi_Host
*shost
= class_to_shost(dev
);
427 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
429 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
430 strncpy(tmpbuf
, buf
, len
);
432 if (sscanf(tmpbuf
, "%d", &status
) != 1)
434 h
= shost_to_hba(shost
);
435 h
->acciopath_status
= !!status
;
436 dev_warn(&h
->pdev
->dev
,
437 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438 h
->acciopath_status
? "enabled" : "disabled");
442 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
443 struct device_attribute
*attr
,
444 const char *buf
, size_t count
)
446 int debug_level
, len
;
448 struct Scsi_Host
*shost
= class_to_shost(dev
);
451 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
453 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
454 strncpy(tmpbuf
, buf
, len
);
456 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
460 h
= shost_to_hba(shost
);
461 h
->raid_offload_debug
= debug_level
;
462 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
463 h
->raid_offload_debug
);
467 static ssize_t
host_store_rescan(struct device
*dev
,
468 struct device_attribute
*attr
,
469 const char *buf
, size_t count
)
472 struct Scsi_Host
*shost
= class_to_shost(dev
);
473 h
= shost_to_hba(shost
);
474 hpsa_scan_start(h
->scsi_host
);
478 static ssize_t
host_show_firmware_revision(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
482 struct Scsi_Host
*shost
= class_to_shost(dev
);
483 unsigned char *fwrev
;
485 h
= shost_to_hba(shost
);
486 if (!h
->hba_inquiry_data
)
488 fwrev
= &h
->hba_inquiry_data
[32];
489 return snprintf(buf
, 20, "%c%c%c%c\n",
490 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
493 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
494 struct device_attribute
*attr
, char *buf
)
496 struct Scsi_Host
*shost
= class_to_shost(dev
);
497 struct ctlr_info
*h
= shost_to_hba(shost
);
499 return snprintf(buf
, 20, "%d\n",
500 atomic_read(&h
->commands_outstanding
));
503 static ssize_t
host_show_transport_mode(struct device
*dev
,
504 struct device_attribute
*attr
, char *buf
)
507 struct Scsi_Host
*shost
= class_to_shost(dev
);
509 h
= shost_to_hba(shost
);
510 return snprintf(buf
, 20, "%s\n",
511 h
->transMethod
& CFGTBL_Trans_Performant
?
512 "performant" : "simple");
515 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
516 struct device_attribute
*attr
, char *buf
)
519 struct Scsi_Host
*shost
= class_to_shost(dev
);
521 h
= shost_to_hba(shost
);
522 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
523 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller
[] = {
528 0x324a103C, /* Smart Array P712m */
529 0x324b103C, /* Smart Array P711m */
530 0x3223103C, /* Smart Array P800 */
531 0x3234103C, /* Smart Array P400 */
532 0x3235103C, /* Smart Array P400i */
533 0x3211103C, /* Smart Array E200i */
534 0x3212103C, /* Smart Array E200 */
535 0x3213103C, /* Smart Array E200i */
536 0x3214103C, /* Smart Array E200i */
537 0x3215103C, /* Smart Array E200i */
538 0x3237103C, /* Smart Array E500 */
539 0x323D103C, /* Smart Array P700m */
540 0x40800E11, /* Smart Array 5i */
541 0x409C0E11, /* Smart Array 6400 */
542 0x409D0E11, /* Smart Array 6400 EM */
543 0x40700E11, /* Smart Array 5300 */
544 0x40820E11, /* Smart Array 532 */
545 0x40830E11, /* Smart Array 5312 */
546 0x409A0E11, /* Smart Array 641 */
547 0x409B0E11, /* Smart Array 642 */
548 0x40910E11, /* Smart Array 6i */
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller
[] = {
553 0x40800E11, /* Smart Array 5i */
554 0x40700E11, /* Smart Array 5300 */
555 0x40820E11, /* Smart Array 532 */
556 0x40830E11, /* Smart Array 5312 */
557 0x409A0E11, /* Smart Array 641 */
558 0x409B0E11, /* Smart Array 642 */
559 0x40910E11, /* Smart Array 6i */
560 /* Exclude 640x boards. These are two pci devices in one slot
561 * which share a battery backed cache module. One controls the
562 * cache, the other accesses the cache through the one that controls
563 * it. If we reset the one controlling the cache, the other will
564 * likely not be happy. Just forbid resetting this conjoined mess.
565 * The 640x isn't really supported by hpsa anyway.
567 0x409C0E11, /* Smart Array 6400 */
568 0x409D0E11, /* Smart Array 6400 EM */
571 static u32 needs_abort_tags_swizzled
[] = {
572 0x323D103C, /* Smart Array P700m */
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
577 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
581 for (i
= 0; i
< nelems
; i
++)
582 if (a
[i
] == board_id
)
587 static int ctlr_is_hard_resettable(u32 board_id
)
589 return !board_id_in_array(unresettable_controller
,
590 ARRAY_SIZE(unresettable_controller
), board_id
);
593 static int ctlr_is_soft_resettable(u32 board_id
)
595 return !board_id_in_array(soft_unresettable_controller
,
596 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
599 static int ctlr_is_resettable(u32 board_id
)
601 return ctlr_is_hard_resettable(board_id
) ||
602 ctlr_is_soft_resettable(board_id
);
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
607 return board_id_in_array(needs_abort_tags_swizzled
,
608 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
611 static ssize_t
host_show_resettable(struct device
*dev
,
612 struct device_attribute
*attr
, char *buf
)
615 struct Scsi_Host
*shost
= class_to_shost(dev
);
617 h
= shost_to_hba(shost
);
618 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
623 return (scsi3addr
[3] & 0xC0) == 0x40;
626 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
629 #define HPSA_RAID_0 0
630 #define HPSA_RAID_4 1
631 #define HPSA_RAID_1 2 /* also used for RAID 10 */
632 #define HPSA_RAID_5 3 /* also used for RAID 50 */
633 #define HPSA_RAID_51 4
634 #define HPSA_RAID_6 5 /* also used for RAID 60 */
635 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
641 return !device
->physical_device
;
644 static ssize_t
raid_level_show(struct device
*dev
,
645 struct device_attribute
*attr
, char *buf
)
648 unsigned char rlevel
;
650 struct scsi_device
*sdev
;
651 struct hpsa_scsi_dev_t
*hdev
;
654 sdev
= to_scsi_device(dev
);
655 h
= sdev_to_hba(sdev
);
656 spin_lock_irqsave(&h
->lock
, flags
);
657 hdev
= sdev
->hostdata
;
659 spin_unlock_irqrestore(&h
->lock
, flags
);
663 /* Is this even a logical drive? */
664 if (!is_logical_device(hdev
)) {
665 spin_unlock_irqrestore(&h
->lock
, flags
);
666 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
670 rlevel
= hdev
->raid_level
;
671 spin_unlock_irqrestore(&h
->lock
, flags
);
672 if (rlevel
> RAID_UNKNOWN
)
673 rlevel
= RAID_UNKNOWN
;
674 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
678 static ssize_t
lunid_show(struct device
*dev
,
679 struct device_attribute
*attr
, char *buf
)
682 struct scsi_device
*sdev
;
683 struct hpsa_scsi_dev_t
*hdev
;
685 unsigned char lunid
[8];
687 sdev
= to_scsi_device(dev
);
688 h
= sdev_to_hba(sdev
);
689 spin_lock_irqsave(&h
->lock
, flags
);
690 hdev
= sdev
->hostdata
;
692 spin_unlock_irqrestore(&h
->lock
, flags
);
695 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
696 spin_unlock_irqrestore(&h
->lock
, flags
);
697 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
699 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
702 static ssize_t
unique_id_show(struct device
*dev
,
703 struct device_attribute
*attr
, char *buf
)
706 struct scsi_device
*sdev
;
707 struct hpsa_scsi_dev_t
*hdev
;
709 unsigned char sn
[16];
711 sdev
= to_scsi_device(dev
);
712 h
= sdev_to_hba(sdev
);
713 spin_lock_irqsave(&h
->lock
, flags
);
714 hdev
= sdev
->hostdata
;
716 spin_unlock_irqrestore(&h
->lock
, flags
);
719 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
720 spin_unlock_irqrestore(&h
->lock
, flags
);
721 return snprintf(buf
, 16 * 2 + 2,
722 "%02X%02X%02X%02X%02X%02X%02X%02X"
723 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724 sn
[0], sn
[1], sn
[2], sn
[3],
725 sn
[4], sn
[5], sn
[6], sn
[7],
726 sn
[8], sn
[9], sn
[10], sn
[11],
727 sn
[12], sn
[13], sn
[14], sn
[15]);
730 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
731 struct device_attribute
*attr
, char *buf
)
734 struct scsi_device
*sdev
;
735 struct hpsa_scsi_dev_t
*hdev
;
739 sdev
= to_scsi_device(dev
);
740 h
= sdev_to_hba(sdev
);
741 spin_lock_irqsave(&h
->lock
, flags
);
742 hdev
= sdev
->hostdata
;
744 spin_unlock_irqrestore(&h
->lock
, flags
);
747 offload_enabled
= hdev
->offload_enabled
;
748 spin_unlock_irqrestore(&h
->lock
, flags
);
749 return snprintf(buf
, 20, "%d\n", offload_enabled
);
754 static ssize_t
path_info_show(struct device
*dev
,
755 struct device_attribute
*attr
, char *buf
)
758 struct scsi_device
*sdev
;
759 struct hpsa_scsi_dev_t
*hdev
;
765 u8 path_map_index
= 0;
767 unsigned char phys_connector
[2];
769 sdev
= to_scsi_device(dev
);
770 h
= sdev_to_hba(sdev
);
771 spin_lock_irqsave(&h
->devlock
, flags
);
772 hdev
= sdev
->hostdata
;
774 spin_unlock_irqrestore(&h
->devlock
, flags
);
779 for (i
= 0; i
< MAX_PATHS
; i
++) {
780 path_map_index
= 1<<i
;
781 if (i
== hdev
->active_path_index
)
783 else if (hdev
->path_map
& path_map_index
)
788 output_len
+= scnprintf(buf
+ output_len
,
789 PAGE_SIZE
- output_len
,
790 "[%d:%d:%d:%d] %20.20s ",
791 h
->scsi_host
->host_no
,
792 hdev
->bus
, hdev
->target
, hdev
->lun
,
793 scsi_device_type(hdev
->devtype
));
795 if (hdev
->external
||
796 hdev
->devtype
== TYPE_RAID
||
797 is_logical_device(hdev
)) {
798 output_len
+= snprintf(buf
+ output_len
,
799 PAGE_SIZE
- output_len
,
805 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
806 sizeof(phys_connector
));
807 if (phys_connector
[0] < '0')
808 phys_connector
[0] = '0';
809 if (phys_connector
[1] < '0')
810 phys_connector
[1] = '0';
811 if (hdev
->phys_connector
[i
] > 0)
812 output_len
+= snprintf(buf
+ output_len
,
813 PAGE_SIZE
- output_len
,
816 if (hdev
->devtype
== TYPE_DISK
&& hdev
->expose_device
) {
817 if (box
== 0 || box
== 0xFF) {
818 output_len
+= snprintf(buf
+ output_len
,
819 PAGE_SIZE
- output_len
,
823 output_len
+= snprintf(buf
+ output_len
,
824 PAGE_SIZE
- output_len
,
825 "BOX: %hhu BAY: %hhu %s\n",
828 } else if (box
!= 0 && box
!= 0xFF) {
829 output_len
+= snprintf(buf
+ output_len
,
830 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
833 output_len
+= snprintf(buf
+ output_len
,
834 PAGE_SIZE
- output_len
, "%s\n", active
);
837 spin_unlock_irqrestore(&h
->devlock
, flags
);
841 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
842 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
843 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
844 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
846 host_show_hp_ssd_smart_path_enabled
, NULL
);
847 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
848 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
849 host_show_hp_ssd_smart_path_status
,
850 host_store_hp_ssd_smart_path_status
);
851 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
852 host_store_raid_offload_debug
);
853 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
854 host_show_firmware_revision
, NULL
);
855 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
856 host_show_commands_outstanding
, NULL
);
857 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
858 host_show_transport_mode
, NULL
);
859 static DEVICE_ATTR(resettable
, S_IRUGO
,
860 host_show_resettable
, NULL
);
861 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
862 host_show_lockup_detected
, NULL
);
864 static struct device_attribute
*hpsa_sdev_attrs
[] = {
865 &dev_attr_raid_level
,
868 &dev_attr_hp_ssd_smart_path_enabled
,
873 static struct device_attribute
*hpsa_shost_attrs
[] = {
875 &dev_attr_firmware_revision
,
876 &dev_attr_commands_outstanding
,
877 &dev_attr_transport_mode
,
878 &dev_attr_resettable
,
879 &dev_attr_hp_ssd_smart_path_status
,
880 &dev_attr_raid_offload_debug
,
881 &dev_attr_lockup_detected
,
885 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
888 static struct scsi_host_template hpsa_driver_template
= {
889 .module
= THIS_MODULE
,
892 .queuecommand
= hpsa_scsi_queue_command
,
893 .scan_start
= hpsa_scan_start
,
894 .scan_finished
= hpsa_scan_finished
,
895 .change_queue_depth
= hpsa_change_queue_depth
,
897 .use_clustering
= ENABLE_CLUSTERING
,
898 .eh_abort_handler
= hpsa_eh_abort_handler
,
899 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
901 .slave_alloc
= hpsa_slave_alloc
,
902 .slave_configure
= hpsa_slave_configure
,
903 .slave_destroy
= hpsa_slave_destroy
,
905 .compat_ioctl
= hpsa_compat_ioctl
,
907 .sdev_attrs
= hpsa_sdev_attrs
,
908 .shost_attrs
= hpsa_shost_attrs
,
913 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
916 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
918 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
919 return h
->access
.command_completed(h
, q
);
921 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
922 return h
->access
.command_completed(h
, q
);
924 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
925 a
= rq
->head
[rq
->current_entry
];
927 atomic_dec(&h
->commands_outstanding
);
931 /* Check for wraparound */
932 if (rq
->current_entry
== h
->max_commands
) {
933 rq
->current_entry
= 0;
940 * There are some special bits in the bus address of the
941 * command that we have to set for the controller to know
942 * how to process the command:
944 * Normal performant mode:
945 * bit 0: 1 means performant mode, 0 means simple mode.
946 * bits 1-3 = block fetch table entry
947 * bits 4-6 = command type (== 0)
950 * bit 0 = "performant mode" bit.
951 * bits 1-3 = block fetch table entry
952 * bits 4-6 = command type (== 110)
953 * (command type is needed because ioaccel1 mode
954 * commands are submitted through the same register as normal
955 * mode commands, so this is how the controller knows whether
956 * the command is normal mode or ioaccel1 mode.)
959 * bit 0 = "performant mode" bit.
960 * bits 1-4 = block fetch table entry (note extra bit)
961 * bits 4-6 = not needed, because ioaccel2 mode has
962 * a separate special register for submitting commands.
966 * set_performant_mode: Modify the tag for cciss performant
967 * set bit 0 for pull model, bits 3-1 for block fetch
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
974 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
975 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
976 if (unlikely(!h
->msix_vector
))
978 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
979 c
->Header
.ReplyQueue
=
980 raw_smp_processor_id() % h
->nreply_queues
;
982 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
986 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
987 struct CommandList
*c
,
990 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
993 * Tell the controller to post the reply to the queue for this
994 * processor. This seems to give the best I/O throughput.
996 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
997 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
999 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
1001 * Set the bits in the address sent down to include:
1002 * - performant mode bit (bit 0)
1003 * - pull count (bits 1-3)
1004 * - command type (bits 4-6)
1006 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1007 IOACCEL1_BUSADDR_CMDTYPE
;
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1011 struct CommandList
*c
,
1014 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1015 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1017 /* Tell the controller to post the reply to the queue for this
1018 * processor. This seems to give the best I/O throughput.
1020 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1021 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1023 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1024 /* Set the bits in the address sent down to include:
1025 * - performant mode bit not used in ioaccel mode 2
1026 * - pull count (bits 0-3)
1027 * - command type isn't needed for ioaccel2
1029 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1032 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1033 struct CommandList
*c
,
1036 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1039 * Tell the controller to post the reply to the queue for this
1040 * processor. This seems to give the best I/O throughput.
1042 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1043 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1045 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1047 * Set the bits in the address sent down to include:
1048 * - performant mode bit not used in ioaccel mode 2
1049 * - pull count (bits 0-3)
1050 * - command type isn't needed for ioaccel2
1052 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1055 static int is_firmware_flash_cmd(u8
*cdb
)
1057 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1061 * During firmware flash, the heartbeat register may not update as frequently
1062 * as it should. So we dial down lockup detection during firmware flash. and
1063 * dial it back up when firmware flash completes.
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1068 struct CommandList
*c
)
1070 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1072 atomic_inc(&h
->firmware_flash_in_progress
);
1073 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1077 struct CommandList
*c
)
1079 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1080 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1081 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1085 struct CommandList
*c
, int reply_queue
)
1087 dial_down_lockup_detection_during_fw_flash(h
, c
);
1088 atomic_inc(&h
->commands_outstanding
);
1089 switch (c
->cmd_type
) {
1091 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1092 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1095 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1096 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1099 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1100 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1103 set_performant_mode(h
, c
, reply_queue
);
1104 h
->access
.submit_command(h
, c
);
1108 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1110 if (unlikely(hpsa_is_pending_event(c
)))
1111 return finish_cmd(c
);
1113 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1116 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1118 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1121 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1123 if (!h
->hba_inquiry_data
)
1125 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1130 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1131 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1133 /* finds an unused bus, target, lun for a new physical device
1134 * assumes h->devlock is held
1137 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1139 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1141 for (i
= 0; i
< h
->ndevices
; i
++) {
1142 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1143 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1146 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1147 if (i
< HPSA_MAX_DEVICES
) {
1156 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1157 struct hpsa_scsi_dev_t
*dev
, char *description
)
1159 #define LABEL_SIZE 25
1160 char label
[LABEL_SIZE
];
1162 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1165 switch (dev
->devtype
) {
1167 snprintf(label
, LABEL_SIZE
, "controller");
1169 case TYPE_ENCLOSURE
:
1170 snprintf(label
, LABEL_SIZE
, "enclosure");
1174 snprintf(label
, LABEL_SIZE
, "external");
1175 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1176 snprintf(label
, LABEL_SIZE
, "%s",
1177 raid_label
[PHYSICAL_DRIVE
]);
1179 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1180 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1181 raid_label
[dev
->raid_level
]);
1184 snprintf(label
, LABEL_SIZE
, "rom");
1187 snprintf(label
, LABEL_SIZE
, "tape");
1189 case TYPE_MEDIUM_CHANGER
:
1190 snprintf(label
, LABEL_SIZE
, "changer");
1193 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1197 dev_printk(level
, &h
->pdev
->dev
,
1198 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1201 scsi_device_type(dev
->devtype
),
1205 dev
->offload_config
? '+' : '-',
1206 dev
->offload_enabled
? '+' : '-',
1207 dev
->expose_device
);
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1212 struct hpsa_scsi_dev_t
*device
,
1213 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1215 /* assumes h->devlock is held */
1216 int n
= h
->ndevices
;
1218 unsigned char addr1
[8], addr2
[8];
1219 struct hpsa_scsi_dev_t
*sd
;
1221 if (n
>= HPSA_MAX_DEVICES
) {
1222 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1227 /* physical devices do not have lun or target assigned until now. */
1228 if (device
->lun
!= -1)
1229 /* Logical device, lun is already assigned. */
1232 /* If this device a non-zero lun of a multi-lun device
1233 * byte 4 of the 8-byte LUN addr will contain the logical
1234 * unit no, zero otherwise.
1236 if (device
->scsi3addr
[4] == 0) {
1237 /* This is not a non-zero lun of a multi-lun device */
1238 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1239 device
->bus
, &device
->target
, &device
->lun
) != 0)
1244 /* This is a non-zero lun of a multi-lun device.
1245 * Search through our list and find the device which
1246 * has the same 8 byte LUN address, excepting byte 4 and 5.
1247 * Assign the same bus and target for this new LUN.
1248 * Use the logical unit number from the firmware.
1250 memcpy(addr1
, device
->scsi3addr
, 8);
1253 for (i
= 0; i
< n
; i
++) {
1255 memcpy(addr2
, sd
->scsi3addr
, 8);
1258 /* differ only in byte 4 and 5? */
1259 if (memcmp(addr1
, addr2
, 8) == 0) {
1260 device
->bus
= sd
->bus
;
1261 device
->target
= sd
->target
;
1262 device
->lun
= device
->scsi3addr
[4];
1266 if (device
->lun
== -1) {
1267 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1268 " suspect firmware bug or unsupported hardware "
1269 "configuration.\n");
1277 added
[*nadded
] = device
;
1279 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1280 device
->expose_device
? "added" : "masked");
1281 device
->offload_to_be_enabled
= device
->offload_enabled
;
1282 device
->offload_enabled
= 0;
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1288 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1290 int offload_enabled
;
1291 /* assumes h->devlock is held */
1292 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1294 /* Raid level changed. */
1295 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1297 /* Raid offload parameters changed. Careful about the ordering. */
1298 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1300 * if drive is newly offload_enabled, we want to copy the
1301 * raid map data first. If previously offload_enabled and
1302 * offload_config were set, raid map data had better be
1303 * the same as it was before. if raid map data is changed
1304 * then it had better be the case that
1305 * h->dev[entry]->offload_enabled is currently 0.
1307 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1308 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1310 if (new_entry
->hba_ioaccel_enabled
) {
1311 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1312 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1314 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1315 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1316 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1317 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1320 * We can turn off ioaccel offload now, but need to delay turning
1321 * it on until we can update h->dev[entry]->phys_disk[], but we
1322 * can't do that until all the devices are updated.
1324 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1325 if (!new_entry
->offload_enabled
)
1326 h
->dev
[entry
]->offload_enabled
= 0;
1328 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1329 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1330 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1331 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1336 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1337 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1338 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1340 /* assumes h->devlock is held */
1341 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1342 removed
[*nremoved
] = h
->dev
[entry
];
1346 * New physical devices won't have target/lun assigned yet
1347 * so we need to preserve the values in the slot we are replacing.
1349 if (new_entry
->target
== -1) {
1350 new_entry
->target
= h
->dev
[entry
]->target
;
1351 new_entry
->lun
= h
->dev
[entry
]->lun
;
1354 h
->dev
[entry
] = new_entry
;
1355 added
[*nadded
] = new_entry
;
1357 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1358 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1359 new_entry
->offload_enabled
= 0;
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1364 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1366 /* assumes h->devlock is held */
1368 struct hpsa_scsi_dev_t
*sd
;
1370 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1373 removed
[*nremoved
] = h
->dev
[entry
];
1376 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1377 h
->dev
[i
] = h
->dev
[i
+1];
1379 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383 (a)[7] == (b)[7] && \
1384 (a)[6] == (b)[6] && \
1385 (a)[5] == (b)[5] && \
1386 (a)[4] == (b)[4] && \
1387 (a)[3] == (b)[3] && \
1388 (a)[2] == (b)[2] && \
1389 (a)[1] == (b)[1] && \
1392 static void fixup_botched_add(struct ctlr_info
*h
,
1393 struct hpsa_scsi_dev_t
*added
)
1395 /* called when scsi_add_device fails in order to re-adjust
1396 * h->dev[] to match the mid layer's view.
1398 unsigned long flags
;
1401 spin_lock_irqsave(&h
->lock
, flags
);
1402 for (i
= 0; i
< h
->ndevices
; i
++) {
1403 if (h
->dev
[i
] == added
) {
1404 for (j
= i
; j
< h
->ndevices
-1; j
++)
1405 h
->dev
[j
] = h
->dev
[j
+1];
1410 spin_unlock_irqrestore(&h
->lock
, flags
);
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1415 struct hpsa_scsi_dev_t
*dev2
)
1417 /* we compare everything except lun and target as these
1418 * are not yet assigned. Compare parts likely
1421 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1422 sizeof(dev1
->scsi3addr
)) != 0)
1424 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1425 sizeof(dev1
->device_id
)) != 0)
1427 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1429 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1431 if (dev1
->devtype
!= dev2
->devtype
)
1433 if (dev1
->bus
!= dev2
->bus
)
1438 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1439 struct hpsa_scsi_dev_t
*dev2
)
1441 /* Device attributes that can change, but don't mean
1442 * that the device is a different device, nor that the OS
1443 * needs to be told anything about the change.
1445 if (dev1
->raid_level
!= dev2
->raid_level
)
1447 if (dev1
->offload_config
!= dev2
->offload_config
)
1449 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1451 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1452 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1457 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1458 * and return needle location in *index. If scsi3addr matches, but not
1459 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460 * location in *index.
1461 * In the case of a minor device attribute change, such as RAID level, just
1462 * return DEVICE_UPDATED, along with the updated device's location in index.
1463 * If needle not found, return DEVICE_NOT_FOUND.
