1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2001-2004 by David Brownell
6 /* this file is part of ehci-hcd.c */
8 /*-------------------------------------------------------------------------*/
11 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
13 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
14 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15 * buffers needed for the larger number). We use one QH per endpoint, queue
16 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
18 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19 * interrupts) needs careful scheduling. Performance improvements can be
20 * an ongoing challenge. That's in "ehci-sched.c".
22 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24 * (b) special fields in qh entries or (c) split iso entries. TTs will
25 * buffer low/full speed data so the host collects it at high speed.
28 /*-------------------------------------------------------------------------*/
30 /* fill a qtd, returning how much of the buffer we were able to queue up */
33 qtd_fill(struct ehci_hcd
*ehci
, struct ehci_qtd
*qtd
, dma_addr_t buf
,
34 size_t len
, int token
, int maxpacket
)
39 /* one buffer entry per 4K ... first might be short or unaligned */
40 qtd
->hw_buf
[0] = cpu_to_hc32(ehci
, (u32
)addr
);
41 qtd
->hw_buf_hi
[0] = cpu_to_hc32(ehci
, (u32
)(addr
>> 32));
42 count
= 0x1000 - (buf
& 0x0fff); /* rest of that page */
43 if (likely (len
< count
)) /* ... iff needed */
49 /* per-qtd limit: from 16K to 20K (best alignment) */
50 for (i
= 1; count
< len
&& i
< 5; i
++) {
52 qtd
->hw_buf
[i
] = cpu_to_hc32(ehci
, (u32
)addr
);
53 qtd
->hw_buf_hi
[i
] = cpu_to_hc32(ehci
,
56 if ((count
+ 0x1000) < len
)
62 /* short packets may only terminate transfers */
64 count
-= (count
% maxpacket
);
66 qtd
->hw_token
= cpu_to_hc32(ehci
, (count
<< 16) | token
);
72 /*-------------------------------------------------------------------------*/
75 qh_update (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
, struct ehci_qtd
*qtd
)
77 struct ehci_qh_hw
*hw
= qh
->hw
;
79 /* writes to an active overlay are unsafe */
80 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
82 hw
->hw_qtd_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
83 hw
->hw_alt_next
= EHCI_LIST_END(ehci
);
85 /* Except for control endpoints, we make hardware maintain data
86 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
87 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
90 if (!(hw
->hw_info1
& cpu_to_hc32(ehci
, QH_TOGGLE_CTL
))) {
91 unsigned is_out
, epnum
;
94 epnum
= (hc32_to_cpup(ehci
, &hw
->hw_info1
) >> 8) & 0x0f;
95 if (unlikely(!usb_gettoggle(qh
->ps
.udev
, epnum
, is_out
))) {
96 hw
->hw_token
&= ~cpu_to_hc32(ehci
, QTD_TOGGLE
);
97 usb_settoggle(qh
->ps
.udev
, epnum
, is_out
, 1);
101 hw
->hw_token
&= cpu_to_hc32(ehci
, QTD_TOGGLE
| QTD_STS_PING
);
104 /* if it weren't for a common silicon quirk (writing the dummy into the qh
105 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
106 * recovery (including urb dequeue) would need software changes to a QH...
109 qh_refresh (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
111 struct ehci_qtd
*qtd
;
113 qtd
= list_entry(qh
->qtd_list
.next
, struct ehci_qtd
, qtd_list
);
116 * first qtd may already be partially processed.
117 * If we come here during unlink, the QH overlay region
118 * might have reference to the just unlinked qtd. The
119 * qtd is updated in qh_completions(). Update the QH
122 if (qh
->hw
->hw_token
& ACTIVE_BIT(ehci
)) {
123 qh
->hw
->hw_qtd_next
= qtd
->hw_next
;
124 if (qh
->should_be_inactive
)
125 ehci_warn(ehci
, "qh %p should be inactive!\n", qh
);
127 qh_update(ehci
, qh
, qtd
);
129 qh
->should_be_inactive
= 0;
132 /*-------------------------------------------------------------------------*/
134 static void qh_link_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
136 static void ehci_clear_tt_buffer_complete(struct usb_hcd
*hcd
,
137 struct usb_host_endpoint
*ep
)
139 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
140 struct ehci_qh
*qh
= ep
->hcpriv
;
143 spin_lock_irqsave(&ehci
->lock
, flags
);
145 if (qh
->qh_state
== QH_STATE_IDLE
&& !list_empty(&qh
->qtd_list
)
146 && ehci
->rh_state
== EHCI_RH_RUNNING
)
147 qh_link_async(ehci
, qh
);
148 spin_unlock_irqrestore(&ehci
->lock
, flags
);
151 static void ehci_clear_tt_buffer(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
,
152 struct urb
*urb
, u32 token
)
155 /* If an async split transaction gets an error or is unlinked,
156 * the TT buffer may be left in an indeterminate state. We
157 * have to clear the TT buffer.
