2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Author: Artem Bityutskiy (Битюцкий Артём)
22 * The UBI Eraseblock Association (EBA) sub-system.
24 * This sub-system is responsible for I/O to/from logical eraseblock.
26 * Although in this implementation the EBA table is fully kept and managed in
27 * RAM, which assumes poor scalability, it might be (partially) maintained on
28 * flash in future implementations.
30 * The EBA sub-system implements per-logical eraseblock locking. Before
31 * accessing a logical eraseblock it is locked for reading or writing. The
32 * per-logical eraseblock locking is implemented by means of the lock tree. The
33 * lock tree is an RB-tree which refers all the currently locked logical
34 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35 * They are indexed by (@vol_id, @lnum) pairs.
37 * EBA also maintains the global sequence counter which is incremented each
38 * time a logical eraseblock is mapped to a physical eraseblock and it is
39 * stored in the volume identifier header. This means that each VID header has
40 * a unique sequence number. The sequence number is only increased an we assume
41 * 64 bits is enough to never overflow.
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
53 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
54 * @pnum: the physical eraseblock number attached to the LEB
56 * This structure is encoding a LEB -> PEB association. Note that the LEB
57 * number is not stored here, because it is the index used to access the
60 struct ubi_eba_entry
{
65 * struct ubi_eba_table - LEB -> PEB association information
66 * @entries: the LEB to PEB mapping (one entry per LEB).
68 * This structure is private to the EBA logic and should be kept here.
69 * It is encoding the LEB to PEB association table, and is subject to
72 struct ubi_eba_table
{
73 struct ubi_eba_entry
*entries
;
77 * next_sqnum - get next sequence number.
78 * @ubi: UBI device description object
80 * This function returns next sequence number to use, which is just the current
81 * global sequence counter value. It also increases the global sequence
84 unsigned long long ubi_next_sqnum(struct ubi_device
*ubi
)
86 unsigned long long sqnum
;
88 spin_lock(&ubi
->ltree_lock
);
89 sqnum
= ubi
->global_sqnum
++;
90 spin_unlock(&ubi
->ltree_lock
);
96 * ubi_get_compat - get compatibility flags of a volume.
97 * @ubi: UBI device description object
100 * This function returns compatibility flags for an internal volume. User
101 * volumes have no compatibility flags, so %0 is returned.
103 static int ubi_get_compat(const struct ubi_device
*ubi
, int vol_id
)
105 if (vol_id
== UBI_LAYOUT_VOLUME_ID
)
106 return UBI_LAYOUT_VOLUME_COMPAT
;
111 * ubi_eba_get_ldesc - get information about a LEB
112 * @vol: volume description object
113 * @lnum: logical eraseblock number
114 * @ldesc: the LEB descriptor to fill
116 * Used to query information about a specific LEB.
117 * It is currently only returning the physical position of the LEB, but will be
118 * extended to provide more information.
120 void ubi_eba_get_ldesc(struct ubi_volume
*vol
, int lnum
,
121 struct ubi_eba_leb_desc
*ldesc
)
124 ldesc
->pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
128 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
130 * @vol: volume containing the EBA table to copy
131 * @nentries: number of entries in the table
133 * Allocate a new EBA table and initialize it with all LEBs unmapped.
134 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
136 struct ubi_eba_table
*ubi_eba_create_table(struct ubi_volume
*vol
,
139 struct ubi_eba_table
*tbl
;
143 tbl
= kzalloc(sizeof(*tbl
), GFP_KERNEL
);
145 return ERR_PTR(-ENOMEM
);
147 tbl
->entries
= kmalloc_array(nentries
, sizeof(*tbl
->entries
),
152 for (i
= 0; i
< nentries
; i
++)
153 tbl
->entries
[i
].pnum
= UBI_LEB_UNMAPPED
;
165 * ubi_eba_destroy_table - destroy an EBA table
166 * @tbl: the table to destroy
168 * Destroy an EBA table.
170 void ubi_eba_destroy_table(struct ubi_eba_table
*tbl
)
180 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
181 * @vol: volume containing the EBA table to copy
183 * @nentries: number of entries to copy
185 * Copy the EBA table stored in vol into the one pointed by dst.
187 void ubi_eba_copy_table(struct ubi_volume
*vol
, struct ubi_eba_table
*dst
,
190 struct ubi_eba_table
*src
;
193 ubi_assert(dst
&& vol
&& vol
->eba_tbl
);
197 for (i
= 0; i
< nentries
; i
++)
198 dst
->entries
[i
].pnum
= src
->entries
[i
].pnum
;
202 * ubi_eba_replace_table - assign a new EBA table to a volume
203 * @vol: volume containing the EBA table to copy
204 * @tbl: new EBA table
206 * Assign a new EBA table to the volume and release the old one.
208 void ubi_eba_replace_table(struct ubi_volume
*vol
, struct ubi_eba_table
*tbl
)
210 ubi_eba_destroy_table(vol
->eba_tbl
);
215 * ltree_lookup - look up the lock tree.
216 * @ubi: UBI device description object
218 * @lnum: logical eraseblock number
220 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
221 * object if the logical eraseblock is locked and %NULL if it is not.
222 * @ubi->ltree_lock has to be locked.
224 static struct ubi_ltree_entry
*ltree_lookup(struct ubi_device
*ubi
, int vol_id
,
229 p
= ubi
->ltree
.rb_node
;
231 struct ubi_ltree_entry
*le
;
233 le
= rb_entry(p
, struct ubi_ltree_entry
, rb
);
235 if (vol_id
< le
->vol_id
)
237 else if (vol_id
> le
->vol_id
)
242 else if (lnum
> le
->lnum
)
253 * ltree_add_entry - add new entry to the lock tree.