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1466 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1475 return DEVICE_NOT_FOUND
;
1477 for (i
= 0; i
< haystack_size
; i
++) {
1478 if (haystack
[i
] == NULL
) /* previously removed. */
1480 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1482 if (device_is_the_same(needle
, haystack
[i
])) {
1483 if (device_updated(needle
, haystack
[i
]))
1484 return DEVICE_UPDATED
;
1487 /* Keep offline devices offline */
1488 if (needle
->volume_offline
)
1489 return DEVICE_NOT_FOUND
;
1490 return DEVICE_CHANGED
;
1495 return DEVICE_NOT_FOUND
;
1498 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1499 unsigned char scsi3addr
[])
1501 struct offline_device_entry
*device
;
1502 unsigned long flags
;
1504 /* Check to see if device is already on the list */
1505 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1506 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1507 if (memcmp(device
->scsi3addr
, scsi3addr
,
1508 sizeof(device
->scsi3addr
)) == 0) {
1509 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1513 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1515 /* Device is not on the list, add it. */
1516 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1518 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1521 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1522 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1523 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1524 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1529 struct hpsa_scsi_dev_t
*sd
)
1531 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1532 dev_info(&h
->pdev
->dev
,
1533 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534 h
->scsi_host
->host_no
,
1535 sd
->bus
, sd
->target
, sd
->lun
);
1536 switch (sd
->volume_offline
) {
1539 case HPSA_LV_UNDERGOING_ERASE
:
1540 dev_info(&h
->pdev
->dev
,
1541 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542 h
->scsi_host
->host_no
,
1543 sd
->bus
, sd
->target
, sd
->lun
);
1545 case HPSA_LV_NOT_AVAILABLE
:
1546 dev_info(&h
->pdev
->dev
,
1547 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548 h
->scsi_host
->host_no
,
1549 sd
->bus
, sd
->target
, sd
->lun
);
1551 case HPSA_LV_UNDERGOING_RPI
:
1552 dev_info(&h
->pdev
->dev
,
1553 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554 h
->scsi_host
->host_no
,
1555 sd
->bus
, sd
->target
, sd
->lun
);
1557 case HPSA_LV_PENDING_RPI
:
1558 dev_info(&h
->pdev
->dev
,
1559 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560 h
->scsi_host
->host_no
,
1561 sd
->bus
, sd
->target
, sd
->lun
);
1563 case HPSA_LV_ENCRYPTED_NO_KEY
:
1564 dev_info(&h
->pdev
->dev
,
1565 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566 h
->scsi_host
->host_no
,
1567 sd
->bus
, sd
->target
, sd
->lun
);
1569 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1570 dev_info(&h
->pdev
->dev
,
1571 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572 h
->scsi_host
->host_no
,
1573 sd
->bus
, sd
->target
, sd
->lun
);
1575 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1576 dev_info(&h
->pdev
->dev
,
1577 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578 h
->scsi_host
->host_no
,
1579 sd
->bus
, sd
->target
, sd
->lun
);
1581 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1582 dev_info(&h
->pdev
->dev
,
1583 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584 h
->scsi_host
->host_no
,
1585 sd
->bus
, sd
->target
, sd
->lun
);
1587 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1588 dev_info(&h
->pdev
->dev
,
1589 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590 h
->scsi_host
->host_no
,
1591 sd
->bus
, sd
->target
, sd
->lun
);
1593 case HPSA_LV_PENDING_ENCRYPTION
:
1594 dev_info(&h
->pdev
->dev
,
1595 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596 h
->scsi_host
->host_no
,
1597 sd
->bus
, sd
->target
, sd
->lun
);
1599 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1600 dev_info(&h
->pdev
->dev
,
1601 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602 h
->scsi_host
->host_no
,
1603 sd
->bus
, sd
->target
, sd
->lun
);
1609 * Figure the list of physical drive pointers for a logical drive with
1610 * raid offload configured.
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1613 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1614 struct hpsa_scsi_dev_t
*logical_drive
)
1616 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1617 struct raid_map_disk_data
*dd
= &map
->data
[0];
1619 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1620 le16_to_cpu(map
->metadata_disks_per_row
);
1621 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1622 le16_to_cpu(map
->layout_map_count
) *
1623 total_disks_per_row
;
1624 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1625 total_disks_per_row
;
1628 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1629 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1631 logical_drive
->nphysical_disks
= nraid_map_entries
;
1634 for (i
= 0; i
< nraid_map_entries
; i
++) {
1635 logical_drive
->phys_disk
[i
] = NULL
;
1636 if (!logical_drive
->offload_config
)
1638 for (j
= 0; j
< ndevices
; j
++) {
1641 if (dev
[j
]->devtype
!= TYPE_DISK
)
1643 if (is_logical_device(dev
[j
]))
1645 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1648 logical_drive
->phys_disk
[i
] = dev
[j
];
1650 qdepth
= min(h
->nr_cmds
, qdepth
+
1651 logical_drive
->phys_disk
[i
]->queue_depth
);
1656 * This can happen if a physical drive is removed and
1657 * the logical drive is degraded. In that case, the RAID
1658 * map data will refer to a physical disk which isn't actually
1659 * present. And in that case offload_enabled should already
1660 * be 0, but we'll turn it off here just in case
1662 if (!logical_drive
->phys_disk
[i
]) {
1663 logical_drive
->offload_enabled
= 0;
1664 logical_drive
->offload_to_be_enabled
= 0;
1665 logical_drive
->queue_depth
= 8;
1668 if (nraid_map_entries
)
1670 * This is correct for reads, too high for full stripe writes,
1671 * way too high for partial stripe writes
1673 logical_drive
->queue_depth
= qdepth
;
1675 logical_drive
->queue_depth
= h
->nr_cmds
;
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1679 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1683 for (i
= 0; i
< ndevices
; i
++) {
1686 if (dev
[i
]->devtype
!= TYPE_DISK
)
1688 if (!is_logical_device(dev
[i
]))
1692 * If offload is currently enabled, the RAID map and
1693 * phys_disk[] assignment *better* not be changing
1694 * and since it isn't changing, we do not need to
1697 if (dev
[i
]->offload_enabled
)
1700 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1704 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1711 if (is_logical_device(device
)) /* RAID */
1712 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1713 device
->target
, device
->lun
);
1715 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1720 static void hpsa_remove_device(struct ctlr_info
*h
,
1721 struct hpsa_scsi_dev_t
*device
)
1723 struct scsi_device
*sdev
= NULL
;
1728 if (is_logical_device(device
)) { /* RAID */
1729 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1730 device
->target
, device
->lun
);
1732 scsi_remove_device(sdev
);
1733 scsi_device_put(sdev
);
1736 * We don't expect to get here. Future commands
1737 * to this device will get a selection timeout as
1738 * if the device were gone.
1740 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1741 "didn't find device for removal.");
1744 hpsa_remove_sas_device(device
);
1747 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1748 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1750 /* sd contains scsi3 addresses and devtypes, and inquiry
1751 * data. This function takes what's in sd to be the current
1752 * reality and updates h->dev[] to reflect that reality.
1754 int i
, entry
, device_change
, changes
= 0;
1755 struct hpsa_scsi_dev_t
*csd
;
1756 unsigned long flags
;
1757 struct hpsa_scsi_dev_t
**added
, **removed
;
1758 int nadded
, nremoved
;
1761 * A reset can cause a device status to change
1762 * re-schedule the scan to see what happened.
1764 if (h
->reset_in_progress
) {
1765 h
->drv_req_rescan
= 1;
1769 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1770 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1772 if (!added
|| !removed
) {
1773 dev_warn(&h
->pdev
->dev
, "out of memory in "
1774 "adjust_hpsa_scsi_table\n");
1778 spin_lock_irqsave(&h
->devlock
, flags
);
1780 /* find any devices in h->dev[] that are not in
1781 * sd[] and remove them from h->dev[], and for any
1782 * devices which have changed, remove the old device
1783 * info and add the new device info.
1784 * If minor device attributes change, just update
1785 * the existing device structure.
1790 while (i
< h
->ndevices
) {
1792 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1793 if (device_change
== DEVICE_NOT_FOUND
) {
1795 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1796 continue; /* remove ^^^, hence i not incremented */
1797 } else if (device_change
== DEVICE_CHANGED
) {
1799 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1800 added
, &nadded
, removed
, &nremoved
);
1801 /* Set it to NULL to prevent it from being freed
1802 * at the bottom of hpsa_update_scsi_devices()
1805 } else if (device_change
== DEVICE_UPDATED
) {
1806 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1811 /* Now, make sure every device listed in sd[] is also
1812 * listed in h->dev[], adding them if they aren't found
1815 for (i
= 0; i
< nsds
; i
++) {
1816 if (!sd
[i
]) /* if already added above. */
1819 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820 * as the SCSI mid-layer does not handle such devices well.
1821 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822 * at 160Hz, and prevents the system from coming up.
1824 if (sd
[i
]->volume_offline
) {
1825 hpsa_show_volume_status(h
, sd
[i
]);
1826 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1830 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1831 h
->ndevices
, &entry
);
1832 if (device_change
== DEVICE_NOT_FOUND
) {
1834 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1836 sd
[i
] = NULL
; /* prevent from being freed later. */
1837 } else if (device_change
== DEVICE_CHANGED
) {
1838 /* should never happen... */
1840 dev_warn(&h
->pdev
->dev
,
1841 "device unexpectedly changed.\n");
1842 /* but if it does happen, we just ignore that device */
1845 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1847 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848 * any logical drives that need it enabled.
1850 for (i
= 0; i
< h
->ndevices
; i
++) {
1851 if (h
->dev
[i
] == NULL
)
1853 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1856 spin_unlock_irqrestore(&h
->devlock
, flags
);
1858 /* Monitor devices which are in one of several NOT READY states to be
1859 * brought online later. This must be done without holding h->devlock,
1860 * so don't touch h->dev[]
1862 for (i
= 0; i
< nsds
; i
++) {
1863 if (!sd
[i
]) /* if already added above. */
1865 if (sd
[i
]->volume_offline
)
1866 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1869 /* Don't notify scsi mid layer of any changes the first time through
1870 * (or if there are no changes) scsi_scan_host will do it later the
1871 * first time through.
1876 /* Notify scsi mid layer of any removed devices */
1877 for (i
= 0; i
< nremoved
; i
++) {
1878 if (removed
[i
] == NULL
)
1880 if (removed
[i
]->expose_device
)
1881 hpsa_remove_device(h
, removed
[i
]);
1886 /* Notify scsi mid layer of any added devices */
1887 for (i
= 0; i
< nadded
; i
++) {
1890 if (added
[i
] == NULL
)
1892 if (!(added
[i
]->expose_device
))
1894 rc
= hpsa_add_device(h
, added
[i
]);
1897 dev_warn(&h
->pdev
->dev
,
1898 "addition failed %d, device not added.", rc
);
1899 /* now we have to remove it from h->dev,
1900 * since it didn't get added to scsi mid layer
1902 fixup_botched_add(h
, added
[i
]);
1903 h
->drv_req_rescan
= 1;
1912 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913 * Assume's h->devlock is held.
1915 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1916 int bus
, int target
, int lun
)
1919 struct hpsa_scsi_dev_t
*sd
;
1921 for (i
= 0; i
< h
->ndevices
; i
++) {
1923 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1929 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1931 struct hpsa_scsi_dev_t
*sd
;
1932 unsigned long flags
;
1933 struct ctlr_info
*h
;
1935 h
= sdev_to_hba(sdev
);
1936 spin_lock_irqsave(&h
->devlock
, flags
);
1937 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
1938 struct scsi_target
*starget
;
1939 struct sas_rphy
*rphy
;
1941 starget
= scsi_target(sdev
);
1942 rphy
= target_to_rphy(starget
);
1943 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
1945 sd
->target
= sdev_id(sdev
);
1946 sd
->lun
= sdev
->lun
;
1949 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1950 sdev_id(sdev
), sdev
->lun
);
1952 if (sd
&& sd
->expose_device
) {
1953 atomic_set(&sd
->ioaccel_cmds_out
, 0);
1954 sdev
->hostdata
= sd
;
1956 sdev
->hostdata
= NULL
;
1957 spin_unlock_irqrestore(&h
->devlock
, flags
);
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device
*sdev
)
1964 struct hpsa_scsi_dev_t
*sd
;
1967 sd
= sdev
->hostdata
;
1968 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
1971 queue_depth
= sd
->queue_depth
!= 0 ?
1972 sd
->queue_depth
: sdev
->host
->can_queue
;
1974 queue_depth
= sdev
->host
->can_queue
;
1976 scsi_change_queue_depth(sdev
, queue_depth
);
1981 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1983 /* nothing to do. */
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1990 if (!h
->ioaccel2_cmd_sg_list
)
1992 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1993 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
1994 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
1996 kfree(h
->ioaccel2_cmd_sg_list
);
1997 h
->ioaccel2_cmd_sg_list
= NULL
;
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2004 if (h
->chainsize
<= 0)
2007 h
->ioaccel2_cmd_sg_list
=
2008 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2010 if (!h
->ioaccel2_cmd_sg_list
)
2012 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2013 h
->ioaccel2_cmd_sg_list
[i
] =
2014 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2015 h
->maxsgentries
, GFP_KERNEL
);
2016 if (!h
->ioaccel2_cmd_sg_list
[i
])
2022 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2030 if (!h
->cmd_sg_list
)
2032 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2033 kfree(h
->cmd_sg_list
[i
]);
2034 h
->cmd_sg_list
[i
] = NULL
;
2036 kfree(h
->cmd_sg_list
);
2037 h
->cmd_sg_list
= NULL
;
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2044 if (h
->chainsize
<= 0)
2047 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2049 if (!h
->cmd_sg_list
) {
2050 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
2053 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2054 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2055 h
->chainsize
, GFP_KERNEL
);
2056 if (!h
->cmd_sg_list
[i
]) {
2057 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
2064 hpsa_free_sg_chain_blocks(h
);
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2069 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2071 struct ioaccel2_sg_element
*chain_block
;
2075 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2076 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2077 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2079 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2080 /* prevent subsequent unmapping */
2081 cp
->sg
->address
= 0;
2084 cp
->sg
->address
= cpu_to_le64(temp64
);
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2089 struct io_accel2_cmd
*cp
)
2091 struct ioaccel2_sg_element
*chain_sg
;
2096 temp64
= le64_to_cpu(chain_sg
->address
);
2097 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2098 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2101 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2102 struct CommandList
*c
)
2104 struct SGDescriptor
*chain_sg
, *chain_block
;
2108 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2109 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2110 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2111 chain_len
= sizeof(*chain_sg
) *
2112 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2113 chain_sg
->Len
= cpu_to_le32(chain_len
);
2114 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2116 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2117 /* prevent subsequent unmapping */
2118 chain_sg
->Addr
= cpu_to_le64(0);
2121 chain_sg
->Addr
= cpu_to_le64(temp64
);
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2126 struct CommandList
*c
)
2128 struct SGDescriptor
*chain_sg
;
2130 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2133 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2134 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2135 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2139 /* Decode the various types of errors on ioaccel2 path.
2140 * Return 1 for any error that should generate a RAID path retry.
2141 * Return 0 for errors that don't require a RAID path retry.
2143 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2144 struct CommandList
*c
,
2145 struct scsi_cmnd
*cmd
,
2146 struct io_accel2_cmd
*c2
)
2150 u32 ioaccel2_resid
= 0;
2152 switch (c2
->error_data
.serv_response
) {
2153 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2154 switch (c2
->error_data
.status
) {
2155 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2157 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2158 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2159 if (c2
->error_data
.data_present
!=
2160 IOACCEL2_SENSE_DATA_PRESENT
) {
2161 memset(cmd
->sense_buffer
, 0,
2162 SCSI_SENSE_BUFFERSIZE
);
2165 /* copy the sense data */
2166 data_len
= c2
->error_data
.sense_data_len
;
2167 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2168 data_len
= SCSI_SENSE_BUFFERSIZE
;
2169 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2171 sizeof(c2
->error_data
.sense_data_buff
);
2172 memcpy(cmd
->sense_buffer
,
2173 c2
->error_data
.sense_data_buff
, data_len
);
2176 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2179 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2182 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2185 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2193 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2194 switch (c2
->error_data
.status
) {
2195 case IOACCEL2_STATUS_SR_IO_ERROR
:
2196 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2197 case IOACCEL2_STATUS_SR_OVERRUN
:
2200 case IOACCEL2_STATUS_SR_UNDERRUN
:
2201 cmd
->result
= (DID_OK
<< 16); /* host byte */
2202 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2203 ioaccel2_resid
= get_unaligned_le32(
2204 &c2
->error_data
.resid_cnt
[0]);
2205 scsi_set_resid(cmd
, ioaccel2_resid
);
2207 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2208 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2209 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2210 /* We will get an event from ctlr to trigger rescan */
2217 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2219 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2221 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2224 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2231 return retry
; /* retry on raid path? */
2234 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2235 struct CommandList
*c
)
2237 bool do_wake
= false;
2240 * Prevent the following race in the abort handler:
2242 * 1. LLD is requested to abort a SCSI command
2243 * 2. The SCSI command completes
2244 * 3. The struct CommandList associated with step 2 is made available
2245 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2246 * 5. Abort handler follows scsi_cmnd->host_scribble and
2247 * finds struct CommandList and tries to aborts it
2248 * Now we have aborted the wrong command.
2250 * Reset c->scsi_cmd here so that the abort or reset handler will know
2251 * this command has completed. Then, check to see if the handler is
2252 * waiting for this command, and, if so, wake it.
2254 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2255 mb(); /* Declare command idle before checking for pending events. */
2256 if (c
->abort_pending
) {
2258 c
->abort_pending
= false;
2260 if (c
->reset_pending
) {
2261 unsigned long flags
;
2262 struct hpsa_scsi_dev_t
*dev
;
2265 * There appears to be a reset pending; lock the lock and
2266 * reconfirm. If so, then decrement the count of outstanding
2267 * commands and wake the reset command if this is the last one.
2269 spin_lock_irqsave(&h
->lock
, flags
);
2270 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2271 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2273 c
->reset_pending
= NULL
;
2274 spin_unlock_irqrestore(&h
->lock
, flags
);
2278 wake_up_all(&h
->event_sync_wait_queue
);
2281 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2282 struct CommandList
*c
)
2284 hpsa_cmd_resolve_events(h
, c
);
2285 cmd_tagged_free(h
, c
);
2288 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2289 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2291 hpsa_cmd_resolve_and_free(h
, c
);
2292 cmd
->scsi_done(cmd
);
2295 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2297 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2298 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2301 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2303 cmd
->result
= DID_ABORT
<< 16;
2306 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2307 struct scsi_cmnd
*cmd
)
2309 hpsa_set_scsi_cmd_aborted(cmd
);
2310 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2311 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2312 hpsa_cmd_resolve_and_free(h
, c
);
2315 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2316 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2317 struct hpsa_scsi_dev_t
*dev
)
2319 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2321 /* check for good status */
2322 if (likely(c2
->error_data
.serv_response
== 0 &&
2323 c2
->error_data
.status
== 0))
2324 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2327 * Any RAID offload error results in retry which will use
2328 * the normal I/O path so the controller can handle whatever's
2331 if (is_logical_device(dev
) &&
2332 c2
->error_data
.serv_response
==
2333 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2334 if (c2
->error_data
.status
==
2335 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
)
2336 dev
->offload_enabled
= 0;
2338 return hpsa_retry_cmd(h
, c
);
2341 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
))
2342 return hpsa_retry_cmd(h
, c
);
2344 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2347 /* Returns 0 on success, < 0 otherwise. */
2348 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2349 struct CommandList
*cp
)
2351 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2353 switch (tmf_status
) {
2354 case CISS_TMF_COMPLETE
:
2356 * CISS_TMF_COMPLETE never happens, instead,
2357 * ei->CommandStatus == 0 for this case.
2359 case CISS_TMF_SUCCESS
:
2361 case CISS_TMF_INVALID_FRAME
:
2362 case CISS_TMF_NOT_SUPPORTED
:
2363 case CISS_TMF_FAILED
:
2364 case CISS_TMF_WRONG_LUN
:
2365 case CISS_TMF_OVERLAPPED_TAG
:
2368 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2375 static void complete_scsi_command(struct CommandList
*cp
)
2377 struct scsi_cmnd
*cmd
;
2378 struct ctlr_info
*h
;
2379 struct ErrorInfo
*ei
;
2380 struct hpsa_scsi_dev_t
*dev
;
2381 struct io_accel2_cmd
*c2
;
2384 u8 asc
; /* additional sense code */
2385 u8 ascq
; /* additional sense code qualifier */
2386 unsigned long sense_data_size
;
2391 dev
= cmd
->device
->hostdata
;
2392 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2394 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2395 if ((cp
->cmd_type
== CMD_SCSI
) &&
2396 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2397 hpsa_unmap_sg_chain_block(h
, cp
);
2399 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2400 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2401 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2403 cmd
->result
= (DID_OK
<< 16); /* host byte */
2404 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2406 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2407 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2410 * We check for lockup status here as it may be set for
2411 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2412 * fail_all_oustanding_cmds()
2414 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2415 /* DID_NO_CONNECT will prevent a retry */
2416 cmd
->result
= DID_NO_CONNECT
<< 16;
2417 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2420 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2421 if (cp
->reset_pending
)
2422 return hpsa_cmd_resolve_and_free(h
, cp
);
2423 if (cp
->abort_pending
)
2424 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2427 if (cp
->cmd_type
== CMD_IOACCEL2
)
2428 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2430 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2431 if (ei
->CommandStatus
== 0)
2432 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2434 /* For I/O accelerator commands, copy over some fields to the normal
2435 * CISS header used below for error handling.
2437 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2438 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2439 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2440 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2441 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2442 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2443 cp
->Header
.tag
= c
->tag
;
2444 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2445 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2447 /* Any RAID offload error results in retry which will use
2448 * the normal I/O path so the controller can handle whatever's
2451 if (is_logical_device(dev
)) {
2452 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2453 dev
->offload_enabled
= 0;
2454 return hpsa_retry_cmd(h
, cp
);
2458 /* an error has occurred */
2459 switch (ei
->CommandStatus
) {
2461 case CMD_TARGET_STATUS
:
2462 cmd
->result
|= ei
->ScsiStatus
;
2463 /* copy the sense data */
2464 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2465 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2467 sense_data_size
= sizeof(ei
->SenseInfo
);
2468 if (ei
->SenseLen
< sense_data_size
)
2469 sense_data_size
= ei
->SenseLen
;
2470 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2472 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2473 &sense_key
, &asc
, &ascq
);
2474 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2475 if (sense_key
== ABORTED_COMMAND
) {
2476 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2481 /* Problem was not a check condition
2482 * Pass it up to the upper layers...
2484 if (ei
->ScsiStatus
) {
2485 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2486 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2487 "Returning result: 0x%x\n",
2489 sense_key
, asc
, ascq
,
2491 } else { /* scsi status is zero??? How??? */
2492 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2493 "Returning no connection.\n", cp
),
2495 /* Ordinarily, this case should never happen,
2496 * but there is a bug in some released firmware
2497 * revisions that allows it to happen if, for
2498 * example, a 4100 backplane loses power and
2499 * the tape drive is in it. We assume that
2500 * it's a fatal error of some kind because we
2501 * can't show that it wasn't. We will make it
2502 * look like selection timeout since that is
2503 * the most common reason for this to occur,
2504 * and it's severe enough.
2507 cmd
->result
= DID_NO_CONNECT
<< 16;
2511 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2513 case CMD_DATA_OVERRUN
:
2514 dev_warn(&h
->pdev
->dev
,
2515 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2518 /* print_bytes(cp, sizeof(*cp), 1, 0);
2520 /* We get CMD_INVALID if you address a non-existent device
2521 * instead of a selection timeout (no response). You will
2522 * see this if you yank out a drive, then try to access it.
2523 * This is kind of a shame because it means that any other
2524 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2525 * missing target. */
2526 cmd
->result
= DID_NO_CONNECT
<< 16;
2529 case CMD_PROTOCOL_ERR
:
2530 cmd
->result
= DID_ERROR
<< 16;
2531 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2534 case CMD_HARDWARE_ERR
:
2535 cmd
->result
= DID_ERROR
<< 16;
2536 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2539 case CMD_CONNECTION_LOST
:
2540 cmd
->result
= DID_ERROR
<< 16;
2541 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2545 /* Return now to avoid calling scsi_done(). */
2546 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2547 case CMD_ABORT_FAILED
:
2548 cmd
->result
= DID_ERROR
<< 16;
2549 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2552 case CMD_UNSOLICITED_ABORT
:
2553 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2554 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2558 cmd
->result
= DID_TIME_OUT
<< 16;
2559 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2562 case CMD_UNABORTABLE
:
2563 cmd
->result
= DID_ERROR
<< 16;
2564 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2566 case CMD_TMF_STATUS
:
2567 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2568 cmd
->result
= DID_ERROR
<< 16;
2570 case CMD_IOACCEL_DISABLED
:
2571 /* This only handles the direct pass-through case since RAID
2572 * offload is handled above. Just attempt a retry.
2574 cmd
->result
= DID_SOFT_ERROR
<< 16;
2575 dev_warn(&h
->pdev
->dev
,
2576 "cp %p had HP SSD Smart Path error\n", cp
);
2579 cmd
->result
= DID_ERROR
<< 16;
2580 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2581 cp
, ei
->CommandStatus
);
2584 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2587 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2588 struct CommandList
*c
, int sg_used
, int data_direction
)
2592 for (i
= 0; i
< sg_used
; i
++)
2593 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2594 le32_to_cpu(c
->SG
[i
].Len
),
2598 static int hpsa_map_one(struct pci_dev
*pdev
,
2599 struct CommandList
*cp
,
2606 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2607 cp
->Header
.SGList
= 0;
2608 cp
->Header
.SGTotal
= cpu_to_le16(0);
2612 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2613 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2614 /* Prevent subsequent unmap of something never mapped */
2615 cp
->Header
.SGList
= 0;
2616 cp
->Header
.SGTotal
= cpu_to_le16(0);
2619 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2620 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2621 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2622 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2623 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2627 #define NO_TIMEOUT ((unsigned long) -1)
2628 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2629 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2630 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2632 DECLARE_COMPLETION_ONSTACK(wait
);
2635 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2636 if (timeout_msecs
== NO_TIMEOUT
) {
2637 /* TODO: get rid of this no-timeout thing */
2638 wait_for_completion_io(&wait
);
2641 if (!wait_for_completion_io_timeout(&wait
,
2642 msecs_to_jiffies(timeout_msecs
))) {
2643 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2649 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2650 int reply_queue
, unsigned long timeout_msecs
)
2652 if (unlikely(lockup_detected(h
))) {
2653 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2656 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2659 static u32
lockup_detected(struct ctlr_info
*h
)
2662 u32 rc
, *lockup_detected
;
2665 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2666 rc
= *lockup_detected
;
2671 #define MAX_DRIVER_CMD_RETRIES 25
2672 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2673 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2675 int backoff_time
= 10, retry_count
= 0;
2679 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2680 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2685 if (retry_count
> 3) {
2686 msleep(backoff_time
);
2687 if (backoff_time
< 1000)
2690 } while ((check_for_unit_attention(h
, c
) ||
2691 check_for_busy(h
, c
)) &&
2692 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2693 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2694 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2699 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2700 struct CommandList
*c
)
2702 const u8
*cdb
= c
->Request
.CDB
;
2703 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2705 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2706 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2707 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2708 lun
[4], lun
[5], lun
[6], lun
[7],
2709 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2710 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2711 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2712 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2715 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2716 struct CommandList
*cp
)
2718 const struct ErrorInfo
*ei
= cp
->err_info
;
2719 struct device
*d
= &cp
->h
->pdev
->dev
;
2720 u8 sense_key
, asc
, ascq
;
2723 switch (ei
->CommandStatus
) {
2724 case CMD_TARGET_STATUS
:
2725 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2726 sense_len
= sizeof(ei
->SenseInfo
);
2728 sense_len
= ei
->SenseLen
;
2729 decode_sense_data(ei
->SenseInfo
, sense_len
,
2730 &sense_key
, &asc
, &ascq
);
2731 hpsa_print_cmd(h
, "SCSI status", cp
);
2732 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2733 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2734 sense_key
, asc
, ascq
);
2736 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2737 if (ei
->ScsiStatus
== 0)
2738 dev_warn(d
, "SCSI status is abnormally zero. "
2739 "(probably indicates selection timeout "
2740 "reported incorrectly due to a known "
2741 "firmware bug, circa July, 2001.)\n");
2743 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2745 case CMD_DATA_OVERRUN
:
2746 hpsa_print_cmd(h
, "overrun condition", cp
);
2749 /* controller unfortunately reports SCSI passthru's
2750 * to non-existent targets as invalid commands.