159 * Note: this routine is never called for Isochronous transfers.
161 if (urb
->dev
->tt
&& !usb_pipeint(urb
->pipe
) && !qh
->clearing_tt
) {
162 #ifdef CONFIG_DYNAMIC_DEBUG
163 struct usb_device
*tt
= urb
->dev
->tt
->hub
;
165 "clear tt buffer port %d, a%d ep%d t%08x\n",
166 urb
->dev
->ttport
, urb
->dev
->devnum
,
167 usb_pipeendpoint(urb
->pipe
), token
);
168 #endif /* CONFIG_DYNAMIC_DEBUG */
169 if (!ehci_is_TDI(ehci
)
170 || urb
->dev
->tt
->hub
!=
171 ehci_to_hcd(ehci
)->self
.root_hub
) {
172 if (usb_hub_clear_tt_buffer(urb
) == 0)
176 /* REVISIT ARC-derived cores don't clear the root
177 * hub TT buffer in this way...
183 static int qtd_copy_status (
184 struct ehci_hcd
*ehci
,
190 int status
= -EINPROGRESS
;
192 /* count IN/OUT bytes, not SETUP (even short packets) */
193 if (likely (QTD_PID (token
) != 2))
194 urb
->actual_length
+= length
- QTD_LENGTH (token
);
196 /* don't modify error codes */
197 if (unlikely(urb
->unlinked
))
200 /* force cleanup after short read; not always an error */
201 if (unlikely (IS_SHORT_READ (token
)))
204 /* serious "can't proceed" faults reported by the hardware */
205 if (token
& QTD_STS_HALT
) {
206 if (token
& QTD_STS_BABBLE
) {
207 /* FIXME "must" disable babbling device's port too */
209 /* CERR nonzero + halt --> stall */
210 } else if (QTD_CERR(token
)) {
213 /* In theory, more than one of the following bits can be set
214 * since they are sticky and the transaction is retried.
215 * Which to test first is rather arbitrary.
217 } else if (token
& QTD_STS_MMF
) {
218 /* fs/ls interrupt xfer missed the complete-split */
220 } else if (token
& QTD_STS_DBE
) {
221 status
= (QTD_PID (token
) == 1) /* IN ? */
222 ? -ENOSR
/* hc couldn't read data */
223 : -ECOMM
; /* hc couldn't write data */
224 } else if (token
& QTD_STS_XACT
) {
225 /* timeout, bad CRC, wrong PID, etc */
226 ehci_dbg(ehci
, "devpath %s ep%d%s 3strikes\n",
228 usb_pipeendpoint(urb
->pipe
),
229 usb_pipein(urb
->pipe
) ? "in" : "out");
231 } else { /* unknown */
240 ehci_urb_done(struct ehci_hcd
*ehci
, struct urb
*urb
, int status
)
242 if (usb_pipetype(urb
->pipe
) == PIPE_INTERRUPT
) {
243 /* ... update hc-wide periodic stats */
244 ehci_to_hcd(ehci
)->self
.bandwidth_int_reqs
--;
247 if (unlikely(urb
->unlinked
)) {
248 INCR(ehci
->stats
.unlink
);
250 /* report non-error and short read status as zero */
251 if (status
== -EINPROGRESS
|| status
== -EREMOTEIO
)
253 INCR(ehci
->stats
.complete
);
256 #ifdef EHCI_URB_TRACE
258 "%s %s urb %p ep%d%s status %d len %d/%d\n",
259 __func__
, urb
->dev
->devpath
, urb
,
260 usb_pipeendpoint (urb
->pipe
),
261 usb_pipein (urb
->pipe
) ? "in" : "out",
263 urb
->actual_length
, urb
->transfer_buffer_length
);
266 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
267 usb_hcd_giveback_urb(ehci_to_hcd(ehci
), urb
, status
);
270 static int qh_schedule (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
273 * Process and free completed qtds for a qh, returning URBs to drivers.
274 * Chases up to qh->hw_current. Returns nonzero if the caller should
278 qh_completions (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
280 struct ehci_qtd
*last
, *end
= qh
->dummy
;
281 struct list_head
*entry
, *tmp
;
285 struct ehci_qh_hw
*hw
= qh
->hw
;
287 /* completions (or tasks on other cpus) must never clobber HALT
288 * till we've gone through and cleaned everything up, even when
289 * they add urbs to this qh's queue or mark them for unlinking.
291 * NOTE: unlinking expects to be done in queue order.
