2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
34 #include <asm/byteorder.h>
39 * Isochronous DMA context management
42 int fw_iso_buffer_alloc(struct fw_iso_buffer
*buffer
, int page_count
)
46 buffer
->page_count
= 0;
47 buffer
->page_count_mapped
= 0;
48 buffer
->pages
= kmalloc_array(page_count
, sizeof(buffer
->pages
[0]),
50 if (buffer
->pages
== NULL
)
53 for (i
= 0; i
< page_count
; i
++) {
54 buffer
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
| __GFP_ZERO
);
55 if (buffer
->pages
[i
] == NULL
)
58 buffer
->page_count
= i
;
60 fw_iso_buffer_destroy(buffer
, NULL
);
67 int fw_iso_buffer_map_dma(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
68 enum dma_data_direction direction
)
73 buffer
->direction
= direction
;
75 for (i
= 0; i
< buffer
->page_count
; i
++) {
76 address
= dma_map_page(card
->device
, buffer
->pages
[i
],
77 0, PAGE_SIZE
, direction
);
78 if (dma_mapping_error(card
->device
, address
))
81 set_page_private(buffer
->pages
[i
], address
);
83 buffer
->page_count_mapped
= i
;
84 if (i
< buffer
->page_count
)
90 int fw_iso_buffer_init(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
91 int page_count
, enum dma_data_direction direction
)
95 ret
= fw_iso_buffer_alloc(buffer
, page_count
);
99 ret
= fw_iso_buffer_map_dma(buffer
, card
, direction
);
101 fw_iso_buffer_destroy(buffer
, card
);
105 EXPORT_SYMBOL(fw_iso_buffer_init
);
107 int fw_iso_buffer_map_vma(struct fw_iso_buffer
*buffer
,
108 struct vm_area_struct
*vma
)
113 uaddr
= vma
->vm_start
;
114 for (i
= 0; i
< buffer
->page_count
; i
++) {
115 err
= vm_insert_page(vma
, uaddr
, buffer
->pages
[i
]);
125 void fw_iso_buffer_destroy(struct fw_iso_buffer
*buffer
,
126 struct fw_card
*card
)
131 for (i
= 0; i
< buffer
->page_count_mapped
; i
++) {
132 address
= page_private(buffer
->pages
[i
]);
133 dma_unmap_page(card
->device
, address
,
134 PAGE_SIZE
, buffer
->direction
);
136 for (i
= 0; i
< buffer
->page_count
; i
++)
137 __free_page(buffer
->pages
[i
]);
139 kfree(buffer
->pages
);
140 buffer
->pages
= NULL
;
141 buffer
->page_count
= 0;
142 buffer
->page_count_mapped
= 0;
144 EXPORT_SYMBOL(fw_iso_buffer_destroy
);
146 /* Convert DMA address to offset into virtually contiguous buffer. */
147 size_t fw_iso_buffer_lookup(struct fw_iso_buffer
*buffer
, dma_addr_t completed
)
153 for (i
= 0; i
< buffer
->page_count
; i
++) {
154 address
= page_private(buffer
->pages
[i
]);
155 offset
= (ssize_t
)completed
- (ssize_t
)address
;
156 if (offset
> 0 && offset
<= PAGE_SIZE
)
157 return (i
<< PAGE_SHIFT
) + offset
;
163 struct fw_iso_context
*fw_iso_context_create(struct fw_card
*card
,
164 int type
, int channel
, int speed
, size_t header_size
,
165 fw_iso_callback_t callback
, void *callback_data
)
167 struct fw_iso_context
*ctx
;
169 ctx
= card
->driver
->allocate_iso_context(card
,
170 type
, channel
, header_size
);
176 ctx
->channel
= channel
;
178 ctx
->header_size
= header_size
;
179 ctx
->callback
.sc
= callback
;
180 ctx
->callback_data
= callback_data
;
184 EXPORT_SYMBOL(fw_iso_context_create
);
186 void fw_iso_context_destroy(struct fw_iso_context
*ctx
)
188 ctx
->card
->driver
->free_iso_context(ctx
);
190 EXPORT_SYMBOL(fw_iso_context_destroy
);
192 int fw_iso_context_start(struct fw_iso_context
*ctx
,
193 int cycle
, int sync
, int tags
)
195 return ctx
->card
->driver
->start_iso(ctx
, cycle
, sync
, tags
);
197 EXPORT_SYMBOL(fw_iso_context_start
);
199 int fw_iso_context_set_channels(struct fw_iso_context
*ctx
, u64
*channels
)
201 return ctx
->card
->driver
->set_iso_channels(ctx
, channels
);
204 int fw_iso_context_queue(struct fw_iso_context
*ctx
,
205 struct fw_iso_packet
*packet
,
206 struct fw_iso_buffer
*buffer
,
207 unsigned long payload
)
209 return ctx
->card
->driver
->queue_iso(ctx
, packet
, buffer
, payload
);
211 EXPORT_SYMBOL(fw_iso_context_queue
);
213 void fw_iso_context_queue_flush(struct fw_iso_context
*ctx
)
215 ctx
->card
->driver
->flush_queue_iso(ctx
);
217 EXPORT_SYMBOL(fw_iso_context_queue_flush
);
219 int fw_iso_context_flush_completions(struct fw_iso_context
*ctx
)
221 return ctx
->card
->driver
->flush_iso_completions(ctx
);
223 EXPORT_SYMBOL(fw_iso_context_flush_completions
);
225 int fw_iso_context_stop(struct fw_iso_context
*ctx
)
227 return ctx
->card
->driver
->stop_iso(ctx
);
229 EXPORT_SYMBOL(fw_iso_context_stop
);
232 * Isochronous bus resource management (channels, bandwidth), client side
235 static int manage_bandwidth(struct fw_card
*card
, int irm_id
, int generation
,
236 int bandwidth
, bool allocate
)
238 int try, new, old
= allocate
? BANDWIDTH_AVAILABLE_INITIAL
: 0;
242 * On a 1394a IRM with low contention, try < 1 is enough.