2752 hpsa_print_cmd(h
, "invalid command", cp
);
2753 dev_warn(d
, "probably means device no longer present\n");
2756 case CMD_PROTOCOL_ERR
:
2757 hpsa_print_cmd(h
, "protocol error", cp
);
2759 case CMD_HARDWARE_ERR
:
2760 hpsa_print_cmd(h
, "hardware error", cp
);
2762 case CMD_CONNECTION_LOST
:
2763 hpsa_print_cmd(h
, "connection lost", cp
);
2766 hpsa_print_cmd(h
, "aborted", cp
);
2768 case CMD_ABORT_FAILED
:
2769 hpsa_print_cmd(h
, "abort failed", cp
);
2771 case CMD_UNSOLICITED_ABORT
:
2772 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2775 hpsa_print_cmd(h
, "timed out", cp
);
2777 case CMD_UNABORTABLE
:
2778 hpsa_print_cmd(h
, "unabortable", cp
);
2780 case CMD_CTLR_LOCKUP
:
2781 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2784 hpsa_print_cmd(h
, "unknown status", cp
);
2785 dev_warn(d
, "Unknown command status %x\n",
2790 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2791 u16 page
, unsigned char *buf
,
2792 unsigned char bufsize
)
2795 struct CommandList
*c
;
2796 struct ErrorInfo
*ei
;
2800 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2801 page
, scsi3addr
, TYPE_CMD
)) {
2805 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2806 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2810 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2811 hpsa_scsi_interpret_error(h
, c
);
2819 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2820 u8 reset_type
, int reply_queue
)
2823 struct CommandList
*c
;
2824 struct ErrorInfo
*ei
;
2829 /* fill_cmd can't fail here, no data buffer to map. */
2830 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2831 scsi3addr
, TYPE_MSG
);
2832 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2834 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2837 /* no unmap needed here because no data xfer. */
2840 if (ei
->CommandStatus
!= 0) {
2841 hpsa_scsi_interpret_error(h
, c
);
2849 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2850 struct hpsa_scsi_dev_t
*dev
,
2851 unsigned char *scsi3addr
)
2855 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2856 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2858 if (hpsa_is_cmd_idle(c
))
2861 switch (c
->cmd_type
) {
2863 case CMD_IOCTL_PEND
:
2864 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2865 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2870 if (c
->phys_disk
== dev
) {
2871 /* HBA mode match */
2874 /* Possible RAID mode -- check each phys dev. */
2875 /* FIXME: Do we need to take out a lock here? If
2876 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2878 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2879 /* FIXME: an alternate test might be
2881 * match = dev->phys_disk[i]->ioaccel_handle
2882 * == c2->scsi_nexus; */
2883 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2889 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2890 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2891 le32_to_cpu(ac
->it_nexus
);
2895 case 0: /* The command is in the middle of being initialized. */
2900 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
2908 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
2909 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
2914 /* We can really only handle one reset at a time */
2915 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
2916 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
2920 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
2922 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2923 struct CommandList
*c
= h
->cmd_pool
+ i
;
2924 int refcount
= atomic_inc_return(&c
->refcount
);
2926 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
2927 unsigned long flags
;
2930 * Mark the target command as having a reset pending,
2931 * then lock a lock so that the command cannot complete
2932 * while we're considering it. If the command is not
2933 * idle then count it; otherwise revoke the event.
2935 c
->reset_pending
= dev
;
2936 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
2937 if (!hpsa_is_cmd_idle(c
))
2938 atomic_inc(&dev
->reset_cmds_out
);
2940 c
->reset_pending
= NULL
;
2941 spin_unlock_irqrestore(&h
->lock
, flags
);
2947 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
2949 wait_event(h
->event_sync_wait_queue
,
2950 atomic_read(&dev
->reset_cmds_out
) == 0 ||
2951 lockup_detected(h
));
2953 if (unlikely(lockup_detected(h
))) {
2954 dev_warn(&h
->pdev
->dev
,
2955 "Controller lockup detected during reset wait\n");
2960 atomic_set(&dev
->reset_cmds_out
, 0);
2962 mutex_unlock(&h
->reset_mutex
);
2966 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2967 unsigned char *scsi3addr
, unsigned char *raid_level
)
2972 *raid_level
= RAID_UNKNOWN
;
2973 buf
= kzalloc(64, GFP_KERNEL
);
2976 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2978 *raid_level
= buf
[8];
2979 if (*raid_level
> RAID_UNKNOWN
)
2980 *raid_level
= RAID_UNKNOWN
;
2985 #define HPSA_MAP_DEBUG
2986 #ifdef HPSA_MAP_DEBUG
2987 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2988 struct raid_map_data
*map_buff
)
2990 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2992 u16 map_cnt
, row_cnt
, disks_per_row
;
2997 /* Show details only if debugging has been activated. */
2998 if (h
->raid_offload_debug
< 2)
3001 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3002 le32_to_cpu(map_buff
->structure_size
));
3003 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3004 le32_to_cpu(map_buff
->volume_blk_size
));
3005 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3006 le64_to_cpu(map_buff
->volume_blk_cnt
));
3007 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3008 map_buff
->phys_blk_shift
);
3009 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3010 map_buff
->parity_rotation_shift
);
3011 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3012 le16_to_cpu(map_buff
->strip_size
));
3013 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3014 le64_to_cpu(map_buff
->disk_starting_blk
));
3015 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3016 le64_to_cpu(map_buff
->disk_blk_cnt
));
3017 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3018 le16_to_cpu(map_buff
->data_disks_per_row
));
3019 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3020 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3021 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3022 le16_to_cpu(map_buff
->row_cnt
));
3023 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3024 le16_to_cpu(map_buff
->layout_map_count
));
3025 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3026 le16_to_cpu(map_buff
->flags
));
3027 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
3028 le16_to_cpu(map_buff
->flags
) &
3029 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3030 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3031 le16_to_cpu(map_buff
->dekindex
));
3032 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3033 for (map
= 0; map
< map_cnt
; map
++) {
3034 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3035 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3036 for (row
= 0; row
< row_cnt
; row
++) {
3037 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3039 le16_to_cpu(map_buff
->data_disks_per_row
);
3040 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3041 dev_info(&h
->pdev
->dev
,
3042 " D%02u: h=0x%04x xor=%u,%u\n",
3043 col
, dd
->ioaccel_handle
,
3044 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3046 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3047 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3048 dev_info(&h
->pdev
->dev
,
3049 " M%02u: h=0x%04x xor=%u,%u\n",
3050 col
, dd
->ioaccel_handle
,
3051 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3056 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3057 __attribute__((unused
)) int rc
,
3058 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3063 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3064 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3067 struct CommandList
*c
;
3068 struct ErrorInfo
*ei
;
3072 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3073 sizeof(this_device
->raid_map
), 0,
3074 scsi3addr
, TYPE_CMD
)) {
3075 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3079 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3080 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3084 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3085 hpsa_scsi_interpret_error(h
, c
);
3091 /* @todo in the future, dynamically allocate RAID map memory */
3092 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3093 sizeof(this_device
->raid_map
)) {
3094 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3097 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3104 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3105 unsigned char scsi3addr
[], u16 bmic_device_index
,
3106 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3109 struct CommandList
*c
;
3110 struct ErrorInfo
*ei
;
3114 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3115 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3119 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3120 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3122 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3123 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3127 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3128 hpsa_scsi_interpret_error(h
, c
);
3136 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3137 struct bmic_identify_controller
*buf
, size_t bufsize
)
3140 struct CommandList
*c
;
3141 struct ErrorInfo
*ei
;
3145 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3146 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3150 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3151 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3155 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3156 hpsa_scsi_interpret_error(h
, c
);
3164 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3165 unsigned char scsi3addr
[], u16 bmic_device_index
,
3166 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3169 struct CommandList
*c
;
3170 struct ErrorInfo
*ei
;
3173 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3174 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3178 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3179 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3181 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3184 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3185 hpsa_scsi_interpret_error(h
, c
);
3194 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3195 unsigned char *scsi3addr
)
3197 struct ReportExtendedLUNdata
*physdev
;
3202 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3206 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3207 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3211 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3213 for (i
= 0; i
< nphysicals
; i
++)
3214 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3215 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3224 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3225 struct hpsa_scsi_dev_t
*dev
)
3230 if (is_hba_lunid(scsi3addr
)) {
3231 struct bmic_sense_subsystem_info
*ssi
;
3233 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3235 dev_warn(&h
->pdev
->dev
,
3236 "%s: out of memory\n", __func__
);
3240 rc
= hpsa_bmic_sense_subsystem_information(h
,
3241 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3243 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3244 h
->sas_address
= sa
;
3249 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3251 dev
->sas_address
= sa
;
3254 /* Get a device id from inquiry page 0x83 */
3255 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
3256 unsigned char scsi3addr
[], u8 page
)
3261 unsigned char *buf
, bufsize
;
3263 buf
= kzalloc(256, GFP_KERNEL
);
3267 /* Get the size of the page list first */
3268 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3269 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3270 buf
, HPSA_VPD_HEADER_SZ
);
3272 goto exit_unsupported
;
3274 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3275 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3279 /* Get the whole VPD page list */
3280 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3281 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3284 goto exit_unsupported
;
3287 for (i
= 1; i
<= pages
; i
++)
3288 if (buf
[3 + i
] == page
)
3289 goto exit_supported
;
3298 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3299 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3305 this_device
->offload_config
= 0;
3306 this_device
->offload_enabled
= 0;
3307 this_device
->offload_to_be_enabled
= 0;
3309 buf
= kzalloc(64, GFP_KERNEL
);
3312 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3314 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3315 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3319 #define IOACCEL_STATUS_BYTE 4
3320 #define OFFLOAD_CONFIGURED_BIT 0x01
3321 #define OFFLOAD_ENABLED_BIT 0x02
3322 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3323 this_device
->offload_config
=
3324 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3325 if (this_device
->offload_config
) {
3326 this_device
->offload_enabled
=
3327 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3328 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3329 this_device
->offload_enabled
= 0;
3331 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3337 /* Get the device id from inquiry page 0x83 */
3338 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3339 unsigned char *device_id
, int index
, int buflen
)
3346 buf
= kzalloc(64, GFP_KERNEL
);
3349 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3351 memcpy(device_id
, &buf
[index
], buflen
);
3358 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3359 void *buf
, int bufsize
,
3360 int extended_response
)
3363 struct CommandList
*c
;
3364 unsigned char scsi3addr
[8];
3365 struct ErrorInfo
*ei
;
3369 /* address the controller */
3370 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3371 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3372 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3376 if (extended_response
)
3377 c
->Request
.CDB
[1] = extended_response
;
3378 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3379 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3383 if (ei
->CommandStatus
!= 0 &&
3384 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3385 hpsa_scsi_interpret_error(h
, c
);
3388 struct ReportLUNdata
*rld
= buf
;
3390 if (rld
->extended_response_flag
!= extended_response
) {
3391 dev_err(&h
->pdev
->dev
,
3392 "report luns requested format %u, got %u\n",
3394 rld
->extended_response_flag
);
3403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3404 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3406 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3407 HPSA_REPORT_PHYS_EXTENDED
);
3410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3411 struct ReportLUNdata
*buf
, int bufsize
)
3413 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3417 int bus
, int target
, int lun
)
3420 device
->target
= target
;
3424 /* Use VPD inquiry to get details of volume status */
3425 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3426 unsigned char scsi3addr
[])
3433 buf
= kzalloc(64, GFP_KERNEL
);
3435 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3437 /* Does controller have VPD for logical volume status? */
3438 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3441 /* Get the size of the VPD return buffer */
3442 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3443 buf
, HPSA_VPD_HEADER_SZ
);
3448 /* Now get the whole VPD buffer */
3449 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3450 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3453 status
= buf
[4]; /* status byte */
3459 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3462 /* Determine offline status of a volume.
3465 * 0xff (offline for unknown reasons)
3466 * # (integer code indicating one of several NOT READY states
3467 * describing why a volume is to be kept offline)
3469 static int hpsa_volume_offline(struct ctlr_info
*h
,
3470 unsigned char scsi3addr
[])
3472 struct CommandList
*c
;
3473 unsigned char *sense
;
3474 u8 sense_key
, asc
, ascq
;
3479 #define ASC_LUN_NOT_READY 0x04
3480 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3481 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3485 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3486 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3491 sense
= c
->err_info
->SenseInfo
;
3492 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3493 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3495 sense_len
= c
->err_info
->SenseLen
;
3496 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3497 cmd_status
= c
->err_info
->CommandStatus
;
3498 scsi_status
= c
->err_info
->ScsiStatus
;
3500 /* Is the volume 'not ready'? */
3501 if (cmd_status
!= CMD_TARGET_STATUS
||
3502 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
3503 sense_key
!= NOT_READY
||
3504 asc
!= ASC_LUN_NOT_READY
) {
3508 /* Determine the reason for not ready state */
3509 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3511 /* Keep volume offline in certain cases: */
3513 case HPSA_LV_UNDERGOING_ERASE
:
3514 case HPSA_LV_NOT_AVAILABLE
:
3515 case HPSA_LV_UNDERGOING_RPI
:
3516 case HPSA_LV_PENDING_RPI
:
3517 case HPSA_LV_ENCRYPTED_NO_KEY
:
3518 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3519 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3520 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3521 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3523 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3524 /* If VPD status page isn't available,
3525 * use ASC/ASCQ to determine state
3527 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3528 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3538 * Find out if a logical device supports aborts by simply trying one.
3539 * Smart Array may claim not to support aborts on logical drives, but
3540 * if a MSA2000 * is connected, the drives on that will be presented
3541 * by the Smart Array as logical drives, and aborts may be sent to
3542 * those devices successfully. So the simplest way to find out is
3543 * to simply try an abort and see how the device responds.
3545 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3546 unsigned char *scsi3addr
)
3548 struct CommandList
*c
;
3549 struct ErrorInfo
*ei
;
3552 u64 tag
= (u64
) -1; /* bogus tag */
3554 /* Assume that physical devices support aborts */
3555 if (!is_logical_dev_addr_mode(scsi3addr
))
3560 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3561 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3562 /* no unmap needed here because no data xfer. */
3564 switch (ei
->CommandStatus
) {
3568 case CMD_UNABORTABLE
:
3569 case CMD_ABORT_FAILED
:
3572 case CMD_TMF_STATUS
:
3573 rc
= hpsa_evaluate_tmf_status(h
, c
);
3583 static void sanitize_inquiry_string(unsigned char *s
, int len
)
3585 bool terminated
= false;
3587 for (; len
> 0; (--len
, ++s
)) {
3590 if (terminated
|| *s
< 0x20 || *s
> 0x7e)
3595 static int hpsa_update_device_info(struct ctlr_info
*h
,
3596 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3597 unsigned char *is_OBDR_device
)
3600 #define OBDR_SIG_OFFSET 43
3601 #define OBDR_TAPE_SIG "$DR-10"
3602 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3603 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3605 unsigned char *inq_buff
;
3606 unsigned char *obdr_sig
;
3609 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3615 /* Do an inquiry to the device to see what it is. */
3616 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3617 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3618 /* Inquiry failed (msg printed already) */
3619 dev_err(&h
->pdev
->dev
,
3620 "hpsa_update_device_info: inquiry failed\n");
3625 sanitize_inquiry_string(&inq_buff
[8], 8);
3626 sanitize_inquiry_string(&inq_buff
[16], 16);
3628 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3629 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3630 memcpy(this_device
->vendor
, &inq_buff
[8],
3631 sizeof(this_device
->vendor
));
3632 memcpy(this_device
->model
, &inq_buff
[16],
3633 sizeof(this_device
->model
));
3634 memset(this_device
->device_id
, 0,
3635 sizeof(this_device
->device_id
));
3636 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3637 sizeof(this_device
->device_id
));
3639 if (this_device
->devtype
== TYPE_DISK
&&
3640 is_logical_dev_addr_mode(scsi3addr
)) {
3643 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3644 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3645 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3646 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3647 if (volume_offline
< 0 || volume_offline
> 0xff)
3648 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3649 this_device
->volume_offline
= volume_offline
& 0xff;
3651 this_device
->raid_level
= RAID_UNKNOWN
;
3652 this_device
->offload_config
= 0;
3653 this_device
->offload_enabled
= 0;
3654 this_device
->offload_to_be_enabled
= 0;
3655 this_device
->hba_ioaccel_enabled
= 0;
3656 this_device
->volume_offline
= 0;
3657 this_device
->queue_depth
= h
->nr_cmds
;
3660 if (is_OBDR_device
) {
3661 /* See if this is a One-Button-Disaster-Recovery device
3662 * by looking for "$DR-10" at offset 43 in inquiry data.
3664 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3665 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3666 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3667 OBDR_SIG_LEN
) == 0);
3677 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3678 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3680 unsigned long flags
;
3683 * See if this device supports aborts. If we already know
3684 * the device, we already know if it supports aborts, otherwise
3685 * we have to find out if it supports aborts by trying one.
3687 spin_lock_irqsave(&h
->devlock
, flags
);
3688 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3689 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3690 entry
>= 0 && entry
< h
->ndevices
) {
3691 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3692 spin_unlock_irqrestore(&h
->devlock
, flags
);
3694 spin_unlock_irqrestore(&h
->devlock
, flags
);
3695 dev
->supports_aborts
=
3696 hpsa_device_supports_aborts(h
, scsi3addr
);
3697 if (dev
->supports_aborts
< 0)
3698 dev
->supports_aborts
= 0;
3703 * Helper function to assign bus, target, lun mapping of devices.
3704 * Logical drive target and lun are assigned at this time, but
3705 * physical device lun and target assignment are deferred (assigned
3706 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3708 static void figure_bus_target_lun(struct ctlr_info
*h
,
3709 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3711 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3713 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3714 /* physical device, target and lun filled in later */
3715 if (is_hba_lunid(lunaddrbytes
))
3716 hpsa_set_bus_target_lun(device
,
3717 HPSA_HBA_BUS
, 0, lunid
& 0x3fff);
3719 /* defer target, lun assignment for physical devices */
3720 hpsa_set_bus_target_lun(device
,
3721 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3724 /* It's a logical device */
3725 if (device
->external
) {
3726 hpsa_set_bus_target_lun(device
,
3727 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3731 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3737 * Get address of physical disk used for an ioaccel2 mode command:
3738 * 1. Extract ioaccel2 handle from the command.
3739 * 2. Find a matching ioaccel2 handle from list of physical disks.
3741 * 1 and set scsi3addr to address of matching physical
3742 * 0 if no matching physical disk was found.
3744 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3745 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3747 struct io_accel2_cmd
*c2
=
3748 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3749 unsigned long flags
;
3752 spin_lock_irqsave(&h
->devlock
, flags
);
3753 for (i
= 0; i
< h
->ndevices
; i
++)
3754 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3755 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3756 sizeof(h
->dev
[i
]->scsi3addr
));
3757 spin_unlock_irqrestore(&h
->devlock
, flags
);
3760 spin_unlock_irqrestore(&h
->devlock
, flags
);
3764 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3765 int i
, int nphysicals
, int nlocal_logicals
)
3767 /* In report logicals, local logicals are listed first,
3768 * then any externals.
3770 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3772 if (i
== raid_ctlr_position
)
3775 if (i
< logicals_start
)
3778 /* i is in logicals range, but still within local logicals */
3779 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
3782 return 1; /* it's an external lun */
3786 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3787 * logdev. The number of luns in physdev and logdev are returned in
3788 * *nphysicals and *nlogicals, respectively.
3789 * Returns 0 on success, -1 otherwise.
3791 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3792 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3793 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3795 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3796 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3799 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3800 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3801 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3802 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3803 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3805 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3806 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3809 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3810 /* Reject Logicals in excess of our max capability. */
3811 if (*nlogicals
> HPSA_MAX_LUN
) {
3812 dev_warn(&h
->pdev
->dev
,
3813 "maximum logical LUNs (%d) exceeded. "
3814 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3815 *nlogicals
- HPSA_MAX_LUN
);
3816 *nlogicals
= HPSA_MAX_LUN
;
3818 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3819 dev_warn(&h
->pdev
->dev
,
3820 "maximum logical + physical LUNs (%d) exceeded. "
3821 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3822 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3823 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3828 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3829 int i
, int nphysicals
, int nlogicals
,
3830 struct ReportExtendedLUNdata
*physdev_list
,
3831 struct ReportLUNdata
*logdev_list
)
3833 /* Helper function, figure out where the LUN ID info is coming from
3834 * given index i, lists of physical and logical devices, where in
3835 * the list the raid controller is supposed to appear (first or last)
3838 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3839 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
3841 if (i
== raid_ctlr_position
)
3842 return RAID_CTLR_LUNID
;
3844 if (i
< logicals_start
)
3845 return &physdev_list
->LUN
[i
-
3846 (raid_ctlr_position
== 0)].lunid
[0];
3848 if (i
< last_device
)
3849 return &logdev_list
->LUN
[i
- nphysicals
-
3850 (raid_ctlr_position
== 0)][0];
3855 /* get physical drive ioaccel handle and queue depth */
3856 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3857 struct hpsa_scsi_dev_t
*dev
,
3858 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3859 struct bmic_identify_physical_device
*id_phys
)
3862 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3864 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3865 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
3866 dev
->hba_ioaccel_enabled
= 1;
3867 memset(id_phys
, 0, sizeof(*id_phys
));
3868 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
3869 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
3872 /* Reserve space for FW operations */
3873 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3874 #define DRIVE_QUEUE_DEPTH 7
3876 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
3877 DRIVE_CMDS_RESERVED_FOR_FW
;
3879 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
3882 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
3883 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3884 struct bmic_identify_physical_device
*id_phys
)
3886 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3888 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
3889 this_device
->hba_ioaccel_enabled
= 1;
3891 memcpy(&this_device
->active_path_index
,
3892 &id_phys
->active_path_number
,
3893 sizeof(this_device
->active_path_index
));
3894 memcpy(&this_device
->path_map
,
3895 &id_phys
->redundant_path_present_map
,
3896 sizeof(this_device
->path_map
));
3897 memcpy(&this_device
->box
,
3898 &id_phys
->alternate_paths_phys_box_on_port
,
3899 sizeof(this_device
->box
));
3900 memcpy(&this_device
->phys_connector
,
3901 &id_phys
->alternate_paths_phys_connector
,
3902 sizeof(this_device
->phys_connector
));
3903 memcpy(&this_device
->bay
,
3904 &id_phys
->phys_bay_in_box
,
3905 sizeof(this_device
->bay
));
3908 /* get number of local logical disks. */
3909 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
3910 struct bmic_identify_controller
*id_ctlr
,
3916 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
3920 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
3921 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
3923 if (id_ctlr
->configured_logical_drive_count
< 256)
3924 *nlocals
= id_ctlr
->configured_logical_drive_count
;
3926 *nlocals
= le16_to_cpu(
3927 id_ctlr
->extended_logical_unit_count
);
3934 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
3936 /* the idea here is we could get notified
3937 * that some devices have changed, so we do a report
3938 * physical luns and report logical luns cmd, and adjust
3939 * our list of devices accordingly.
3941 * The scsi3addr's of devices won't change so long as the
3942 * adapter is not reset. That means we can rescan and
3943 * tell which devices we already know about, vs. new
3944 * devices, vs. disappearing devices.
3946 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
3947 struct ReportLUNdata
*logdev_list
= NULL
;
3948 struct bmic_identify_physical_device
*id_phys
= NULL
;
3949 struct bmic_identify_controller
*id_ctlr
= NULL
;
3952 u32 nlocal_logicals
= 0;
3953 u32 ndev_allocated
= 0;
3954 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
3956 int i
, n_ext_target_devs
, ndevs_to_allocate
;
3957 int raid_ctlr_position
;
3958 bool physical_device
;
3959 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
3961 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
3962 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
3963 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
3964 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
3965 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3966 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
3968 if (!currentsd
|| !physdev_list
|| !logdev_list
||
3969 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
3970 dev_err(&h
->pdev
->dev
, "out of memory\n");
3973 memset(lunzerobits
, 0, sizeof(lunzerobits
));
3975 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
3977 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
3978 logdev_list
, &nlogicals
)) {
3979 h
->drv_req_rescan
= 1;
3983 /* Set number of local logicals (non PTRAID) */
3984 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
3985 dev_warn(&h
->pdev
->dev
,
3986 "%s: Can't determine number of local logical devices.\n",
3990 /* We might see up to the maximum number of logical and physical disks
3991 * plus external target devices, and a device for the local RAID
3994 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
3996 /* Allocate the per device structures */
3997 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
3998 if (i
>= HPSA_MAX_DEVICES
) {
3999 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4000 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4001 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4005 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4006 if (!currentsd
[i
]) {
4007 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
4008 __FILE__
, __LINE__
);
4009 h
->drv_req_rescan
= 1;
4015 if (is_scsi_rev_5(h
))
4016 raid_ctlr_position
= 0;
4018 raid_ctlr_position
= nphysicals
+ nlogicals
;
4020 /* adjust our table of devices */
4021 n_ext_target_devs
= 0;
4022 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4023 u8
*lunaddrbytes
, is_OBDR
= 0;
4025 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4027 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4029 /* Figure out where the LUN ID info is coming from */
4030 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4031 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4033 /* skip masked non-disk devices */
4034 if (MASKED_DEVICE(lunaddrbytes
) && physical_device
&&
4035 (physdev_list
->LUN
[phys_dev_index
].device_flags
& 0x01))
4038 /* Get device type, vendor, model, device id */
4039 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4041 if (rc
== -ENOMEM
) {
4042 dev_warn(&h
->pdev
->dev
,
4043 "Out of memory, rescan deferred.\n");
4044 h
->drv_req_rescan
= 1;
4048 dev_warn(&h
->pdev
->dev
,
4049 "Inquiry failed, skipping device.\n");
4053 /* Determine if this is a lun from an external target array */
4054 tmpdevice
->external
=
4055 figure_external_status(h
, raid_ctlr_position
, i
,
4056 nphysicals
, nlocal_logicals
);
4058 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4059 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
4060 this_device
= currentsd
[ncurrent
];
4062 /* Turn on discovery_polling if there are ext target devices.
