iwmc3200wifi: Set WEP key from connect
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blobe6b9a1c6002d3da5b43c65161cca881d18a8e214
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
27 #include "xhci.h"
30 * Allocates a generic ring segment from the ring pool, sets the dma address,
31 * initializes the segment to zero, and sets the private next pointer to NULL.
33 * Section 4.11.1.1:
34 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 struct xhci_segment *seg;
39 dma_addr_t dma;
41 seg = kzalloc(sizeof *seg, flags);
42 if (!seg)
43 return 0;
44 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
51 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52 seg->trbs, (unsigned long long)dma);
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
58 return seg;
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67 seg->trbs, (unsigned long long)seg->dma);
68 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69 seg->trbs = NULL;
71 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72 kfree(seg);
76 * Make the prev segment point to the next segment.
78 * Change the last TRB in the prev segment to be a Link TRB which points to the
79 * DMA address of the next segment. The caller needs to set any Link TRB
80 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83 struct xhci_segment *next, bool link_trbs)
85 u32 val;
87 if (!prev || !next)
88 return;
89 prev->next = next;
90 if (link_trbs) {
91 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95 val &= ~TRB_TYPE_BITMASK;
96 val |= TRB_TYPE(TRB_LINK);
97 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
99 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
100 (unsigned long long)prev->dma,
101 (unsigned long long)next->dma);
104 /* XXX: Do we need the hcd structure in all these functions? */
105 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
107 struct xhci_segment *seg;
108 struct xhci_segment *first_seg;
110 if (!ring || !ring->first_seg)
111 return;
112 first_seg = ring->first_seg;
113 seg = first_seg->next;
114 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
115 while (seg != first_seg) {
116 struct xhci_segment *next = seg->next;
117 xhci_segment_free(xhci, seg);
118 seg = next;
120 xhci_segment_free(xhci, first_seg);
121 ring->first_seg = NULL;
122 kfree(ring);
126 * Create a new ring with zero or more segments.
128 * Link each segment together into a ring.
129 * Set the end flag and the cycle toggle bit on the last segment.
130 * See section 4.9.1 and figures 15 and 16.
132 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
133 unsigned int num_segs, bool link_trbs, gfp_t flags)
135 struct xhci_ring *ring;
136 struct xhci_segment *prev;
138 ring = kzalloc(sizeof *(ring), flags);
139 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
140 if (!ring)
141 return 0;
143 INIT_LIST_HEAD(&ring->td_list);
144 INIT_LIST_HEAD(&ring->cancelled_td_list);
145 if (num_segs == 0)
146 return ring;
148 ring->first_seg = xhci_segment_alloc(xhci, flags);
149 if (!ring->first_seg)
150 goto fail;
151 num_segs--;
153 prev = ring->first_seg;
154 while (num_segs > 0) {
155 struct xhci_segment *next;
157 next = xhci_segment_alloc(xhci, flags);
158 if (!next)
159 goto fail;
160 xhci_link_segments(xhci, prev, next, link_trbs);
162 prev = next;
163 num_segs--;
165 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
167 if (link_trbs) {
168 /* See section 4.9.2.1 and 6.4.4.1 */
169 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
170 xhci_dbg(xhci, "Wrote link toggle flag to"
171 " segment %p (virtual), 0x%llx (DMA)\n",
172 prev, (unsigned long long)prev->dma);
174 /* The ring is empty, so the enqueue pointer == dequeue pointer */
175 ring->enqueue = ring->first_seg->trbs;
176 ring->enq_seg = ring->first_seg;
177 ring->dequeue = ring->enqueue;
178 ring->deq_seg = ring->first_seg;
179 /* The ring is initialized to 0. The producer must write 1 to the cycle
180 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
181 * compare CCS to the cycle bit to check ownership, so CCS = 1.
