1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015-2017 QLogic Corporation
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and /or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/bpf_trace.h>
36 #include <net/udp_tunnel.h>
40 #include <linux/if_ether.h>
41 #include <linux/if_vlan.h>
42 #include <net/ip6_checksum.h>
45 #include <linux/qed/qed_if.h>
47 /*********************************
48 * Content also used by slowpath *
49 *********************************/
51 int qede_alloc_rx_buffer(struct qede_rx_queue
*rxq
, bool allow_lazy
)
53 struct sw_rx_data
*sw_rx_data
;
54 struct eth_rx_bd
*rx_bd
;
58 /* In case lazy-allocation is allowed, postpone allocation until the
59 * end of the NAPI run. We'd still need to make sure the Rx ring has
60 * sufficient buffers to guarantee an additional Rx interrupt.
62 if (allow_lazy
&& likely(rxq
->filled_buffers
> 12)) {
63 rxq
->filled_buffers
--;
67 data
= alloc_pages(GFP_ATOMIC
, 0);
71 /* Map the entire page as it would be used
72 * for multiple RX buffer segment size mapping.
74 mapping
= dma_map_page(rxq
->dev
, data
, 0,
75 PAGE_SIZE
, rxq
->data_direction
);
76 if (unlikely(dma_mapping_error(rxq
->dev
, mapping
))) {
81 sw_rx_data
= &rxq
->sw_rx_ring
[rxq
->sw_rx_prod
& NUM_RX_BDS_MAX
];
82 sw_rx_data
->page_offset
= 0;
83 sw_rx_data
->data
= data
;
84 sw_rx_data
->mapping
= mapping
;
86 /* Advance PROD and get BD pointer */
87 rx_bd
= (struct eth_rx_bd
*)qed_chain_produce(&rxq
->rx_bd_ring
);
89 rx_bd
->addr
.hi
= cpu_to_le32(upper_32_bits(mapping
));
90 rx_bd
->addr
.lo
= cpu_to_le32(lower_32_bits(mapping
) +
94 rxq
->filled_buffers
++;
99 /* Unmap the data and free skb */
100 int qede_free_tx_pkt(struct qede_dev
*edev
, struct qede_tx_queue
*txq
, int *len
)
102 u16 idx
= txq
->sw_tx_cons
;
103 struct sk_buff
*skb
= txq
->sw_tx_ring
.skbs
[idx
].skb
;
104 struct eth_tx_1st_bd
*first_bd
;
105 struct eth_tx_bd
*tx_data_bd
;
106 int bds_consumed
= 0;
108 bool data_split
= txq
->sw_tx_ring
.skbs
[idx
].flags
& QEDE_TSO_SPLIT_BD
;
109 int i
, split_bd_len
= 0;
111 if (unlikely(!skb
)) {
113 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
114 idx
, txq
->sw_tx_cons
, txq
->sw_tx_prod
);
120 first_bd
= (struct eth_tx_1st_bd
*)qed_chain_consume(&txq
->tx_pbl
);
124 nbds
= first_bd
->data
.nbds
;
127 struct eth_tx_bd
*split
= (struct eth_tx_bd
*)
128 qed_chain_consume(&txq
->tx_pbl
);
129 split_bd_len
= BD_UNMAP_LEN(split
);
132 dma_unmap_single(&edev
->pdev
->dev
, BD_UNMAP_ADDR(first_bd
),
133 BD_UNMAP_LEN(first_bd
) + split_bd_len
, DMA_TO_DEVICE
);
135 /* Unmap the data of the skb frags */
136 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++, bds_consumed
++) {
137 tx_data_bd
= (struct eth_tx_bd
*)
138 qed_chain_consume(&txq
->tx_pbl
);
139 dma_unmap_page(&edev
->pdev
->dev
, BD_UNMAP_ADDR(tx_data_bd
),
140 BD_UNMAP_LEN(tx_data_bd
), DMA_TO_DEVICE
);
143 while (bds_consumed
++ < nbds
)
144 qed_chain_consume(&txq
->tx_pbl
);
147 dev_kfree_skb_any(skb
);
148 txq
->sw_tx_ring
.skbs
[idx
].skb
= NULL
;
149 txq
->sw_tx_ring
.skbs
[idx
].flags
= 0;
154 /* Unmap the data and free skb when mapping failed during start_xmit */
155 static void qede_free_failed_tx_pkt(struct qede_tx_queue
*txq
,
156 struct eth_tx_1st_bd
*first_bd
,
157 int nbd
, bool data_split
)
159 u16 idx
= txq
->sw_tx_prod
;
160 struct sk_buff
*skb
= txq
->sw_tx_ring
.skbs
[idx
].skb
;
161 struct eth_tx_bd
*tx_data_bd
;
162 int i
, split_bd_len
= 0;
164 /* Return prod to its position before this skb was handled */
165 qed_chain_set_prod(&txq
->tx_pbl
,
166 le16_to_cpu(txq
->tx_db
.data
.bd_prod
), first_bd
);
168 first_bd
= (struct eth_tx_1st_bd
*)qed_chain_produce(&txq
->tx_pbl
);
171 struct eth_tx_bd
*split
= (struct eth_tx_bd
*)
172 qed_chain_produce(&txq
->tx_pbl
);
173 split_bd_len
= BD_UNMAP_LEN(split
);
177 dma_unmap_single(txq
->dev
, BD_UNMAP_ADDR(first_bd
),
178 BD_UNMAP_LEN(first_bd
) + split_bd_len
, DMA_TO_DEVICE
);
180 /* Unmap the data of the skb frags */
181 for (i
= 0; i
< nbd
; i
++) {
182 tx_data_bd
= (struct eth_tx_bd
*)
183 qed_chain_produce(&txq
->tx_pbl
);
184 if (tx_data_bd
->nbytes
)
185 dma_unmap_page(txq
->dev
,
186 BD_UNMAP_ADDR(tx_data_bd
),
187 BD_UNMAP_LEN(tx_data_bd
), DMA_TO_DEVICE
);
190 /* Return again prod to its position before this skb was handled */
191 qed_chain_set_prod(&txq
->tx_pbl
,
192 le16_to_cpu(txq
->tx_db
.data
.bd_prod
), first_bd
);
195 dev_kfree_skb_any(skb
);
196 txq
->sw_tx_ring
.skbs
[idx
].skb
= NULL
;
197 txq
->sw_tx_ring
.skbs
[idx
].flags
= 0;
200 static u32
qede_xmit_type(struct sk_buff
*skb
, int *ipv6_ext
)
202 u32 rc
= XMIT_L4_CSUM
;
205 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
208 l3_proto
= vlan_get_protocol(skb
);
209 if (l3_proto
== htons(ETH_P_IPV6
) &&
210 (ipv6_hdr(skb
)->nexthdr
== NEXTHDR_IPV6
))
213 if (skb
->encapsulation
) {
215 if (skb_is_gso(skb
)) {
216 unsigned short gso_type
= skb_shinfo(skb
)->gso_type
;
218 if ((gso_type
& SKB_GSO_UDP_TUNNEL_CSUM
) ||
219 (gso_type
& SKB_GSO_GRE_CSUM
))
220 rc
|= XMIT_ENC_GSO_L4_CSUM
;
233 static void qede_set_params_for_ipv6_ext(struct sk_buff
*skb
,
234 struct eth_tx_2nd_bd
*second_bd
,
235 struct eth_tx_3rd_bd
*third_bd
)
238 u16 bd2_bits1
= 0, bd2_bits2
= 0;
240 bd2_bits1
|= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT
);
242 bd2_bits2
|= ((((u8
*)skb_transport_header(skb
) - skb
->data
) >> 1) &
243 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK
)
244 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT
;
246 bd2_bits1
|= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH
<<
247 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT
);
249 if (vlan_get_protocol(skb
) == htons(ETH_P_IPV6
))
250 l4_proto
= ipv6_hdr(skb
)->nexthdr
;
252 l4_proto
= ip_hdr(skb
)->protocol
;
254 if (l4_proto
== IPPROTO_UDP
)
255 bd2_bits1
|= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT
;
258 third_bd
->data
.bitfields
|=
259 cpu_to_le16(((tcp_hdrlen(skb
) / 4) &
260 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK
) <<
261 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT
);
263 second_bd
->data
.bitfields1
= cpu_to_le16(bd2_bits1
);
264 second_bd
->data
.bitfields2
= cpu_to_le16(bd2_bits2
);
267 static int map_frag_to_bd(struct qede_tx_queue
*txq
,
268 skb_frag_t
*frag
, struct eth_tx_bd
*bd
)
272 /* Map skb non-linear frag data for DMA */
273 mapping
= skb_frag_dma_map(txq
->dev
, frag
, 0,
274 skb_frag_size(frag
), DMA_TO_DEVICE
);
275 if (unlikely(dma_mapping_error(txq
->dev
, mapping
)))
278 /* Setup the data pointer of the frag data */
279 BD_SET_UNMAP_ADDR_LEN(bd
, mapping
, skb_frag_size(frag
));
284 static u16
qede_get_skb_hlen(struct sk_buff
*skb
, bool is_encap_pkt
)
287 return (skb_inner_transport_header(skb
) +
288 inner_tcp_hdrlen(skb
) - skb
->data
);
290 return (skb_transport_header(skb
) +
291 tcp_hdrlen(skb
) - skb
->data
);
294 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
295 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
296 static bool qede_pkt_req_lin(struct sk_buff
*skb
, u8 xmit_type
)
298 int allowed_frags
= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET
- 1;
300 if (xmit_type
& XMIT_LSO
) {
303 hlen
= qede_get_skb_hlen(skb
, xmit_type
& XMIT_ENC
);
305 /* linear payload would require its own BD */
306 if (skb_headlen(skb
) > hlen
)
310 return (skb_shinfo(skb
)->nr_frags
> allowed_frags
);
314 static inline void qede_update_tx_producer(struct qede_tx_queue
*txq
)
316 /* wmb makes sure that the BDs data is updated before updating the
317 * producer, otherwise FW may read old data from the BDs.
321 writel(txq
->tx_db
.raw
, txq
->doorbell_addr
);
323 /* Fence required to flush the write combined buffer, since another
324 * CPU may write to the same doorbell address and data may be lost
325 * due to relaxed order nature of write combined bar.
330 static int qede_xdp_xmit(struct qede_dev
*edev
, struct qede_fastpath
*fp
,
331 struct sw_rx_data
*metadata
, u16 padding
, u16 length
)
333 struct qede_tx_queue
*txq
= fp
->xdp_tx
;
334 struct eth_tx_1st_bd
*first_bd
;
335 u16 idx
= txq
->sw_tx_prod
;
338 if (!qed_chain_get_elem_left(&txq
->tx_pbl
)) {
343 first_bd
= (struct eth_tx_1st_bd
*)qed_chain_produce(&txq
->tx_pbl
);
345 memset(first_bd
, 0, sizeof(*first_bd
));
346 first_bd
->data
.bd_flags
.bitfields
=
347 BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT
);
349 val
= (length
& ETH_TX_DATA_1ST_BD_PKT_LEN_MASK
) <<
350 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT
;
352 first_bd
->data
.bitfields
|= cpu_to_le16(val
);
353 first_bd
->data
.nbds
= 1;
355 /* We can safely ignore the offset, as it's 0 for XDP */
356 BD_SET_UNMAP_ADDR_LEN(first_bd
, metadata
->mapping
+ padding
, length
);
358 /* Synchronize the buffer back to device, as program [probably]
361 dma_sync_single_for_device(&edev
->pdev
->dev
,
362 metadata
->mapping
+ padding
,
363 length
, PCI_DMA_TODEVICE
);
365 txq
->sw_tx_ring
.xdp
[idx
].page
= metadata
->data
;
366 txq
->sw_tx_ring
.xdp
[idx
].mapping
= metadata
->mapping
;
367 txq
->sw_tx_prod
= (txq
->sw_tx_prod
+ 1) % txq
->num_tx_buffers
;
369 /* Mark the fastpath for future XDP doorbell */
375 int qede_txq_has_work(struct qede_tx_queue
*txq
)
379 /* Tell compiler that consumer and producer can change */
381 hw_bd_cons
= le16_to_cpu(*txq
->hw_cons_ptr
);
382 if (qed_chain_get_cons_idx(&txq
->tx_pbl
) == hw_bd_cons
+ 1)
385 return hw_bd_cons
!= qed_chain_get_cons_idx(&txq
->tx_pbl
);
388 static void qede_xdp_tx_int(struct qede_dev
*edev
, struct qede_tx_queue
*txq
)
392 hw_bd_cons
= le16_to_cpu(*txq
->hw_cons_ptr
);
395 while (hw_bd_cons
!= qed_chain_get_cons_idx(&txq
->tx_pbl
)) {
396 qed_chain_consume(&txq
->tx_pbl
);
397 idx
= txq
->sw_tx_cons
;
399 dma_unmap_page(&edev
->pdev
->dev
,
400 txq
->sw_tx_ring
.xdp
[idx
].mapping
,
401 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
402 __free_page(txq
->sw_tx_ring
.xdp
[idx
].page
);
404 txq
->sw_tx_cons
= (txq
->sw_tx_cons
+ 1) % txq
->num_tx_buffers
;
409 static int qede_tx_int(struct qede_dev
*edev
, struct qede_tx_queue
*txq
)
411 unsigned int pkts_compl
= 0, bytes_compl
= 0;
412 struct netdev_queue
*netdev_txq
;
416 netdev_txq
= netdev_get_tx_queue(edev
->ndev
, txq
->ndev_txq_id
);
418 hw_bd_cons
= le16_to_cpu(*txq
->hw_cons_ptr
);
421 while (hw_bd_cons
!= qed_chain_get_cons_idx(&txq
->tx_pbl
)) {
424 rc
= qede_free_tx_pkt(edev
, txq
, &len
);
426 DP_NOTICE(edev
, "hw_bd_cons = %d, chain_cons=%d\n",
428 qed_chain_get_cons_idx(&txq
->tx_pbl
));
434 txq
->sw_tx_cons
= (txq
->sw_tx_cons
+ 1) % txq
->num_tx_buffers
;
438 netdev_tx_completed_queue(netdev_txq
, pkts_compl
, bytes_compl
);
440 /* Need to make the tx_bd_cons update visible to start_xmit()
441 * before checking for netif_tx_queue_stopped(). Without the
442 * memory barrier, there is a small possibility that
443 * start_xmit() will miss it and cause the queue to be stopped
445 * On the other hand we need an rmb() here to ensure the proper
446 * ordering of bit testing in the following
447 * netif_tx_queue_stopped(txq) call.