254 * @ubi: UBI device description object
256 * @lnum: logical eraseblock number
258 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
259 * lock tree. If such entry is already there, its usage counter is increased.
260 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
263 static struct ubi_ltree_entry
*ltree_add_entry(struct ubi_device
*ubi
,
264 int vol_id
, int lnum
)
266 struct ubi_ltree_entry
*le
, *le1
, *le_free
;
268 le
= kmalloc(sizeof(struct ubi_ltree_entry
), GFP_NOFS
);
270 return ERR_PTR(-ENOMEM
);
273 init_rwsem(&le
->mutex
);
277 spin_lock(&ubi
->ltree_lock
);
278 le1
= ltree_lookup(ubi
, vol_id
, lnum
);
282 * This logical eraseblock is already locked. The newly
283 * allocated lock entry is not needed.
288 struct rb_node
**p
, *parent
= NULL
;
291 * No lock entry, add the newly allocated one to the
292 * @ubi->ltree RB-tree.
296 p
= &ubi
->ltree
.rb_node
;
299 le1
= rb_entry(parent
, struct ubi_ltree_entry
, rb
);
301 if (vol_id
< le1
->vol_id
)
303 else if (vol_id
> le1
->vol_id
)
306 ubi_assert(lnum
!= le1
->lnum
);
307 if (lnum
< le1
->lnum
)
314 rb_link_node(&le
->rb
, parent
, p
);
315 rb_insert_color(&le
->rb
, &ubi
->ltree
);
318 spin_unlock(&ubi
->ltree_lock
);
325 * leb_read_lock - lock logical eraseblock for reading.
326 * @ubi: UBI device description object
328 * @lnum: logical eraseblock number
330 * This function locks a logical eraseblock for reading. Returns zero in case
331 * of success and a negative error code in case of failure.
333 static int leb_read_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
335 struct ubi_ltree_entry
*le
;
337 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
340 down_read(&le
->mutex
);
345 * leb_read_unlock - unlock logical eraseblock.
346 * @ubi: UBI device description object
348 * @lnum: logical eraseblock number
350 static void leb_read_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
352 struct ubi_ltree_entry
*le
;
354 spin_lock(&ubi
->ltree_lock
);
355 le
= ltree_lookup(ubi
, vol_id
, lnum
);
357 ubi_assert(le
->users
>= 0);
359 if (le
->users
== 0) {
360 rb_erase(&le
->rb
, &ubi
->ltree
);
363 spin_unlock(&ubi
->ltree_lock
);
367 * leb_write_lock - lock logical eraseblock for writing.
368 * @ubi: UBI device description object
370 * @lnum: logical eraseblock number
372 * This function locks a logical eraseblock for writing. Returns zero in case
373 * of success and a negative error code in case of failure.
375 static int leb_write_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
377 struct ubi_ltree_entry
*le
;
379 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
382 down_write(&le
->mutex
);
387 * leb_write_trylock - try to lock logical eraseblock for writing.
388 * @ubi: UBI device description object
390 * @lnum: logical eraseblock number
392 * This function locks a logical eraseblock for writing if there is no
393 * contention and does nothing if there is contention. Returns %0 in case of
394 * success, %1 in case of contention, and and a negative error code in case of
397 static int leb_write_trylock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
399 struct ubi_ltree_entry
*le
;
401 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
404 if (down_write_trylock(&le
->mutex
))
407 /* Contention, cancel */
408 spin_lock(&ubi
->ltree_lock
);
410 ubi_assert(le
->users
>= 0);
411 if (le
->users
== 0) {
412 rb_erase(&le
->rb
, &ubi
->ltree
);
415 spin_unlock(&ubi
->ltree_lock
);
421 * leb_write_unlock - unlock logical eraseblock.
422 * @ubi: UBI device description object
424 * @lnum: logical eraseblock number
426 static void leb_write_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
428 struct ubi_ltree_entry
*le
;
430 spin_lock(&ubi
->ltree_lock
);
431 le
= ltree_lookup(ubi
, vol_id
, lnum
);
433 ubi_assert(le
->users
>= 0);
434 up_write(&le
->mutex
);
435 if (le
->users
== 0) {
436 rb_erase(&le
->rb
, &ubi
->ltree
);
439 spin_unlock(&ubi
->ltree_lock
);
443 * ubi_eba_is_mapped - check if a LEB is mapped.
444 * @vol: volume description object
445 * @lnum: logical eraseblock number
447 * This function returns true if the LEB is mapped, false otherwise.
449 bool ubi_eba_is_mapped(struct ubi_volume
*vol
, int lnum
)
451 return vol
->eba_tbl
->entries
[lnum
].pnum
>= 0;
455 * ubi_eba_unmap_leb - un-map logical eraseblock.
456 * @ubi: UBI device description object
457 * @vol: volume description object
458 * @lnum: logical eraseblock number
460 * This function un-maps logical eraseblock @lnum and schedules corresponding
461 * physical eraseblock for erasure. Returns zero in case of success and a
462 * negative error code in case of failure.