183 ring->cycle_state = 1;
185 return ring;
187 fail:
188 xhci_ring_free(xhci, ring);
189 return 0;
192 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
194 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
195 int type, gfp_t flags)
197 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
198 if (!ctx)
199 return NULL;
201 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
202 ctx->type = type;
203 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
204 if (type == XHCI_CTX_TYPE_INPUT)
205 ctx->size += CTX_SIZE(xhci->hcc_params);
207 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
208 memset(ctx->bytes, 0, ctx->size);
209 return ctx;
212 void xhci_free_container_ctx(struct xhci_hcd *xhci,
213 struct xhci_container_ctx *ctx)
215 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
216 kfree(ctx);
219 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
220 struct xhci_container_ctx *ctx)
222 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
223 return (struct xhci_input_control_ctx *)ctx->bytes;
226 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
227 struct xhci_container_ctx *ctx)
229 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
230 return (struct xhci_slot_ctx *)ctx->bytes;
232 return (struct xhci_slot_ctx *)
233 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
236 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
237 struct xhci_container_ctx *ctx,
238 unsigned int ep_index)
240 /* increment ep index by offset of start of ep ctx array */
241 ep_index++;
242 if (ctx->type == XHCI_CTX_TYPE_INPUT)
243 ep_index++;
245 return (struct xhci_ep_ctx *)
246 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
249 /* All the xhci_tds in the ring's TD list should be freed at this point */
250 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
252 struct xhci_virt_device *dev;
253 int i;
255 /* Slot ID 0 is reserved */
256 if (slot_id == 0 || !xhci->devs[slot_id])
257 return;
259 dev = xhci->devs[slot_id];
260 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
261 if (!dev)
262 return;
264 for (i = 0; i < 31; ++i)
265 if (dev->ep_rings[i])
266 xhci_ring_free(xhci, dev->ep_rings[i]);
268 if (dev->in_ctx)
269 xhci_free_container_ctx(xhci, dev->in_ctx);
270 if (dev->out_ctx)
271 xhci_free_container_ctx(xhci, dev->out_ctx);
273 kfree(xhci->devs[slot_id]);
274 xhci->devs[slot_id] = 0;
277 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
278 struct usb_device *udev, gfp_t flags)
280 struct xhci_virt_device *dev;
282 /* Slot ID 0 is reserved */
283 if (slot_id == 0 || xhci->devs[slot_id]) {
284 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
285 return 0;
288 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
289 if (!xhci->devs[slot_id])
290 return 0;
291 dev = xhci->devs[slot_id];
293 /* Allocate the (output) device context that will be used in the HC. */
294 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
295 if (!dev->out_ctx)
296 goto fail;
298 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
299 (unsigned long long)dev->out_ctx->dma);
301 /* Allocate the (input) device context for address device command */
302 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
303 if (!dev->in_ctx)
304 goto fail;
306 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
307 (unsigned long long)dev->in_ctx->dma);
309 /* Allocate endpoint 0 ring */
310 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
311 if (!dev->ep_rings[0])
312 goto fail;
314 init_completion(&dev->cmd_completion);
316 /* Point to output device context in dcbaa. */
317 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
318 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
319 slot_id,
320 &xhci->dcbaa->dev_context_ptrs[slot_id],
321 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
323 return 1;
324 fail:
325 xhci_free_virt_device(xhci, slot_id);
326 return 0;
329 /* Setup an xHCI virtual device for a Set Address command */
330 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
332 struct xhci_virt_device *dev;
333 struct xhci_ep_ctx *ep0_ctx;
334 struct usb_device *top_dev;
335 struct xhci_slot_ctx *slot_ctx;
336 struct xhci_input_control_ctx *ctrl_ctx;
338 dev = xhci->devs[udev->slot_id];
339 /* Slot ID 0 is reserved */
340 if (udev->slot_id == 0 || !dev) {
341 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
342 udev->slot_id);
343 return -EINVAL;
345 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
346 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
347 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
349 /* 2) New slot context and endpoint 0 context are valid*/
350 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
352 /* 3) Only the control endpoint is valid - one endpoint context */
353 slot_ctx->dev_info |= LAST_CTX(1);
355 switch (udev->speed) {
356 case USB_SPEED_SUPER:
357 slot_ctx->dev_info |= (u32) udev->route;
358 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
359 break;
360 case USB_SPEED_HIGH:
361 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
362 break;
363 case USB_SPEED_FULL:
364 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
365 break;
366 case USB_SPEED_LOW:
367 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
368 break;
369 case USB_SPEED_VARIABLE:
370 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
371 return -EINVAL;
372 break;
373 default:
374 /* Speed was set earlier, this shouldn't happen. */
375 BUG();
377 /* Find the root hub port this device is under */
378 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
379 top_dev = top_dev->parent)
380 /* Found device below root hub */;
381 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
382 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
384 /* Is this a LS/FS device under a HS hub? */
386 * FIXME: I don't think this is right, where does the TT info for the
387 * roothub or parent hub come from?