451 if (unlikely(netif_tx_queue_stopped(netdev_txq
))) {
452 /* Taking tx_lock is needed to prevent reenabling the queue
453 * while it's empty. This could have happen if rx_action() gets
454 * suspended in qede_tx_int() after the condition before
455 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
457 * stops the queue->sees fresh tx_bd_cons->releases the queue->
458 * sends some packets consuming the whole queue again->
462 __netif_tx_lock(netdev_txq
, smp_processor_id());
464 if ((netif_tx_queue_stopped(netdev_txq
)) &&
465 (edev
->state
== QEDE_STATE_OPEN
) &&
466 (qed_chain_get_elem_left(&txq
->tx_pbl
)
467 >= (MAX_SKB_FRAGS
+ 1))) {
468 netif_tx_wake_queue(netdev_txq
);
469 DP_VERBOSE(edev
, NETIF_MSG_TX_DONE
,
470 "Wake queue was called\n");
473 __netif_tx_unlock(netdev_txq
);
479 bool qede_has_rx_work(struct qede_rx_queue
*rxq
)
481 u16 hw_comp_cons
, sw_comp_cons
;
483 /* Tell compiler that status block fields can change */
486 hw_comp_cons
= le16_to_cpu(*rxq
->hw_cons_ptr
);
487 sw_comp_cons
= qed_chain_get_cons_idx(&rxq
->rx_comp_ring
);
489 return hw_comp_cons
!= sw_comp_cons
;
492 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue
*rxq
)
494 qed_chain_consume(&rxq
->rx_bd_ring
);
498 /* This function reuses the buffer(from an offset) from
499 * consumer index to producer index in the bd ring
501 static inline void qede_reuse_page(struct qede_rx_queue
*rxq
,
502 struct sw_rx_data
*curr_cons
)
504 struct eth_rx_bd
*rx_bd_prod
= qed_chain_produce(&rxq
->rx_bd_ring
);
505 struct sw_rx_data
*curr_prod
;
506 dma_addr_t new_mapping
;
508 curr_prod
= &rxq
->sw_rx_ring
[rxq
->sw_rx_prod
& NUM_RX_BDS_MAX
];
509 *curr_prod
= *curr_cons
;
511 new_mapping
= curr_prod
->mapping
+ curr_prod
->page_offset
;
513 rx_bd_prod
->addr
.hi
= cpu_to_le32(upper_32_bits(new_mapping
));
514 rx_bd_prod
->addr
.lo
= cpu_to_le32(lower_32_bits(new_mapping
) +
518 curr_cons
->data
= NULL
;
521 /* In case of allocation failures reuse buffers
522 * from consumer index to produce buffers for firmware
524 void qede_recycle_rx_bd_ring(struct qede_rx_queue
*rxq
, u8 count
)
526 struct sw_rx_data
*curr_cons
;
528 for (; count
> 0; count
--) {
529 curr_cons
= &rxq
->sw_rx_ring
[rxq
->sw_rx_cons
& NUM_RX_BDS_MAX
];
530 qede_reuse_page(rxq
, curr_cons
);
531 qede_rx_bd_ring_consume(rxq
);
535 static inline int qede_realloc_rx_buffer(struct qede_rx_queue
*rxq
,
536 struct sw_rx_data
*curr_cons
)
538 /* Move to the next segment in the page */
539 curr_cons
->page_offset
+= rxq
->rx_buf_seg_size
;
541 if (curr_cons
->page_offset
== PAGE_SIZE
) {
542 if (unlikely(qede_alloc_rx_buffer(rxq
, true))) {
543 /* Since we failed to allocate new buffer
544 * current buffer can be used again.
546 curr_cons
->page_offset
-= rxq
->rx_buf_seg_size
;
551 dma_unmap_page(rxq
->dev
, curr_cons
->mapping
,
552 PAGE_SIZE
, rxq
->data_direction
);
554 /* Increment refcount of the page as we don't want
555 * network stack to take the ownership of the page
556 * which can be recycled multiple times by the driver.
558 page_ref_inc(curr_cons
->data
);
559 qede_reuse_page(rxq
, curr_cons
);
565 void qede_update_rx_prod(struct qede_dev
*edev
, struct qede_rx_queue
*rxq
)
567 u16 bd_prod
= qed_chain_get_prod_idx(&rxq
->rx_bd_ring
);
568 u16 cqe_prod
= qed_chain_get_prod_idx(&rxq
->rx_comp_ring
);
569 struct eth_rx_prod_data rx_prods
= {0};
571 /* Update producers */
572 rx_prods
.bd_prod
= cpu_to_le16(bd_prod
);
573 rx_prods
.cqe_prod
= cpu_to_le16(cqe_prod
);
575 /* Make sure that the BD and SGE data is updated before updating the
576 * producers since FW might read the BD/SGE right after the producer
581 internal_ram_wr(rxq
->hw_rxq_prod_addr
, sizeof(rx_prods
),
584 /* mmiowb is needed to synchronize doorbell writes from more than one
585 * processor. It guarantees that the write arrives to the device before
586 * the napi lock is released and another qede_poll is called (possibly
587 * on another CPU). Without this barrier, the next doorbell can bypass
588 * this doorbell. This is applicable to IA64/Altix systems.
593 static void qede_get_rxhash(struct sk_buff
*skb
, u8 bitfields
, __le32 rss_hash
)
595 enum pkt_hash_types hash_type
= PKT_HASH_TYPE_NONE
;
596 enum rss_hash_type htype
;
599 htype
= GET_FIELD(bitfields
, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE
);
601 hash_type
= ((htype
== RSS_HASH_TYPE_IPV4
) ||
602 (htype
== RSS_HASH_TYPE_IPV6
)) ?
603 PKT_HASH_TYPE_L3
: PKT_HASH_TYPE_L4
;
604 hash
= le32_to_cpu(rss_hash
);
606 skb_set_hash(skb
, hash
, hash_type
);
609 static void qede_set_skb_csum(struct sk_buff
*skb
, u8 csum_flag
)
611 skb_checksum_none_assert(skb
);
613 if (csum_flag
& QEDE_CSUM_UNNECESSARY
)
614 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
616 if (csum_flag
& QEDE_TUNN_CSUM_UNNECESSARY
) {
618 skb
->encapsulation
= 1;
622 static inline void qede_skb_receive(struct qede_dev
*edev
,
623 struct qede_fastpath
*fp
,
624 struct qede_rx_queue
*rxq
,
625 struct sk_buff
*skb
, u16 vlan_tag
)
628 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan_tag
);
630 napi_gro_receive(&fp
->napi
, skb
);
633 static void qede_set_gro_params(struct qede_dev
*edev
,
635 struct eth_fast_path_rx_tpa_start_cqe
*cqe
)
637 u16 parsing_flags
= le16_to_cpu(cqe
->pars_flags
.flags
);
639 if (((parsing_flags
>> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT
) &
640 PARSING_AND_ERR_FLAGS_L3TYPE_MASK
) == 2)
641 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV6
;
643 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
645 skb_shinfo(skb
)->gso_size
= __le16_to_cpu(cqe
->len_on_first_bd
) -
649 static int qede_fill_frag_skb(struct qede_dev
*edev
,
650 struct qede_rx_queue
*rxq
,
651 u8 tpa_agg_index
, u16 len_on_bd
)
653 struct sw_rx_data
*current_bd
= &rxq
->sw_rx_ring
[rxq
->sw_rx_cons
&
655 struct qede_agg_info
*tpa_info
= &rxq
->tpa_info
[tpa_agg_index
];
656 struct sk_buff
*skb
= tpa_info
->skb
;
658 if (unlikely(tpa_info
->state
!= QEDE_AGG_STATE_START
))
661 /* Add one frag and update the appropriate fields in the skb */
662 skb_fill_page_desc(skb
, tpa_info
->frag_id
++,
664 current_bd
->page_offset
+ rxq
->rx_headroom
,
667 if (unlikely(qede_realloc_rx_buffer(rxq
, current_bd
))) {
668 /* Incr page ref count to reuse on allocation failure
669 * so that it doesn't get freed while freeing SKB.