464 int ubi_eba_unmap_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
467 int err
, pnum
, vol_id
= vol
->vol_id
;
472 err
= leb_write_lock(ubi
, vol_id
, lnum
);
476 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
478 /* This logical eraseblock is already unmapped */
481 dbg_eba("erase LEB %d:%d, PEB %d", vol_id
, lnum
, pnum
);
483 down_read(&ubi
->fm_eba_sem
);
484 vol
->eba_tbl
->entries
[lnum
].pnum
= UBI_LEB_UNMAPPED
;
485 up_read(&ubi
->fm_eba_sem
);
486 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 0);
489 leb_write_unlock(ubi
, vol_id
, lnum
);
493 #ifdef CONFIG_MTD_UBI_FASTMAP
495 * check_mapping - check and fixup a mapping
496 * @ubi: UBI device description object
497 * @vol: volume description object
498 * @lnum: logical eraseblock number
499 * @pnum: physical eraseblock number
501 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
502 * operations, if such an operation is interrupted the mapping still looks
503 * good, but upon first read an ECC is reported to the upper layer.
504 * Normaly during the full-scan at attach time this is fixed, for Fastmap
505 * we have to deal with it while reading.
506 * If the PEB behind a LEB shows this symthom we change the mapping to
507 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
509 * Returns 0 on success, negative error code in case of failure.
511 static int check_mapping(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
515 struct ubi_vid_io_buf
*vidb
;
516 struct ubi_vid_hdr
*vid_hdr
;
518 if (!ubi
->fast_attach
)
521 if (!vol
->checkmap
|| test_bit(lnum
, vol
->checkmap
))
524 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
528 err
= ubi_io_read_vid_hdr(ubi
, *pnum
, vidb
, 0);
529 if (err
> 0 && err
!= UBI_IO_BITFLIPS
) {
534 case UBI_IO_FF_BITFLIPS
:
536 case UBI_IO_BAD_HDR_EBADMSG
:
542 if (err
== UBI_IO_BAD_HDR_EBADMSG
|| err
== UBI_IO_FF_BITFLIPS
)
545 down_read(&ubi
->fm_eba_sem
);
546 vol
->eba_tbl
->entries
[lnum
].pnum
= UBI_LEB_UNMAPPED
;
547 up_read(&ubi
->fm_eba_sem
);
548 ubi_wl_put_peb(ubi
, vol
->vol_id
, lnum
, *pnum
, torture
);
550 *pnum
= UBI_LEB_UNMAPPED
;
551 } else if (err
< 0) {
552 ubi_err(ubi
, "unable to read VID header back from PEB %i: %i",
557 int found_vol_id
, found_lnum
;
559 ubi_assert(err
== 0 || err
== UBI_IO_BITFLIPS
);
561 vid_hdr
= ubi_get_vid_hdr(vidb
);
562 found_vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
563 found_lnum
= be32_to_cpu(vid_hdr
->lnum
);
565 if (found_lnum
!= lnum
|| found_vol_id
!= vol
->vol_id
) {
566 ubi_err(ubi
, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
567 *pnum
, found_vol_id
, found_lnum
, vol
->vol_id
, lnum
);
574 set_bit(lnum
, vol
->checkmap
);
578 ubi_free_vid_buf(vidb
);
583 static int check_mapping(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
591 * ubi_eba_read_leb - read data.
592 * @ubi: UBI device description object
593 * @vol: volume description object
594 * @lnum: logical eraseblock number
595 * @buf: buffer to store the read data
596 * @offset: offset from where to read
597 * @len: how many bytes to read
598 * @check: data CRC check flag
600 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
601 * bytes. The @check flag only makes sense for static volumes and forces
602 * eraseblock data CRC checking.
604 * In case of success this function returns zero. In case of a static volume,
605 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
606 * returned for any volume type if an ECC error was detected by the MTD device
607 * driver. Other negative error cored may be returned in case of other errors.
609 int ubi_eba_read_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
610 void *buf
, int offset
, int len
, int check
)
612 int err
, pnum
, scrub
= 0, vol_id
= vol
->vol_id
;
613 struct ubi_vid_io_buf
*vidb
;
614 struct ubi_vid_hdr
*vid_hdr
;
615 uint32_t uninitialized_var(crc
);
617 err
= leb_read_lock(ubi
, vol_id
, lnum
);
621 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
623 err
= check_mapping(ubi
, vol
, lnum
, &pnum
);
628 if (pnum
== UBI_LEB_UNMAPPED
) {
630 * The logical eraseblock is not mapped, fill the whole buffer
631 * with 0xFF bytes. The exception is static volumes for which
632 * it is an error to read unmapped logical eraseblocks.
634 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
635 len
, offset
, vol_id
, lnum
);
636 leb_read_unlock(ubi
, vol_id
, lnum
);
637 ubi_assert(vol
->vol_type
!= UBI_STATIC_VOLUME
);
638 memset(buf
, 0xFF, len
);
642 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
643 len
, offset
, vol_id
, lnum
, pnum
);
645 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
650 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
656 vid_hdr
= ubi_get_vid_hdr(vidb
);
658 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
659 if (err
&& err
!= UBI_IO_BITFLIPS
) {
662 * The header is either absent or corrupted.
663 * The former case means there is a bug -
664 * switch to read-only mode just in case.
665 * The latter case means a real corruption - we
666 * may try to recover data. FIXME: but this is
669 if (err
== UBI_IO_BAD_HDR_EBADMSG
||
670 err
== UBI_IO_BAD_HDR
) {
671 ubi_warn(ubi
, "corrupted VID header at PEB %d, LEB %d:%d",
676 * Ending up here in the non-Fastmap case
677 * is a clear bug as the VID header had to
678 * be present at scan time to have it referenced.
679 * With fastmap the story is more complicated.
680 * Fastmap has the mapping info without the need
681 * of a full scan. So the LEB could have been
682 * unmapped, Fastmap cannot know this and keeps
683 * the LEB referenced.