389 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
390 udev->tt) {
391 slot_ctx->tt_info = udev->tt->hub->slot_id;
392 slot_ctx->tt_info |= udev->ttport << 8;
394 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
395 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
397 /* Step 4 - ring already allocated */
398 /* Step 5 */
399 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
401 * See section 4.3 bullet 6:
402 * The default Max Packet size for ep0 is "8 bytes for a USB2
403 * LS/FS/HS device or 512 bytes for a USB3 SS device"
404 * XXX: Not sure about wireless USB devices.
406 if (udev->speed == USB_SPEED_SUPER)
407 ep0_ctx->ep_info2 |= MAX_PACKET(512);
408 else
409 ep0_ctx->ep_info2 |= MAX_PACKET(8);
410 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
411 ep0_ctx->ep_info2 |= MAX_BURST(0);
412 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
414 ep0_ctx->deq =
415 dev->ep_rings[0]->first_seg->dma;
416 ep0_ctx->deq |= dev->ep_rings[0]->cycle_state;
418 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
420 return 0;
423 /* Return the polling or NAK interval.
425 * The polling interval is expressed in "microframes". If xHCI's Interval field
426 * is set to N, it will service the endpoint every 2^(Interval)*125us.
428 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
429 * is set to 0.
431 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
432 struct usb_host_endpoint *ep)
434 unsigned int interval = 0;
436 switch (udev->speed) {
437 case USB_SPEED_HIGH:
438 /* Max NAK rate */
439 if (usb_endpoint_xfer_control(&ep->desc) ||
440 usb_endpoint_xfer_bulk(&ep->desc))
441 interval = ep->desc.bInterval;
442 /* Fall through - SS and HS isoc/int have same decoding */
443 case USB_SPEED_SUPER:
444 if (usb_endpoint_xfer_int(&ep->desc) ||
445 usb_endpoint_xfer_isoc(&ep->desc)) {
446 if (ep->desc.bInterval == 0)
447 interval = 0;
448 else
449 interval = ep->desc.bInterval - 1;
450 if (interval > 15)
451 interval = 15;
452 if (interval != ep->desc.bInterval + 1)
453 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
454 ep->desc.bEndpointAddress, 1 << interval);
456 break;
457 /* Convert bInterval (in 1-255 frames) to microframes and round down to
458 * nearest power of 2.