671 page_ref_inc(current_bd
->data
);
675 qede_rx_bd_ring_consume(rxq
);
677 skb
->data_len
+= len_on_bd
;
678 skb
->truesize
+= rxq
->rx_buf_seg_size
;
679 skb
->len
+= len_on_bd
;
684 tpa_info
->state
= QEDE_AGG_STATE_ERROR
;
685 qede_recycle_rx_bd_ring(rxq
, 1);
690 static bool qede_tunn_exist(u16 flag
)
692 return !!(flag
& (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK
<<
693 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT
));
696 static u8
qede_check_tunn_csum(u16 flag
)
701 if (flag
& (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK
<<
702 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT
))
703 csum_flag
|= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK
<<
704 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT
;
706 if (flag
& (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK
<<
707 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT
)) {
708 csum_flag
|= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK
<<
709 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT
;
710 tcsum
= QEDE_TUNN_CSUM_UNNECESSARY
;
713 csum_flag
|= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK
<<
714 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT
|
715 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK
<<
716 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT
;
718 if (csum_flag
& flag
)
719 return QEDE_CSUM_ERROR
;
721 return QEDE_CSUM_UNNECESSARY
| tcsum
;
724 static inline struct sk_buff
*
725 qede_build_skb(struct qede_rx_queue
*rxq
,
726 struct sw_rx_data
*bd
, u16 len
, u16 pad
)
731 buf
= page_address(bd
->data
) + bd
->page_offset
;
732 skb
= build_skb(buf
, rxq
->rx_buf_seg_size
);
734 skb_reserve(skb
, pad
);
740 static struct sk_buff
*
741 qede_tpa_rx_build_skb(struct qede_dev
*edev
,
742 struct qede_rx_queue
*rxq
,
743 struct sw_rx_data
*bd
, u16 len
, u16 pad
,
748 skb
= qede_build_skb(rxq
, bd
, len
, pad
);
749 bd
->page_offset
+= rxq
->rx_buf_seg_size
;
751 if (bd
->page_offset
== PAGE_SIZE
) {
752 if (unlikely(qede_alloc_rx_buffer(rxq
, true))) {
754 "Failed to allocate RX buffer for tpa start\n");
755 bd
->page_offset
-= rxq
->rx_buf_seg_size
;
756 page_ref_inc(bd
->data
);
757 dev_kfree_skb_any(skb
);
761 page_ref_inc(bd
->data
);
762 qede_reuse_page(rxq
, bd
);
765 /* We've consumed the first BD and prepared an SKB */
766 qede_rx_bd_ring_consume(rxq
);
771 static struct sk_buff
*
772 qede_rx_build_skb(struct qede_dev
*edev
,
773 struct qede_rx_queue
*rxq
,
774 struct sw_rx_data
*bd
, u16 len
, u16 pad
)
776 struct sk_buff
*skb
= NULL
;
778 /* For smaller frames still need to allocate skb, memcpy
779 * data and benefit in reusing the page segment instead of
782 if ((len
+ pad
<= edev
->rx_copybreak
)) {
783 unsigned int offset
= bd
->page_offset
+ pad
;
785 skb
= netdev_alloc_skb(edev
->ndev
, QEDE_RX_HDR_SIZE
);
789 skb_reserve(skb
, pad
);
790 memcpy(skb_put(skb
, len
),
791 page_address(bd
->data
) + offset
, len
);
792 qede_reuse_page(rxq
, bd
);
796 skb
= qede_build_skb(rxq
, bd
, len
, pad
);
798 if (unlikely(qede_realloc_rx_buffer(rxq
, bd
))) {
799 /* Incr page ref count to reuse on allocation failure so
800 * that it doesn't get freed while freeing SKB [as its
801 * already mapped there].
803 page_ref_inc(bd
->data
);
804 dev_kfree_skb_any(skb
);
808 /* We've consumed the first BD and prepared an SKB */
809 qede_rx_bd_ring_consume(rxq
);
814 static void qede_tpa_start(struct qede_dev
*edev
,
815 struct qede_rx_queue
*rxq
,
816 struct eth_fast_path_rx_tpa_start_cqe
*cqe
)
818 struct qede_agg_info
*tpa_info
= &rxq
->tpa_info
[cqe
->tpa_agg_index
];
819 struct sw_rx_data
*sw_rx_data_cons
;
822 sw_rx_data_cons
= &rxq
->sw_rx_ring
[rxq
->sw_rx_cons
& NUM_RX_BDS_MAX
];
823 pad
= cqe
->placement_offset
+ rxq
->rx_headroom
;
825 tpa_info
->skb
= qede_tpa_rx_build_skb(edev
, rxq
, sw_rx_data_cons
,
826 le16_to_cpu(cqe
->len_on_first_bd
),
828 tpa_info
->buffer
.page_offset
= sw_rx_data_cons
->page_offset
;
829 tpa_info
->buffer
.mapping
= sw_rx_data_cons
->mapping
;
831 if (unlikely(!tpa_info
->skb
)) {
832 DP_NOTICE(edev
, "Failed to allocate SKB for gro\n");
834 /* Consume from ring but do not produce since
835 * this might be used by FW still, it will be re-used
838 tpa_info
->tpa_start_fail
= true;
839 qede_rx_bd_ring_consume(rxq
);
840 tpa_info
->state
= QEDE_AGG_STATE_ERROR
;
844 tpa_info
->frag_id
= 0;
845 tpa_info
->state
= QEDE_AGG_STATE_START
;
847 if ((le16_to_cpu(cqe
->pars_flags
.flags
) >>
848 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT
) &
849 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK
)
850 tpa_info
->vlan_tag
= le16_to_cpu(cqe
->vlan_tag
);
852 tpa_info
->vlan_tag
= 0;
854 qede_get_rxhash(tpa_info
->skb
, cqe
->bitfields
, cqe
->rss_hash
);
856 /* This is needed in order to enable forwarding support */
857 qede_set_gro_params(edev
, tpa_info
->skb
, cqe
);
859 cons_buf
: /* We still need to handle bd_len_list to consume buffers */
860 if (likely(cqe
->ext_bd_len_list
[0]))
861 qede_fill_frag_skb(edev
, rxq
, cqe
->tpa_agg_index
,
862 le16_to_cpu(cqe
->ext_bd_len_list
[0]));
864 if (unlikely(cqe
->ext_bd_len_list
[1])) {
866 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
867 tpa_info
->state
= QEDE_AGG_STATE_ERROR
;
872 static void qede_gro_ip_csum(struct sk_buff
*skb
)
874 const struct iphdr
*iph
= ip_hdr(skb
);
877 skb_set_transport_header(skb
, sizeof(struct iphdr
));
880 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
881 iph
->saddr
, iph
->daddr
, 0);
883 tcp_gro_complete(skb
);
886 static void qede_gro_ipv6_csum(struct sk_buff
*skb
)
888 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
891 skb_set_transport_header(skb
, sizeof(struct ipv6hdr
));
894 th
->check
= ~tcp_v6_check(skb
->len
- skb_transport_offset(skb
),
895 &iph
->saddr
, &iph
->daddr
, 0);
896 tcp_gro_complete(skb
);
900 static void qede_gro_receive(struct qede_dev
*edev
,
901 struct qede_fastpath
*fp
,
905 /* FW can send a single MTU sized packet from gro flow
906 * due to aggregation timeout/last segment etc. which
907 * is not expected to be a gro packet. If a skb has zero
908 * frags then simply push it in the stack as non gso skb.