684 * This is valid and works as the layer above UBI
685 * has to do bookkeeping about used/referenced
688 if (ubi
->fast_attach
) {
697 } else if (err
== UBI_IO_BITFLIPS
)
700 ubi_assert(lnum
< be32_to_cpu(vid_hdr
->used_ebs
));
701 ubi_assert(len
== be32_to_cpu(vid_hdr
->data_size
));
703 crc
= be32_to_cpu(vid_hdr
->data_crc
);
704 ubi_free_vid_buf(vidb
);
707 err
= ubi_io_read_data(ubi
, buf
, pnum
, offset
, len
);
709 if (err
== UBI_IO_BITFLIPS
)
711 else if (mtd_is_eccerr(err
)) {
712 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
716 ubi_msg(ubi
, "force data checking");
725 uint32_t crc1
= crc32(UBI_CRC32_INIT
, buf
, len
);
727 ubi_warn(ubi
, "CRC error: calculated %#08x, must be %#08x",
735 err
= ubi_wl_scrub_peb(ubi
, pnum
);
737 leb_read_unlock(ubi
, vol_id
, lnum
);
741 ubi_free_vid_buf(vidb
);
743 leb_read_unlock(ubi
, vol_id
, lnum
);
748 * ubi_eba_read_leb_sg - read data into a scatter gather list.
749 * @ubi: UBI device description object
750 * @vol: volume description object
751 * @lnum: logical eraseblock number
752 * @sgl: UBI scatter gather list to store the read data
753 * @offset: offset from where to read
754 * @len: how many bytes to read
755 * @check: data CRC check flag
757 * This function works exactly like ubi_eba_read_leb(). But instead of
758 * storing the read data into a buffer it writes to an UBI scatter gather
761 int ubi_eba_read_leb_sg(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
762 struct ubi_sgl
*sgl
, int lnum
, int offset
, int len
,
767 struct scatterlist
*sg
;
770 ubi_assert(sgl
->list_pos
< UBI_MAX_SG_COUNT
);
771 sg
= &sgl
->sg
[sgl
->list_pos
];
772 if (len
< sg
->length
- sgl
->page_pos
)
775 to_read
= sg
->length
- sgl
->page_pos
;
777 ret
= ubi_eba_read_leb(ubi
, vol
, lnum
,
778 sg_virt(sg
) + sgl
->page_pos
, offset
,
786 sgl
->page_pos
+= to_read
;
787 if (sgl
->page_pos
== sg
->length
) {
803 * try_recover_peb - try to recover from write failure.
804 * @vol: volume description object
805 * @pnum: the physical eraseblock to recover
806 * @lnum: logical eraseblock number
807 * @buf: data which was not written because of the write failure
808 * @offset: offset of the failed write
809 * @len: how many bytes should have been written
811 * @retry: whether the caller should retry in case of failure
813 * This function is called in case of a write failure and moves all good data
814 * from the potentially bad physical eraseblock to a good physical eraseblock.
815 * This function also writes the data which was not written due to the failure.
816 * Returns 0 in case of success, and a negative error code in case of failure.
817 * In case of failure, the %retry parameter is set to false if this is a fatal
818 * error (retrying won't help), and true otherwise.
820 static int try_recover_peb(struct ubi_volume
*vol
, int pnum
, int lnum
,
821 const void *buf
, int offset
, int len
,
822 struct ubi_vid_io_buf
*vidb
, bool *retry
)
824 struct ubi_device
*ubi
= vol
->ubi
;
825 struct ubi_vid_hdr
*vid_hdr
;
826 int new_pnum
, err
, vol_id
= vol
->vol_id
, data_size
;
831 new_pnum
= ubi_wl_get_peb(ubi
);
837 ubi_msg(ubi
, "recover PEB %d, move data to PEB %d",
840 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
841 if (err
&& err
!= UBI_IO_BITFLIPS
) {
847 vid_hdr
= ubi_get_vid_hdr(vidb
);
848 ubi_assert(vid_hdr
->vol_type
== UBI_VID_DYNAMIC
);
850 mutex_lock(&ubi
->buf_mutex
);
851 memset(ubi
->peb_buf
+ offset
, 0xFF, len
);
853 /* Read everything before the area where the write failure happened */
855 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, pnum
, 0, offset
);
856 if (err
&& err
!= UBI_IO_BITFLIPS
)
862 memcpy(ubi
->peb_buf
+ offset
, buf
, len
);
864 data_size
= offset
+ len
;
865 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
866 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
867 vid_hdr
->copy_flag
= 1;
868 vid_hdr
->data_size
= cpu_to_be32(data_size
);
869 vid_hdr
->data_crc
= cpu_to_be32(crc
);
870 err
= ubi_io_write_vid_hdr(ubi
, new_pnum
, vidb
);
874 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, new_pnum
, 0, data_size
);
877 mutex_unlock(&ubi
->buf_mutex
);
880 vol
->eba_tbl
->entries
[lnum
].pnum
= new_pnum
;
883 up_read(&ubi
->fm_eba_sem
);
886 ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
887 ubi_msg(ubi
, "data was successfully recovered");
888 } else if (new_pnum
>= 0) {
890 * Bad luck? This physical eraseblock is bad too? Crud. Let's
891 * try to get another one.
893 ubi_wl_put_peb(ubi
, vol_id
, lnum
, new_pnum
, 1);
894 ubi_warn(ubi
, "failed to write to PEB %d", new_pnum
);
901 * recover_peb - recover from write failure.