293 * It's a bug for qh->qh_state to be anything other than
294 * QH_STATE_IDLE, unless our caller is scan_async() or
297 state
= qh
->qh_state
;
298 qh
->qh_state
= QH_STATE_COMPLETING
;
299 stopped
= (state
== QH_STATE_IDLE
);
303 last_status
= -EINPROGRESS
;
304 qh
->dequeue_during_giveback
= 0;
306 /* remove de-activated QTDs from front of queue.
307 * after faults (including short reads), cleanup this urb
308 * then let the queue advance.
309 * if queue is stopped, handles unlinks.
311 list_for_each_safe (entry
, tmp
, &qh
->qtd_list
) {
312 struct ehci_qtd
*qtd
;
316 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
319 /* clean up any state from previous QTD ...*/
321 if (likely (last
->urb
!= urb
)) {
322 ehci_urb_done(ehci
, last
->urb
, last_status
);
323 last_status
= -EINPROGRESS
;
325 ehci_qtd_free (ehci
, last
);
329 /* ignore urbs submitted during completions we reported */
333 /* hardware copies qtd out of qh overlay */
335 token
= hc32_to_cpu(ehci
, qtd
->hw_token
);
337 /* always clean up qtds the hc de-activated */
339 if ((token
& QTD_STS_ACTIVE
) == 0) {
341 /* Report Data Buffer Error: non-fatal but useful */
342 if (token
& QTD_STS_DBE
)
344 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
346 usb_endpoint_num(&urb
->ep
->desc
),
347 usb_endpoint_dir_in(&urb
->ep
->desc
) ? "in" : "out",
348 urb
->transfer_buffer_length
,
352 /* on STALL, error, and short reads this urb must
353 * complete and all its qtds must be recycled.
355 if ((token
& QTD_STS_HALT
) != 0) {
357 /* retry transaction errors until we
358 * reach the software xacterr limit
360 if ((token
& QTD_STS_XACT
) &&
361 QTD_CERR(token
) == 0 &&
362 ++qh
->xacterrs
< QH_XACTERR_MAX
&&
365 "detected XactErr len %zu/%zu retry %d\n",
366 qtd
->length
- QTD_LENGTH(token
), qtd
->length
, qh
->xacterrs
);
368 /* reset the token in the qtd and the
369 * qh overlay (which still contains
370 * the qtd) so that we pick up from
373 token
&= ~QTD_STS_HALT
;
374 token
|= QTD_STS_ACTIVE
|
375 (EHCI_TUNE_CERR
<< 10);
376 qtd
->hw_token
= cpu_to_hc32(ehci
,
379 hw
->hw_token
= cpu_to_hc32(ehci
,
384 qh
->unlink_reason
|= QH_UNLINK_HALTED
;
386 /* magic dummy for some short reads; qh won't advance.
387 * that silicon quirk can kick in with this dummy too.
389 * other short reads won't stop the queue, including
390 * control transfers (status stage handles that) or
391 * most other single-qtd reads ... the queue stops if
392 * URB_SHORT_NOT_OK was set so the driver submitting
393 * the urbs could clean it up.
395 } else if (IS_SHORT_READ (token
)
396 && !(qtd
->hw_alt_next
397 & EHCI_LIST_END(ehci
))) {
399 qh
->unlink_reason
|= QH_UNLINK_SHORT_READ
;
402 /* stop scanning when we reach qtds the hc is using */
403 } else if (likely (!stopped
404 && ehci
->rh_state
>= EHCI_RH_RUNNING
)) {
407 /* scan the whole queue for unlinks whenever it stops */
411 /* cancel everything if we halt, suspend, etc */
412 if (ehci
->rh_state
< EHCI_RH_RUNNING
) {
413 last_status
= -ESHUTDOWN
;
414 qh
->unlink_reason
|= QH_UNLINK_SHUTDOWN
;
417 /* this qtd is active; skip it unless a previous qtd
418 * for its urb faulted, or its urb was canceled.
420 else if (last_status
== -EINPROGRESS
&& !urb
->unlinked
)
424 * If this was the active qtd when the qh was unlinked
425 * and the overlay's token is active, then the overlay
426 * hasn't been written back to the qtd yet so use its
427 * token instead of the qtd's. After the qtd is
428 * processed and removed, the overlay won't be valid
431 if (state
== QH_STATE_IDLE
&&
432 qh
->qtd_list
.next
== &qtd
->qtd_list
&&
433 (hw
->hw_token
& ACTIVE_BIT(ehci
))) {
434 token
= hc32_to_cpu(ehci
, hw
->hw_token
);
435 hw
->hw_token
&= ~ACTIVE_BIT(ehci
);
436 qh
->should_be_inactive
= 1;
438 /* An unlink may leave an incomplete
439 * async transaction in the TT buffer.
440 * We have to clear it.