4063 * Event-based change notification is unreliable for those.
4065 if (!h
->discovery_polling
) {
4066 if (tmpdevice
->external
) {
4067 h
->discovery_polling
= 1;
4068 dev_info(&h
->pdev
->dev
,
4069 "External target, activate discovery polling.\n");
4074 *this_device
= *tmpdevice
;
4075 this_device
->physical_device
= physical_device
;
4078 * Expose all devices except for physical devices that
4081 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4082 this_device
->expose_device
= 0;
4084 this_device
->expose_device
= 1;
4088 * Get the SAS address for physical devices that are exposed.
4090 if (this_device
->physical_device
&& this_device
->expose_device
)
4091 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4093 switch (this_device
->devtype
) {
4095 /* We don't *really* support actual CD-ROM devices,
4096 * just "One Button Disaster Recovery" tape drive
4097 * which temporarily pretends to be a CD-ROM drive.
4098 * So we check that the device is really an OBDR tape
4099 * device by checking for "$DR-10" in bytes 43-48 of
4106 if (this_device
->physical_device
) {
4107 /* The disk is in HBA mode. */
4108 /* Never use RAID mapper in HBA mode. */
4109 this_device
->offload_enabled
= 0;
4110 hpsa_get_ioaccel_drive_info(h
, this_device
,
4111 physdev_list
, phys_dev_index
, id_phys
);
4112 hpsa_get_path_info(this_device
,
4113 physdev_list
, phys_dev_index
, id_phys
);
4118 case TYPE_MEDIUM_CHANGER
:
4119 case TYPE_ENCLOSURE
:
4123 /* Only present the Smartarray HBA as a RAID controller.
4124 * If it's a RAID controller other than the HBA itself
4125 * (an external RAID controller, MSA500 or similar)
4128 if (!is_hba_lunid(lunaddrbytes
))
4135 if (ncurrent
>= HPSA_MAX_DEVICES
)
4139 if (h
->sas_host
== NULL
) {
4142 rc
= hpsa_add_sas_host(h
);
4144 dev_warn(&h
->pdev
->dev
,
4145 "Could not add sas host %d\n", rc
);
4150 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4153 for (i
= 0; i
< ndev_allocated
; i
++)
4154 kfree(currentsd
[i
]);
4156 kfree(physdev_list
);
4162 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4163 struct scatterlist
*sg
)
4165 u64 addr64
= (u64
) sg_dma_address(sg
);
4166 unsigned int len
= sg_dma_len(sg
);
4168 desc
->Addr
= cpu_to_le64(addr64
);
4169 desc
->Len
= cpu_to_le32(len
);
4174 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4175 * dma mapping and fills in the scatter gather entries of the
4178 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4179 struct CommandList
*cp
,
4180 struct scsi_cmnd
*cmd
)
4182 struct scatterlist
*sg
;
4183 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4184 struct SGDescriptor
*curr_sg
;
4186 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4188 use_sg
= scsi_dma_map(cmd
);
4193 goto sglist_finished
;
4196 * If the number of entries is greater than the max for a single list,
4197 * then we have a chained list; we will set up all but one entry in the
4198 * first list (the last entry is saved for link information);
4199 * otherwise, we don't have a chained list and we'll set up at each of
4200 * the entries in the one list.
4203 chained
= use_sg
> h
->max_cmd_sg_entries
;
4204 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4205 last_sg
= scsi_sg_count(cmd
) - 1;
4206 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4207 hpsa_set_sg_descriptor(curr_sg
, sg
);
4213 * Continue with the chained list. Set curr_sg to the chained
4214 * list. Modify the limit to the total count less the entries
4215 * we've already set up. Resume the scan at the list entry
4216 * where the previous loop left off.
4218 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4219 sg_limit
= use_sg
- sg_limit
;
4220 for_each_sg(sg
, sg
, sg_limit
, i
) {
4221 hpsa_set_sg_descriptor(curr_sg
, sg
);
4226 /* Back the pointer up to the last entry and mark it as "last". */
4227 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4229 if (use_sg
+ chained
> h
->maxSG
)
4230 h
->maxSG
= use_sg
+ chained
;
4233 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4234 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4235 if (hpsa_map_sg_chain_block(h
, cp
)) {
4236 scsi_dma_unmap(cmd
);
4244 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4245 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4249 #define IO_ACCEL_INELIGIBLE (1)
4250 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4256 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4263 if (*cdb_len
== 6) {
4264 block
= get_unaligned_be16(&cdb
[2]);
4269 BUG_ON(*cdb_len
!= 12);
4270 block
= get_unaligned_be32(&cdb
[2]);
4271 block_cnt
= get_unaligned_be32(&cdb
[6]);
4273 if (block_cnt
> 0xffff)
4274 return IO_ACCEL_INELIGIBLE
;
4276 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4278 cdb
[2] = (u8
) (block
>> 24);
4279 cdb
[3] = (u8
) (block
>> 16);
4280 cdb
[4] = (u8
) (block
>> 8);
4281 cdb
[5] = (u8
) (block
);
4283 cdb
[7] = (u8
) (block_cnt
>> 8);
4284 cdb
[8] = (u8
) (block_cnt
);
4292 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4293 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4294 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4296 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4297 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4299 unsigned int total_len
= 0;
4300 struct scatterlist
*sg
;
4303 struct SGDescriptor
*curr_sg
;
4304 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4306 /* TODO: implement chaining support */
4307 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4308 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4309 return IO_ACCEL_INELIGIBLE
;
4312 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4314 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4315 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4316 return IO_ACCEL_INELIGIBLE
;
4319 c
->cmd_type
= CMD_IOACCEL1
;
4321 /* Adjust the DMA address to point to the accelerated command buffer */
4322 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4323 (c
->cmdindex
* sizeof(*cp
));
4324 BUG_ON(c
->busaddr
& 0x0000007F);
4326 use_sg
= scsi_dma_map(cmd
);
4328 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4334 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4335 addr64
= (u64
) sg_dma_address(sg
);
4336 len
= sg_dma_len(sg
);
4338 curr_sg
->Addr
= cpu_to_le64(addr64
);
4339 curr_sg
->Len
= cpu_to_le32(len
);
4340 curr_sg
->Ext
= cpu_to_le32(0);
4343 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4345 switch (cmd
->sc_data_direction
) {
4347 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4349 case DMA_FROM_DEVICE
:
4350 control
|= IOACCEL1_CONTROL_DATA_IN
;
4353 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4356 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4357 cmd
->sc_data_direction
);
4362 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4365 c
->Header
.SGList
= use_sg
;
4366 /* Fill out the command structure to submit */
4367 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4368 cp
->transfer_len
= cpu_to_le32(total_len
);
4369 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4370 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4371 cp
->control
= cpu_to_le32(control
);
4372 memcpy(cp
->CDB
, cdb
, cdb_len
);
4373 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4374 /* Tag was already set at init time. */
4375 enqueue_cmd_and_start_io(h
, c
);
4380 * Queue a command directly to a device behind the controller using the
4381 * I/O accelerator path.
4383 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4384 struct CommandList
*c
)
4386 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4387 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4391 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4392 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4396 * Set encryption parameters for the ioaccel2 request
4398 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4399 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4401 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4402 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4403 struct raid_map_data
*map
= &dev
->raid_map
;
4406 /* Are we doing encryption on this device */
4407 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4409 /* Set the data encryption key index. */
4410 cp
->dekindex
= map
->dekindex
;
4412 /* Set the encryption enable flag, encoded into direction field. */
4413 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4415 /* Set encryption tweak values based on logical block address
4416 * If block size is 512, tweak value is LBA.
4417 * For other block sizes, tweak is (LBA * block size)/ 512)
4419 switch (cmd
->cmnd
[0]) {
4420 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4423 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4427 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4430 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4434 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4437 dev_err(&h
->pdev
->dev
,
4438 "ERROR: %s: size (0x%x) not supported for encryption\n",
4439 __func__
, cmd
->cmnd
[0]);
4444 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4445 first_block
= first_block
*
4446 le32_to_cpu(map
->volume_blk_size
)/512;
4448 cp
->tweak_lower
= cpu_to_le32(first_block
);
4449 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4452 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4453 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4454 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4456 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4457 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4458 struct ioaccel2_sg_element
*curr_sg
;
4460 struct scatterlist
*sg
;
4465 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4467 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4468 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4469 return IO_ACCEL_INELIGIBLE
;
4472 c
->cmd_type
= CMD_IOACCEL2
;
4473 /* Adjust the DMA address to point to the accelerated command buffer */
4474 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4475 (c
->cmdindex
* sizeof(*cp
));
4476 BUG_ON(c
->busaddr
& 0x0000007F);
4478 memset(cp
, 0, sizeof(*cp
));
4479 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4481 use_sg
= scsi_dma_map(cmd
);
4483 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4489 if (use_sg
> h
->ioaccel_maxsg
) {
4490 addr64
= le64_to_cpu(
4491 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4492 curr_sg
->address
= cpu_to_le64(addr64
);
4493 curr_sg
->length
= 0;
4494 curr_sg
->reserved
[0] = 0;
4495 curr_sg
->reserved
[1] = 0;
4496 curr_sg
->reserved
[2] = 0;
4497 curr_sg
->chain_indicator
= 0x80;
4499 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4501 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4502 addr64
= (u64
) sg_dma_address(sg
);
4503 len
= sg_dma_len(sg
);
4505 curr_sg
->address
= cpu_to_le64(addr64
);
4506 curr_sg
->length
= cpu_to_le32(len
);
4507 curr_sg
->reserved
[0] = 0;
4508 curr_sg
->reserved
[1] = 0;
4509 curr_sg
->reserved
[2] = 0;
4510 curr_sg
->chain_indicator
= 0;
4514 switch (cmd
->sc_data_direction
) {
4516 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4517 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4519 case DMA_FROM_DEVICE
:
4520 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4521 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4524 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4525 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4528 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4529 cmd
->sc_data_direction
);
4534 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4535 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4538 /* Set encryption parameters, if necessary */
4539 set_encrypt_ioaccel2(h
, c
, cp
);
4541 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4542 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4543 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4545 cp
->data_len
= cpu_to_le32(total_len
);
4546 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4547 offsetof(struct io_accel2_cmd
, error_data
));
4548 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4550 /* fill in sg elements */
4551 if (use_sg
> h
->ioaccel_maxsg
) {
4553 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4554 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4555 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4556 scsi_dma_unmap(cmd
);
4560 cp
->sg_count
= (u8
) use_sg
;
4562 enqueue_cmd_and_start_io(h
, c
);
4567 * Queue a command to the correct I/O accelerator path.
4569 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4570 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4571 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4573 /* Try to honor the device's queue depth */
4574 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4575 phys_disk
->queue_depth
) {
4576 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4577 return IO_ACCEL_INELIGIBLE
;
4579 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4580 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4581 cdb
, cdb_len
, scsi3addr
,
4584 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4585 cdb
, cdb_len
, scsi3addr
,
4589 static void raid_map_helper(struct raid_map_data
*map
,
4590 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4592 if (offload_to_mirror
== 0) {
4593 /* use physical disk in the first mirrored group. */
4594 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4598 /* determine mirror group that *map_index indicates */
4599 *current_group
= *map_index
/
4600 le16_to_cpu(map
->data_disks_per_row
);
4601 if (offload_to_mirror
== *current_group
)
4603 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4604 /* select map index from next group */
4605 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4608 /* select map index from first group */
4609 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4612 } while (offload_to_mirror
!= *current_group
);
4616 * Attempt to perform offload RAID mapping for a logical volume I/O.
4618 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4619 struct CommandList
*c
)
4621 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4622 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4623 struct raid_map_data
*map
= &dev
->raid_map
;
4624 struct raid_map_disk_data
*dd
= &map
->data
[0];
4627 u64 first_block
, last_block
;
4630 u64 first_row
, last_row
;
4631 u32 first_row_offset
, last_row_offset
;
4632 u32 first_column
, last_column
;
4633 u64 r0_first_row
, r0_last_row
;
4634 u32 r5or6_blocks_per_row
;
4635 u64 r5or6_first_row
, r5or6_last_row
;
4636 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4637 u32 r5or6_first_column
, r5or6_last_column
;
4638 u32 total_disks_per_row
;
4640 u32 first_group
, last_group
, current_group
;
4648 #if BITS_PER_LONG == 32
4651 int offload_to_mirror
;
4653 /* check for valid opcode, get LBA and block count */
4654 switch (cmd
->cmnd
[0]) {
4658 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4659 block_cnt
= cmd
->cmnd
[4];
4667 (((u64
) cmd
->cmnd
[2]) << 24) |
4668 (((u64
) cmd
->cmnd
[3]) << 16) |
4669 (((u64
) cmd
->cmnd
[4]) << 8) |
4672 (((u32
) cmd
->cmnd
[7]) << 8) |
4679 (((u64
) cmd
->cmnd
[2]) << 24) |
4680 (((u64
) cmd
->cmnd
[3]) << 16) |
4681 (((u64
) cmd
->cmnd
[4]) << 8) |
4684 (((u32
) cmd
->cmnd
[6]) << 24) |
4685 (((u32
) cmd
->cmnd
[7]) << 16) |
4686 (((u32
) cmd
->cmnd
[8]) << 8) |
4693 (((u64
) cmd
->cmnd
[2]) << 56) |
4694 (((u64
) cmd
->cmnd
[3]) << 48) |
4695 (((u64
) cmd
->cmnd
[4]) << 40) |
4696 (((u64
) cmd
->cmnd
[5]) << 32) |
4697 (((u64
) cmd
->cmnd
[6]) << 24) |
4698 (((u64
) cmd
->cmnd
[7]) << 16) |
4699 (((u64
) cmd
->cmnd
[8]) << 8) |
4702 (((u32
) cmd
->cmnd
[10]) << 24) |
4703 (((u32
) cmd
->cmnd
[11]) << 16) |
4704 (((u32
) cmd
->cmnd
[12]) << 8) |
4708 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4710 last_block
= first_block
+ block_cnt
- 1;
4712 /* check for write to non-RAID-0 */
4713 if (is_write
&& dev
->raid_level
!= 0)
4714 return IO_ACCEL_INELIGIBLE
;
4716 /* check for invalid block or wraparound */
4717 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4718 last_block
< first_block
)
4719 return IO_ACCEL_INELIGIBLE
;
4721 /* calculate stripe information for the request */
4722 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4723 le16_to_cpu(map
->strip_size
);
4724 strip_size
= le16_to_cpu(map
->strip_size
);
4725 #if BITS_PER_LONG == 32
4726 tmpdiv
= first_block
;
4727 (void) do_div(tmpdiv
, blocks_per_row
);
4729 tmpdiv
= last_block
;
4730 (void) do_div(tmpdiv
, blocks_per_row
);
4732 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4733 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4734 tmpdiv
= first_row_offset
;
4735 (void) do_div(tmpdiv
, strip_size
);
4736 first_column
= tmpdiv
;
4737 tmpdiv
= last_row_offset
;
4738 (void) do_div(tmpdiv
, strip_size
);
4739 last_column
= tmpdiv
;
4741 first_row
= first_block
/ blocks_per_row
;
4742 last_row
= last_block
/ blocks_per_row
;
4743 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4744 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4745 first_column
= first_row_offset
/ strip_size
;
4746 last_column
= last_row_offset
/ strip_size
;
4749 /* if this isn't a single row/column then give to the controller */
4750 if ((first_row
!= last_row
) || (first_column
!= last_column
))
4751 return IO_ACCEL_INELIGIBLE
;
4753 /* proceeding with driver mapping */
4754 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
4755 le16_to_cpu(map
->metadata_disks_per_row
);
4756 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4757 le16_to_cpu(map
->row_cnt
);
4758 map_index
= (map_row
* total_disks_per_row
) + first_column
;
4760 switch (dev
->raid_level
) {
4762 break; /* nothing special to do */
4764 /* Handles load balance across RAID 1 members.
4765 * (2-drive R1 and R10 with even # of drives.)
4766 * Appropriate for SSDs, not optimal for HDDs
4768 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
4769 if (dev
->offload_to_mirror
)
4770 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4771 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
4774 /* Handles N-way mirrors (R1-ADM)
4775 * and R10 with # of drives divisible by 3.)
4777 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
4779 offload_to_mirror
= dev
->offload_to_mirror
;
4780 raid_map_helper(map
, offload_to_mirror
,
4781 &map_index
, ¤t_group
);
4782 /* set mirror group to use next time */
4784 (offload_to_mirror
>=
4785 le16_to_cpu(map
->layout_map_count
) - 1)
4786 ? 0 : offload_to_mirror
+ 1;
4787 dev
->offload_to_mirror
= offload_to_mirror
;
4788 /* Avoid direct use of dev->offload_to_mirror within this
4789 * function since multiple threads might simultaneously
4790 * increment it beyond the range of dev->layout_map_count -1.
4795 if (le16_to_cpu(map
->layout_map_count
) <= 1)
4798 /* Verify first and last block are in same RAID group */
4799 r5or6_blocks_per_row
=
4800 le16_to_cpu(map
->strip_size
) *
4801 le16_to_cpu(map
->data_disks_per_row
);
4802 BUG_ON(r5or6_blocks_per_row
== 0);
4803 stripesize
= r5or6_blocks_per_row
*
4804 le16_to_cpu(map
->layout_map_count
);
4805 #if BITS_PER_LONG == 32
4806 tmpdiv
= first_block
;
4807 first_group
= do_div(tmpdiv
, stripesize
);
4808 tmpdiv
= first_group
;
4809 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4810 first_group
= tmpdiv
;
4811 tmpdiv
= last_block
;
4812 last_group
= do_div(tmpdiv
, stripesize
);
4813 tmpdiv
= last_group
;
4814 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4815 last_group
= tmpdiv
;
4817 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
4818 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
4820 if (first_group
!= last_group
)
4821 return IO_ACCEL_INELIGIBLE
;
4823 /* Verify request is in a single row of RAID 5/6 */
4824 #if BITS_PER_LONG == 32
4825 tmpdiv
= first_block
;
4826 (void) do_div(tmpdiv
, stripesize
);
4827 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
4828 tmpdiv
= last_block
;
4829 (void) do_div(tmpdiv
, stripesize
);
4830 r5or6_last_row
= r0_last_row
= tmpdiv
;
4832 first_row
= r5or6_first_row
= r0_first_row
=
4833 first_block
/ stripesize
;
4834 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
4836 if (r5or6_first_row
!= r5or6_last_row
)
4837 return IO_ACCEL_INELIGIBLE
;
4840 /* Verify request is in a single column */
4841 #if BITS_PER_LONG == 32
4842 tmpdiv
= first_block
;
4843 first_row_offset
= do_div(tmpdiv
, stripesize
);
4844 tmpdiv
= first_row_offset
;
4845 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
4846 r5or6_first_row_offset
= first_row_offset
;
4847 tmpdiv
= last_block
;
4848 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
4849 tmpdiv
= r5or6_last_row_offset
;
4850 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
4851 tmpdiv
= r5or6_first_row_offset
;
4852 (void) do_div(tmpdiv
, map
->strip_size
);
4853 first_column
= r5or6_first_column
= tmpdiv
;
4854 tmpdiv
= r5or6_last_row_offset
;
4855 (void) do_div(tmpdiv
, map
->strip_size
);
4856 r5or6_last_column
= tmpdiv
;
4858 first_row_offset
= r5or6_first_row_offset
=
4859 (u32
)((first_block
% stripesize
) %
4860 r5or6_blocks_per_row
);
4862 r5or6_last_row_offset
=
4863 (u32
)((last_block
% stripesize
) %
4864 r5or6_blocks_per_row
);
4866 first_column
= r5or6_first_column
=
4867 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
4869 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
4871 if (r5or6_first_column
!= r5or6_last_column
)
4872 return IO_ACCEL_INELIGIBLE
;
4874 /* Request is eligible */
4875 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4876 le16_to_cpu(map
->row_cnt
);
4878 map_index
= (first_group
*
4879 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
4880 (map_row
* total_disks_per_row
) + first_column
;
4883 return IO_ACCEL_INELIGIBLE
;
4886 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
4887 return IO_ACCEL_INELIGIBLE
;
4889 c
->phys_disk
= dev
->phys_disk
[map_index
];
4891 disk_handle
= dd
[map_index
].ioaccel_handle
;
4892 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
4893 first_row
* le16_to_cpu(map
->strip_size
) +
4894 (first_row_offset
- first_column
*
4895 le16_to_cpu(map
->strip_size
));
4896 disk_block_cnt
= block_cnt
;
4898 /* handle differing logical/physical block sizes */
4899 if (map
->phys_blk_shift
) {
4900 disk_block
<<= map
->phys_blk_shift
;
4901 disk_block_cnt
<<= map
->phys_blk_shift
;
4903 BUG_ON(disk_block_cnt
> 0xffff);
4905 /* build the new CDB for the physical disk I/O */
4906 if (disk_block
> 0xffffffff) {
4907 cdb
[0] = is_write
? WRITE_16
: READ_16
;
4909 cdb
[2] = (u8
) (disk_block
>> 56);
4910 cdb
[3] = (u8
) (disk_block
>> 48);
4911 cdb
[4] = (u8
) (disk_block
>> 40);
4912 cdb
[5] = (u8
) (disk_block
>> 32);
4913 cdb
[6] = (u8
) (disk_block
>> 24);
4914 cdb
[7] = (u8
) (disk_block
>> 16);
4915 cdb
[8] = (u8
) (disk_block
>> 8);
4916 cdb
[9] = (u8
) (disk_block
);
4917 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
4918 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
4919 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
4920 cdb
[13] = (u8
) (disk_block_cnt
);
4925 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4927 cdb
[2] = (u8
) (disk_block
>> 24);
4928 cdb
[3] = (u8
) (disk_block
>> 16);
4929 cdb
[4] = (u8
) (disk_block
>> 8);
4930 cdb
[5] = (u8
) (disk_block
);
4932 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
4933 cdb
[8] = (u8
) (disk_block_cnt
);
4937 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
4939 dev
->phys_disk
[map_index
]);
4943 * Submit commands down the "normal" RAID stack path
4944 * All callers to hpsa_ciss_submit must check lockup_detected
4945 * beforehand, before (opt.) and after calling cmd_alloc
4947 static int hpsa_ciss_submit(struct ctlr_info
*h
,
4948 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
4949 unsigned char scsi3addr
[])
4951 cmd
->host_scribble
= (unsigned char *) c
;
4952 c
->cmd_type
= CMD_SCSI
;
4954 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
4955 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
4956 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
4958 /* Fill in the request block... */
4960 c
->Request
.Timeout
= 0;
4961 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
4962 c
->Request
.CDBLen
= cmd
->cmd_len
;
4963 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
4964 switch (cmd
->sc_data_direction
) {
4966 c
->Request
.type_attr_dir
=
4967 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
4969 case DMA_FROM_DEVICE
:
4970 c
->Request
.type_attr_dir
=
4971 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
4974 c
->Request
.type_attr_dir
=
4975 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
4977 case DMA_BIDIRECTIONAL
:
4978 /* This can happen if a buggy application does a scsi passthru
4979 * and sets both inlen and outlen to non-zero. ( see
4980 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4983 c
->Request
.type_attr_dir
=
4984 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
4985 /* This is technically wrong, and hpsa controllers should
4986 * reject it with CMD_INVALID, which is the most correct
4987 * response, but non-fibre backends appear to let it
4988 * slide by, and give the same results as if this field
4989 * were set correctly. Either way is acceptable for
4990 * our purposes here.
4996 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4997 cmd
->sc_data_direction
);
5002 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5003 hpsa_cmd_resolve_and_free(h
, c
);
5004 return SCSI_MLQUEUE_HOST_BUSY
;
5006 enqueue_cmd_and_start_io(h
, c
);
5007 /* the cmd'll come back via intr handler in complete_scsi_command() */
5011 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5012 struct CommandList
*c
)
5014 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5016 /* Zero out all of commandlist except the last field, refcount */
5017 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5018 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5019 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5020 c
->err_info
= h
->errinfo_pool
+ index
;
5021 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5022 err_dma_handle
= h
->errinfo_pool_dhandle
5023 + index
* sizeof(*c
->err_info
);
5024 c
->cmdindex
= index
;
5025 c
->busaddr
= (u32
) cmd_dma_handle
;
5026 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5027 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5029 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5032 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5036 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5037 struct CommandList
*c
= h
->cmd_pool
+ i
;
5039 hpsa_cmd_init(h
, i
, c
);
5040 atomic_set(&c
->refcount
, 0);
5044 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5045 struct CommandList
*c
)
5047 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5049 BUG_ON(c
->cmdindex
!= index
);
5051 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5052 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5053 c
->busaddr
= (u32
) cmd_dma_handle
;
5056 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5057 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5058 unsigned char *scsi3addr
)
5060 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5061 int rc
= IO_ACCEL_INELIGIBLE
;
5063 cmd
->host_scribble
= (unsigned char *) c
;
5065 if (dev
->offload_enabled
) {
5066 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5067 c
->cmd_type
= CMD_SCSI
;
5069 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5070 if (rc
< 0) /* scsi_dma_map failed. */
5071 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5072 } else if (dev
->hba_ioaccel_enabled
) {
5073 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5074 c
->cmd_type
= CMD_SCSI
;
5076 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5077 if (rc
< 0) /* scsi_dma_map failed. */
5078 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5083 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5085 struct scsi_cmnd
*cmd
;
5086 struct hpsa_scsi_dev_t
*dev
;
5087 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5090 dev
= cmd
->device
->hostdata
;
5092 cmd
->result
= DID_NO_CONNECT
<< 16;
5093 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5095 if (c
->reset_pending
)
5096 return hpsa_cmd_resolve_and_free(c
->h
, c
);
5097 if (c
->abort_pending
)
5098 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
5099 if (c
->cmd_type
== CMD_IOACCEL2
) {
5100 struct ctlr_info
*h
= c
->h
;
5101 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5104 if (c2
->error_data
.serv_response
==
5105 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5106 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5109 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5111 * If we get here, it means dma mapping failed.