902 * @ubi: UBI device description object
903 * @pnum: the physical eraseblock to recover
905 * @lnum: logical eraseblock number
906 * @buf: data which was not written because of the write failure
907 * @offset: offset of the failed write
908 * @len: how many bytes should have been written
910 * This function is called in case of a write failure and moves all good data
911 * from the potentially bad physical eraseblock to a good physical eraseblock.
912 * This function also writes the data which was not written due to the failure.
913 * Returns 0 in case of success, and a negative error code in case of failure.
914 * This function tries %UBI_IO_RETRIES before giving up.
916 static int recover_peb(struct ubi_device
*ubi
, int pnum
, int vol_id
, int lnum
,
917 const void *buf
, int offset
, int len
)
919 int err
, idx
= vol_id2idx(ubi
, vol_id
), tries
;
920 struct ubi_volume
*vol
= ubi
->volumes
[idx
];
921 struct ubi_vid_io_buf
*vidb
;
923 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
927 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
930 err
= try_recover_peb(vol
, pnum
, lnum
, buf
, offset
, len
, vidb
,
935 ubi_msg(ubi
, "try again");
938 ubi_free_vid_buf(vidb
);
944 * try_write_vid_and_data - try to write VID header and data to a new PEB.
945 * @vol: volume description object
946 * @lnum: logical eraseblock number
947 * @vidb: the VID buffer to write
948 * @buf: buffer containing the data
949 * @offset: where to start writing data
950 * @len: how many bytes should be written
952 * This function tries to write VID header and data belonging to logical
953 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
954 * in case of success and a negative error code in case of failure.
955 * In case of error, it is possible that something was still written to the
956 * flash media, but may be some garbage.
958 static int try_write_vid_and_data(struct ubi_volume
*vol
, int lnum
,
959 struct ubi_vid_io_buf
*vidb
, const void *buf
,
962 struct ubi_device
*ubi
= vol
->ubi
;
963 int pnum
, opnum
, err
, vol_id
= vol
->vol_id
;
965 pnum
= ubi_wl_get_peb(ubi
);
971 opnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
973 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
974 len
, offset
, vol_id
, lnum
, pnum
);
976 err
= ubi_io_write_vid_hdr(ubi
, pnum
, vidb
);
978 ubi_warn(ubi
, "failed to write VID header to LEB %d:%d, PEB %d",
984 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
987 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
988 len
, offset
, vol_id
, lnum
, pnum
);
993 vol
->eba_tbl
->entries
[lnum
].pnum
= pnum
;
996 up_read(&ubi
->fm_eba_sem
);
998 if (err
&& pnum
>= 0)
999 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
1000 else if (!err
&& opnum
>= 0)
1001 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, opnum
, 0);
1007 * ubi_eba_write_leb - write data to dynamic volume.
1008 * @ubi: UBI device description object
1009 * @vol: volume description object
1010 * @lnum: logical eraseblock number
1011 * @buf: the data to write
1012 * @offset: offset within the logical eraseblock where to write
1013 * @len: how many bytes to write
1015 * This function writes data to logical eraseblock @lnum of a dynamic volume
1016 * @vol. Returns zero in case of success and a negative error code in case
1017 * of failure. In case of error, it is possible that something was still
1018 * written to the flash media, but may be some garbage.
1019 * This function retries %UBI_IO_RETRIES times before giving up.
1021 int ubi_eba_write_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
1022 const void *buf
, int offset
, int len
)
1024 int err
, pnum
, tries
, vol_id
= vol
->vol_id
;
1025 struct ubi_vid_io_buf
*vidb
;
1026 struct ubi_vid_hdr
*vid_hdr
;
1031 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1035 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
1037 err
= check_mapping(ubi
, vol
, lnum
, &pnum
);
1043 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1044 len
, offset
, vol_id
, lnum
, pnum
);
1046 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
1048 ubi_warn(ubi
, "failed to write data to PEB %d", pnum
);
1049 if (err
== -EIO
&& ubi
->bad_allowed
)
1050 err
= recover_peb(ubi
, pnum
, vol_id
, lnum
, buf
,
1058 * The logical eraseblock is not mapped. We have to get a free physical
1059 * eraseblock and write the volume identifier header there first.
1061 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1063 leb_write_unlock(ubi
, vol_id
, lnum
);
1067 vid_hdr
= ubi_get_vid_hdr(vidb
);
1069 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
1070 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1071 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1072 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1073 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1074 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1076 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1077 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, offset
, len
);
1078 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1082 * Fortunately, this is the first write operation to this
1083 * physical eraseblock, so just put it and request a new one.
1084 * We assume that if this physical eraseblock went bad, the
1085 * erase code will handle that.
1087 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1088 ubi_msg(ubi
, "try another PEB");
1091 ubi_free_vid_buf(vidb
);
1097 leb_write_unlock(ubi
, vol_id
, lnum
);
1103 * ubi_eba_write_leb_st - write data to static volume.
1104 * @ubi: UBI device description object
1105 * @vol: volume description object
1106 * @lnum: logical eraseblock number
1107 * @buf: data to write
1108 * @len: how many bytes to write
1109 * @used_ebs: how many logical eraseblocks will this volume contain
1111 * This function writes data to logical eraseblock @lnum of static volume
1112 * @vol. The @used_ebs argument should contain total number of logical
1113 * eraseblock in this static volume.
1115 * When writing to the last logical eraseblock, the @len argument doesn't have
1116 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1117 * to the real data size, although the @buf buffer has to contain the
1118 * alignment. In all other cases, @len has to be aligned.
1120 * It is prohibited to write more than once to logical eraseblocks of static
1121 * volumes. This function returns zero in case of success and a negative error
1122 * code in case of failure.