442 ehci_clear_tt_buffer(ehci
, qh
, urb
, token
);
446 /* unless we already know the urb's status, collect qtd status
447 * and update count of bytes transferred. in common short read
448 * cases with only one data qtd (including control transfers),
449 * queue processing won't halt. but with two or more qtds (for
450 * example, with a 32 KB transfer), when the first qtd gets a
451 * short read the second must be removed by hand.
453 if (last_status
== -EINPROGRESS
) {
454 last_status
= qtd_copy_status(ehci
, urb
,
456 if (last_status
== -EREMOTEIO
458 & EHCI_LIST_END(ehci
)))
459 last_status
= -EINPROGRESS
;
461 /* As part of low/full-speed endpoint-halt processing
462 * we must clear the TT buffer (11.17.5).
464 if (unlikely(last_status
!= -EINPROGRESS
&&
465 last_status
!= -EREMOTEIO
)) {
466 /* The TT's in some hubs malfunction when they
467 * receive this request following a STALL (they
468 * stop sending isochronous packets). Since a
469 * STALL can't leave the TT buffer in a busy
470 * state (if you believe Figures 11-48 - 11-51
471 * in the USB 2.0 spec), we won't clear the TT
472 * buffer in this case. Strictly speaking this
473 * is a violation of the spec.
475 if (last_status
!= -EPIPE
)
476 ehci_clear_tt_buffer(ehci
, qh
, urb
,
481 /* if we're removing something not at the queue head,
482 * patch the hardware queue pointer.
484 if (stopped
&& qtd
->qtd_list
.prev
!= &qh
->qtd_list
) {
485 last
= list_entry (qtd
->qtd_list
.prev
,
486 struct ehci_qtd
, qtd_list
);
487 last
->hw_next
= qtd
->hw_next
;
490 /* remove qtd; it's recycled after possible urb completion */
491 list_del (&qtd
->qtd_list
);
494 /* reinit the xacterr counter for the next qtd */
498 /* last urb's completion might still need calling */
499 if (likely (last
!= NULL
)) {
500 ehci_urb_done(ehci
, last
->urb
, last_status
);
501 ehci_qtd_free (ehci
, last
);
504 /* Do we need to rescan for URBs dequeued during a giveback? */
505 if (unlikely(qh
->dequeue_during_giveback
)) {
506 /* If the QH is already unlinked, do the rescan now. */
507 if (state
== QH_STATE_IDLE
)
510 /* Otherwise the caller must unlink the QH. */
513 /* restore original state; caller must unlink or relink */
514 qh
->qh_state
= state
;
516 /* be sure the hardware's done with the qh before refreshing
517 * it after fault cleanup, or recovering from silicon wrongly
518 * overlaying the dummy qtd (which reduces DMA chatter).
520 * We won't refresh a QH that's linked (after the HC
521 * stopped the queue). That avoids a race:
522 * - HC reads first part of QH;
523 * - CPU updates that first part and the token;
524 * - HC reads rest of that QH, including token
525 * Result: HC gets an inconsistent image, and then
526 * DMAs to/from the wrong memory (corrupting it).
528 * That should be rare for interrupt transfers,
529 * except maybe high bandwidth ...
531 if (stopped
!= 0 || hw
->hw_qtd_next
== EHCI_LIST_END(ehci
))
532 qh
->unlink_reason
|= QH_UNLINK_DUMMY_OVERLAY
;
534 /* Let the caller know if the QH needs to be unlinked. */
535 return qh
->unlink_reason
;
538 /*-------------------------------------------------------------------------*/
541 * reverse of qh_urb_transaction: free a list of TDs.
542 * used for cleanup after errors, before HC sees an URB's TDs.
544 static void qtd_list_free (
545 struct ehci_hcd
*ehci
,
547 struct list_head
*qtd_list
549 struct list_head
*entry
, *temp
;
551 list_for_each_safe (entry
, temp
, qtd_list
) {
552 struct ehci_qtd
*qtd
;
554 qtd
= list_entry (entry
, struct ehci_qtd
, qtd_list
);
555 list_del (&qtd
->qtd_list
);
556 ehci_qtd_free (ehci
, qtd
);
561 * create a list of filled qtds for this URB; won't link into qh.