5112 * Try again via scsi mid layer, which will
5113 * then get SCSI_MLQUEUE_HOST_BUSY.
5115 cmd
->result
= DID_IMM_RETRY
<< 16;
5116 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5118 /* else, fall thru and resubmit down CISS path */
5121 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5122 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5124 * If we get here, it means dma mapping failed. Try
5125 * again via scsi mid layer, which will then get
5126 * SCSI_MLQUEUE_HOST_BUSY.
5128 * hpsa_ciss_submit will have already freed c
5129 * if it encountered a dma mapping failure.
5131 cmd
->result
= DID_IMM_RETRY
<< 16;
5132 cmd
->scsi_done(cmd
);
5136 /* Running in struct Scsi_Host->host_lock less mode */
5137 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5139 struct ctlr_info
*h
;
5140 struct hpsa_scsi_dev_t
*dev
;
5141 unsigned char scsi3addr
[8];
5142 struct CommandList
*c
;
5145 /* Get the ptr to our adapter structure out of cmd->host. */
5146 h
= sdev_to_hba(cmd
->device
);
5148 BUG_ON(cmd
->request
->tag
< 0);
5150 dev
= cmd
->device
->hostdata
;
5152 cmd
->result
= DID_NO_CONNECT
<< 16;
5153 cmd
->scsi_done(cmd
);
5157 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5159 if (unlikely(lockup_detected(h
))) {
5160 cmd
->result
= DID_NO_CONNECT
<< 16;
5161 cmd
->scsi_done(cmd
);
5164 c
= cmd_tagged_alloc(h
, cmd
);
5167 * Call alternate submit routine for I/O accelerated commands.
5168 * Retries always go down the normal I/O path.
5170 if (likely(cmd
->retries
== 0 &&
5171 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
5172 h
->acciopath_status
)) {
5173 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5176 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5177 hpsa_cmd_resolve_and_free(h
, c
);
5178 return SCSI_MLQUEUE_HOST_BUSY
;
5181 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5184 static void hpsa_scan_complete(struct ctlr_info
*h
)
5186 unsigned long flags
;
5188 spin_lock_irqsave(&h
->scan_lock
, flags
);
5189 h
->scan_finished
= 1;
5190 wake_up_all(&h
->scan_wait_queue
);
5191 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5194 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5196 struct ctlr_info
*h
= shost_to_hba(sh
);
5197 unsigned long flags
;
5200 * Don't let rescans be initiated on a controller known to be locked
5201 * up. If the controller locks up *during* a rescan, that thread is
5202 * probably hosed, but at least we can prevent new rescan threads from
5203 * piling up on a locked up controller.
5205 if (unlikely(lockup_detected(h
)))
5206 return hpsa_scan_complete(h
);
5208 /* wait until any scan already in progress is finished. */
5210 spin_lock_irqsave(&h
->scan_lock
, flags
);
5211 if (h
->scan_finished
)
5213 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5214 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5215 /* Note: We don't need to worry about a race between this
5216 * thread and driver unload because the midlayer will
5217 * have incremented the reference count, so unload won't
5218 * happen if we're in here.
5221 h
->scan_finished
= 0; /* mark scan as in progress */
5222 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5224 if (unlikely(lockup_detected(h
)))
5225 return hpsa_scan_complete(h
);
5227 hpsa_update_scsi_devices(h
);
5229 hpsa_scan_complete(h
);
5232 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5234 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5241 else if (qdepth
> logical_drive
->queue_depth
)
5242 qdepth
= logical_drive
->queue_depth
;
5244 return scsi_change_queue_depth(sdev
, qdepth
);
5247 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5248 unsigned long elapsed_time
)
5250 struct ctlr_info
*h
= shost_to_hba(sh
);
5251 unsigned long flags
;
5254 spin_lock_irqsave(&h
->scan_lock
, flags
);
5255 finished
= h
->scan_finished
;
5256 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5260 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5262 struct Scsi_Host
*sh
;
5264 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5266 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5273 sh
->max_channel
= 3;
5274 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5275 sh
->max_lun
= HPSA_MAX_LUN
;
5276 sh
->max_id
= HPSA_MAX_LUN
;
5277 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5278 sh
->cmd_per_lun
= sh
->can_queue
;
5279 sh
->sg_tablesize
= h
->maxsgentries
;
5280 sh
->transportt
= hpsa_sas_transport_template
;
5281 sh
->hostdata
[0] = (unsigned long) h
;
5282 sh
->irq
= h
->intr
[h
->intr_mode
];
5283 sh
->unique_id
= sh
->irq
;
5289 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5293 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5295 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5298 scsi_scan_host(h
->scsi_host
);
5303 * The block layer has already gone to the trouble of picking out a unique,
5304 * small-integer tag for this request. We use an offset from that value as
5305 * an index to select our command block. (The offset allows us to reserve the
5306 * low-numbered entries for our own uses.)
5308 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5310 int idx
= scmd
->request
->tag
;
5315 /* Offset to leave space for internal cmds. */
5316 return idx
+= HPSA_NRESERVED_CMDS
;
5320 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5321 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5323 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5324 struct CommandList
*c
, unsigned char lunaddr
[],
5329 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5330 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5331 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5332 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5335 /* no unmap needed here because no data xfer. */
5337 /* Check if the unit is already ready. */
5338 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5342 * The first command sent after reset will receive "unit attention" to
5343 * indicate that the LUN has been reset...this is actually what we're
5344 * looking for (but, success is good too).
5346 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5347 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5348 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5349 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5356 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5357 * returns zero when the unit is ready, and non-zero when giving up.
5359 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5360 struct CommandList
*c
,
5361 unsigned char lunaddr
[], int reply_queue
)
5365 int waittime
= 1; /* seconds */
5367 /* Send test unit ready until device ready, or give up. */
5368 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5371 * Wait for a bit. do this first, because if we send
5372 * the TUR right away, the reset will just abort it.
5374 msleep(1000 * waittime
);
5376 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5380 /* Increase wait time with each try, up to a point. */
5381 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5384 dev_warn(&h
->pdev
->dev
,
5385 "waiting %d secs for device to become ready.\n",
5392 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5393 unsigned char lunaddr
[],
5400 struct CommandList
*c
;
5405 * If no specific reply queue was requested, then send the TUR
5406 * repeatedly, requesting a reply on each reply queue; otherwise execute
5407 * the loop exactly once using only the specified queue.
5409 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5411 last_queue
= h
->nreply_queues
- 1;
5413 first_queue
= reply_queue
;
5414 last_queue
= reply_queue
;
5417 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5418 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5424 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5426 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5432 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5433 * complaining. Doing a host- or bus-reset can't do anything good here.
5435 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5438 struct ctlr_info
*h
;
5439 struct hpsa_scsi_dev_t
*dev
;
5443 /* find the controller to which the command to be aborted was sent */
5444 h
= sdev_to_hba(scsicmd
->device
);
5445 if (h
== NULL
) /* paranoia */
5448 if (lockup_detected(h
))
5451 dev
= scsicmd
->device
->hostdata
;
5453 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5457 /* if controller locked up, we can guarantee command won't complete */
5458 if (lockup_detected(h
)) {
5459 snprintf(msg
, sizeof(msg
),
5460 "cmd %d RESET FAILED, lockup detected",
5461 hpsa_get_cmd_index(scsicmd
));
5462 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5466 /* this reset request might be the result of a lockup; check */
5467 if (detect_controller_lockup(h
)) {
5468 snprintf(msg
, sizeof(msg
),
5469 "cmd %d RESET FAILED, new lockup detected",
5470 hpsa_get_cmd_index(scsicmd
));
5471 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5475 /* Do not attempt on controller */
5476 if (is_hba_lunid(dev
->scsi3addr
))
5479 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5480 reset_type
= HPSA_DEVICE_RESET_MSG
;
5482 reset_type
= HPSA_PHYS_TARGET_RESET
;
5484 sprintf(msg
, "resetting %s",
5485 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5486 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5488 h
->reset_in_progress
= 1;
5490 /* send a reset to the SCSI LUN which the command was sent to */
5491 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5492 DEFAULT_REPLY_QUEUE
);
5493 sprintf(msg
, "reset %s %s",
5494 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5495 rc
== 0 ? "completed successfully" : "failed");
5496 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5497 h
->reset_in_progress
= 0;
5498 return rc
== 0 ? SUCCESS
: FAILED
;
5501 static void swizzle_abort_tag(u8
*tag
)
5505 memcpy(original_tag
, tag
, 8);
5506 tag
[0] = original_tag
[3];
5507 tag
[1] = original_tag
[2];
5508 tag
[2] = original_tag
[1];
5509 tag
[3] = original_tag
[0];
5510 tag
[4] = original_tag
[7];
5511 tag
[5] = original_tag
[6];
5512 tag
[6] = original_tag
[5];
5513 tag
[7] = original_tag
[4];
5516 static void hpsa_get_tag(struct ctlr_info
*h
,
5517 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5520 if (c
->cmd_type
== CMD_IOACCEL1
) {
5521 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5522 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5523 tag
= le64_to_cpu(cm1
->tag
);
5524 *tagupper
= cpu_to_le32(tag
>> 32);
5525 *taglower
= cpu_to_le32(tag
);
5528 if (c
->cmd_type
== CMD_IOACCEL2
) {
5529 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5530 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5531 /* upper tag not used in ioaccel2 mode */
5532 memset(tagupper
, 0, sizeof(*tagupper
));
5533 *taglower
= cm2
->Tag
;
5536 tag
= le64_to_cpu(c
->Header
.tag
);
5537 *tagupper
= cpu_to_le32(tag
>> 32);
5538 *taglower
= cpu_to_le32(tag
);
5541 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5542 struct CommandList
*abort
, int reply_queue
)
5545 struct CommandList
*c
;
5546 struct ErrorInfo
*ei
;
5547 __le32 tagupper
, taglower
;
5551 /* fill_cmd can't fail here, no buffer to map */
5552 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5553 0, 0, scsi3addr
, TYPE_MSG
);
5554 if (h
->needs_abort_tags_swizzled
)
5555 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5556 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5557 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5558 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5559 __func__
, tagupper
, taglower
);
5560 /* no unmap needed here because no data xfer. */
5563 switch (ei
->CommandStatus
) {
5566 case CMD_TMF_STATUS
:
5567 rc
= hpsa_evaluate_tmf_status(h
, c
);
5569 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5573 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5574 __func__
, tagupper
, taglower
);
5575 hpsa_scsi_interpret_error(h
, c
);
5580 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5581 __func__
, tagupper
, taglower
);
5585 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5586 struct CommandList
*command_to_abort
, int reply_queue
)
5588 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5589 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5590 struct io_accel2_cmd
*c2a
=
5591 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5592 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5593 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5596 * We're overlaying struct hpsa_tmf_struct on top of something which
5597 * was allocated as a struct io_accel2_cmd, so we better be sure it
5598 * actually fits, and doesn't overrun the error info space.
5600 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5601 sizeof(struct io_accel2_cmd
));
5602 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5603 offsetof(struct hpsa_tmf_struct
, error_len
) +
5604 sizeof(ac
->error_len
));
5606 c
->cmd_type
= IOACCEL2_TMF
;
5607 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5609 /* Adjust the DMA address to point to the accelerated command buffer */
5610 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5611 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5612 BUG_ON(c
->busaddr
& 0x0000007F);
5614 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5615 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5616 ac
->reply_queue
= reply_queue
;
5617 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5618 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5619 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5620 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5621 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5622 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5623 offsetof(struct io_accel2_cmd
, error_data
));
5624 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5627 /* ioaccel2 path firmware cannot handle abort task requests.
5628 * Change abort requests to physical target reset, and send to the
5629 * address of the physical disk used for the ioaccel 2 command.
5630 * Return 0 on success (IO_OK)
5634 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5635 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5638 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5639 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5640 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5641 unsigned char *psa
= &phys_scsi3addr
[0];
5643 /* Get a pointer to the hpsa logical device. */
5644 scmd
= abort
->scsi_cmd
;
5645 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5647 dev_warn(&h
->pdev
->dev
,
5648 "Cannot abort: no device pointer for command.\n");
5649 return -1; /* not abortable */
5652 if (h
->raid_offload_debug
> 0)
5653 dev_info(&h
->pdev
->dev
,
5654 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5655 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5657 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5658 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5660 if (!dev
->offload_enabled
) {
5661 dev_warn(&h
->pdev
->dev
,
5662 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5663 return -1; /* not abortable */
5666 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5667 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5668 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5669 return -1; /* not abortable */
5672 /* send the reset */
5673 if (h
->raid_offload_debug
> 0)
5674 dev_info(&h
->pdev
->dev
,
5675 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5676 psa
[0], psa
[1], psa
[2], psa
[3],
5677 psa
[4], psa
[5], psa
[6], psa
[7]);
5678 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5680 dev_warn(&h
->pdev
->dev
,
5681 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5682 psa
[0], psa
[1], psa
[2], psa
[3],
5683 psa
[4], psa
[5], psa
[6], psa
[7]);
5684 return rc
; /* failed to reset */
5687 /* wait for device to recover */
5688 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5689 dev_warn(&h
->pdev
->dev
,
5690 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5691 psa
[0], psa
[1], psa
[2], psa
[3],
5692 psa
[4], psa
[5], psa
[6], psa
[7]);
5693 return -1; /* failed to recover */
5696 /* device recovered */
5697 dev_info(&h
->pdev
->dev
,
5698 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5699 psa
[0], psa
[1], psa
[2], psa
[3],
5700 psa
[4], psa
[5], psa
[6], psa
[7]);
5702 return rc
; /* success */
5705 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5706 struct CommandList
*abort
, int reply_queue
)
5709 struct CommandList
*c
;
5710 __le32 taglower
, tagupper
;
5711 struct hpsa_scsi_dev_t
*dev
;
5712 struct io_accel2_cmd
*c2
;
5714 dev
= abort
->scsi_cmd
->device
->hostdata
;
5715 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5719 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5720 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5721 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5722 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5723 dev_dbg(&h
->pdev
->dev
,
5724 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5725 __func__
, tagupper
, taglower
);
5726 /* no unmap needed here because no data xfer. */
5728 dev_dbg(&h
->pdev
->dev
,
5729 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5730 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5731 switch (c2
->error_data
.serv_response
) {
5732 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5733 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5736 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5737 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5738 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
5742 dev_warn(&h
->pdev
->dev
,
5743 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5744 __func__
, tagupper
, taglower
,
5745 c2
->error_data
.serv_response
);
5749 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
5750 tagupper
, taglower
);
5754 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
5755 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5758 * ioccelerator mode 2 commands should be aborted via the
5759 * accelerated path, since RAID path is unaware of these commands,
5760 * but not all underlying firmware can handle abort TMF.
5761 * Change abort to physical device reset when abort TMF is unsupported.
5763 if (abort
->cmd_type
== CMD_IOACCEL2
) {
5764 if (HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
)
5765 return hpsa_send_abort_ioaccel2(h
, abort
,
5768 return hpsa_send_reset_as_abort_ioaccel2(h
, scsi3addr
,
5769 abort
, reply_queue
);
5771 return hpsa_send_abort(h
, scsi3addr
, abort
, reply_queue
);
5774 /* Find out which reply queue a command was meant to return on */
5775 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
5776 struct CommandList
*c
)
5778 if (c
->cmd_type
== CMD_IOACCEL2
)
5779 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
5780 return c
->Header
.ReplyQueue
;
5784 * Limit concurrency of abort commands to prevent
5785 * over-subscription of commands
5787 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
5789 #define ABORT_CMD_WAIT_MSECS 5000
5790 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
5791 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
5792 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
5795 /* Send an abort for the specified command.
5796 * If the device and controller support it,
5797 * send a task abort request.
5799 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
5803 struct ctlr_info
*h
;
5804 struct hpsa_scsi_dev_t
*dev
;
5805 struct CommandList
*abort
; /* pointer to command to be aborted */
5806 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
5807 char msg
[256]; /* For debug messaging. */
5809 __le32 tagupper
, taglower
;
5810 int refcount
, reply_queue
;
5815 if (sc
->device
== NULL
)
5818 /* Find the controller of the command to be aborted */
5819 h
= sdev_to_hba(sc
->device
);
5823 /* Find the device of the command to be aborted */
5824 dev
= sc
->device
->hostdata
;
5826 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
5831 /* If controller locked up, we can guarantee command won't complete */
5832 if (lockup_detected(h
)) {
5833 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5834 "ABORT FAILED, lockup detected");
5838 /* This is a good time to check if controller lockup has occurred */
5839 if (detect_controller_lockup(h
)) {
5840 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5841 "ABORT FAILED, new lockup detected");
5845 /* Check that controller supports some kind of task abort */
5846 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
5847 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
5850 memset(msg
, 0, sizeof(msg
));
5851 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
5852 h
->scsi_host
->host_no
, sc
->device
->channel
,
5853 sc
->device
->id
, sc
->device
->lun
,
5854 "Aborting command", sc
);
5856 /* Get SCSI command to be aborted */
5857 abort
= (struct CommandList
*) sc
->host_scribble
;
5858 if (abort
== NULL
) {
5859 /* This can happen if the command already completed. */
5862 refcount
= atomic_inc_return(&abort
->refcount
);
5863 if (refcount
== 1) { /* Command is done already. */
5868 /* Don't bother trying the abort if we know it won't work. */
5869 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
5870 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
5876 * Check that we're aborting the right command.
5877 * It's possible the CommandList already completed and got re-used.
5879 if (abort
->scsi_cmd
!= sc
) {
5884 abort
->abort_pending
= true;
5885 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5886 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
5887 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
5888 as
= abort
->scsi_cmd
;
5890 ml
+= sprintf(msg
+ml
,
5891 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5892 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
5894 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
5895 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
5898 * Command is in flight, or possibly already completed
5899 * by the firmware (but not to the scsi mid layer) but we can't
5900 * distinguish which. Send the abort down.
5902 if (wait_for_available_abort_cmd(h
)) {
5903 dev_warn(&h
->pdev
->dev
,
5904 "%s FAILED, timeout waiting for an abort command to become available.\n",
5909 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
, reply_queue
);
5910 atomic_inc(&h
->abort_cmds_available
);
5911 wake_up_all(&h
->abort_cmd_wait_queue
);
5913 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
5914 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5915 "FAILED to abort command");
5919 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
5920 wait_event(h
->event_sync_wait_queue
,
5921 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
5923 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
5927 * For operations with an associated SCSI command, a command block is allocated
5928 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5929 * block request tag as an index into a table of entries. cmd_tagged_free() is
5930 * the complement, although cmd_free() may be called instead.
5932 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
5933 struct scsi_cmnd
*scmd
)
5935 int idx
= hpsa_get_cmd_index(scmd
);
5936 struct CommandList
*c
= h
->cmd_pool
+ idx
;
5938 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
5939 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
5940 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
5941 /* The index value comes from the block layer, so if it's out of
5942 * bounds, it's probably not our bug.
5947 atomic_inc(&c
->refcount
);
5948 if (unlikely(!hpsa_is_cmd_idle(c
))) {
5950 * We expect that the SCSI layer will hand us a unique tag
5951 * value. Thus, there should never be a collision here between
5952 * two requests...because if the selected command isn't idle
5953 * then someone is going to be very disappointed.
5955 dev_err(&h
->pdev
->dev
,
5956 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5958 if (c
->scsi_cmd
!= NULL
)
5959 scsi_print_command(c
->scsi_cmd
);
5960 scsi_print_command(scmd
);
5963 hpsa_cmd_partial_init(h
, idx
, c
);
5967 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
5970 * Release our reference to the block. We don't need to do anything
5971 * else to free it, because it is accessed by index. (There's no point
5972 * in checking the result of the decrement, since we cannot guarantee
5973 * that there isn't a concurrent abort which is also accessing it.)
5975 (void)atomic_dec(&c
->refcount
);
5979 * For operations that cannot sleep, a command block is allocated at init,
5980 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5981 * which ones are free or in use. Lock must be held when calling this.
5982 * cmd_free() is the complement.
5983 * This function never gives up and returns NULL. If it hangs,
5984 * another thread must call cmd_free() to free some tags.
5987 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
5989 struct CommandList
*c
;
5994 * There is some *extremely* small but non-zero chance that that
5995 * multiple threads could get in here, and one thread could
5996 * be scanning through the list of bits looking for a free
5997 * one, but the free ones are always behind him, and other
5998 * threads sneak in behind him and eat them before he can
5999 * get to them, so that while there is always a free one, a
6000 * very unlucky thread might be starved anyway, never able to
6001 * beat the other threads. In reality, this happens so
6002 * infrequently as to be indistinguishable from never.
6004 * Note that we start allocating commands before the SCSI host structure
6005 * is initialized. Since the search starts at bit zero, this
6006 * all works, since we have at least one command structure available;
6007 * however, it means that the structures with the low indexes have to be
6008 * reserved for driver-initiated requests, while requests from the block
6009 * layer will use the higher indexes.
6013 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6014 HPSA_NRESERVED_CMDS
,
6016 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6020 c
= h
->cmd_pool
+ i
;
6021 refcount
= atomic_inc_return(&c
->refcount
);
6022 if (unlikely(refcount
> 1)) {
6023 cmd_free(h
, c
); /* already in use */
6024 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6027 set_bit(i
& (BITS_PER_LONG
- 1),
6028 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6029 break; /* it's ours now. */
6031 hpsa_cmd_partial_init(h
, i
, c
);
6036 * This is the complementary operation to cmd_alloc(). Note, however, in some
6037 * corner cases it may also be used to free blocks allocated by
6038 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6039 * the clear-bit is harmless.