460 case USB_SPEED_FULL:
461 case USB_SPEED_LOW:
462 if (usb_endpoint_xfer_int(&ep->desc) ||
463 usb_endpoint_xfer_isoc(&ep->desc)) {
464 interval = fls(8*ep->desc.bInterval) - 1;
465 if (interval > 10)
466 interval = 10;
467 if (interval < 3)
468 interval = 3;
469 if ((1 << interval) != 8*ep->desc.bInterval)
470 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
471 ep->desc.bEndpointAddress, 1 << interval);
473 break;
474 default:
475 BUG();
477 return EP_INTERVAL(interval);
480 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
481 struct usb_host_endpoint *ep)
483 int in;
484 u32 type;
486 in = usb_endpoint_dir_in(&ep->desc);
487 if (usb_endpoint_xfer_control(&ep->desc)) {
488 type = EP_TYPE(CTRL_EP);
489 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
490 if (in)
491 type = EP_TYPE(BULK_IN_EP);
492 else
493 type = EP_TYPE(BULK_OUT_EP);
494 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
495 if (in)
496 type = EP_TYPE(ISOC_IN_EP);
497 else
498 type = EP_TYPE(ISOC_OUT_EP);
499 } else if (usb_endpoint_xfer_int(&ep->desc)) {
500 if (in)
501 type = EP_TYPE(INT_IN_EP);
502 else
503 type = EP_TYPE(INT_OUT_EP);
504 } else {
505 BUG();
507 return type;
510 int xhci_endpoint_init(struct xhci_hcd *xhci,
511 struct xhci_virt_device *virt_dev,
512 struct usb_device *udev,
513 struct usb_host_endpoint *ep,
514 gfp_t mem_flags)
516 unsigned int ep_index;
517 struct xhci_ep_ctx *ep_ctx;
518 struct xhci_ring *ep_ring;
519 unsigned int max_packet;
520 unsigned int max_burst;
522 ep_index = xhci_get_endpoint_index(&ep->desc);
523 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
525 /* Set up the endpoint ring */
526 virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, mem_flags);
527 if (!virt_dev->new_ep_rings[ep_index])
528 return -ENOMEM;
529 ep_ring = virt_dev->new_ep_rings[ep_index];
530 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
532 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
534 /* FIXME dig Mult and streams info out of ep companion desc */
536 /* Allow 3 retries for everything but isoc;
537 * error count = 0 means infinite retries.
539 if (!usb_endpoint_xfer_isoc(&ep->desc))
540 ep_ctx->ep_info2 = ERROR_COUNT(3);
541 else
542 ep_ctx->ep_info2 = ERROR_COUNT(1);
544 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
546 /* Set the max packet size and max burst */
547 switch (udev->speed) {
548 case USB_SPEED_SUPER:
549 max_packet = ep->desc.wMaxPacketSize;
550 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
551 /* dig out max burst from ep companion desc */
552 if (!ep->ss_ep_comp) {
553 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
554 max_packet = 0;
555 } else {
556 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
558 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
559 break;
560 case USB_SPEED_HIGH:
561 /* bits 11:12 specify the number of additional transaction
562 * opportunities per microframe (USB 2.0, section 9.6.6)
564 if (usb_endpoint_xfer_isoc(&ep->desc) ||
565 usb_endpoint_xfer_int(&ep->desc)) {
566 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
567 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
569 /* Fall through */
570 case USB_SPEED_FULL:
571 case USB_SPEED_LOW:
572 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
573 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
574 break;
575 default:
576 BUG();
578 /* FIXME Debug endpoint context */
579 return 0;
582 void xhci_endpoint_zero(struct xhci_hcd *xhci,
583 struct xhci_virt_device *virt_dev,
584 struct usb_host_endpoint *ep)
586 unsigned int ep_index;
587 struct xhci_ep_ctx *ep_ctx;
589 ep_index = xhci_get_endpoint_index(&ep->desc);
590 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
592 ep_ctx->ep_info = 0;
593 ep_ctx->ep_info2 = 0;
594 ep_ctx->deq = 0;
595 ep_ctx->tx_info = 0;
596 /* Don't free the endpoint ring until the set interface or configuration
597 * request succeeds.