1124 int ubi_eba_write_leb_st(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1125 int lnum
, const void *buf
, int len
, int used_ebs
)
1127 int err
, tries
, data_size
= len
, vol_id
= vol
->vol_id
;
1128 struct ubi_vid_io_buf
*vidb
;
1129 struct ubi_vid_hdr
*vid_hdr
;
1135 if (lnum
== used_ebs
- 1)
1136 /* If this is the last LEB @len may be unaligned */
1137 len
= ALIGN(data_size
, ubi
->min_io_size
);
1139 ubi_assert(!(len
& (ubi
->min_io_size
- 1)));
1141 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1145 vid_hdr
= ubi_get_vid_hdr(vidb
);
1147 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1151 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1152 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1153 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1154 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1155 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1157 crc
= crc32(UBI_CRC32_INIT
, buf
, data_size
);
1158 vid_hdr
->vol_type
= UBI_VID_STATIC
;
1159 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1160 vid_hdr
->used_ebs
= cpu_to_be32(used_ebs
);
1161 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1163 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
< 0);
1165 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1166 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1167 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1170 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1171 ubi_msg(ubi
, "try another PEB");
1177 leb_write_unlock(ubi
, vol_id
, lnum
);
1180 ubi_free_vid_buf(vidb
);
1186 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1187 * @ubi: UBI device description object
1188 * @vol: volume description object
1189 * @lnum: logical eraseblock number
1190 * @buf: data to write
1191 * @len: how many bytes to write
1193 * This function changes the contents of a logical eraseblock atomically. @buf
1194 * has to contain new logical eraseblock data, and @len - the length of the
1195 * data, which has to be aligned. This function guarantees that in case of an
1196 * unclean reboot the old contents is preserved. Returns zero in case of
1197 * success and a negative error code in case of failure.
1199 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1200 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1202 int ubi_eba_atomic_leb_change(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1203 int lnum
, const void *buf
, int len
)
1205 int err
, tries
, vol_id
= vol
->vol_id
;
1206 struct ubi_vid_io_buf
*vidb
;
1207 struct ubi_vid_hdr
*vid_hdr
;
1215 * Special case when data length is zero. In this case the LEB
1216 * has to be unmapped and mapped somewhere else.
1218 err
= ubi_eba_unmap_leb(ubi
, vol
, lnum
);
1221 return ubi_eba_write_leb(ubi
, vol
, lnum
, NULL
, 0, 0);
1224 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1228 vid_hdr
= ubi_get_vid_hdr(vidb
);
1230 mutex_lock(&ubi
->alc_mutex
);
1231 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1235 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1236 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1237 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1238 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1239 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1241 crc
= crc32(UBI_CRC32_INIT
, buf
, len
);
1242 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
1243 vid_hdr
->data_size
= cpu_to_be32(len
);
1244 vid_hdr
->copy_flag
= 1;
1245 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1247 dbg_eba("change LEB %d:%d", vol_id
, lnum
);
1249 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1250 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1251 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1254 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1255 ubi_msg(ubi
, "try another PEB");
1259 * This flash device does not admit of bad eraseblocks or
1260 * something nasty and unexpected happened. Switch to read-only
1261 * mode just in case.
1266 leb_write_unlock(ubi
, vol_id
, lnum
);
1269 mutex_unlock(&ubi
->alc_mutex
);
1270 ubi_free_vid_buf(vidb
);
1275 * is_error_sane - check whether a read error is sane.
1276 * @err: code of the error happened during reading
1278 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1279 * cannot read data from the target PEB (an error @err happened). If the error
1280 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1281 * fatal and UBI will be switched to R/O mode later.
1283 * The idea is that we try not to switch to R/O mode if the read error is
1284 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1285 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1286 * mode, simply because we do not know what happened at the MTD level, and we
1287 * cannot handle this. E.g., the underlying driver may have become crazy, and
1288 * it is safer to switch to R/O mode to preserve the data.
1290 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1291 * which we have just written.
1293 static int is_error_sane(int err
)
1295 if (err
== -EIO
|| err
== -ENOMEM
|| err
== UBI_IO_BAD_HDR
||
1296 err
== UBI_IO_BAD_HDR_EBADMSG
|| err
== -ETIMEDOUT
)
1302 * ubi_eba_copy_leb - copy logical eraseblock.
1303 * @ubi: UBI device description object
1304 * @from: physical eraseblock number from where to copy
1305 * @to: physical eraseblock number where to copy
1306 * @vid_hdr: VID header of the @from physical eraseblock
1308 * This function copies logical eraseblock from physical eraseblock @from to
1309 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1310 * function. Returns:
1311 * o %0 in case of success;
1312 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1313 * o a negative error code in case of failure.
1315 int ubi_eba_copy_leb(struct ubi_device
*ubi
, int from
, int to
,
1316 struct ubi_vid_io_buf
*vidb
)
1318 int err
, vol_id
, lnum
, data_size
, aldata_size
, idx
;
1319 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1320 struct ubi_volume
*vol
;
1323 ubi_assert(rwsem_is_locked(&ubi
->fm_eba_sem
));
1325 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
1326 lnum
= be32_to_cpu(vid_hdr
->lnum
);
1328 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id
, lnum
, from
, to
);
1330 if (vid_hdr
->vol_type
== UBI_VID_STATIC
) {
1331 data_size
= be32_to_cpu(vid_hdr
->data_size
);
1332 aldata_size
= ALIGN(data_size
, ubi
->min_io_size
);
1334 data_size
= aldata_size
=
1335 ubi
->leb_size
- be32_to_cpu(vid_hdr
->data_pad
);
1337 idx
= vol_id2idx(ubi
, vol_id
);
1338 spin_lock(&ubi
->volumes_lock
);
1340 * Note, we may race with volume deletion, which means that the volume
1341 * this logical eraseblock belongs to might be being deleted. Since the
1342 * volume deletion un-maps all the volume's logical eraseblocks, it will
1343 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1345 vol
= ubi
->volumes
[idx
];
1346 spin_unlock(&ubi
->volumes_lock
);
1348 /* No need to do further work, cancel */
1349 dbg_wl("volume %d is being removed, cancel", vol_id
);
1350 return MOVE_CANCEL_RACE
;
1354 * We do not want anybody to write to this logical eraseblock while we
1355 * are moving it, so lock it.