563 static struct list_head
*
565 struct ehci_hcd
*ehci
,
567 struct list_head
*head
,
570 struct ehci_qtd
*qtd
, *qtd_prev
;
572 int len
, this_sg_len
, maxpacket
;
576 struct scatterlist
*sg
;
579 * URBs map to sequences of QTDs: one logical transaction
581 qtd
= ehci_qtd_alloc (ehci
, flags
);
584 list_add_tail (&qtd
->qtd_list
, head
);
587 token
= QTD_STS_ACTIVE
;
588 token
|= (EHCI_TUNE_CERR
<< 10);
589 /* for split transactions, SplitXState initialized to zero */
591 len
= urb
->transfer_buffer_length
;
592 is_input
= usb_pipein (urb
->pipe
);
593 if (usb_pipecontrol (urb
->pipe
)) {
595 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
596 sizeof (struct usb_ctrlrequest
),
597 token
| (2 /* "setup" */ << 8), 8);
599 /* ... and always at least one more pid */
602 qtd
= ehci_qtd_alloc (ehci
, flags
);
606 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
607 list_add_tail (&qtd
->qtd_list
, head
);
609 /* for zero length DATA stages, STATUS is always IN */
611 token
|= (1 /* "in" */ << 8);
615 * data transfer stage: buffer setup
617 i
= urb
->num_mapped_sgs
;
618 if (len
> 0 && i
> 0) {
620 buf
= sg_dma_address(sg
);
622 /* urb->transfer_buffer_length may be smaller than the
623 * size of the scatterlist (or vice versa)
625 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
628 buf
= urb
->transfer_dma
;
633 token
|= (1 /* "in" */ << 8);
634 /* else it's already initted to "out" pid (0 << 8) */
636 maxpacket
= usb_maxpacket(urb
->dev
, urb
->pipe
, !is_input
);
639 * buffer gets wrapped in one or more qtds;
640 * last one may be "short" (including zero len)
641 * and may serve as a control status ack
646 this_qtd_len
= qtd_fill(ehci
, qtd
, buf
, this_sg_len
, token
,
648 this_sg_len
-= this_qtd_len
;
653 * short reads advance to a "magic" dummy instead of the next
654 * qtd ... that forces the queue to stop, for manual cleanup.
655 * (this will usually be overridden later.)
658 qtd
->hw_alt_next
= ehci
->async
->hw
->hw_alt_next
;
660 /* qh makes control packets use qtd toggle; maybe switch it */
661 if ((maxpacket
& (this_qtd_len
+ (maxpacket
- 1))) == 0)
664 if (likely(this_sg_len
<= 0)) {
665 if (--i
<= 0 || len
<= 0)
668 buf
= sg_dma_address(sg
);
669 this_sg_len
= min_t(int, sg_dma_len(sg
), len
);
673 qtd
= ehci_qtd_alloc (ehci
, flags
);
677 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
678 list_add_tail (&qtd
->qtd_list
, head
);
682 * unless the caller requires manual cleanup after short reads,
683 * have the alt_next mechanism keep the queue running after the
684 * last data qtd (the only one, for control and most other cases).
686 if (likely ((urb
->transfer_flags
& URB_SHORT_NOT_OK
) == 0
687 || usb_pipecontrol (urb
->pipe
)))
688 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
691 * control requests may need a terminating data "status" ack;
692 * other OUT ones may need a terminating short packet
695 if (likely (urb
->transfer_buffer_length
!= 0)) {
698 if (usb_pipecontrol (urb
->pipe
)) {
700 token
^= 0x0100; /* "in" <--> "out" */
701 token
|= QTD_TOGGLE
; /* force DATA1 */
702 } else if (usb_pipeout(urb
->pipe
)
703 && (urb
->transfer_flags
& URB_ZERO_PACKET
)
704 && !(urb
->transfer_buffer_length
% maxpacket
)) {
709 qtd
= ehci_qtd_alloc (ehci
, flags
);
713 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
714 list_add_tail (&qtd
->qtd_list
, head
);
716 /* never any data in such packets */
717 qtd_fill(ehci
, qtd
, 0, 0, token
, 0);
721 /* by default, enable interrupt on urb completion */
722 if (likely (!(urb
->transfer_flags
& URB_NO_INTERRUPT
)))
723 qtd
->hw_token
|= cpu_to_hc32(ehci
, QTD_IOC
);
727 qtd_list_free (ehci
, urb
, head
);
731 /*-------------------------------------------------------------------------*/
733 // Would be best to create all qh's from config descriptors,
734 // when each interface/altsetting is established. Unlink
735 // any previous qh and cancel its urbs first; endpoints are
736 // implicitly reset then (data toggle too).
737 // That'd mean updating how usbcore talks to HCDs. (2.7?)
741 * Each QH holds a qtd list; a QH is used for everything except iso.
743 * For interrupt urbs, the scheduler must set the microframe scheduling
744 * mask(s) each time the QH gets scheduled. For highspeed, that's
745 * just one microframe in the s-mask. For split interrupt transactions
746 * there are additional complications: c-mask, maybe FSTNs.