910 if (unlikely(!skb
->data_len
)) {
911 skb_shinfo(skb
)->gso_type
= 0;
912 skb_shinfo(skb
)->gso_size
= 0;
917 if (skb_shinfo(skb
)->gso_size
) {
918 skb_reset_network_header(skb
);
920 switch (skb
->protocol
) {
921 case htons(ETH_P_IP
):
922 qede_gro_ip_csum(skb
);
924 case htons(ETH_P_IPV6
):
925 qede_gro_ipv6_csum(skb
);
929 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
930 ntohs(skb
->protocol
));
936 skb_record_rx_queue(skb
, fp
->rxq
->rxq_id
);
937 qede_skb_receive(edev
, fp
, fp
->rxq
, skb
, vlan_tag
);
940 static inline void qede_tpa_cont(struct qede_dev
*edev
,
941 struct qede_rx_queue
*rxq
,
942 struct eth_fast_path_rx_tpa_cont_cqe
*cqe
)
946 for (i
= 0; cqe
->len_list
[i
]; i
++)
947 qede_fill_frag_skb(edev
, rxq
, cqe
->tpa_agg_index
,
948 le16_to_cpu(cqe
->len_list
[i
]));
952 "Strange - TPA cont with more than a single len_list entry\n");
955 static int qede_tpa_end(struct qede_dev
*edev
,
956 struct qede_fastpath
*fp
,
957 struct eth_fast_path_rx_tpa_end_cqe
*cqe
)
959 struct qede_rx_queue
*rxq
= fp
->rxq
;
960 struct qede_agg_info
*tpa_info
;
964 tpa_info
= &rxq
->tpa_info
[cqe
->tpa_agg_index
];
967 if (tpa_info
->buffer
.page_offset
== PAGE_SIZE
)
968 dma_unmap_page(rxq
->dev
, tpa_info
->buffer
.mapping
,
969 PAGE_SIZE
, rxq
->data_direction
);
971 for (i
= 0; cqe
->len_list
[i
]; i
++)
972 qede_fill_frag_skb(edev
, rxq
, cqe
->tpa_agg_index
,
973 le16_to_cpu(cqe
->len_list
[i
]));
976 "Strange - TPA emd with more than a single len_list entry\n");
978 if (unlikely(tpa_info
->state
!= QEDE_AGG_STATE_START
))
982 if (unlikely(cqe
->num_of_bds
!= tpa_info
->frag_id
+ 1))
984 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
985 cqe
->num_of_bds
, tpa_info
->frag_id
);
986 if (unlikely(skb
->len
!= le16_to_cpu(cqe
->total_packet_len
)))
988 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
989 le16_to_cpu(cqe
->total_packet_len
), skb
->len
);
991 /* Finalize the SKB */
992 skb
->protocol
= eth_type_trans(skb
, edev
->ndev
);
993 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
995 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
996 * to skb_shinfo(skb)->gso_segs
998 NAPI_GRO_CB(skb
)->count
= le16_to_cpu(cqe
->num_of_coalesced_segs
);
1000 qede_gro_receive(edev
, fp
, skb
, tpa_info
->vlan_tag
);
1002 tpa_info
->state
= QEDE_AGG_STATE_NONE
;
1006 tpa_info
->state
= QEDE_AGG_STATE_NONE
;
1008 if (tpa_info
->tpa_start_fail
) {
1009 qede_reuse_page(rxq
, &tpa_info
->buffer
);
1010 tpa_info
->tpa_start_fail
= false;
1013 dev_kfree_skb_any(tpa_info
->skb
);
1014 tpa_info
->skb
= NULL
;
1018 static u8
qede_check_notunn_csum(u16 flag
)
1023 if (flag
& (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK
<<
1024 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT
)) {
1025 csum_flag
|= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK
<<
1026 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT
;
1027 csum
= QEDE_CSUM_UNNECESSARY
;
1030 csum_flag
|= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK
<<
1031 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT
;
1033 if (csum_flag
& flag
)
1034 return QEDE_CSUM_ERROR
;
1039 static u8
qede_check_csum(u16 flag
)
1041 if (!qede_tunn_exist(flag
))
1042 return qede_check_notunn_csum(flag
);
1044 return qede_check_tunn_csum(flag
);
1047 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe
*cqe
,
1050 u8 tun_pars_flg
= cqe
->tunnel_pars_flags
.flags
;
1052 if ((tun_pars_flg
& (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK
<<
1053 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT
)) ||
1054 (flag
& (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK
<<
1055 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT
)))
1061 /* Return true iff packet is to be passed to stack */
1062 static bool qede_rx_xdp(struct qede_dev
*edev
,
1063 struct qede_fastpath
*fp
,
1064 struct qede_rx_queue
*rxq
,
1065 struct bpf_prog
*prog
,
1066 struct sw_rx_data
*bd
,
1067 struct eth_fast_path_rx_reg_cqe
*cqe
,
1068 u16
*data_offset
, u16
*len
)
1070 struct xdp_buff xdp
;
1071 enum xdp_action act
;
1073 xdp
.data_hard_start
= page_address(bd
->data
);
1074 xdp
.data
= xdp
.data_hard_start
+ *data_offset
;
1075 xdp_set_data_meta_invalid(&xdp
);
1076 xdp
.data_end
= xdp
.data
+ *len
;
1077 xdp
.rxq
= &rxq
->xdp_rxq
;
1079 /* Queues always have a full reset currently, so for the time
1080 * being until there's atomic program replace just mark read
1081 * side for map helpers.
1084 act
= bpf_prog_run_xdp(prog
, &xdp
);
1087 /* Recalculate, as XDP might have changed the headers */
1088 *data_offset
= xdp
.data
- xdp
.data_hard_start
;
1089 *len
= xdp
.data_end
- xdp
.data
;
1091 if (act
== XDP_PASS
)
1094 /* Count number of packets not to be passed to stack */
1099 /* We need the replacement buffer before transmit. */
1100 if (qede_alloc_rx_buffer(rxq
, true)) {
1101 qede_recycle_rx_bd_ring(rxq
, 1);
1102 trace_xdp_exception(edev
->ndev
, prog
, act
);
1106 /* Now if there's a transmission problem, we'd still have to
1107 * throw current buffer, as replacement was already allocated.
1109 if (qede_xdp_xmit(edev
, fp
, bd
, *data_offset
, *len
)) {
1110 dma_unmap_page(rxq
->dev
, bd
->mapping
,
1111 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
1112 __free_page(bd
->data
);
1113 trace_xdp_exception(edev
->ndev
, prog
, act
);
1116 /* Regardless, we've consumed an Rx BD */
1117 qede_rx_bd_ring_consume(rxq
);
1121 bpf_warn_invalid_xdp_action(act
);
1124 trace_xdp_exception(edev
->ndev
, prog
, act
);
1127 qede_recycle_rx_bd_ring(rxq
, cqe
->bd_num
);
1133 static int qede_rx_build_jumbo(struct qede_dev
*edev
,
1134 struct qede_rx_queue
*rxq
,
1135 struct sk_buff
*skb
,
1136 struct eth_fast_path_rx_reg_cqe
*cqe
,
1139 u16 pkt_len
= le16_to_cpu(cqe
->pkt_len
);
1140 struct sw_rx_data
*bd
;
1144 pkt_len
-= first_bd_len
;
1146 /* We've already used one BD for the SKB. Now take care of the rest */
1147 for (num_frags
= cqe
->bd_num
- 1; num_frags
> 0; num_frags
--) {
1148 u16 cur_size
= pkt_len
> rxq
->rx_buf_size
? rxq
->rx_buf_size
:
1151 if (unlikely(!cur_size
)) {
1153 "Still got %d BDs for mapping jumbo, but length became 0\n",
1158 /* We need a replacement buffer for each BD */
1159 if (unlikely(qede_alloc_rx_buffer(rxq
, true)))
1162 /* Now that we've allocated the replacement buffer,
1163 * we can safely consume the next BD and map it to the SKB.