1357 * Note, we are using non-waiting locking here, because we cannot sleep
1358 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1359 * unmapping the LEB which is mapped to the PEB we are going to move
1360 * (@from). This task locks the LEB and goes sleep in the
1361 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1362 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1363 * LEB is already locked, we just do not move it and return
1364 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1365 * we do not know the reasons of the contention - it may be just a
1366 * normal I/O on this LEB, so we want to re-try.
1368 err
= leb_write_trylock(ubi
, vol_id
, lnum
);
1370 dbg_wl("contention on LEB %d:%d, cancel", vol_id
, lnum
);
1375 * The LEB might have been put meanwhile, and the task which put it is
1376 * probably waiting on @ubi->move_mutex. No need to continue the work,
1379 if (vol
->eba_tbl
->entries
[lnum
].pnum
!= from
) {
1380 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1381 vol_id
, lnum
, from
, vol
->eba_tbl
->entries
[lnum
].pnum
);
1382 err
= MOVE_CANCEL_RACE
;
1383 goto out_unlock_leb
;
1387 * OK, now the LEB is locked and we can safely start moving it. Since
1388 * this function utilizes the @ubi->peb_buf buffer which is shared
1389 * with some other functions - we lock the buffer by taking the
1392 mutex_lock(&ubi
->buf_mutex
);
1393 dbg_wl("read %d bytes of data", aldata_size
);
1394 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, from
, 0, aldata_size
);
1395 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1396 ubi_warn(ubi
, "error %d while reading data from PEB %d",
1398 err
= MOVE_SOURCE_RD_ERR
;
1399 goto out_unlock_buf
;
1403 * Now we have got to calculate how much data we have to copy. In
1404 * case of a static volume it is fairly easy - the VID header contains
1405 * the data size. In case of a dynamic volume it is more difficult - we
1406 * have to read the contents, cut 0xFF bytes from the end and copy only
1407 * the first part. We must do this to avoid writing 0xFF bytes as it
1408 * may have some side-effects. And not only this. It is important not
1409 * to include those 0xFFs to CRC because later the they may be filled
1412 if (vid_hdr
->vol_type
== UBI_VID_DYNAMIC
)
1413 aldata_size
= data_size
=
1414 ubi_calc_data_len(ubi
, ubi
->peb_buf
, data_size
);
1417 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
1421 * It may turn out to be that the whole @from physical eraseblock
1422 * contains only 0xFF bytes. Then we have to only write the VID header
1423 * and do not write any data. This also means we should not set
1424 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1426 if (data_size
> 0) {
1427 vid_hdr
->copy_flag
= 1;
1428 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1429 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1431 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1433 err
= ubi_io_write_vid_hdr(ubi
, to
, vidb
);
1436 err
= MOVE_TARGET_WR_ERR
;
1437 goto out_unlock_buf
;
1442 /* Read the VID header back and check if it was written correctly */
1443 err
= ubi_io_read_vid_hdr(ubi
, to
, vidb
, 1);
1445 if (err
!= UBI_IO_BITFLIPS
) {
1446 ubi_warn(ubi
, "error %d while reading VID header back from PEB %d",
1448 if (is_error_sane(err
))
1449 err
= MOVE_TARGET_RD_ERR
;
1451 err
= MOVE_TARGET_BITFLIPS
;
1452 goto out_unlock_buf
;
1455 if (data_size
> 0) {
1456 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, to
, 0, aldata_size
);
1459 err
= MOVE_TARGET_WR_ERR
;
1460 goto out_unlock_buf
;
1466 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
== from
);
1467 vol
->eba_tbl
->entries
[lnum
].pnum
= to
;
1470 mutex_unlock(&ubi
->buf_mutex
);
1472 leb_write_unlock(ubi
, vol_id
, lnum
);
1477 * print_rsvd_warning - warn about not having enough reserved PEBs.
1478 * @ubi: UBI device description object
1480 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1481 * cannot reserve enough PEBs for bad block handling. This function makes a
1482 * decision whether we have to print a warning or not. The algorithm is as
1484 * o if this is a new UBI image, then just print the warning
1485 * o if this is an UBI image which has already been used for some time, print
1486 * a warning only if we can reserve less than 10% of the expected amount of
1489 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1490 * of PEBs becomes smaller, which is normal and we do not want to scare users
1491 * with a warning every time they attach the MTD device. This was an issue
1492 * reported by real users.
1494 static void print_rsvd_warning(struct ubi_device
*ubi
,
1495 struct ubi_attach_info
*ai
)
1498 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1499 * large number to distinguish between newly flashed and used images.