748 static struct ehci_qh
*
750 struct ehci_hcd
*ehci
,
754 struct ehci_qh
*qh
= ehci_qh_alloc (ehci
, flags
);
755 struct usb_host_endpoint
*ep
;
756 u32 info1
= 0, info2
= 0;
760 struct usb_tt
*tt
= urb
->dev
->tt
;
761 struct ehci_qh_hw
*hw
;
767 * init endpoint/device data for this QH
769 info1
|= usb_pipeendpoint (urb
->pipe
) << 8;
770 info1
|= usb_pipedevice (urb
->pipe
) << 0;
772 is_input
= usb_pipein (urb
->pipe
);
773 type
= usb_pipetype (urb
->pipe
);
774 ep
= usb_pipe_endpoint (urb
->dev
, urb
->pipe
);
775 maxp
= usb_endpoint_maxp (&ep
->desc
);
776 mult
= usb_endpoint_maxp_mult (&ep
->desc
);
778 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
779 * acts like up to 3KB, but is built from smaller packets.
782 ehci_dbg(ehci
, "bogus qh maxpacket %d\n", maxp
);
786 /* Compute interrupt scheduling parameters just once, and save.
787 * - allowing for high bandwidth, how many nsec/uframe are used?
788 * - split transactions need a second CSPLIT uframe; same question
789 * - splits also need a schedule gap (for full/low speed I/O)
790 * - qh has a polling interval
792 * For control/bulk requests, the HC or TT handles these.
794 if (type
== PIPE_INTERRUPT
) {
797 qh
->ps
.usecs
= NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH
,
798 is_input
, 0, mult
* maxp
));
799 qh
->ps
.phase
= NO_FRAME
;
801 if (urb
->dev
->speed
== USB_SPEED_HIGH
) {
805 if (urb
->interval
> 1 && urb
->interval
< 8) {
806 /* NOTE interval 2 or 4 uframes could work.
807 * But interval 1 scheduling is simpler, and
808 * includes high bandwidth.
811 } else if (urb
->interval
> ehci
->periodic_size
<< 3) {
812 urb
->interval
= ehci
->periodic_size
<< 3;
814 qh
->ps
.period
= urb
->interval
>> 3;
816 /* period for bandwidth allocation */
817 tmp
= min_t(unsigned, EHCI_BANDWIDTH_SIZE
,
818 1 << (urb
->ep
->desc
.bInterval
- 1));
820 /* Allow urb->interval to override */
821 qh
->ps
.bw_uperiod
= min_t(unsigned, tmp
, urb
->interval
);
822 qh
->ps
.bw_period
= qh
->ps
.bw_uperiod
>> 3;
826 /* gap is f(FS/LS transfer times) */
827 qh
->gap_uf
= 1 + usb_calc_bus_time (urb
->dev
->speed
,
828 is_input
, 0, maxp
) / (125 * 1000);
830 /* FIXME this just approximates SPLIT/CSPLIT times */
831 if (is_input
) { // SPLIT, gap, CSPLIT+DATA
832 qh
->ps
.c_usecs
= qh
->ps
.usecs
+ HS_USECS(0);
833 qh
->ps
.usecs
= HS_USECS(1);
834 } else { // SPLIT+DATA, gap, CSPLIT
835 qh
->ps
.usecs
+= HS_USECS(1);
836 qh
->ps
.c_usecs
= HS_USECS(0);
839 think_time
= tt
? tt
->think_time
: 0;
840 qh
->ps
.tt_usecs
= NS_TO_US(think_time
+
841 usb_calc_bus_time (urb
->dev
->speed
,
843 if (urb
->interval
> ehci
->periodic_size
)
844 urb
->interval
= ehci
->periodic_size
;
845 qh
->ps
.period
= urb
->interval
;
847 /* period for bandwidth allocation */
848 tmp
= min_t(unsigned, EHCI_BANDWIDTH_FRAMES
,
849 urb
->ep
->desc
.bInterval
);
850 tmp
= rounddown_pow_of_two(tmp
);
852 /* Allow urb->interval to override */
853 qh
->ps
.bw_period
= min_t(unsigned, tmp
, urb
->interval
);
854 qh
->ps
.bw_uperiod
= qh
->ps
.bw_period
<< 3;
858 /* support for tt scheduling, and access to toggles */
859 qh
->ps
.udev
= urb
->dev
;
863 switch (urb
->dev
->speed
) {
865 info1
|= QH_LOW_SPEED
;
869 /* EPS 0 means "full" */
870 if (type
!= PIPE_INTERRUPT
)
871 info1
|= (EHCI_TUNE_RL_TT
<< 28);
872 if (type
== PIPE_CONTROL
) {
873 info1
|= QH_CONTROL_EP
; /* for TT */
874 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
878 info2
|= (EHCI_TUNE_MULT_TT
<< 30);
880 /* Some Freescale processors have an erratum in which the
881 * port number in the queue head was 0..N-1 instead of 1..N.