6041 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6043 if (atomic_dec_and_test(&c
->refcount
)) {
6046 i
= c
- h
->cmd_pool
;
6047 clear_bit(i
& (BITS_PER_LONG
- 1),
6048 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6052 #ifdef CONFIG_COMPAT
6054 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6057 IOCTL32_Command_struct __user
*arg32
=
6058 (IOCTL32_Command_struct __user
*) arg
;
6059 IOCTL_Command_struct arg64
;
6060 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6064 memset(&arg64
, 0, sizeof(arg64
));
6066 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6067 sizeof(arg64
.LUN_info
));
6068 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6069 sizeof(arg64
.Request
));
6070 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6071 sizeof(arg64
.error_info
));
6072 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6073 err
|= get_user(cp
, &arg32
->buf
);
6074 arg64
.buf
= compat_ptr(cp
);
6075 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6080 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6083 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6084 sizeof(arg32
->error_info
));
6090 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6091 int cmd
, void __user
*arg
)
6093 BIG_IOCTL32_Command_struct __user
*arg32
=
6094 (BIG_IOCTL32_Command_struct __user
*) arg
;
6095 BIG_IOCTL_Command_struct arg64
;
6096 BIG_IOCTL_Command_struct __user
*p
=
6097 compat_alloc_user_space(sizeof(arg64
));
6101 memset(&arg64
, 0, sizeof(arg64
));
6103 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6104 sizeof(arg64
.LUN_info
));
6105 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6106 sizeof(arg64
.Request
));
6107 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6108 sizeof(arg64
.error_info
));
6109 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6110 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6111 err
|= get_user(cp
, &arg32
->buf
);
6112 arg64
.buf
= compat_ptr(cp
);
6113 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6118 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6121 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6122 sizeof(arg32
->error_info
));
6128 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6131 case CCISS_GETPCIINFO
:
6132 case CCISS_GETINTINFO
:
6133 case CCISS_SETINTINFO
:
6134 case CCISS_GETNODENAME
:
6135 case CCISS_SETNODENAME
:
6136 case CCISS_GETHEARTBEAT
:
6137 case CCISS_GETBUSTYPES
:
6138 case CCISS_GETFIRMVER
:
6139 case CCISS_GETDRIVVER
:
6140 case CCISS_REVALIDVOLS
:
6141 case CCISS_DEREGDISK
:
6142 case CCISS_REGNEWDISK
:
6144 case CCISS_RESCANDISK
:
6145 case CCISS_GETLUNINFO
:
6146 return hpsa_ioctl(dev
, cmd
, arg
);
6148 case CCISS_PASSTHRU32
:
6149 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6150 case CCISS_BIG_PASSTHRU32
:
6151 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6154 return -ENOIOCTLCMD
;
6159 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6161 struct hpsa_pci_info pciinfo
;
6165 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6166 pciinfo
.bus
= h
->pdev
->bus
->number
;
6167 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6168 pciinfo
.board_id
= h
->board_id
;
6169 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6174 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6176 DriverVer_type DriverVer
;
6177 unsigned char vmaj
, vmin
, vsubmin
;
6180 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6181 &vmaj
, &vmin
, &vsubmin
);
6183 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6184 "unrecognized.", HPSA_DRIVER_VERSION
);
6189 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6192 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6197 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6199 IOCTL_Command_struct iocommand
;
6200 struct CommandList
*c
;
6207 if (!capable(CAP_SYS_RAWIO
))
6209 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6211 if ((iocommand
.buf_size
< 1) &&
6212 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6215 if (iocommand
.buf_size
> 0) {
6216 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6219 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6220 /* Copy the data into the buffer we created */
6221 if (copy_from_user(buff
, iocommand
.buf
,
6222 iocommand
.buf_size
)) {
6227 memset(buff
, 0, iocommand
.buf_size
);
6232 /* Fill in the command type */
6233 c
->cmd_type
= CMD_IOCTL_PEND
;
6234 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6235 /* Fill in Command Header */
6236 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6237 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6238 c
->Header
.SGList
= 1;
6239 c
->Header
.SGTotal
= cpu_to_le16(1);
6240 } else { /* no buffers to fill */
6241 c
->Header
.SGList
= 0;
6242 c
->Header
.SGTotal
= cpu_to_le16(0);
6244 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6246 /* Fill in Request block */
6247 memcpy(&c
->Request
, &iocommand
.Request
,
6248 sizeof(c
->Request
));
6250 /* Fill in the scatter gather information */
6251 if (iocommand
.buf_size
> 0) {
6252 temp64
= pci_map_single(h
->pdev
, buff
,
6253 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6254 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6255 c
->SG
[0].Addr
= cpu_to_le64(0);
6256 c
->SG
[0].Len
= cpu_to_le32(0);
6260 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6261 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6262 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6264 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6265 if (iocommand
.buf_size
> 0)
6266 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6267 check_ioctl_unit_attention(h
, c
);
6273 /* Copy the error information out */
6274 memcpy(&iocommand
.error_info
, c
->err_info
,
6275 sizeof(iocommand
.error_info
));
6276 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6280 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6281 iocommand
.buf_size
> 0) {
6282 /* Copy the data out of the buffer we created */
6283 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6295 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6297 BIG_IOCTL_Command_struct
*ioc
;
6298 struct CommandList
*c
;
6299 unsigned char **buff
= NULL
;
6300 int *buff_size
= NULL
;
6306 BYTE __user
*data_ptr
;
6310 if (!capable(CAP_SYS_RAWIO
))
6312 ioc
= (BIG_IOCTL_Command_struct
*)
6313 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6318 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6322 if ((ioc
->buf_size
< 1) &&
6323 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6327 /* Check kmalloc limits using all SGs */
6328 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6332 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6336 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6341 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6346 left
= ioc
->buf_size
;
6347 data_ptr
= ioc
->buf
;
6349 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6350 buff_size
[sg_used
] = sz
;
6351 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6352 if (buff
[sg_used
] == NULL
) {
6356 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6357 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6362 memset(buff
[sg_used
], 0, sz
);
6369 c
->cmd_type
= CMD_IOCTL_PEND
;
6370 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6371 c
->Header
.ReplyQueue
= 0;
6372 c
->Header
.SGList
= (u8
) sg_used
;
6373 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6374 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6375 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6376 if (ioc
->buf_size
> 0) {
6378 for (i
= 0; i
< sg_used
; i
++) {
6379 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6380 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6381 if (dma_mapping_error(&h
->pdev
->dev
,
6382 (dma_addr_t
) temp64
)) {
6383 c
->SG
[i
].Addr
= cpu_to_le64(0);
6384 c
->SG
[i
].Len
= cpu_to_le32(0);
6385 hpsa_pci_unmap(h
->pdev
, c
, i
,
6386 PCI_DMA_BIDIRECTIONAL
);
6390 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6391 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6392 c
->SG
[i
].Ext
= cpu_to_le32(0);
6394 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6396 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6398 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6399 check_ioctl_unit_attention(h
, c
);
6405 /* Copy the error information out */
6406 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6407 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6411 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6414 /* Copy the data out of the buffer we created */
6415 BYTE __user
*ptr
= ioc
->buf
;
6416 for (i
= 0; i
< sg_used
; i
++) {
6417 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6421 ptr
+= buff_size
[i
];
6431 for (i
= 0; i
< sg_used
; i
++)
6440 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6441 struct CommandList
*c
)
6443 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6444 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6445 (void) check_for_unit_attention(h
, c
);
6451 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6453 struct ctlr_info
*h
;
6454 void __user
*argp
= (void __user
*)arg
;
6457 h
= sdev_to_hba(dev
);
6460 case CCISS_DEREGDISK
:
6461 case CCISS_REGNEWDISK
:
6463 hpsa_scan_start(h
->scsi_host
);
6465 case CCISS_GETPCIINFO
:
6466 return hpsa_getpciinfo_ioctl(h
, argp
);
6467 case CCISS_GETDRIVVER
:
6468 return hpsa_getdrivver_ioctl(h
, argp
);
6469 case CCISS_PASSTHRU
:
6470 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6472 rc
= hpsa_passthru_ioctl(h
, argp
);
6473 atomic_inc(&h
->passthru_cmds_avail
);
6475 case CCISS_BIG_PASSTHRU
:
6476 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6478 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6479 atomic_inc(&h
->passthru_cmds_avail
);
6486 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6489 struct CommandList
*c
;
6493 /* fill_cmd can't fail here, no data buffer to map */
6494 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6495 RAID_CTLR_LUNID
, TYPE_MSG
);
6496 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6498 enqueue_cmd_and_start_io(h
, c
);
6499 /* Don't wait for completion, the reset won't complete. Don't free
6500 * the command either. This is the last command we will send before
6501 * re-initializing everything, so it doesn't matter and won't leak.
6506 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6507 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6510 int pci_dir
= XFER_NONE
;
6511 u64 tag
; /* for commands to be aborted */
6513 c
->cmd_type
= CMD_IOCTL_PEND
;
6514 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6515 c
->Header
.ReplyQueue
= 0;
6516 if (buff
!= NULL
&& size
> 0) {
6517 c
->Header
.SGList
= 1;
6518 c
->Header
.SGTotal
= cpu_to_le16(1);
6520 c
->Header
.SGList
= 0;
6521 c
->Header
.SGTotal
= cpu_to_le16(0);
6523 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6525 if (cmd_type
== TYPE_CMD
) {
6528 /* are we trying to read a vital product page */
6529 if (page_code
& VPD_PAGE
) {
6530 c
->Request
.CDB
[1] = 0x01;
6531 c
->Request
.CDB
[2] = (page_code
& 0xff);
6533 c
->Request
.CDBLen
= 6;
6534 c
->Request
.type_attr_dir
=
6535 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6536 c
->Request
.Timeout
= 0;
6537 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6538 c
->Request
.CDB
[4] = size
& 0xFF;
6540 case HPSA_REPORT_LOG
:
6541 case HPSA_REPORT_PHYS
:
6542 /* Talking to controller so It's a physical command
6543 mode = 00 target = 0. Nothing to write.
6545 c
->Request
.CDBLen
= 12;
6546 c
->Request
.type_attr_dir
=
6547 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6548 c
->Request
.Timeout
= 0;
6549 c
->Request
.CDB
[0] = cmd
;
6550 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6551 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6552 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6553 c
->Request
.CDB
[9] = size
& 0xFF;
6555 case BMIC_SENSE_DIAG_OPTIONS
:
6556 c
->Request
.CDBLen
= 16;
6557 c
->Request
.type_attr_dir
=
6558 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6559 c
->Request
.Timeout
= 0;
6560 /* Spec says this should be BMIC_WRITE */
6561 c
->Request
.CDB
[0] = BMIC_READ
;
6562 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6564 case BMIC_SET_DIAG_OPTIONS
:
6565 c
->Request
.CDBLen
= 16;
6566 c
->Request
.type_attr_dir
=
6567 TYPE_ATTR_DIR(cmd_type
,
6568 ATTR_SIMPLE
, XFER_WRITE
);
6569 c
->Request
.Timeout
= 0;
6570 c
->Request
.CDB
[0] = BMIC_WRITE
;
6571 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6573 case HPSA_CACHE_FLUSH
:
6574 c
->Request
.CDBLen
= 12;
6575 c
->Request
.type_attr_dir
=
6576 TYPE_ATTR_DIR(cmd_type
,
6577 ATTR_SIMPLE
, XFER_WRITE
);
6578 c
->Request
.Timeout
= 0;
6579 c
->Request
.CDB
[0] = BMIC_WRITE
;
6580 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6581 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6582 c
->Request
.CDB
[8] = size
& 0xFF;
6584 case TEST_UNIT_READY
:
6585 c
->Request
.CDBLen
= 6;
6586 c
->Request
.type_attr_dir
=
6587 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6588 c
->Request
.Timeout
= 0;
6590 case HPSA_GET_RAID_MAP
:
6591 c
->Request
.CDBLen
= 12;
6592 c
->Request
.type_attr_dir
=
6593 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6594 c
->Request
.Timeout
= 0;
6595 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6596 c
->Request
.CDB
[1] = cmd
;
6597 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6598 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6599 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6600 c
->Request
.CDB
[9] = size
& 0xFF;
6602 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6603 c
->Request
.CDBLen
= 10;
6604 c
->Request
.type_attr_dir
=
6605 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6606 c
->Request
.Timeout
= 0;
6607 c
->Request
.CDB
[0] = BMIC_READ
;
6608 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6609 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6610 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6612 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6613 c
->Request
.CDBLen
= 10;
6614 c
->Request
.type_attr_dir
=
6615 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6616 c
->Request
.Timeout
= 0;
6617 c
->Request
.CDB
[0] = BMIC_READ
;
6618 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6619 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6620 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6622 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6623 c
->Request
.CDBLen
= 10;
6624 c
->Request
.type_attr_dir
=
6625 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6626 c
->Request
.Timeout
= 0;
6627 c
->Request
.CDB
[0] = BMIC_READ
;
6628 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6629 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6630 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6632 case BMIC_IDENTIFY_CONTROLLER
:
6633 c
->Request
.CDBLen
= 10;
6634 c
->Request
.type_attr_dir
=
6635 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6636 c
->Request
.Timeout
= 0;
6637 c
->Request
.CDB
[0] = BMIC_READ
;
6638 c
->Request
.CDB
[1] = 0;
6639 c
->Request
.CDB
[2] = 0;
6640 c
->Request
.CDB
[3] = 0;
6641 c
->Request
.CDB
[4] = 0;
6642 c
->Request
.CDB
[5] = 0;
6643 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6644 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6645 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6646 c
->Request
.CDB
[9] = 0;
6649 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6653 } else if (cmd_type
== TYPE_MSG
) {
6656 case HPSA_PHYS_TARGET_RESET
:
6657 c
->Request
.CDBLen
= 16;
6658 c
->Request
.type_attr_dir
=
6659 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6660 c
->Request
.Timeout
= 0; /* Don't time out */
6661 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6662 c
->Request
.CDB
[0] = HPSA_RESET
;
6663 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6664 /* Physical target reset needs no control bytes 4-7*/
6665 c
->Request
.CDB
[4] = 0x00;
6666 c
->Request
.CDB
[5] = 0x00;
6667 c
->Request
.CDB
[6] = 0x00;
6668 c
->Request
.CDB
[7] = 0x00;
6670 case HPSA_DEVICE_RESET_MSG
:
6671 c
->Request
.CDBLen
= 16;
6672 c
->Request
.type_attr_dir
=
6673 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6674 c
->Request
.Timeout
= 0; /* Don't time out */
6675 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6676 c
->Request
.CDB
[0] = cmd
;
6677 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6678 /* If bytes 4-7 are zero, it means reset the */
6680 c
->Request
.CDB
[4] = 0x00;
6681 c
->Request
.CDB
[5] = 0x00;
6682 c
->Request
.CDB
[6] = 0x00;
6683 c
->Request
.CDB
[7] = 0x00;
6685 case HPSA_ABORT_MSG
:
6686 memcpy(&tag
, buff
, sizeof(tag
));
6687 dev_dbg(&h
->pdev
->dev
,
6688 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6689 tag
, c
->Header
.tag
);
6690 c
->Request
.CDBLen
= 16;
6691 c
->Request
.type_attr_dir
=
6692 TYPE_ATTR_DIR(cmd_type
,
6693 ATTR_SIMPLE
, XFER_WRITE
);
6694 c
->Request
.Timeout
= 0; /* Don't time out */
6695 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6696 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6697 c
->Request
.CDB
[2] = 0x00; /* reserved */
6698 c
->Request
.CDB
[3] = 0x00; /* reserved */
6699 /* Tag to abort goes in CDB[4]-CDB[11] */
6700 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6701 c
->Request
.CDB
[12] = 0x00; /* reserved */
6702 c
->Request
.CDB
[13] = 0x00; /* reserved */
6703 c
->Request
.CDB
[14] = 0x00; /* reserved */
6704 c
->Request
.CDB
[15] = 0x00; /* reserved */
6707 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6712 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6716 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6718 pci_dir
= PCI_DMA_FROMDEVICE
;
6721 pci_dir
= PCI_DMA_TODEVICE
;
6724 pci_dir
= PCI_DMA_NONE
;
6727 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6729 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6735 * Map (physical) PCI mem into (virtual) kernel space
6737 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6739 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6740 ulong page_offs
= ((ulong
) base
) - page_base
;
6741 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6744 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6747 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6749 return h
->access
.command_completed(h
, q
);
6752 static inline bool interrupt_pending(struct ctlr_info
*h
)
6754 return h
->access
.intr_pending(h
);
6757 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6759 return (h
->access
.intr_pending(h
) == 0) ||
6760 (h
->interrupts_enabled
== 0);
6763 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6766 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6767 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6773 static inline void finish_cmd(struct CommandList
*c
)
6775 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6776 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6777 || c
->cmd_type
== CMD_IOACCEL2
))
6778 complete_scsi_command(c
);
6779 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6780 complete(c
->waiting
);
6783 /* process completion of an indexed ("direct lookup") command */
6784 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6788 struct CommandList
*c
;
6790 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6791 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6792 c
= h
->cmd_pool
+ tag_index
;
6797 /* Some controllers, like p400, will give us one interrupt
6798 * after a soft reset, even if we turned interrupts off.
6799 * Only need to check for this in the hpsa_xxx_discard_completions
6802 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6804 if (likely(!reset_devices
))
6807 if (likely(h
->interrupts_enabled
))
6810 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6811 "(known firmware bug.) Ignoring.\n");
6817 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6818 * Relies on (h-q[x] == x) being true for x such that
6819 * 0 <= x < MAX_REPLY_QUEUES.
6821 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6823 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6826 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6828 struct ctlr_info
*h
= queue_to_hba(queue
);
6829 u8 q
= *(u8
*) queue
;
6832 if (ignore_bogus_interrupt(h
))
6835 if (interrupt_not_for_us(h
))
6837 h
->last_intr_timestamp
= get_jiffies_64();
6838 while (interrupt_pending(h
)) {
6839 raw_tag
= get_next_completion(h
, q
);
6840 while (raw_tag
!= FIFO_EMPTY
)
6841 raw_tag
= next_command(h
, q
);
6846 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6848 struct ctlr_info
*h
= queue_to_hba(queue
);
6850 u8 q
= *(u8
*) queue
;
6852 if (ignore_bogus_interrupt(h
))
6855 h
->last_intr_timestamp
= get_jiffies_64();
6856 raw_tag
= get_next_completion(h
, q
);
6857 while (raw_tag
!= FIFO_EMPTY
)
6858 raw_tag
= next_command(h
, q
);
6862 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6864 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6866 u8 q
= *(u8
*) queue
;
6868 if (interrupt_not_for_us(h
))
6870 h
->last_intr_timestamp
= get_jiffies_64();
6871 while (interrupt_pending(h
)) {
6872 raw_tag
= get_next_completion(h
, q
);
6873 while (raw_tag
!= FIFO_EMPTY
) {
6874 process_indexed_cmd(h
, raw_tag
);
6875 raw_tag
= next_command(h
, q
);
6881 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6883 struct ctlr_info
*h
= queue_to_hba(queue
);
6885 u8 q
= *(u8
*) queue
;
6887 h
->last_intr_timestamp
= get_jiffies_64();
6888 raw_tag
= get_next_completion(h
, q
);
6889 while (raw_tag
!= FIFO_EMPTY
) {
6890 process_indexed_cmd(h
, raw_tag
);
6891 raw_tag
= next_command(h
, q
);
6896 /* Send a message CDB to the firmware. Careful, this only works
6897 * in simple mode, not performant mode due to the tag lookup.
6898 * We only ever use this immediately after a controller reset.
6900 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6904 struct CommandListHeader CommandHeader
;
6905 struct RequestBlock Request
;
6906 struct ErrDescriptor ErrorDescriptor
;
6908 struct Command
*cmd
;
6909 static const size_t cmd_sz
= sizeof(*cmd
) +
6910 sizeof(cmd
->ErrorDescriptor
);
6914 void __iomem
*vaddr
;
6917 vaddr
= pci_ioremap_bar(pdev
, 0);
6921 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6922 * CCISS commands, so they must be allocated from the lower 4GiB of
6925 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
6931 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
6937 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6938 * although there's no guarantee, we assume that the address is at
6939 * least 4-byte aligned (most likely, it's page-aligned).
6941 paddr32
= cpu_to_le32(paddr64
);
6943 cmd
->CommandHeader
.ReplyQueue
= 0;
6944 cmd
->CommandHeader
.SGList
= 0;
6945 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
6946 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
6947 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
6949 cmd
->Request
.CDBLen
= 16;
6950 cmd
->Request
.type_attr_dir
=
6951 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
6952 cmd
->Request
.Timeout
= 0; /* Don't time out */
6953 cmd
->Request
.CDB
[0] = opcode
;
6954 cmd
->Request
.CDB
[1] = type
;
6955 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
6956 cmd
->ErrorDescriptor
.Addr
=
6957 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
6958 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
6960 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
6962 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
6963 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
6964 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
6966 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
6971 /* we leak the DMA buffer here ... no choice since the controller could
6972 * still complete the command.
6974 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
6975 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
6980 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
6982 if (tag
& HPSA_ERROR_BIT
) {
6983 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
6988 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
6993 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6995 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
6996 void __iomem
*vaddr
, u32 use_doorbell
)
7000 /* For everything after the P600, the PCI power state method
7001 * of resetting the controller doesn't work, so we have this
7002 * other way using the doorbell register.
7004 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7005 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7007 /* PMC hardware guys tell us we need a 10 second delay after
7008 * doorbell reset and before any attempt to talk to the board
7009 * at all to ensure that this actually works and doesn't fall
7010 * over in some weird corner cases.
7013 } else { /* Try to do it the PCI power state way */
7015 /* Quoting from the Open CISS Specification: "The Power
7016 * Management Control/Status Register (CSR) controls the power
7017 * state of the device. The normal operating state is D0,
7018 * CSR=00h. The software off state is D3, CSR=03h. To reset
7019 * the controller, place the interface device in D3 then to D0,
7020 * this causes a secondary PCI reset which will reset the
7025 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7027 /* enter the D3hot power management state */
7028 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7034 /* enter the D0 power management state */
7035 rc
= pci_set_power_state(pdev
, PCI_D0
);
7040 * The P600 requires a small delay when changing states.
7041 * Otherwise we may think the board did not reset and we bail.
7042 * This for kdump only and is particular to the P600.
7049 static void init_driver_version(char *driver_version
, int len
)
7051 memset(driver_version
, 0, len
);
7052 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7055 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7057 char *driver_version
;
7058 int i
, size
= sizeof(cfgtable
->driver_version
);
7060 driver_version
= kmalloc(size
, GFP_KERNEL
);
7061 if (!driver_version
)
7064 init_driver_version(driver_version
, size
);
7065 for (i
= 0; i
< size
; i
++)
7066 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7067 kfree(driver_version
);
7071 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7072 unsigned char *driver_ver
)
7076 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7077 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7080 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7083 char *driver_ver
, *old_driver_ver
;
7084 int rc
, size
= sizeof(cfgtable
->driver_version
);
7086 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7087 if (!old_driver_ver
)
7089 driver_ver
= old_driver_ver
+ size
;
7091 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7092 * should have been changed, otherwise we know the reset failed.
7094 init_driver_version(old_driver_ver
, size
);
7095 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7096 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7097 kfree(old_driver_ver
);
7100 /* This does a hard reset of the controller using PCI power management
7101 * states or the using the doorbell register.
7103 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7107 u64 cfg_base_addr_index
;
7108 void __iomem
*vaddr
;
7109 unsigned long paddr
;
7110 u32 misc_fw_support
;
7112 struct CfgTable __iomem
*cfgtable
;
7114 u16 command_register
;
7116 /* For controllers as old as the P600, this is very nearly
7119 * pci_save_state(pci_dev);
7120 * pci_set_power_state(pci_dev, PCI_D3hot);
7121 * pci_set_power_state(pci_dev, PCI_D0);
7122 * pci_restore_state(pci_dev);
7124 * For controllers newer than the P600, the pci power state
7125 * method of resetting doesn't work so we have another way
7126 * using the doorbell register.
7129 if (!ctlr_is_resettable(board_id
)) {
7130 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7134 /* if controller is soft- but not hard resettable... */
7135 if (!ctlr_is_hard_resettable(board_id
))
7136 return -ENOTSUPP
; /* try soft reset later. */
7138 /* Save the PCI command register */
7139 pci_read_config_word(pdev
, 4, &command_register
);
7140 pci_save_state(pdev
);
7142 /* find the first memory BAR, so we can find the cfg table */
7143 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7146 vaddr
= remap_pci_mem(paddr
, 0x250);
7150 /* find cfgtable in order to check if reset via doorbell is supported */
7151 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7152 &cfg_base_addr_index
, &cfg_offset
);
7155 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7156 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7161 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7163 goto unmap_cfgtable
;
7165 /* If reset via doorbell register is supported, use that.
7166 * There are two such methods. Favor the newest method.
7168 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7169 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7171 use_doorbell
= DOORBELL_CTLR_RESET2
;
7173 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7175 dev_warn(&pdev
->dev
,
7176 "Soft reset not supported. Firmware update is required.\n");
7177 rc
= -ENOTSUPP
; /* try soft reset */
7178 goto unmap_cfgtable
;
7182 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7184 goto unmap_cfgtable
;
7186 pci_restore_state(pdev
);
7187 pci_write_config_word(pdev
, 4, command_register
);
7189 /* Some devices (notably the HP Smart Array 5i Controller)
7190 need a little pause here */
7191 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7193 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7195 dev_warn(&pdev
->dev
,
7196 "Failed waiting for board to become ready after hard reset\n");
7197 goto unmap_cfgtable
;
7200 rc
= controller_reset_failed(vaddr
);
7202 goto unmap_cfgtable
;
7204 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7205 "controller. Will try soft reset.\n");
7208 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7220 * We cannot read the structure directly, for portability we must use
7222 * This is for debug only.
7224 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7230 dev_info(dev
, "Controller Configuration information\n");
7231 dev_info(dev
, "------------------------------------\n");
7232 for (i
= 0; i
< 4; i
++)
7233 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7234 temp_name
[4] = '\0';
7235 dev_info(dev
, " Signature = %s\n", temp_name
);
7236 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7237 dev_info(dev
, " Transport methods supported = 0x%x\n",
7238 readl(&(tb
->TransportSupport
)));
7239 dev_info(dev
, " Transport methods active = 0x%x\n",
7240 readl(&(tb
->TransportActive
)));
7241 dev_info(dev
, " Requested transport Method = 0x%x\n",
7242 readl(&(tb
->HostWrite
.TransportRequest
)));
7243 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7244 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7245 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7246 readl(&(tb
->HostWrite
.CoalIntCount
)));
7247 dev_info(dev
, " Max outstanding commands = %d\n",
7248 readl(&(tb
->CmdsOutMax
)));
7249 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7250 for (i
= 0; i
< 16; i
++)
7251 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7252 temp_name
[16] = '\0';
7253 dev_info(dev
, " Server Name = %s\n", temp_name
);
7254 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7255 readl(&(tb
->HeartBeat
)));
7256 #endif /* HPSA_DEBUG */
7259 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7261 int i
, offset
, mem_type
, bar_type
;
7263 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7266 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7267 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7268 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7271 mem_type
= pci_resource_flags(pdev
, i
) &
7272 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7274 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7275 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7276 offset
+= 4; /* 32 bit */
7278 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7281 default: /* reserved in PCI 2.2 */
7282 dev_warn(&pdev
->dev
,
7283 "base address is invalid\n");
7288 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7294 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7296 if (h
->msix_vector
) {
7297 if (h
->pdev
->msix_enabled
)
7298 pci_disable_msix(h
->pdev
);
7300 } else if (h
->msi_vector
) {
7301 if (h
->pdev
->msi_enabled
)
7302 pci_disable_msi(h
->pdev
);
7307 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7308 * controllers that are capable. If not, we use legacy INTx mode.
7310 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
7312 #ifdef CONFIG_PCI_MSI
7314 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
7316 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
7317 hpsa_msix_entries
[i
].vector
= 0;
7318 hpsa_msix_entries
[i
].entry
= i
;
7321 /* Some boards advertise MSI but don't really support it */
7322 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
7323 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
7324 goto default_int_mode
;
7325 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
7326 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
7327 h
->msix_vector
= MAX_REPLY_QUEUES
;
7328 if (h
->msix_vector
> num_online_cpus())
7329 h
->msix_vector
= num_online_cpus();
7330 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7333 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7335 goto single_msi_mode
;
7336 } else if (err
< h
->msix_vector
) {
7337 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7338 "available\n", err
);
7340 h
->msix_vector
= err
;
7341 for (i
= 0; i
< h
->msix_vector
; i
++)
7342 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7346 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7347 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7348 if (!pci_enable_msi(h
->pdev
))
7351 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7354 #endif /* CONFIG_PCI_MSI */
7355 /* if we get here we're going to use the default interrupt mode */
7356 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7359 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7362 u32 subsystem_vendor_id
, subsystem_device_id
;
7364 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7365 subsystem_device_id
= pdev
->subsystem_device
;
7366 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7367 subsystem_vendor_id
;
7369 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7370 if (*board_id
== products
[i
].board_id
)
7373 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7374 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7376 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7377 "0x%08x, ignoring.\n", *board_id
);
7380 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7383 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7384 unsigned long *memory_bar
)
7388 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7389 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7390 /* addressing mode bits already removed */
7391 *memory_bar
= pci_resource_start(pdev
, i
);
7392 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7396 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7400 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7406 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7408 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7410 for (i
= 0; i
< iterations
; i
++) {
7411 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7412 if (wait_for_ready
) {
7413 if (scratchpad
== HPSA_FIRMWARE_READY
)
7416 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7419 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7421 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7425 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7426 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7429 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7430 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7431 *cfg_base_addr
&= (u32
) 0x0000ffff;
7432 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7433 if (*cfg_base_addr_index
== -1) {
7434 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7440 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7442 if (h
->transtable
) {
7443 iounmap(h
->transtable
);
7444 h
->transtable
= NULL
;
7447 iounmap(h
->cfgtable
);
7452 /* Find and map CISS config table and transfer table
7453 + * several items must be unmapped (freed) later
7455 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7459 u64 cfg_base_addr_index
;
7463 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7464 &cfg_base_addr_index
, &cfg_offset
);
7467 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7468 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7470 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7473 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7476 /* Find performant mode table. */
7477 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7478 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7479 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7480 sizeof(*h
->transtable
));
7481 if (!h
->transtable
) {
7482 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7483 hpsa_free_cfgtables(h
);
7489 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7491 #define MIN_MAX_COMMANDS 16
7492 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7494 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7496 /* Limit commands in memory limited kdump scenario. */
7497 if (reset_devices
&& h
->max_commands
> 32)
7498 h
->max_commands
= 32;
7500 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7501 dev_warn(&h
->pdev
->dev
,
7502 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7505 h
->max_commands
= MIN_MAX_COMMANDS
;
7509 /* If the controller reports that the total max sg entries is greater than 512,
7510 * then we know that chained SG blocks work. (Original smart arrays did not
7511 * support chained SG blocks and would return zero for max sg entries.)