601 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
602 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
604 int i;
605 struct device *dev = xhci_to_hcd(xhci)->self.controller;
606 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
608 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
610 if (!num_sp)
611 return 0;
613 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
614 if (!xhci->scratchpad)
615 goto fail_sp;
617 xhci->scratchpad->sp_array =
618 pci_alloc_consistent(to_pci_dev(dev),
619 num_sp * sizeof(u64),
620 &xhci->scratchpad->sp_dma);
621 if (!xhci->scratchpad->sp_array)
622 goto fail_sp2;
624 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
625 if (!xhci->scratchpad->sp_buffers)
626 goto fail_sp3;
628 xhci->scratchpad->sp_dma_buffers =
629 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
631 if (!xhci->scratchpad->sp_dma_buffers)
632 goto fail_sp4;
634 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
635 for (i = 0; i < num_sp; i++) {
636 dma_addr_t dma;
637 void *buf = pci_alloc_consistent(to_pci_dev(dev),
638 xhci->page_size, &dma);
639 if (!buf)
640 goto fail_sp5;
642 xhci->scratchpad->sp_array[i] = dma;
643 xhci->scratchpad->sp_buffers[i] = buf;
644 xhci->scratchpad->sp_dma_buffers[i] = dma;
647 return 0;
649 fail_sp5:
650 for (i = i - 1; i >= 0; i--) {
651 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
652 xhci->scratchpad->sp_buffers[i],
653 xhci->scratchpad->sp_dma_buffers[i]);
655 kfree(xhci->scratchpad->sp_dma_buffers);
657 fail_sp4:
658 kfree(xhci->scratchpad->sp_buffers);
660 fail_sp3:
661 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
662 xhci->scratchpad->sp_array,
663 xhci->scratchpad->sp_dma);
665 fail_sp2:
666 kfree(xhci->scratchpad);
667 xhci->scratchpad = NULL;
669 fail_sp:
670 return -ENOMEM;
673 static void scratchpad_free(struct xhci_hcd *xhci)
675 int num_sp;
676 int i;
677 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
679 if (!xhci->scratchpad)
680 return;
682 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
684 for (i = 0; i < num_sp; i++) {
685 pci_free_consistent(pdev, xhci->page_size,
686 xhci->scratchpad->sp_buffers[i],
687 xhci->scratchpad->sp_dma_buffers[i]);
689 kfree(xhci->scratchpad->sp_dma_buffers);
690 kfree(xhci->scratchpad->sp_buffers);
691 pci_free_consistent(pdev, num_sp * sizeof(u64),
692 xhci->scratchpad->sp_array,
693 xhci->scratchpad->sp_dma);
694 kfree(xhci->scratchpad);
695 xhci->scratchpad = NULL;
698 void xhci_mem_cleanup(struct xhci_hcd *xhci)
700 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
701 int size;
702 int i;
704 /* Free the Event Ring Segment Table and the actual Event Ring */
705 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
706 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
707 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
708 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
709 if (xhci->erst.entries)
710 pci_free_consistent(pdev, size,
711 xhci->erst.entries, xhci->erst.erst_dma_addr);
712 xhci->erst.entries = NULL;
713 xhci_dbg(xhci, "Freed ERST\n");
714 if (xhci->event_ring)
715 xhci_ring_free(xhci, xhci->event_ring);
716 xhci->event_ring = NULL;
717 xhci_dbg(xhci, "Freed event ring\n");
719 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
720 if (xhci->cmd_ring)
721 xhci_ring_free(xhci, xhci->cmd_ring);
722 xhci->cmd_ring = NULL;
723 xhci_dbg(xhci, "Freed command ring\n");
725 for (i = 1; i < MAX_HC_SLOTS; ++i)
726 xhci_free_virt_device(xhci, i);
728 if (xhci->segment_pool)
729 dma_pool_destroy(xhci->segment_pool);
730 xhci->segment_pool = NULL;
731 xhci_dbg(xhci, "Freed segment pool\n");
733 if (xhci->device_pool)
734 dma_pool_destroy(xhci->device_pool);
735 xhci->device_pool = NULL;
736 xhci_dbg(xhci, "Freed device context pool\n");
738 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
739 if (xhci->dcbaa)
740 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
741 xhci->dcbaa, xhci->dcbaa->dma);
742 xhci->dcbaa = NULL;
744 xhci->page_size = 0;
745 xhci->page_shift = 0;
746 scratchpad_free(xhci);
749 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
751 dma_addr_t dma;
752 struct device *dev = xhci_to_hcd(xhci)->self.controller;
753 unsigned int val, val2;
754 u64 val_64;
755 struct xhci_segment *seg;
756 u32 page_size;
757 int i;
759 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
760 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
761 for (i = 0; i < 16; i++) {
762 if ((0x1 & page_size) != 0)
763 break;
764 page_size = page_size >> 1;
766 if (i < 16)
767 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
768 else
769 xhci_warn(xhci, "WARN: no supported page size\n");
770 /* Use 4K pages, since that's common and the minimum the HC supports */
771 xhci->page_shift = 12;
772 xhci->page_size = 1 << xhci->page_shift;
773 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
776 * Program the Number of Device Slots Enabled field in the CONFIG
777 * register with the max value of slots the HC can handle.