1165 bd_cons_idx
= rxq
->sw_rx_cons
& NUM_RX_BDS_MAX
;
1166 bd
= &rxq
->sw_rx_ring
[bd_cons_idx
];
1167 qede_rx_bd_ring_consume(rxq
);
1169 dma_unmap_page(rxq
->dev
, bd
->mapping
,
1170 PAGE_SIZE
, DMA_FROM_DEVICE
);
1172 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
1173 bd
->data
, rxq
->rx_headroom
, cur_size
);
1175 skb
->truesize
+= PAGE_SIZE
;
1176 skb
->data_len
+= cur_size
;
1177 skb
->len
+= cur_size
;
1178 pkt_len
-= cur_size
;
1181 if (unlikely(pkt_len
))
1183 "Mapped all BDs of jumbo, but still have %d bytes\n",
1190 static int qede_rx_process_tpa_cqe(struct qede_dev
*edev
,
1191 struct qede_fastpath
*fp
,
1192 struct qede_rx_queue
*rxq
,
1193 union eth_rx_cqe
*cqe
,
1194 enum eth_rx_cqe_type type
)
1197 case ETH_RX_CQE_TYPE_TPA_START
:
1198 qede_tpa_start(edev
, rxq
, &cqe
->fast_path_tpa_start
);
1200 case ETH_RX_CQE_TYPE_TPA_CONT
:
1201 qede_tpa_cont(edev
, rxq
, &cqe
->fast_path_tpa_cont
);
1203 case ETH_RX_CQE_TYPE_TPA_END
:
1204 return qede_tpa_end(edev
, fp
, &cqe
->fast_path_tpa_end
);
1210 static int qede_rx_process_cqe(struct qede_dev
*edev
,
1211 struct qede_fastpath
*fp
,
1212 struct qede_rx_queue
*rxq
)
1214 struct bpf_prog
*xdp_prog
= READ_ONCE(rxq
->xdp_prog
);
1215 struct eth_fast_path_rx_reg_cqe
*fp_cqe
;
1216 u16 len
, pad
, bd_cons_idx
, parse_flag
;
1217 enum eth_rx_cqe_type cqe_type
;
1218 union eth_rx_cqe
*cqe
;
1219 struct sw_rx_data
*bd
;
1220 struct sk_buff
*skb
;
1224 /* Get the CQE from the completion ring */
1225 cqe
= (union eth_rx_cqe
*)qed_chain_consume(&rxq
->rx_comp_ring
);
1226 cqe_type
= cqe
->fast_path_regular
.type
;
1228 /* Process an unlikely slowpath event */
1229 if (unlikely(cqe_type
== ETH_RX_CQE_TYPE_SLOW_PATH
)) {
1230 struct eth_slow_path_rx_cqe
*sp_cqe
;
1232 sp_cqe
= (struct eth_slow_path_rx_cqe
*)cqe
;
1233 edev
->ops
->eth_cqe_completion(edev
->cdev
, fp
->id
, sp_cqe
);
1237 /* Handle TPA cqes */
1238 if (cqe_type
!= ETH_RX_CQE_TYPE_REGULAR
)
1239 return qede_rx_process_tpa_cqe(edev
, fp
, rxq
, cqe
, cqe_type
);
1241 /* Get the data from the SW ring; Consume it only after it's evident
1242 * we wouldn't recycle it.
1244 bd_cons_idx
= rxq
->sw_rx_cons
& NUM_RX_BDS_MAX
;
1245 bd
= &rxq
->sw_rx_ring
[bd_cons_idx
];
1247 fp_cqe
= &cqe
->fast_path_regular
;
1248 len
= le16_to_cpu(fp_cqe
->len_on_first_bd
);
1249 pad
= fp_cqe
->placement_offset
+ rxq
->rx_headroom
;
1251 /* Run eBPF program if one is attached */
1253 if (!qede_rx_xdp(edev
, fp
, rxq
, xdp_prog
, bd
, fp_cqe
,
1257 /* If this is an error packet then drop it */
1258 flags
= cqe
->fast_path_regular
.pars_flags
.flags
;
1259 parse_flag
= le16_to_cpu(flags
);
1261 csum_flag
= qede_check_csum(parse_flag
);
1262 if (unlikely(csum_flag
== QEDE_CSUM_ERROR
)) {
1263 if (qede_pkt_is_ip_fragmented(fp_cqe
, parse_flag
))
1266 rxq
->rx_hw_errors
++;
1269 /* Basic validation passed; Need to prepare an SKB. This would also
1270 * guarantee to finally consume the first BD upon success.
1272 skb
= qede_rx_build_skb(edev
, rxq
, bd
, len
, pad
);
1274 rxq
->rx_alloc_errors
++;
1275 qede_recycle_rx_bd_ring(rxq
, fp_cqe
->bd_num
);
1279 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1282 if (fp_cqe
->bd_num
> 1) {
1283 u16 unmapped_frags
= qede_rx_build_jumbo(edev
, rxq
, skb
,
1286 if (unlikely(unmapped_frags
> 0)) {
1287 qede_recycle_rx_bd_ring(rxq
, unmapped_frags
);
1288 dev_kfree_skb_any(skb
);
1293 /* The SKB contains all the data. Now prepare meta-magic */
1294 skb
->protocol
= eth_type_trans(skb
, edev
->ndev
);
1295 qede_get_rxhash(skb
, fp_cqe
->bitfields
, fp_cqe
->rss_hash
);
1296 qede_set_skb_csum(skb
, csum_flag
);
1297 skb_record_rx_queue(skb
, rxq
->rxq_id
);
1298 qede_ptp_record_rx_ts(edev
, cqe
, skb
);
1300 /* SKB is prepared - pass it to stack */
1301 qede_skb_receive(edev
, fp
, rxq
, skb
, le16_to_cpu(fp_cqe
->vlan_tag
));
1306 static int qede_rx_int(struct qede_fastpath
*fp
, int budget
)
1308 struct qede_rx_queue
*rxq
= fp
->rxq
;
1309 struct qede_dev
*edev
= fp
->edev
;
1310 int work_done
= 0, rcv_pkts
= 0;
1311 u16 hw_comp_cons
, sw_comp_cons
;
1313 hw_comp_cons
= le16_to_cpu(*rxq
->hw_cons_ptr
);
1314 sw_comp_cons
= qed_chain_get_cons_idx(&rxq
->rx_comp_ring
);
1316 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1317 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1318 * read before it is written by FW, then FW writes CQE and SB, and then
1319 * the CPU reads the hw_comp_cons, it will use an old CQE.