883 if (ehci_has_fsl_portno_bug(ehci
))
884 info2
|= (urb
->dev
->ttport
-1) << 23;
886 info2
|= urb
->dev
->ttport
<< 23;
888 /* set the address of the TT; for TDI's integrated
889 * root hub tt, leave it zeroed.
891 if (tt
&& tt
->hub
!= ehci_to_hcd(ehci
)->self
.root_hub
)
892 info2
|= tt
->hub
->devnum
<< 16;
894 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
898 case USB_SPEED_HIGH
: /* no TT involved */
899 info1
|= QH_HIGH_SPEED
;
900 if (type
== PIPE_CONTROL
) {
901 info1
|= (EHCI_TUNE_RL_HS
<< 28);
902 info1
|= 64 << 16; /* usb2 fixed maxpacket */
903 info1
|= QH_TOGGLE_CTL
; /* toggle from qtd */
904 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
905 } else if (type
== PIPE_BULK
) {
906 info1
|= (EHCI_TUNE_RL_HS
<< 28);
907 /* The USB spec says that high speed bulk endpoints
908 * always use 512 byte maxpacket. But some device
909 * vendors decided to ignore that, and MSFT is happy
910 * to help them do so. So now people expect to use
911 * such nonconformant devices with Linux too; sigh.
914 info2
|= (EHCI_TUNE_MULT_HS
<< 30);
915 } else { /* PIPE_INTERRUPT */
921 ehci_dbg(ehci
, "bogus dev %p speed %d\n", urb
->dev
,
924 qh_destroy(ehci
, qh
);
928 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
930 /* init as live, toggle clear */
931 qh
->qh_state
= QH_STATE_IDLE
;
933 hw
->hw_info1
= cpu_to_hc32(ehci
, info1
);
934 hw
->hw_info2
= cpu_to_hc32(ehci
, info2
);
935 qh
->is_out
= !is_input
;
936 usb_settoggle (urb
->dev
, usb_pipeendpoint (urb
->pipe
), !is_input
, 1);
940 /*-------------------------------------------------------------------------*/
942 static void enable_async(struct ehci_hcd
*ehci
)
944 if (ehci
->async_count
++)
947 /* Stop waiting to turn off the async schedule */
948 ehci
->enabled_hrtimer_events
&= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC
);
950 /* Don't start the schedule until ASS is 0 */
952 turn_on_io_watchdog(ehci
);
955 static void disable_async(struct ehci_hcd
*ehci
)
957 if (--ehci
->async_count
)
960 /* The async schedule and unlink lists are supposed to be empty */
961 WARN_ON(ehci
->async
->qh_next
.qh
|| !list_empty(&ehci
->async_unlink
) ||
962 !list_empty(&ehci
->async_idle
));
964 /* Don't turn off the schedule until ASS is 1 */
968 /* move qh (and its qtds) onto async queue; maybe enable queue. */
970 static void qh_link_async (struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
972 __hc32 dma
= QH_NEXT(ehci
, qh
->qh_dma
);
973 struct ehci_qh
*head
;
975 /* Don't link a QH if there's a Clear-TT-Buffer pending */
976 if (unlikely(qh
->clearing_tt
))
979 WARN_ON(qh
->qh_state
!= QH_STATE_IDLE
);
981 /* clear halt and/or toggle; and maybe recover from silicon quirk */
982 qh_refresh(ehci
, qh
);
984 /* splice right after start */
986 qh
->qh_next
= head
->qh_next
;
987 qh
->hw
->hw_next
= head
->hw
->hw_next
;
990 head
->qh_next
.qh
= qh
;
991 head
->hw
->hw_next
= dma
;
993 qh
->qh_state
= QH_STATE_LINKED
;
995 qh
->unlink_reason
= 0;
996 /* qtd completions reported later by interrupt */
1001 /*-------------------------------------------------------------------------*/
1004 * For control/bulk/interrupt, return QH with these TDs appended.
1005 * Allocates and initializes the QH if necessary.
1006 * Returns null if it can't allocate a QH it needs to.
1007 * If the QH has TDs (urbs) already, that's great.
1009 static struct ehci_qh
*qh_append_tds (
1010 struct ehci_hcd
*ehci
,
1012 struct list_head
*qtd_list
,
1017 struct ehci_qh
*qh
= NULL
;
1018 __hc32 qh_addr_mask
= cpu_to_hc32(ehci
, 0x7f);
1020 qh
= (struct ehci_qh
*) *ptr
;
1021 if (unlikely (qh
== NULL
)) {
1022 /* can't sleep here, we have ehci->lock... */
1023 qh
= qh_make (ehci
, urb
, GFP_ATOMIC
);
1026 if (likely (qh
!= NULL
)) {
1027 struct ehci_qtd
*qtd
;
1029 if (unlikely (list_empty (qtd_list
)))
1032 qtd
= list_entry (qtd_list
->next
, struct ehci_qtd
,
1035 /* control qh may need patching ... */
1036 if (unlikely (epnum
== 0)) {
1038 /* usb_reset_device() briefly reverts to address 0 */
1039 if (usb_pipedevice (urb
->pipe
) == 0)
1040 qh
->hw
->hw_info1
&= ~qh_addr_mask
;
1043 /* just one way to queue requests: swap with the dummy qtd.