779 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
780 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
781 (unsigned int) val);
782 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
783 val |= (val2 & ~HCS_SLOTS_MASK);
784 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
785 (unsigned int) val);
786 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
789 * Section 5.4.8 - doorbell array must be
790 * "physically contiguous and 64-byte (cache line) aligned".
792 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
793 sizeof(*xhci->dcbaa), &dma);
794 if (!xhci->dcbaa)
795 goto fail;
796 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
797 xhci->dcbaa->dma = dma;
798 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
799 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
800 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
803 * Initialize the ring segment pool. The ring must be a contiguous
804 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
805 * however, the command ring segment needs 64-byte aligned segments,
806 * so we pick the greater alignment need.
808 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
809 SEGMENT_SIZE, 64, xhci->page_size);
811 /* See Table 46 and Note on Figure 55 */
812 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
813 2112, 64, xhci->page_size);
814 if (!xhci->segment_pool || !xhci->device_pool)
815 goto fail;
817 /* Set up the command ring to have one segments for now. */
818 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
819 if (!xhci->cmd_ring)
820 goto fail;
821 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
822 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
823 (unsigned long long)xhci->cmd_ring->first_seg->dma);
825 /* Set the address in the Command Ring Control register */
826 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
827 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
828 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
829 xhci->cmd_ring->cycle_state;
830 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
831 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
832 xhci_dbg_cmd_ptrs(xhci);
834 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
835 val &= DBOFF_MASK;
836 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
837 " from cap regs base addr\n", val);
838 xhci->dba = (void *) xhci->cap_regs + val;
839 xhci_dbg_regs(xhci);
840 xhci_print_run_regs(xhci);
841 /* Set ir_set to interrupt register set 0 */
842 xhci->ir_set = (void *) xhci->run_regs->ir_set;
845 * Event ring setup: Allocate a normal ring, but also setup
846 * the event ring segment table (ERST). Section 4.9.3.
848 xhci_dbg(xhci, "// Allocating event ring\n");
849 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
850 if (!xhci->event_ring)
851 goto fail;
853 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
854 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
855 if (!xhci->erst.entries)
856 goto fail;
857 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
858 (unsigned long long)dma);
860 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
861 xhci->erst.num_entries = ERST_NUM_SEGS;
862 xhci->erst.erst_dma_addr = dma;
863 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
864 xhci->erst.num_entries,
865 xhci->erst.entries,
866 (unsigned long long)xhci->erst.erst_dma_addr);
868 /* set ring base address and size for each segment table entry */
869 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
870 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
871 entry->seg_addr = seg->dma;
872 entry->seg_size = TRBS_PER_SEGMENT;
873 entry->rsvd = 0;
874 seg = seg->next;
877 /* set ERST count with the number of entries in the segment table */
878 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
879 val &= ERST_SIZE_MASK;
880 val |= ERST_NUM_SEGS;
881 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
882 val);
883 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
885 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
886 /* set the segment table base address */
887 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
888 (unsigned long long)xhci->erst.erst_dma_addr);
889 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
890 val_64 &= ERST_PTR_MASK;
891 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
892 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
894 /* Set the event ring dequeue address */
895 xhci_set_hc_event_deq(xhci);
896 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
897 xhci_print_ir_set(xhci, xhci->ir_set, 0);
900 * XXX: Might need to set the Interrupter Moderation Register to
901 * something other than the default (~1ms minimum between interrupts).
902 * See section 5.5.1.2.
904 init_completion(&xhci->addr_dev);
905 for (i = 0; i < MAX_HC_SLOTS; ++i)
906 xhci->devs[i] = 0;
908 if (scratchpad_alloc(xhci, flags))
909 goto fail;
911 return 0;
913 fail:
914 xhci_warn(xhci, "Couldn't initialize memory\n");
915 xhci_mem_cleanup(xhci);
916 return -ENOMEM;