1323 /* Loop to complete all indicated BDs */
1324 while ((sw_comp_cons
!= hw_comp_cons
) && (work_done
< budget
)) {
1325 rcv_pkts
+= qede_rx_process_cqe(edev
, fp
, rxq
);
1326 qed_chain_recycle_consumed(&rxq
->rx_comp_ring
);
1327 sw_comp_cons
= qed_chain_get_cons_idx(&rxq
->rx_comp_ring
);
1331 rxq
->rcv_pkts
+= rcv_pkts
;
1333 /* Allocate replacement buffers */
1334 while (rxq
->num_rx_buffers
- rxq
->filled_buffers
)
1335 if (qede_alloc_rx_buffer(rxq
, false))
1338 /* Update producers */
1339 qede_update_rx_prod(edev
, rxq
);
1344 static bool qede_poll_is_more_work(struct qede_fastpath
*fp
)
1346 qed_sb_update_sb_idx(fp
->sb_info
);
1348 /* *_has_*_work() reads the status block, thus we need to ensure that
1349 * status block indices have been actually read (qed_sb_update_sb_idx)
1350 * prior to this check (*_has_*_work) so that we won't write the
1351 * "newer" value of the status block to HW (if there was a DMA right
1352 * after qede_has_rx_work and if there is no rmb, the memory reading
1353 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1354 * In this case there will never be another interrupt until there is
1355 * another update of the status block, while there is still unhandled
1360 if (likely(fp
->type
& QEDE_FASTPATH_RX
))
1361 if (qede_has_rx_work(fp
->rxq
))
1364 if (fp
->type
& QEDE_FASTPATH_XDP
)
1365 if (qede_txq_has_work(fp
->xdp_tx
))
1368 if (likely(fp
->type
& QEDE_FASTPATH_TX
)) {
1371 for_each_cos_in_txq(fp
->edev
, cos
) {
1372 if (qede_txq_has_work(&fp
->txq
[cos
]))
1380 /*********************
1381 * NDO & API related *
1382 *********************/
1383 int qede_poll(struct napi_struct
*napi
, int budget
)
1385 struct qede_fastpath
*fp
= container_of(napi
, struct qede_fastpath
,
1387 struct qede_dev
*edev
= fp
->edev
;
1388 int rx_work_done
= 0;
1390 if (likely(fp
->type
& QEDE_FASTPATH_TX
)) {
1393 for_each_cos_in_txq(fp
->edev
, cos
) {
1394 if (qede_txq_has_work(&fp
->txq
[cos
]))
1395 qede_tx_int(edev
, &fp
->txq
[cos
]);
1399 if ((fp
->type
& QEDE_FASTPATH_XDP
) && qede_txq_has_work(fp
->xdp_tx
))
1400 qede_xdp_tx_int(edev
, fp
->xdp_tx
);
1402 rx_work_done
= (likely(fp
->type
& QEDE_FASTPATH_RX
) &&
1403 qede_has_rx_work(fp
->rxq
)) ?
1404 qede_rx_int(fp
, budget
) : 0;
1405 if (rx_work_done
< budget
) {
1406 if (!qede_poll_is_more_work(fp
)) {
1407 napi_complete_done(napi
, rx_work_done
);
1409 /* Update and reenable interrupts */
1410 qed_sb_ack(fp
->sb_info
, IGU_INT_ENABLE
, 1);
1412 rx_work_done
= budget
;
1417 u16 xdp_prod
= qed_chain_get_prod_idx(&fp
->xdp_tx
->tx_pbl
);
1420 fp
->xdp_tx
->tx_db
.data
.bd_prod
= cpu_to_le16(xdp_prod
);
1421 qede_update_tx_producer(fp
->xdp_tx
);
1424 return rx_work_done
;
1427 irqreturn_t
qede_msix_fp_int(int irq
, void *fp_cookie
)
1429 struct qede_fastpath
*fp
= fp_cookie
;
1431 qed_sb_ack(fp
->sb_info
, IGU_INT_DISABLE
, 0 /*do not update*/);
1433 napi_schedule_irqoff(&fp
->napi
);
1437 /* Main transmit function */
1438 netdev_tx_t
qede_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
1440 struct qede_dev
*edev
= netdev_priv(ndev
);
1441 struct netdev_queue
*netdev_txq
;
1442 struct qede_tx_queue
*txq
;
1443 struct eth_tx_1st_bd
*first_bd
;
1444 struct eth_tx_2nd_bd
*second_bd
= NULL
;
1445 struct eth_tx_3rd_bd
*third_bd
= NULL
;
1446 struct eth_tx_bd
*tx_data_bd
= NULL
;
1447 u16 txq_index
, val
= 0;
1450 int rc
, frag_idx
= 0, ipv6_ext
= 0;
1454 bool data_split
= false;
1456 /* Get tx-queue context and netdev index */
1457 txq_index
= skb_get_queue_mapping(skb
);
1458 WARN_ON(txq_index
>= QEDE_TSS_COUNT(edev
) * edev
->dev_info
.num_tc
);
1459 txq
= QEDE_NDEV_TXQ_ID_TO_TXQ(edev
, txq_index
);
1460 netdev_txq
= netdev_get_tx_queue(ndev
, txq_index
);
1462 WARN_ON(qed_chain_get_elem_left(&txq
->tx_pbl
) < (MAX_SKB_FRAGS
+ 1));
1464 xmit_type
= qede_xmit_type(skb
, &ipv6_ext
);
1466 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1467 if (qede_pkt_req_lin(skb
, xmit_type
)) {
1468 if (skb_linearize(skb
)) {
1469 txq
->tx_mem_alloc_err
++;
1471 dev_kfree_skb_any(skb
);
1472 return NETDEV_TX_OK
;
1477 /* Fill the entry in the SW ring and the BDs in the FW ring */
1478 idx
= txq
->sw_tx_prod
;
1479 txq
->sw_tx_ring
.skbs
[idx
].skb
= skb
;
1480 first_bd
= (struct eth_tx_1st_bd
*)
1481 qed_chain_produce(&txq
->tx_pbl
);
1482 memset(first_bd
, 0, sizeof(*first_bd
));
1483 first_bd
->data
.bd_flags
.bitfields
=
1484 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT
;
1486 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
))
1487 qede_ptp_tx_ts(edev
, skb
);
1489 /* Map skb linear data for DMA and set in the first BD */
1490 mapping
= dma_map_single(txq
->dev
, skb
->data
,
1491 skb_headlen(skb
), DMA_TO_DEVICE
);
1492 if (unlikely(dma_mapping_error(txq
->dev
, mapping
))) {
1493 DP_NOTICE(edev
, "SKB mapping failed\n");
1494 qede_free_failed_tx_pkt(txq
, first_bd
, 0, false);
1495 qede_update_tx_producer(txq
);
1496 return NETDEV_TX_OK
;
1499 BD_SET_UNMAP_ADDR_LEN(first_bd
, mapping
, skb_headlen(skb
));
1501 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1504 if (unlikely((xmit_type
& XMIT_LSO
) | ipv6_ext
)) {
1505 second_bd
= (struct eth_tx_2nd_bd
*)
1506 qed_chain_produce(&txq
->tx_pbl
);
1507 memset(second_bd
, 0, sizeof(*second_bd
));
1510 third_bd
= (struct eth_tx_3rd_bd
*)
1511 qed_chain_produce(&txq
->tx_pbl
);
1512 memset(third_bd
, 0, sizeof(*third_bd
));
1515 /* We need to fill in additional data in second_bd... */
1516 tx_data_bd
= (struct eth_tx_bd
*)second_bd
;
1519 if (skb_vlan_tag_present(skb
)) {
1520 first_bd
->data
.vlan
= cpu_to_le16(skb_vlan_tag_get(skb
));
1521 first_bd
->data
.bd_flags
.bitfields
|=
1522 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT
;
1525 /* Fill the parsing flags & params according to the requested offload */
1526 if (xmit_type
& XMIT_L4_CSUM
) {
1527 /* We don't re-calculate IP checksum as it is already done by
1530 first_bd
->data
.bd_flags
.bitfields
|=
1531 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT
;
1533 if (xmit_type
& XMIT_ENC
) {
1534 first_bd
->data
.bd_flags
.bitfields
|=
1535 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT
;
1537 val
|= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT
);
1540 /* Legacy FW had flipped behavior in regard to this bit -
1541 * I.e., needed to set to prevent FW from touching encapsulated
1542 * packets when it didn't need to.
1544 if (unlikely(txq
->is_legacy
))
1545 val
^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT
);
1547 /* If the packet is IPv6 with extension header, indicate that
1548 * to FW and pass few params, since the device cracker doesn't
1549 * support parsing IPv6 with extension header/s.