1501 if (ai
->max_sqnum
> (1 << 18)) {
1502 int min
= ubi
->beb_rsvd_level
/ 10;
1506 if (ubi
->beb_rsvd_pebs
> min
)
1510 ubi_warn(ubi
, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1511 ubi
->beb_rsvd_pebs
, ubi
->beb_rsvd_level
);
1512 if (ubi
->corr_peb_count
)
1513 ubi_warn(ubi
, "%d PEBs are corrupted and not used",
1514 ubi
->corr_peb_count
);
1518 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1519 * @ubi: UBI device description object
1520 * @ai_fastmap: UBI attach info object created by fastmap
1521 * @ai_scan: UBI attach info object created by scanning
1523 * Returns < 0 in case of an internal error, 0 otherwise.
1524 * If a bad EBA table entry was found it will be printed out and
1525 * ubi_assert() triggers.
1527 int self_check_eba(struct ubi_device
*ubi
, struct ubi_attach_info
*ai_fastmap
,
1528 struct ubi_attach_info
*ai_scan
)
1530 int i
, j
, num_volumes
, ret
= 0;
1531 int **scan_eba
, **fm_eba
;
1532 struct ubi_ainf_volume
*av
;
1533 struct ubi_volume
*vol
;
1534 struct ubi_ainf_peb
*aeb
;
1537 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1539 scan_eba
= kmalloc_array(num_volumes
, sizeof(*scan_eba
), GFP_KERNEL
);
1543 fm_eba
= kmalloc_array(num_volumes
, sizeof(*fm_eba
), GFP_KERNEL
);
1549 for (i
= 0; i
< num_volumes
; i
++) {
1550 vol
= ubi
->volumes
[i
];
1554 scan_eba
[i
] = kmalloc_array(vol
->reserved_pebs
,
1562 fm_eba
[i
] = kmalloc_array(vol
->reserved_pebs
,
1570 for (j
= 0; j
< vol
->reserved_pebs
; j
++)
1571 scan_eba
[i
][j
] = fm_eba
[i
][j
] = UBI_LEB_UNMAPPED
;
1573 av
= ubi_find_av(ai_scan
, idx2vol_id(ubi
, i
));
1577 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1578 scan_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1580 av
= ubi_find_av(ai_fastmap
, idx2vol_id(ubi
, i
));
1584 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1585 fm_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1587 for (j
= 0; j
< vol
->reserved_pebs
; j
++) {
1588 if (scan_eba
[i
][j
] != fm_eba
[i
][j
]) {
1589 if (scan_eba
[i
][j
] == UBI_LEB_UNMAPPED
||
1590 fm_eba
[i
][j
] == UBI_LEB_UNMAPPED
)
1593 ubi_err(ubi
, "LEB:%i:%i is PEB:%i instead of %i!",
1594 vol
->vol_id
, j
, fm_eba
[i
][j
],
1602 for (i
= 0; i
< num_volumes
; i
++) {
1603 if (!ubi
->volumes
[i
])
1616 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1617 * @ubi: UBI device description object
1618 * @ai: attaching information
1620 * This function returns zero in case of success and a negative error code in
1623 int ubi_eba_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1625 int i
, err
, num_volumes
;
1626 struct ubi_ainf_volume
*av
;
1627 struct ubi_volume
*vol
;
1628 struct ubi_ainf_peb
*aeb
;
1631 dbg_eba("initialize EBA sub-system");
1633 spin_lock_init(&ubi
->ltree_lock
);
1634 mutex_init(&ubi
->alc_mutex
);
1635 ubi
->ltree
= RB_ROOT
;
1637 ubi
->global_sqnum
= ai
->max_sqnum
+ 1;
1638 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1640 for (i
= 0; i
< num_volumes
; i
++) {
1641 struct ubi_eba_table
*tbl
;
1643 vol
= ubi
->volumes
[i
];
1649 tbl
= ubi_eba_create_table(vol
, vol
->reserved_pebs
);
1655 ubi_eba_replace_table(vol
, tbl
);
1657 av
= ubi_find_av(ai
, idx2vol_id(ubi
, i
));
1661 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
) {
1662 if (aeb
->lnum
>= vol
->reserved_pebs
) {
1664 * This may happen in case of an unclean reboot
1667 ubi_move_aeb_to_list(av
, aeb
, &ai
->erase
);
1669 struct ubi_eba_entry
*entry
;
1671 entry
= &vol
->eba_tbl
->entries
[aeb
->lnum
];
1672 entry
->pnum
= aeb
->pnum
;
1677 if (ubi
->avail_pebs
< EBA_RESERVED_PEBS
) {
1678 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1679 ubi
->avail_pebs
, EBA_RESERVED_PEBS
);
1680 if (ubi
->corr_peb_count
)
1681 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1682 ubi
->corr_peb_count
);
1686 ubi
->avail_pebs
-= EBA_RESERVED_PEBS
;
1687 ubi
->rsvd_pebs
+= EBA_RESERVED_PEBS
;
1689 if (ubi
->bad_allowed
) {
1690 ubi_calculate_reserved(ubi
);
1692 if (ubi
->avail_pebs
< ubi
->beb_rsvd_level
) {
1693 /* No enough free physical eraseblocks */
1694 ubi
->beb_rsvd_pebs
= ubi
->avail_pebs
;
1695 print_rsvd_warning(ubi
, ai
);
1697 ubi
->beb_rsvd_pebs
= ubi
->beb_rsvd_level
;
1699 ubi
->avail_pebs
-= ubi
->beb_rsvd_pebs
;
1700 ubi
->rsvd_pebs
+= ubi
->beb_rsvd_pebs
;
1703 dbg_eba("EBA sub-system is initialized");
1707 for (i
= 0; i
< num_volumes
; i
++) {
1708 if (!ubi
->volumes
[i
])
1710 ubi_eba_replace_table(ubi
->volumes
[i
], NULL
);