243 * On a 1394-1995 IRM, we need at least try < 2.
244 * Let's just do try < 5.
246 for (try = 0; try < 5; try++) {
247 new = allocate
? old
- bandwidth
: old
+ bandwidth
;
248 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL
)
251 data
[0] = cpu_to_be32(old
);
252 data
[1] = cpu_to_be32(new);
253 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
254 irm_id
, generation
, SCODE_100
,
255 CSR_REGISTER_BASE
+ CSR_BANDWIDTH_AVAILABLE
,
257 case RCODE_GENERATION
:
258 /* A generation change frees all bandwidth. */
259 return allocate
? -EAGAIN
: bandwidth
;
262 if (be32_to_cpup(data
) == old
)
265 old
= be32_to_cpup(data
);
273 static int manage_channel(struct fw_card
*card
, int irm_id
, int generation
,
274 u32 channels_mask
, u64 offset
, bool allocate
)
276 __be32 bit
, all
, old
;
278 int channel
, ret
= -EIO
, retry
= 5;
280 old
= all
= allocate
? cpu_to_be32(~0) : 0;
282 for (channel
= 0; channel
< 32; channel
++) {
283 if (!(channels_mask
& 1 << channel
))
288 bit
= cpu_to_be32(1 << (31 - channel
));
289 if ((old
& bit
) != (all
& bit
))
294 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
295 irm_id
, generation
, SCODE_100
,
297 case RCODE_GENERATION
:
298 /* A generation change frees all channels. */
299 return allocate
? -EAGAIN
: channel
;
307 /* Is the IRM 1394a-2000 compliant? */
308 if ((data
[0] & bit
) == (data
[1] & bit
))
311 /* 1394-1995 IRM, fall through to retry. */
325 static void deallocate_channel(struct fw_card
*card
, int irm_id
,
326 int generation
, int channel
)
331 mask
= channel
< 32 ? 1 << channel
: 1 << (channel
- 32);
332 offset
= channel
< 32 ? CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
:
333 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
;
335 manage_channel(card
, irm_id
, generation
, mask
, offset
, false);
339 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
340 * @card: card interface for this action
341 * @generation: bus generation
342 * @channels_mask: bitmask for channel allocation
343 * @channel: pointer for returning channel allocation result
344 * @bandwidth: pointer for returning bandwidth allocation result
345 * @allocate: whether to allocate (true) or deallocate (false)
347 * In parameters: card, generation, channels_mask, bandwidth, allocate
348 * Out parameters: channel, bandwidth
350 * This function blocks (sleeps) during communication with the IRM.
352 * Allocates or deallocates at most one channel out of channels_mask.
353 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
354 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
355 * channel 0 and LSB for channel 63.)
356 * Allocates or deallocates as many bandwidth allocation units as specified.
358 * Returns channel < 0 if no channel was allocated or deallocated.
359 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
361 * If generation is stale, deallocations succeed but allocations fail with
364 * If channel allocation fails, no bandwidth will be allocated either.
365 * If bandwidth allocation fails, no channel will be allocated either.
366 * But deallocations of channel and bandwidth are tried independently
367 * of each other's success.
369 void fw_iso_resource_manage(struct fw_card
*card
, int generation
,
370 u64 channels_mask
, int *channel
, int *bandwidth
,
373 u32 channels_hi
= channels_mask
; /* channels 31...0 */
374 u32 channels_lo
= channels_mask
>> 32; /* channels 63...32 */
375 int irm_id
, ret
, c
= -EINVAL
;
377 spin_lock_irq(&card
->lock
);
378 irm_id
= card
->irm_node
->node_id
;
379 spin_unlock_irq(&card
->lock
);
382 c
= manage_channel(card
, irm_id
, generation
, channels_hi
,
383 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
,
385 if (channels_lo
&& c
< 0) {
386 c
= manage_channel(card
, irm_id
, generation
, channels_lo
,
387 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
,
394 if (allocate
&& channels_mask
!= 0 && c
< 0)
400 ret
= manage_bandwidth(card
, irm_id
, generation
, *bandwidth
, allocate
);
404 if (allocate
&& ret
< 0) {
406 deallocate_channel(card
, irm_id
, generation
, c
);
410 EXPORT_SYMBOL(fw_iso_resource_manage
);