1551 if (unlikely(ipv6_ext
))
1552 qede_set_params_for_ipv6_ext(skb
, second_bd
, third_bd
);
1555 if (xmit_type
& XMIT_LSO
) {
1556 first_bd
->data
.bd_flags
.bitfields
|=
1557 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT
);
1558 third_bd
->data
.lso_mss
=
1559 cpu_to_le16(skb_shinfo(skb
)->gso_size
);
1561 if (unlikely(xmit_type
& XMIT_ENC
)) {
1562 first_bd
->data
.bd_flags
.bitfields
|=
1563 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT
;
1565 if (xmit_type
& XMIT_ENC_GSO_L4_CSUM
) {
1566 u8 tmp
= ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT
;
1568 first_bd
->data
.bd_flags
.bitfields
|= 1 << tmp
;
1570 hlen
= qede_get_skb_hlen(skb
, true);
1572 first_bd
->data
.bd_flags
.bitfields
|=
1573 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT
;
1574 hlen
= qede_get_skb_hlen(skb
, false);
1577 /* @@@TBD - if will not be removed need to check */
1578 third_bd
->data
.bitfields
|=
1579 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT
);
1581 /* Make life easier for FW guys who can't deal with header and
1582 * data on same BD. If we need to split, use the second bd...
1584 if (unlikely(skb_headlen(skb
) > hlen
)) {
1585 DP_VERBOSE(edev
, NETIF_MSG_TX_QUEUED
,
1586 "TSO split header size is %d (%x:%x)\n",
1587 first_bd
->nbytes
, first_bd
->addr
.hi
,
1590 mapping
= HILO_U64(le32_to_cpu(first_bd
->addr
.hi
),
1591 le32_to_cpu(first_bd
->addr
.lo
)) +
1594 BD_SET_UNMAP_ADDR_LEN(tx_data_bd
, mapping
,
1595 le16_to_cpu(first_bd
->nbytes
) -
1598 /* this marks the BD as one that has no
1599 * individual mapping
1601 txq
->sw_tx_ring
.skbs
[idx
].flags
|= QEDE_TSO_SPLIT_BD
;
1603 first_bd
->nbytes
= cpu_to_le16(hlen
);
1605 tx_data_bd
= (struct eth_tx_bd
*)third_bd
;
1609 val
|= ((skb
->len
& ETH_TX_DATA_1ST_BD_PKT_LEN_MASK
) <<
1610 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT
);
1613 first_bd
->data
.bitfields
= cpu_to_le16(val
);
1615 /* Handle fragmented skb */
1616 /* special handle for frags inside 2nd and 3rd bds.. */
1617 while (tx_data_bd
&& frag_idx
< skb_shinfo(skb
)->nr_frags
) {
1618 rc
= map_frag_to_bd(txq
,
1619 &skb_shinfo(skb
)->frags
[frag_idx
],
1622 qede_free_failed_tx_pkt(txq
, first_bd
, nbd
, data_split
);
1623 qede_update_tx_producer(txq
);
1624 return NETDEV_TX_OK
;
1627 if (tx_data_bd
== (struct eth_tx_bd
*)second_bd
)
1628 tx_data_bd
= (struct eth_tx_bd
*)third_bd
;
1635 /* map last frags into 4th, 5th .... */
1636 for (; frag_idx
< skb_shinfo(skb
)->nr_frags
; frag_idx
++, nbd
++) {
1637 tx_data_bd
= (struct eth_tx_bd
*)
1638 qed_chain_produce(&txq
->tx_pbl
);
1640 memset(tx_data_bd
, 0, sizeof(*tx_data_bd
));
1642 rc
= map_frag_to_bd(txq
,
1643 &skb_shinfo(skb
)->frags
[frag_idx
],
1646 qede_free_failed_tx_pkt(txq
, first_bd
, nbd
, data_split
);
1647 qede_update_tx_producer(txq
);
1648 return NETDEV_TX_OK
;
1652 /* update the first BD with the actual num BDs */
1653 first_bd
->data
.nbds
= nbd
;
1655 netdev_tx_sent_queue(netdev_txq
, skb
->len
);
1657 skb_tx_timestamp(skb
);
1659 /* Advance packet producer only before sending the packet since mapping
1660 * of pages may fail.
1662 txq
->sw_tx_prod
= (txq
->sw_tx_prod
+ 1) % txq
->num_tx_buffers
;
1664 /* 'next page' entries are counted in the producer value */
1665 txq
->tx_db
.data
.bd_prod
=
1666 cpu_to_le16(qed_chain_get_prod_idx(&txq
->tx_pbl
));
1668 if (!skb
->xmit_more
|| netif_xmit_stopped(netdev_txq
))
1669 qede_update_tx_producer(txq
);
1671 if (unlikely(qed_chain_get_elem_left(&txq
->tx_pbl
)
1672 < (MAX_SKB_FRAGS
+ 1))) {
1674 qede_update_tx_producer(txq
);
1676 netif_tx_stop_queue(netdev_txq
);
1678 DP_VERBOSE(edev
, NETIF_MSG_TX_QUEUED
,
1679 "Stop queue was called\n");
1680 /* paired memory barrier is in qede_tx_int(), we have to keep
1681 * ordering of set_bit() in netif_tx_stop_queue() and read of
1686 if ((qed_chain_get_elem_left(&txq
->tx_pbl
) >=
1687 (MAX_SKB_FRAGS
+ 1)) &&
1688 (edev
->state
== QEDE_STATE_OPEN
)) {
1689 netif_tx_wake_queue(netdev_txq
);
1690 DP_VERBOSE(edev
, NETIF_MSG_TX_QUEUED
,
1691 "Wake queue was called\n");
1695 return NETDEV_TX_OK
;
1698 u16
qede_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
1699 struct net_device
*sb_dev
,
1700 select_queue_fallback_t fallback
)
1702 struct qede_dev
*edev
= netdev_priv(dev
);
1705 total_txq
= QEDE_TSS_COUNT(edev
) * edev
->dev_info
.num_tc
;
1707 return QEDE_TSS_COUNT(edev
) ?
1708 fallback(dev
, skb
, NULL
) % total_txq
: 0;
1711 /* 8B udp header + 8B base tunnel header + 32B option length */
1712 #define QEDE_MAX_TUN_HDR_LEN 48
1714 netdev_features_t
qede_features_check(struct sk_buff
*skb
,
1715 struct net_device
*dev
,
1716 netdev_features_t features
)
1718 if (skb
->encapsulation
) {
1721 switch (vlan_get_protocol(skb
)) {
1722 case htons(ETH_P_IP
):
1723 l4_proto
= ip_hdr(skb
)->protocol
;
1725 case htons(ETH_P_IPV6
):
1726 l4_proto
= ipv6_hdr(skb
)->nexthdr
;
1732 /* Disable offloads for geneve tunnels, as HW can't parse
1733 * the geneve header which has option length greater than 32b
1734 * and disable offloads for the ports which are not offloaded.
1736 if (l4_proto
== IPPROTO_UDP
) {
1737 struct qede_dev
*edev
= netdev_priv(dev
);
1738 u16 hdrlen
, vxln_port
, gnv_port
;
1740 hdrlen
= QEDE_MAX_TUN_HDR_LEN
;
1741 vxln_port
= edev
->vxlan_dst_port
;
1742 gnv_port
= edev
->geneve_dst_port
;
1744 if ((skb_inner_mac_header(skb
) -
1745 skb_transport_header(skb
)) > hdrlen
||
1746 (ntohs(udp_hdr(skb
)->dest
) != vxln_port
&&
1747 ntohs(udp_hdr(skb
)->dest
) != gnv_port
))
1748 return features
& ~(NETIF_F_CSUM_MASK
|