7513 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7515 return h
->maxsgentries
> 512;
7518 /* Interrogate the hardware for some limits:
7519 * max commands, max SG elements without chaining, and with chaining,
7520 * SG chain block size, etc.
7522 static void hpsa_find_board_params(struct ctlr_info
*h
)
7524 hpsa_get_max_perf_mode_cmds(h
);
7525 h
->nr_cmds
= h
->max_commands
;
7526 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7527 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7528 if (hpsa_supports_chained_sg_blocks(h
)) {
7529 /* Limit in-command s/g elements to 32 save dma'able memory. */
7530 h
->max_cmd_sg_entries
= 32;
7531 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7532 h
->maxsgentries
--; /* save one for chain pointer */
7535 * Original smart arrays supported at most 31 s/g entries
7536 * embedded inline in the command (trying to use more
7537 * would lock up the controller)
7539 h
->max_cmd_sg_entries
= 31;
7540 h
->maxsgentries
= 31; /* default to traditional values */
7544 /* Find out what task management functions are supported and cache */
7545 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7546 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7547 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7548 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7549 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7550 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7551 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7554 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7556 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7557 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7563 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7567 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7568 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7570 driver_support
|= ENABLE_SCSI_PREFETCH
;
7572 driver_support
|= ENABLE_UNIT_ATTN
;
7573 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7576 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7577 * in a prefetch beyond physical memory.
7579 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7583 if (h
->board_id
!= 0x3225103C)
7585 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7586 dma_prefetch
|= 0x8000;
7587 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7590 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7594 unsigned long flags
;
7595 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7596 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7597 spin_lock_irqsave(&h
->lock
, flags
);
7598 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7599 spin_unlock_irqrestore(&h
->lock
, flags
);
7600 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7602 /* delay and try again */
7603 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7610 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7614 unsigned long flags
;
7616 /* under certain very rare conditions, this can take awhile.
7617 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7618 * as we enter this code.)
7620 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7621 if (h
->remove_in_progress
)
7623 spin_lock_irqsave(&h
->lock
, flags
);
7624 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7625 spin_unlock_irqrestore(&h
->lock
, flags
);
7626 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7628 /* delay and try again */
7629 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7636 /* return -ENODEV or other reason on error, 0 on success */
7637 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7641 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7642 if (!(trans_support
& SIMPLE_MODE
))
7645 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7647 /* Update the field, and then ring the doorbell */
7648 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7649 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7650 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7651 if (hpsa_wait_for_mode_change_ack(h
))
7653 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7654 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7656 h
->transMethod
= CFGTBL_Trans_Simple
;
7659 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7663 /* free items allocated or mapped by hpsa_pci_init */
7664 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7666 hpsa_free_cfgtables(h
); /* pci_init 4 */
7667 iounmap(h
->vaddr
); /* pci_init 3 */
7669 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7671 * call pci_disable_device before pci_release_regions per
7672 * Documentation/PCI/pci.txt
7674 pci_disable_device(h
->pdev
); /* pci_init 1 */
7675 pci_release_regions(h
->pdev
); /* pci_init 2 */
7678 /* several items must be freed later */
7679 static int hpsa_pci_init(struct ctlr_info
*h
)
7681 int prod_index
, err
;
7683 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7686 h
->product_name
= products
[prod_index
].product_name
;
7687 h
->access
= *(products
[prod_index
].access
);
7689 h
->needs_abort_tags_swizzled
=
7690 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7692 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7693 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7695 err
= pci_enable_device(h
->pdev
);
7697 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7698 pci_disable_device(h
->pdev
);
7702 err
= pci_request_regions(h
->pdev
, HPSA
);
7704 dev_err(&h
->pdev
->dev
,
7705 "failed to obtain PCI resources\n");
7706 pci_disable_device(h
->pdev
);
7710 pci_set_master(h
->pdev
);
7712 hpsa_interrupt_mode(h
);
7713 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7715 goto clean2
; /* intmode+region, pci */
7716 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7718 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7720 goto clean2
; /* intmode+region, pci */
7722 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7724 goto clean3
; /* vaddr, intmode+region, pci */
7725 err
= hpsa_find_cfgtables(h
);
7727 goto clean3
; /* vaddr, intmode+region, pci */
7728 hpsa_find_board_params(h
);
7730 if (!hpsa_CISS_signature_present(h
)) {
7732 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7734 hpsa_set_driver_support_bits(h
);
7735 hpsa_p600_dma_prefetch_quirk(h
);
7736 err
= hpsa_enter_simple_mode(h
);
7738 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7741 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7742 hpsa_free_cfgtables(h
);
7743 clean3
: /* vaddr, intmode+region, pci */
7746 clean2
: /* intmode+region, pci */
7747 hpsa_disable_interrupt_mode(h
);
7749 * call pci_disable_device before pci_release_regions per
7750 * Documentation/PCI/pci.txt
7752 pci_disable_device(h
->pdev
);
7753 pci_release_regions(h
->pdev
);
7757 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7761 #define HBA_INQUIRY_BYTE_COUNT 64
7762 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7763 if (!h
->hba_inquiry_data
)
7765 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7766 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7768 kfree(h
->hba_inquiry_data
);
7769 h
->hba_inquiry_data
= NULL
;
7773 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7776 void __iomem
*vaddr
;
7781 /* kdump kernel is loading, we don't know in which state is
7782 * the pci interface. The dev->enable_cnt is equal zero
7783 * so we call enable+disable, wait a while and switch it on.
7785 rc
= pci_enable_device(pdev
);
7787 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7790 pci_disable_device(pdev
);
7791 msleep(260); /* a randomly chosen number */
7792 rc
= pci_enable_device(pdev
);
7794 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7798 pci_set_master(pdev
);
7800 vaddr
= pci_ioremap_bar(pdev
, 0);
7801 if (vaddr
== NULL
) {
7805 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7808 /* Reset the controller with a PCI power-cycle or via doorbell */
7809 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7811 /* -ENOTSUPP here means we cannot reset the controller
7812 * but it's already (and still) up and running in
7813 * "performant mode". Or, it might be 640x, which can't reset
7814 * due to concerns about shared bbwc between 6402/6404 pair.
7819 /* Now try to get the controller to respond to a no-op */
7820 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7821 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7822 if (hpsa_noop(pdev
) == 0)
7825 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7826 (i
< 11 ? "; re-trying" : ""));
7831 pci_disable_device(pdev
);
7835 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7837 kfree(h
->cmd_pool_bits
);
7838 h
->cmd_pool_bits
= NULL
;
7840 pci_free_consistent(h
->pdev
,
7841 h
->nr_cmds
* sizeof(struct CommandList
),
7843 h
->cmd_pool_dhandle
);
7845 h
->cmd_pool_dhandle
= 0;
7847 if (h
->errinfo_pool
) {
7848 pci_free_consistent(h
->pdev
,
7849 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7851 h
->errinfo_pool_dhandle
);
7852 h
->errinfo_pool
= NULL
;
7853 h
->errinfo_pool_dhandle
= 0;
7857 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7859 h
->cmd_pool_bits
= kzalloc(
7860 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7861 sizeof(unsigned long), GFP_KERNEL
);
7862 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7863 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7864 &(h
->cmd_pool_dhandle
));
7865 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7866 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7867 &(h
->errinfo_pool_dhandle
));
7868 if ((h
->cmd_pool_bits
== NULL
)
7869 || (h
->cmd_pool
== NULL
)
7870 || (h
->errinfo_pool
== NULL
)) {
7871 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7874 hpsa_preinitialize_commands(h
);
7877 hpsa_free_cmd_pool(h
);
7881 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
7885 cpu
= cpumask_first(cpu_online_mask
);
7886 for (i
= 0; i
< h
->msix_vector
; i
++) {
7887 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
7888 cpu
= cpumask_next(cpu
, cpu_online_mask
);
7892 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7893 static void hpsa_free_irqs(struct ctlr_info
*h
)
7897 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
7898 /* Single reply queue, only one irq to free */
7900 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7901 free_irq(h
->intr
[i
], &h
->q
[i
]);
7906 for (i
= 0; i
< h
->msix_vector
; i
++) {
7907 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7908 free_irq(h
->intr
[i
], &h
->q
[i
]);
7911 for (; i
< MAX_REPLY_QUEUES
; i
++)
7915 /* returns 0 on success; cleans up and returns -Enn on error */
7916 static int hpsa_request_irqs(struct ctlr_info
*h
,
7917 irqreturn_t (*msixhandler
)(int, void *),
7918 irqreturn_t (*intxhandler
)(int, void *))
7923 * initialize h->q[x] = x so that interrupt handlers know which
7926 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7929 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
7930 /* If performant mode and MSI-X, use multiple reply queues */
7931 for (i
= 0; i
< h
->msix_vector
; i
++) {
7932 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7933 rc
= request_irq(h
->intr
[i
], msixhandler
,
7939 dev_err(&h
->pdev
->dev
,
7940 "failed to get irq %d for %s\n",
7941 h
->intr
[i
], h
->devname
);
7942 for (j
= 0; j
< i
; j
++) {
7943 free_irq(h
->intr
[j
], &h
->q
[j
]);
7946 for (; j
< MAX_REPLY_QUEUES
; j
++)
7951 hpsa_irq_affinity_hints(h
);
7953 /* Use single reply pool */
7954 if (h
->msix_vector
> 0 || h
->msi_vector
) {
7956 sprintf(h
->intrname
[h
->intr_mode
],
7957 "%s-msix", h
->devname
);
7959 sprintf(h
->intrname
[h
->intr_mode
],
7960 "%s-msi", h
->devname
);
7961 rc
= request_irq(h
->intr
[h
->intr_mode
],
7963 h
->intrname
[h
->intr_mode
],
7964 &h
->q
[h
->intr_mode
]);
7966 sprintf(h
->intrname
[h
->intr_mode
],
7967 "%s-intx", h
->devname
);
7968 rc
= request_irq(h
->intr
[h
->intr_mode
],
7969 intxhandler
, IRQF_SHARED
,
7970 h
->intrname
[h
->intr_mode
],
7971 &h
->q
[h
->intr_mode
]);
7973 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
7976 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
7977 h
->intr
[h
->intr_mode
], h
->devname
);
7984 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
7987 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
7989 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
7990 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
7992 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
7996 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
7997 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7999 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8000 "after soft reset.\n");
8007 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8011 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8012 if (!h
->reply_queue
[i
].head
)
8014 pci_free_consistent(h
->pdev
,
8015 h
->reply_queue_size
,
8016 h
->reply_queue
[i
].head
,
8017 h
->reply_queue
[i
].busaddr
);
8018 h
->reply_queue
[i
].head
= NULL
;
8019 h
->reply_queue
[i
].busaddr
= 0;
8021 h
->reply_queue_size
= 0;
8024 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8026 hpsa_free_performant_mode(h
); /* init_one 7 */
8027 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8028 hpsa_free_cmd_pool(h
); /* init_one 5 */
8029 hpsa_free_irqs(h
); /* init_one 4 */
8030 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8031 h
->scsi_host
= NULL
; /* init_one 3 */
8032 hpsa_free_pci_init(h
); /* init_one 2_5 */
8033 free_percpu(h
->lockup_detected
); /* init_one 2 */
8034 h
->lockup_detected
= NULL
; /* init_one 2 */
8035 if (h
->resubmit_wq
) {
8036 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8037 h
->resubmit_wq
= NULL
;
8039 if (h
->rescan_ctlr_wq
) {
8040 destroy_workqueue(h
->rescan_ctlr_wq
);
8041 h
->rescan_ctlr_wq
= NULL
;
8043 kfree(h
); /* init_one 1 */
8046 /* Called when controller lockup detected. */
8047 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8050 struct CommandList
*c
;
8053 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8054 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8055 c
= h
->cmd_pool
+ i
;
8056 refcount
= atomic_inc_return(&c
->refcount
);
8058 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8060 atomic_dec(&h
->commands_outstanding
);
8065 dev_warn(&h
->pdev
->dev
,
8066 "failed %d commands in fail_all\n", failcount
);
8069 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8073 for_each_online_cpu(cpu
) {
8074 u32
*lockup_detected
;
8075 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8076 *lockup_detected
= value
;
8078 wmb(); /* be sure the per-cpu variables are out to memory */
8081 static void controller_lockup_detected(struct ctlr_info
*h
)
8083 unsigned long flags
;
8084 u32 lockup_detected
;
8086 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8087 spin_lock_irqsave(&h
->lock
, flags
);
8088 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8089 if (!lockup_detected
) {
8090 /* no heartbeat, but controller gave us a zero. */
8091 dev_warn(&h
->pdev
->dev
,
8092 "lockup detected after %d but scratchpad register is zero\n",
8093 h
->heartbeat_sample_interval
/ HZ
);
8094 lockup_detected
= 0xffffffff;
8096 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8097 spin_unlock_irqrestore(&h
->lock
, flags
);
8098 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8099 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8100 pci_disable_device(h
->pdev
);
8101 fail_all_outstanding_cmds(h
);
8104 static int detect_controller_lockup(struct ctlr_info
*h
)
8108 unsigned long flags
;
8110 now
= get_jiffies_64();
8111 /* If we've received an interrupt recently, we're ok. */
8112 if (time_after64(h
->last_intr_timestamp
+
8113 (h
->heartbeat_sample_interval
), now
))
8117 * If we've already checked the heartbeat recently, we're ok.
8118 * This could happen if someone sends us a signal. We
8119 * otherwise don't care about signals in this thread.
8121 if (time_after64(h
->last_heartbeat_timestamp
+
8122 (h
->heartbeat_sample_interval
), now
))
8125 /* If heartbeat has not changed since we last looked, we're not ok. */
8126 spin_lock_irqsave(&h
->lock
, flags
);
8127 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8128 spin_unlock_irqrestore(&h
->lock
, flags
);
8129 if (h
->last_heartbeat
== heartbeat
) {
8130 controller_lockup_detected(h
);
8135 h
->last_heartbeat
= heartbeat
;
8136 h
->last_heartbeat_timestamp
= now
;
8140 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8145 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8148 /* Ask the controller to clear the events we're handling. */
8149 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8150 | CFGTBL_Trans_io_accel2
)) &&
8151 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8152 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8154 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8155 event_type
= "state change";
8156 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8157 event_type
= "configuration change";
8158 /* Stop sending new RAID offload reqs via the IO accelerator */
8159 scsi_block_requests(h
->scsi_host
);
8160 for (i
= 0; i
< h
->ndevices
; i
++)
8161 h
->dev
[i
]->offload_enabled
= 0;
8162 hpsa_drain_accel_commands(h
);
8163 /* Set 'accelerator path config change' bit */
8164 dev_warn(&h
->pdev
->dev
,
8165 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8166 h
->events
, event_type
);
8167 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8168 /* Set the "clear event notify field update" bit 6 */
8169 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8170 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8171 hpsa_wait_for_clear_event_notify_ack(h
);
8172 scsi_unblock_requests(h
->scsi_host
);
8174 /* Acknowledge controller notification events. */
8175 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8176 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8177 hpsa_wait_for_clear_event_notify_ack(h
);
8179 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8180 hpsa_wait_for_mode_change_ack(h
);
8186 /* Check a register on the controller to see if there are configuration
8187 * changes (added/changed/removed logical drives, etc.) which mean that
8188 * we should rescan the controller for devices.
8189 * Also check flag for driver-initiated rescan.
8191 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8193 if (h
->drv_req_rescan
) {
8194 h
->drv_req_rescan
= 0;
8198 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8201 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8202 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8206 * Check if any of the offline devices have become ready
8208 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8210 unsigned long flags
;
8211 struct offline_device_entry
*d
;
8212 struct list_head
*this, *tmp
;
8214 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8215 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8216 d
= list_entry(this, struct offline_device_entry
,
8218 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8219 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8220 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8221 list_del(&d
->offline_list
);
8222 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8225 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8227 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8231 static int hpsa_luns_changed(struct ctlr_info
*h
)
8233 int rc
= 1; /* assume there are changes */
8234 struct ReportLUNdata
*logdev
= NULL
;
8236 /* if we can't find out if lun data has changed,
8237 * assume that it has.
8240 if (!h
->lastlogicals
)
8243 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8245 dev_warn(&h
->pdev
->dev
,
8246 "Out of memory, can't track lun changes.\n");
8249 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8250 dev_warn(&h
->pdev
->dev
,
8251 "report luns failed, can't track lun changes.\n");
8254 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8255 dev_info(&h
->pdev
->dev
,
8256 "Lun changes detected.\n");
8257 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8260 rc
= 0; /* no changes detected. */
8266 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8268 unsigned long flags
;
8269 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8270 struct ctlr_info
, rescan_ctlr_work
);
8273 if (h
->remove_in_progress
)
8276 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
8277 scsi_host_get(h
->scsi_host
);
8278 hpsa_ack_ctlr_events(h
);
8279 hpsa_scan_start(h
->scsi_host
);
8280 scsi_host_put(h
->scsi_host
);
8281 } else if (h
->discovery_polling
) {
8282 hpsa_disable_rld_caching(h
);
8283 if (hpsa_luns_changed(h
)) {
8284 struct Scsi_Host
*sh
= NULL
;
8286 dev_info(&h
->pdev
->dev
,
8287 "driver discovery polling rescan.\n");
8288 sh
= scsi_host_get(h
->scsi_host
);
8290 hpsa_scan_start(sh
);
8295 spin_lock_irqsave(&h
->lock
, flags
);
8296 if (!h
->remove_in_progress
)
8297 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8298 h
->heartbeat_sample_interval
);
8299 spin_unlock_irqrestore(&h
->lock
, flags
);
8302 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8304 unsigned long flags
;
8305 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8306 struct ctlr_info
, monitor_ctlr_work
);
8308 detect_controller_lockup(h
);
8309 if (lockup_detected(h
))
8312 spin_lock_irqsave(&h
->lock
, flags
);
8313 if (!h
->remove_in_progress
)
8314 schedule_delayed_work(&h
->monitor_ctlr_work
,
8315 h
->heartbeat_sample_interval
);
8316 spin_unlock_irqrestore(&h
->lock
, flags
);
8319 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8322 struct workqueue_struct
*wq
= NULL
;
8324 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8326 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8331 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8334 struct ctlr_info
*h
;
8335 int try_soft_reset
= 0;
8336 unsigned long flags
;
8339 if (number_of_controllers
== 0)
8340 printk(KERN_INFO DRIVER_NAME
"\n");
8342 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8344 dev_warn(&pdev
->dev
, "Board ID not found\n");
8348 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8350 if (rc
!= -ENOTSUPP
)
8352 /* If the reset fails in a particular way (it has no way to do
8353 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8354 * a soft reset once we get the controller configured up to the
8355 * point that it can accept a command.
8361 reinit_after_soft_reset
:
8363 /* Command structures must be aligned on a 32-byte boundary because
8364 * the 5 lower bits of the address are used by the hardware. and by
8365 * the driver. See comments in hpsa.h for more info.
8367 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8368 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8370 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8376 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8377 INIT_LIST_HEAD(&h
->offline_device_list
);
8378 spin_lock_init(&h
->lock
);
8379 spin_lock_init(&h
->offline_device_lock
);
8380 spin_lock_init(&h
->scan_lock
);
8381 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8382 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8384 /* Allocate and clear per-cpu variable lockup_detected */
8385 h
->lockup_detected
= alloc_percpu(u32
);
8386 if (!h
->lockup_detected
) {
8387 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8389 goto clean1
; /* aer/h */
8391 set_lockup_detected_for_all_cpus(h
, 0);
8393 rc
= hpsa_pci_init(h
);
8395 goto clean2
; /* lu, aer/h */
8397 /* relies on h-> settings made by hpsa_pci_init, including
8398 * interrupt_mode h->intr */
8399 rc
= hpsa_scsi_host_alloc(h
);
8401 goto clean2_5
; /* pci, lu, aer/h */
8403 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8404 h
->ctlr
= number_of_controllers
;
8405 number_of_controllers
++;
8407 /* configure PCI DMA stuff */
8408 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8412 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8416 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8417 goto clean3
; /* shost, pci, lu, aer/h */
8421 /* make sure the board interrupts are off */
8422 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8424 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8426 goto clean3
; /* shost, pci, lu, aer/h */
8427 rc
= hpsa_alloc_cmd_pool(h
);
8429 goto clean4
; /* irq, shost, pci, lu, aer/h */
8430 rc
= hpsa_alloc_sg_chain_blocks(h
);
8432 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8433 init_waitqueue_head(&h
->scan_wait_queue
);
8434 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8435 init_waitqueue_head(&h
->event_sync_wait_queue
);
8436 mutex_init(&h
->reset_mutex
);
8437 h
->scan_finished
= 1; /* no scan currently in progress */
8439 pci_set_drvdata(pdev
, h
);
8442 spin_lock_init(&h
->devlock
);
8443 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8445 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8447 /* hook into SCSI subsystem */
8448 rc
= hpsa_scsi_add_host(h
);
8450 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8452 /* create the resubmit workqueue */
8453 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8454 if (!h
->rescan_ctlr_wq
) {
8459 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8460 if (!h
->resubmit_wq
) {
8462 goto clean7
; /* aer/h */
8466 * At this point, the controller is ready to take commands.
8467 * Now, if reset_devices and the hard reset didn't work, try
8468 * the soft reset and see if that works.
8470 if (try_soft_reset
) {
8472 /* This is kind of gross. We may or may not get a completion
8473 * from the soft reset command, and if we do, then the value
8474 * from the fifo may or may not be valid. So, we wait 10 secs
8475 * after the reset throwing away any completions we get during
8476 * that time. Unregister the interrupt handler and register
8477 * fake ones to scoop up any residual completions.
8479 spin_lock_irqsave(&h
->lock
, flags
);
8480 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8481 spin_unlock_irqrestore(&h
->lock
, flags
);
8483 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8484 hpsa_intx_discard_completions
);
8486 dev_warn(&h
->pdev
->dev
,
8487 "Failed to request_irq after soft reset.\n");
8489 * cannot goto clean7 or free_irqs will be called
8490 * again. Instead, do its work
8492 hpsa_free_performant_mode(h
); /* clean7 */
8493 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8494 hpsa_free_cmd_pool(h
); /* clean5 */
8496 * skip hpsa_free_irqs(h) clean4 since that
8497 * was just called before request_irqs failed
8502 rc
= hpsa_kdump_soft_reset(h
);
8504 /* Neither hard nor soft reset worked, we're hosed. */
8507 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8508 dev_info(&h
->pdev
->dev
,
8509 "Waiting for stale completions to drain.\n");
8510 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8512 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8514 rc
= controller_reset_failed(h
->cfgtable
);
8516 dev_info(&h
->pdev
->dev
,
8517 "Soft reset appears to have failed.\n");
8519 /* since the controller's reset, we have to go back and re-init
8520 * everything. Easiest to just forget what we've done and do it
8523 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8526 /* don't goto clean, we already unallocated */
8529 goto reinit_after_soft_reset
;
8532 /* Enable Accelerated IO path at driver layer */
8533 h
->acciopath_status
= 1;
8534 /* Disable discovery polling.*/
8535 h
->discovery_polling
= 0;
8538 /* Turn the interrupts on so we can service requests */
8539 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8541 hpsa_hba_inquiry(h
);
8543 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8544 if (!h
->lastlogicals
)
8545 dev_info(&h
->pdev
->dev
,
8546 "Can't track change to report lun data\n");
8548 /* Monitor the controller for firmware lockups */
8549 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8550 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8551 schedule_delayed_work(&h
->monitor_ctlr_work
,
8552 h
->heartbeat_sample_interval
);
8553 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8554 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8555 h
->heartbeat_sample_interval
);
8558 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8559 hpsa_free_performant_mode(h
);
8560 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8561 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8562 hpsa_free_sg_chain_blocks(h
);
8563 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8564 hpsa_free_cmd_pool(h
);
8565 clean4
: /* irq, shost, pci, lu, aer/h */
8567 clean3
: /* shost, pci, lu, aer/h */
8568 scsi_host_put(h
->scsi_host
);
8569 h
->scsi_host
= NULL
;
8570 clean2_5
: /* pci, lu, aer/h */
8571 hpsa_free_pci_init(h
);
8572 clean2
: /* lu, aer/h */
8573 if (h
->lockup_detected
) {
8574 free_percpu(h
->lockup_detected
);
8575 h
->lockup_detected
= NULL
;
8577 clean1
: /* wq/aer/h */
8578 if (h
->resubmit_wq
) {
8579 destroy_workqueue(h
->resubmit_wq
);
8580 h
->resubmit_wq
= NULL
;
8582 if (h
->rescan_ctlr_wq
) {
8583 destroy_workqueue(h
->rescan_ctlr_wq
);
8584 h
->rescan_ctlr_wq
= NULL
;
8590 static void hpsa_flush_cache(struct ctlr_info
*h
)
8593 struct CommandList
*c
;
8596 if (unlikely(lockup_detected(h
)))
8598 flush_buf
= kzalloc(4, GFP_KERNEL
);
8604 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8605 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8608 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8609 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8612 if (c
->err_info
->CommandStatus
!= 0)
8614 dev_warn(&h
->pdev
->dev
,
8615 "error flushing cache on controller\n");
8620 /* Make controller gather fresh report lun data each time we
8621 * send down a report luns request
8623 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8626 struct CommandList
*c
;
8629 /* Don't bother trying to set diag options if locked up */
8630 if (unlikely(h
->lockup_detected
))
8633 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8635 dev_err(&h
->pdev
->dev
,
8636 "Error: failed to disable rld caching, during alloc.\n");
8642 /* first, get the current diag options settings */
8643 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8644 RAID_CTLR_LUNID
, TYPE_CMD
))
8647 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8648 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8649 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8652 /* Now, set the bit for disabling the RLD caching */
8653 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8655 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8656 RAID_CTLR_LUNID
, TYPE_CMD
))
8659 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8660 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8661 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8664 /* Now verify that it got set: */
8665 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8666 RAID_CTLR_LUNID
, TYPE_CMD
))
8669 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8670 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8671 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8674 if (*options
&& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8678 dev_err(&h
->pdev
->dev
,
8679 "Error: failed to disable report lun data caching.\n");
8685 static void hpsa_shutdown(struct pci_dev
*pdev
)
8687 struct ctlr_info
*h
;
8689 h
= pci_get_drvdata(pdev
);
8690 /* Turn board interrupts off and send the flush cache command
8691 * sendcmd will turn off interrupt, and send the flush...
8692 * To write all data in the battery backed cache to disks
8694 hpsa_flush_cache(h
);
8695 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8696 hpsa_free_irqs(h
); /* init_one 4 */
8697 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8700 static void hpsa_free_device_info(struct ctlr_info
*h
)
8704 for (i
= 0; i
< h
->ndevices
; i
++) {
8710 static void hpsa_remove_one(struct pci_dev
*pdev
)
8712 struct ctlr_info
*h
;
8713 unsigned long flags
;
8715 if (pci_get_drvdata(pdev
) == NULL
) {
8716 dev_err(&pdev
->dev
, "unable to remove device\n");
8719 h
= pci_get_drvdata(pdev
);
8721 /* Get rid of any controller monitoring work items */
8722 spin_lock_irqsave(&h
->lock
, flags
);
8723 h
->remove_in_progress
= 1;
8724 spin_unlock_irqrestore(&h
->lock
, flags
);
8725 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8726 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8727 destroy_workqueue(h
->rescan_ctlr_wq
);
8728 destroy_workqueue(h
->resubmit_wq
);
8731 * Call before disabling interrupts.
8732 * scsi_remove_host can trigger I/O operations especially
8733 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8734 * operations which cannot complete and will hang the system.
8737 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8738 /* includes hpsa_free_irqs - init_one 4 */
8739 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8740 hpsa_shutdown(pdev
);
8742 hpsa_free_device_info(h
); /* scan */
8744 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8745 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8746 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8747 hpsa_free_performant_mode(h
); /* init_one 7 */
8748 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8749 hpsa_free_cmd_pool(h
); /* init_one 5 */
8750 kfree(h
->lastlogicals
);
8752 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8754 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8755 h
->scsi_host
= NULL
; /* init_one 3 */
8757 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8758 hpsa_free_pci_init(h
); /* init_one 2.5 */
8760 free_percpu(h
->lockup_detected
); /* init_one 2 */
8761 h
->lockup_detected
= NULL
; /* init_one 2 */
8762 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8764 hpsa_delete_sas_host(h
);
8766 kfree(h
); /* init_one 1 */
8769 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8770 __attribute__((unused
)) pm_message_t state
)
8775 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8780 static struct pci_driver hpsa_pci_driver
= {
8782 .probe
= hpsa_init_one
,
8783 .remove
= hpsa_remove_one
,
8784 .id_table
= hpsa_pci_device_id
, /* id_table */
8785 .shutdown
= hpsa_shutdown
,
8786 .suspend
= hpsa_suspend
,
8787 .resume
= hpsa_resume
,
8790 /* Fill in bucket_map[], given nsgs (the max number of
8791 * scatter gather elements supported) and bucket[],
8792 * which is an array of 8 integers. The bucket[] array
8793 * contains 8 different DMA transfer sizes (in 16
8794 * byte increments) which the controller uses to fetch
8795 * commands. This function fills in bucket_map[], which
8796 * maps a given number of scatter gather elements to one of
8797 * the 8 DMA transfer sizes. The point of it is to allow the
8798 * controller to only do as much DMA as needed to fetch the
8799 * command, with the DMA transfer size encoded in the lower
8800 * bits of the command address.
8802 static void calc_bucket_map(int bucket
[], int num_buckets
,
8803 int nsgs
, int min_blocks
, u32
*bucket_map
)
8807 /* Note, bucket_map must have nsgs+1 entries. */
8808 for (i
= 0; i
<= nsgs
; i
++) {
8809 /* Compute size of a command with i SG entries */
8810 size
= i
+ min_blocks
;
8811 b
= num_buckets
; /* Assume the biggest bucket */
8812 /* Find the bucket that is just big enough */
8813 for (j
= 0; j
< num_buckets
; j
++) {
8814 if (bucket
[j
] >= size
) {
8819 /* for a command with i SG entries, use bucket b. */
8825 * return -ENODEV on err, 0 on success (or no action)
8826 * allocates numerous items that must be freed later
8828 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8831 unsigned long register_value
;
8832 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8833 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8834 CFGTBL_Trans_enable_directed_msix
|
8835 (trans_support
& (CFGTBL_Trans_io_accel1
|
8836 CFGTBL_Trans_io_accel2
));
8837 struct access_method access
= SA5_performant_access
;
8839 /* This is a bit complicated. There are 8 registers on
8840 * the controller which we write to to tell it 8 different
8841 * sizes of commands which there may be. It's a way of
8842 * reducing the DMA done to fetch each command. Encoded into
8843 * each command's tag are 3 bits which communicate to the controller
8844 * which of the eight sizes that command fits within. The size of
8845 * each command depends on how many scatter gather entries there are.
8846 * Each SG entry requires 16 bytes. The eight registers are programmed
8847 * with the number of 16-byte blocks a command of that size requires.
8848 * The smallest command possible requires 5 such 16 byte blocks.
8849 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8850 * blocks. Note, this only extends to the SG entries contained
8851 * within the command block, and does not extend to chained blocks
8852 * of SG elements. bft[] contains the eight values we write to
8853 * the registers. They are not evenly distributed, but have more
8854 * sizes for small commands, and fewer sizes for larger commands.
8856 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8857 #define MIN_IOACCEL2_BFT_ENTRY 5
8858 #define HPSA_IOACCEL2_HEADER_SZ 4
8859 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8860 13, 14, 15, 16, 17, 18, 19,
8861 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8862 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8863 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8864 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8865 16 * MIN_IOACCEL2_BFT_ENTRY
);
8866 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8867 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8868 /* 5 = 1 s/g entry or 4k
8869 * 6 = 2 s/g entry or 8k
8870 * 8 = 4 s/g entry or 16k
8871 * 10 = 6 s/g entry or 24k
8874 /* If the controller supports either ioaccel method then
8875 * we can also use the RAID stack submit path that does not
8876 * perform the superfluous readl() after each command submission.
8878 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8879 access
= SA5_performant_access_no_read
;
8881 /* Controller spec: zero out this buffer. */
8882 for (i
= 0; i
< h
->nreply_queues
; i
++)
8883 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8885 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8886 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8887 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8888 for (i
= 0; i
< 8; i
++)
8889 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8891 /* size of controller ring buffer */
8892 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8893 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8894 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8895 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8897 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8898 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8899 writel(h
->reply_queue
[i
].busaddr
,
8900 &h
->transtable
->RepQAddr
[i
].lower
);
8903 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8904 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8906 * enable outbound interrupt coalescing in accelerator mode;
8908 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8909 access
= SA5_ioaccel_mode1_access
;
8910 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8911 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8913 if (trans_support
& CFGTBL_Trans_io_accel2
) {
8914 access
= SA5_ioaccel_mode2_access
;
8915 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8916 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8919 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8920 if (hpsa_wait_for_mode_change_ack(h
)) {
8921 dev_err(&h
->pdev
->dev
,
8922 "performant mode problem - doorbell timeout\n");
8925 register_value
= readl(&(h
->cfgtable
->TransportActive
));
8926 if (!(register_value
& CFGTBL_Trans_Performant
)) {
8927 dev_err(&h
->pdev
->dev
,
8928 "performant mode problem - transport not active\n");
8931 /* Change the access methods to the performant access methods */
8933 h
->transMethod
= transMethod
;
8935 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
8936 (trans_support
& CFGTBL_Trans_io_accel2
)))
8939 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8940 /* Set up I/O accelerator mode */
8941 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8942 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
8943 h
->reply_queue
[i
].current_entry
=
8944 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
8946 bft
[7] = h
->ioaccel_maxsg
+ 8;
8947 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
8948 h
->ioaccel1_blockFetchTable
);
8950 /* initialize all reply queue entries to unused */
8951 for (i
= 0; i
< h
->nreply_queues
; i
++)
8952 memset(h
->reply_queue
[i
].head
,
8953 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
8954 h
->reply_queue_size
);
8956 /* set all the constant fields in the accelerator command
8957 * frames once at init time to save CPU cycles later.
8959 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8960 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
8962 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
8963 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
8964 (i
* sizeof(struct ErrorInfo
)));
8965 cp
->err_info_len
= sizeof(struct ErrorInfo
);
8966 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
8967 cp
->host_context_flags
=
8968 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
8969 cp
->timeout_sec
= 0;
8972 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
8974 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
8975 (i
* sizeof(struct io_accel1_cmd
)));
8977 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8978 u64 cfg_offset
, cfg_base_addr_index
;
8979 u32 bft2_offset
, cfg_base_addr
;
8982 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
8983 &cfg_base_addr_index
, &cfg_offset
);
8984 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
8985 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
8986 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
8987 4, h
->ioaccel2_blockFetchTable
);
8988 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
8989 BUILD_BUG_ON(offsetof(struct CfgTable
,
8990 io_accel_request_size_offset
) != 0xb8);
8991 h
->ioaccel2_bft2_regs
=
8992 remap_pci_mem(pci_resource_start(h
->pdev
,
8993 cfg_base_addr_index
) +
8994 cfg_offset
+ bft2_offset
,
8996 sizeof(*h
->ioaccel2_bft2_regs
));
8997 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
8998 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9000 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9001 if (hpsa_wait_for_mode_change_ack(h
)) {
9002 dev_err(&h
->pdev
->dev
,
9003 "performant mode problem - enabling ioaccel mode\n");
9009 /* Free ioaccel1 mode command blocks and block fetch table */
9010 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9012 if (h
->ioaccel_cmd_pool
) {
9013 pci_free_consistent(h
->pdev
,
9014 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9015 h
->ioaccel_cmd_pool
,
9016 h
->ioaccel_cmd_pool_dhandle
);
9017 h
->ioaccel_cmd_pool
= NULL
;
9018 h
->ioaccel_cmd_pool_dhandle
= 0;
9020 kfree(h
->ioaccel1_blockFetchTable
);
9021 h
->ioaccel1_blockFetchTable
= NULL
;
9024 /* Allocate ioaccel1 mode command blocks and block fetch table */
9025 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9028 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9029 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9030 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9032 /* Command structures must be aligned on a 128-byte boundary
9033 * because the 7 lower bits of the address are used by the
9036 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9037 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9038 h
->ioaccel_cmd_pool
=
9039 pci_alloc_consistent(h
->pdev
,
9040 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9041 &(h
->ioaccel_cmd_pool_dhandle
));
9043 h
->ioaccel1_blockFetchTable
=
9044 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9045 sizeof(u32
)), GFP_KERNEL
);
9047 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9048 (h
->ioaccel1_blockFetchTable
== NULL
))
9051 memset(h
->ioaccel_cmd_pool
, 0,
9052 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9056 hpsa_free_ioaccel1_cmd_and_bft(h
);
9060 /* Free ioaccel2 mode command blocks and block fetch table */
9061 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9063 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9065 if (h
->ioaccel2_cmd_pool
) {
9066 pci_free_consistent(h
->pdev
,
9067 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9068 h
->ioaccel2_cmd_pool
,
9069 h
->ioaccel2_cmd_pool_dhandle
);
9070 h
->ioaccel2_cmd_pool
= NULL
;
9071 h
->ioaccel2_cmd_pool_dhandle
= 0;
9073 kfree(h
->ioaccel2_blockFetchTable
);
9074 h
->ioaccel2_blockFetchTable
= NULL
;
9077 /* Allocate ioaccel2 mode command blocks and block fetch table */
9078 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9082 /* Allocate ioaccel2 mode command blocks and block fetch table */
9085 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9086 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9087 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9089 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9090 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9091 h
->ioaccel2_cmd_pool
=
9092 pci_alloc_consistent(h
->pdev
,
9093 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9094 &(h
->ioaccel2_cmd_pool_dhandle
));
9096 h
->ioaccel2_blockFetchTable
=
9097 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9098 sizeof(u32
)), GFP_KERNEL
);
9100 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9101 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9106 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9110 memset(h
->ioaccel2_cmd_pool
, 0,
9111 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9115 hpsa_free_ioaccel2_cmd_and_bft(h
);
9119 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9120 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9122 kfree(h
->blockFetchTable
);
9123 h
->blockFetchTable
= NULL
;
9124 hpsa_free_reply_queues(h
);
9125 hpsa_free_ioaccel1_cmd_and_bft(h
);
9126 hpsa_free_ioaccel2_cmd_and_bft(h
);
9129 /* return -ENODEV on error, 0 on success (or no action)
9130 * allocates numerous items that must be freed later
9132 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9135 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9136 CFGTBL_Trans_use_short_tags
;
9139 if (hpsa_simple_mode
)
9142 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9143 if (!(trans_support
& PERFORMANT_MODE
))
9146 /* Check for I/O accelerator mode support */
9147 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9148 transMethod
|= CFGTBL_Trans_io_accel1
|
9149 CFGTBL_Trans_enable_directed_msix
;
9150 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9153 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9154 transMethod
|= CFGTBL_Trans_io_accel2
|
9155 CFGTBL_Trans_enable_directed_msix
;
9156 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9161 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
9162 hpsa_get_max_perf_mode_cmds(h
);
9163 /* Performant mode ring buffer and supporting data structures */
9164 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9166 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9167 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9168 h
->reply_queue_size
,
9169 &(h
->reply_queue
[i
].busaddr
));
9170 if (!h
->reply_queue
[i
].head
) {
9172 goto clean1
; /* rq, ioaccel */
9174 h
->reply_queue
[i
].size
= h
->max_commands
;
9175 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9176 h
->reply_queue
[i
].current_entry
= 0;
9179 /* Need a block fetch table for performant mode */
9180 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9181 sizeof(u32
)), GFP_KERNEL
);
9182 if (!h
->blockFetchTable
) {
9184 goto clean1
; /* rq, ioaccel */
9187 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9189 goto clean2
; /* bft, rq, ioaccel */
9192 clean2
: /* bft, rq, ioaccel */
9193 kfree(h
->blockFetchTable
);
9194 h
->blockFetchTable
= NULL
;
9195 clean1
: /* rq, ioaccel */
9196 hpsa_free_reply_queues(h
);
9197 hpsa_free_ioaccel1_cmd_and_bft(h
);
9198 hpsa_free_ioaccel2_cmd_and_bft(h
);
9202 static int is_accelerated_cmd(struct CommandList
*c
)
9204 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9207 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9209 struct CommandList
*c
= NULL
;
9210 int i
, accel_cmds_out
;
9213 do { /* wait for all outstanding ioaccel commands to drain out */
9215 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9216 c
= h
->cmd_pool
+ i
;
9217 refcount
= atomic_inc_return(&c
->refcount
);
9218 if (refcount
> 1) /* Command is allocated */
9219 accel_cmds_out
+= is_accelerated_cmd(c
);
9222 if (accel_cmds_out
<= 0)
9228 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9229 struct hpsa_sas_port
*hpsa_sas_port
)
9231 struct hpsa_sas_phy
*hpsa_sas_phy
;
9232 struct sas_phy
*phy
;
9234 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9238 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9239 hpsa_sas_port
->next_phy_index
);
9241 kfree(hpsa_sas_phy
);
9245 hpsa_sas_port
->next_phy_index
++;
9246 hpsa_sas_phy
->phy
= phy
;
9247 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9249 return hpsa_sas_phy
;
9252 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9254 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9256 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9258 if (hpsa_sas_phy
->added_to_port
)
9259 list_del(&hpsa_sas_phy
->phy_list_entry
);
9260 kfree(hpsa_sas_phy
);
9263 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9266 struct hpsa_sas_port
*hpsa_sas_port
;
9267 struct sas_phy
*phy
;
9268 struct sas_identify
*identify
;
9270 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9271 phy
= hpsa_sas_phy
->phy
;
9273 identify
= &phy
->identify
;
9274 memset(identify
, 0, sizeof(*identify
));
9275 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9276 identify
->device_type
= SAS_END_DEVICE
;
9277 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9278 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9279 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9280 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9281 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9282 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9283 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9285 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9289 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9290 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9291 &hpsa_sas_port
->phy_list_head
);
9292 hpsa_sas_phy
->added_to_port
= true;
9298 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9299 struct sas_rphy
*rphy
)
9301 struct sas_identify
*identify
;
9303 identify
= &rphy
->identify
;
9304 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9305 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9306 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9308 return sas_rphy_add(rphy
);
9311 static struct hpsa_sas_port
9312 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9316 struct hpsa_sas_port
*hpsa_sas_port
;
9317 struct sas_port
*port
;
9319 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9323 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9324 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9326 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9328 goto free_hpsa_port
;
9330 rc
= sas_port_add(port
);
9334 hpsa_sas_port
->port
= port
;
9335 hpsa_sas_port
->sas_address
= sas_address
;
9336 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9337 &hpsa_sas_node
->port_list_head
);
9339 return hpsa_sas_port
;
9342 sas_port_free(port
);
9344 kfree(hpsa_sas_port
);
9349 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9351 struct hpsa_sas_phy
*hpsa_sas_phy
;
9352 struct hpsa_sas_phy
*next
;
9354 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9355 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9356 hpsa_free_sas_phy(hpsa_sas_phy
);
9358 sas_port_delete(hpsa_sas_port
->port
);
9359 list_del(&hpsa_sas_port
->port_list_entry
);
9360 kfree(hpsa_sas_port
);
9363 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9365 struct hpsa_sas_node
*hpsa_sas_node
;
9367 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9368 if (hpsa_sas_node
) {
9369 hpsa_sas_node
->parent_dev
= parent_dev
;
9370 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9373 return hpsa_sas_node
;
9376 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9378 struct hpsa_sas_port
*hpsa_sas_port
;
9379 struct hpsa_sas_port
*next
;
9384 list_for_each_entry_safe(hpsa_sas_port
, next
,
9385 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9386 hpsa_free_sas_port(hpsa_sas_port
);
9388 kfree(hpsa_sas_node
);
9391 static struct hpsa_scsi_dev_t
9392 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9393 struct sas_rphy
*rphy
)
9396 struct hpsa_scsi_dev_t
*device
;
9398 for (i
= 0; i
< h
->ndevices
; i
++) {
9400 if (!device
->sas_port
)
9402 if (device
->sas_port
->rphy
== rphy
)
9409 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9412 struct device
*parent_dev
;
9413 struct hpsa_sas_node
*hpsa_sas_node
;
9414 struct hpsa_sas_port
*hpsa_sas_port
;
9415 struct hpsa_sas_phy
*hpsa_sas_phy
;
9417 parent_dev
= &h
->scsi_host
->shost_gendev
;
9419 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9423 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9424 if (!hpsa_sas_port
) {
9429 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9430 if (!hpsa_sas_phy
) {
9435 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9439 h
->sas_host
= hpsa_sas_node
;
9444 hpsa_free_sas_phy(hpsa_sas_phy
);
9446 hpsa_free_sas_port(hpsa_sas_port
);
9448 hpsa_free_sas_node(hpsa_sas_node
);
9453 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9455 hpsa_free_sas_node(h
->sas_host
);
9458 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9459 struct hpsa_scsi_dev_t
*device
)
9462 struct hpsa_sas_port
*hpsa_sas_port
;
9463 struct sas_rphy
*rphy
;
9465 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9469 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9475 hpsa_sas_port
->rphy
= rphy
;
9476 device
->sas_port
= hpsa_sas_port
;
9478 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9485 hpsa_free_sas_port(hpsa_sas_port
);
9486 device
->sas_port
= NULL
;
9491 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9493 if (device
->sas_port
) {
9494 hpsa_free_sas_port(device
->sas_port
);
9495 device
->sas_port
= NULL
;
9500 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9506 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9512 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9518 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9524 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9530 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9536 hpsa_sas_phy_release(struct sas_phy
*phy
)
9541 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9546 /* SMP = Serial Management Protocol */
9548 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9549 struct request
*req
)
9554 static struct sas_function_template hpsa_sas_transport_functions
= {
9555 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9556 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9557 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9558 .phy_reset
= hpsa_sas_phy_reset
,
9559 .phy_enable
= hpsa_sas_phy_enable
,
9560 .phy_setup
= hpsa_sas_phy_setup
,
9561 .phy_release
= hpsa_sas_phy_release
,
9562 .set_phy_speed
= hpsa_sas_phy_speed
,
9563 .smp_handler
= hpsa_sas_smp_handler
,
9567 * This is it. Register the PCI driver information for the cards we control
9568 * the OS will call our registered routines when it finds one of our cards.
9570 static int __init
hpsa_init(void)
9574 hpsa_sas_transport_template
=
9575 sas_attach_transport(&hpsa_sas_transport_functions
);
9576 if (!hpsa_sas_transport_template
)
9579 rc
= pci_register_driver(&hpsa_pci_driver
);
9582 sas_release_transport(hpsa_sas_transport_template
);
9587 static void __exit
hpsa_cleanup(void)
9589 pci_unregister_driver(&hpsa_pci_driver
);
9590 sas_release_transport(hpsa_sas_transport_template
);
9593 static void __attribute__((unused
)) verify_offsets(void)
9595 #define VERIFY_OFFSET(member, offset) \
9596 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9598 VERIFY_OFFSET(structure_size
, 0);
9599 VERIFY_OFFSET(volume_blk_size
, 4);
9600 VERIFY_OFFSET(volume_blk_cnt
, 8);
9601 VERIFY_OFFSET(phys_blk_shift
, 16);
9602 VERIFY_OFFSET(parity_rotation_shift
, 17);
9603 VERIFY_OFFSET(strip_size
, 18);
9604 VERIFY_OFFSET(disk_starting_blk
, 20);
9605 VERIFY_OFFSET(disk_blk_cnt
, 28);
9606 VERIFY_OFFSET(data_disks_per_row
, 36);
9607 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9608 VERIFY_OFFSET(row_cnt
, 40);
9609 VERIFY_OFFSET(layout_map_count
, 42);
9610 VERIFY_OFFSET(flags
, 44);
9611 VERIFY_OFFSET(dekindex
, 46);
9612 /* VERIFY_OFFSET(reserved, 48 */
9613 VERIFY_OFFSET(data
, 64);
9615 #undef VERIFY_OFFSET
9617 #define VERIFY_OFFSET(member, offset) \
9618 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9620 VERIFY_OFFSET(IU_type
, 0);
9621 VERIFY_OFFSET(direction
, 1);
9622 VERIFY_OFFSET(reply_queue
, 2);
9623 /* VERIFY_OFFSET(reserved1, 3); */
9624 VERIFY_OFFSET(scsi_nexus
, 4);
9625 VERIFY_OFFSET(Tag
, 8);
9626 VERIFY_OFFSET(cdb
, 16);
9627 VERIFY_OFFSET(cciss_lun
, 32);
9628 VERIFY_OFFSET(data_len
, 40);
9629 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9630 VERIFY_OFFSET(sg_count
, 45);
9631 /* VERIFY_OFFSET(reserved3 */
9632 VERIFY_OFFSET(err_ptr
, 48);
9633 VERIFY_OFFSET(err_len
, 56);
9634 /* VERIFY_OFFSET(reserved4 */
9635 VERIFY_OFFSET(sg
, 64);
9637 #undef VERIFY_OFFSET
9639 #define VERIFY_OFFSET(member, offset) \
9640 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9642 VERIFY_OFFSET(dev_handle
, 0x00);
9643 VERIFY_OFFSET(reserved1
, 0x02);
9644 VERIFY_OFFSET(function
, 0x03);
9645 VERIFY_OFFSET(reserved2
, 0x04);
9646 VERIFY_OFFSET(err_info
, 0x0C);
9647 VERIFY_OFFSET(reserved3
, 0x10);
9648 VERIFY_OFFSET(err_info_len
, 0x12);
9649 VERIFY_OFFSET(reserved4
, 0x13);
9650 VERIFY_OFFSET(sgl_offset
, 0x14);
9651 VERIFY_OFFSET(reserved5
, 0x15);
9652 VERIFY_OFFSET(transfer_len
, 0x1C);
9653 VERIFY_OFFSET(reserved6
, 0x20);
9654 VERIFY_OFFSET(io_flags
, 0x24);
9655 VERIFY_OFFSET(reserved7
, 0x26);
9656 VERIFY_OFFSET(LUN
, 0x34);
9657 VERIFY_OFFSET(control
, 0x3C);
9658 VERIFY_OFFSET(CDB
, 0x40);
9659 VERIFY_OFFSET(reserved8
, 0x50);
9660 VERIFY_OFFSET(host_context_flags
, 0x60);
9661 VERIFY_OFFSET(timeout_sec
, 0x62);
9662 VERIFY_OFFSET(ReplyQueue
, 0x64);
9663 VERIFY_OFFSET(reserved9
, 0x65);
9664 VERIFY_OFFSET(tag
, 0x68);
9665 VERIFY_OFFSET(host_addr
, 0x70);
9666 VERIFY_OFFSET(CISS_LUN
, 0x78);
9667 VERIFY_OFFSET(SG
, 0x78 + 8);
9668 #undef VERIFY_OFFSET
9671 module_init(hpsa_init
);
9672 module_exit(hpsa_cleanup
);