1044 * only hc or qh_refresh() ever modify the overlay.
1046 if (likely (qtd
!= NULL
)) {
1047 struct ehci_qtd
*dummy
;
1051 /* to avoid racing the HC, use the dummy td instead of
1052 * the first td of our list (becomes new dummy). both
1053 * tds stay deactivated until we're done, when the
1054 * HC is allowed to fetch the old dummy (4.10.2).
1056 token
= qtd
->hw_token
;
1057 qtd
->hw_token
= HALT_BIT(ehci
);
1061 dma
= dummy
->qtd_dma
;
1063 dummy
->qtd_dma
= dma
;
1065 list_del (&qtd
->qtd_list
);
1066 list_add (&dummy
->qtd_list
, qtd_list
);
1067 list_splice_tail(qtd_list
, &qh
->qtd_list
);
1069 ehci_qtd_init(ehci
, qtd
, qtd
->qtd_dma
);
1072 /* hc must see the new dummy at list end */
1074 qtd
= list_entry (qh
->qtd_list
.prev
,
1075 struct ehci_qtd
, qtd_list
);
1076 qtd
->hw_next
= QTD_NEXT(ehci
, dma
);
1078 /* let the hc process these next qtds */
1080 dummy
->hw_token
= token
;
1088 /*-------------------------------------------------------------------------*/
1092 struct ehci_hcd
*ehci
,
1094 struct list_head
*qtd_list
,
1098 unsigned long flags
;
1099 struct ehci_qh
*qh
= NULL
;
1102 epnum
= urb
->ep
->desc
.bEndpointAddress
;
1104 #ifdef EHCI_URB_TRACE
1106 struct ehci_qtd
*qtd
;
1107 qtd
= list_entry(qtd_list
->next
, struct ehci_qtd
, qtd_list
);
1109 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1110 __func__
, urb
->dev
->devpath
, urb
,
1111 epnum
& 0x0f, (epnum
& USB_DIR_IN
) ? "in" : "out",
1112 urb
->transfer_buffer_length
,
1113 qtd
, urb
->ep
->hcpriv
);
1117 spin_lock_irqsave (&ehci
->lock
, flags
);
1118 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci
)))) {
1122 rc
= usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci
), urb
);
1126 qh
= qh_append_tds(ehci
, urb
, qtd_list
, epnum
, &urb
->ep
->hcpriv
);
1127 if (unlikely(qh
== NULL
)) {
1128 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci
), urb
);
1133 /* Control/bulk operations through TTs don't need scheduling,
1134 * the HC and TT handle it when the TT has a buffer ready.
1136 if (likely (qh
->qh_state
== QH_STATE_IDLE
))
1137 qh_link_async(ehci
, qh
);
1139 spin_unlock_irqrestore (&ehci
->lock
, flags
);
1140 if (unlikely (qh
== NULL
))
1141 qtd_list_free (ehci
, urb
, qtd_list
);
1145 /*-------------------------------------------------------------------------*/
1146 #ifdef CONFIG_USB_HCD_TEST_MODE
1148 * This function creates the qtds and submits them for the
1149 * SINGLE_STEP_SET_FEATURE Test.
1150 * This is done in two parts: first SETUP req for GetDesc is sent then
1151 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1153 * is_setup : i/p arguement decides which of the two stage needs to be
1154 * performed; TRUE - SETUP and FALSE - IN+STATUS
1155 * Returns 0 if success
1157 static int submit_single_step_set_feature(
1158 struct usb_hcd
*hcd
,
1162 struct ehci_hcd
*ehci
= hcd_to_ehci(hcd
);
1163 struct list_head qtd_list
;
1164 struct list_head
*head
;
1166 struct ehci_qtd
*qtd
, *qtd_prev
;
1171 INIT_LIST_HEAD(&qtd_list
);
1174 /* URBs map to sequences of QTDs: one logical transaction */
1175 qtd
= ehci_qtd_alloc(ehci
, GFP_KERNEL
);
1178 list_add_tail(&qtd
->qtd_list
, head
);
1181 token
= QTD_STS_ACTIVE
;
1182 token
|= (EHCI_TUNE_CERR
<< 10);
1184 len
= urb
->transfer_buffer_length
;
1186 * Check if the request is to perform just the SETUP stage (getDesc)
1187 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1188 * 15 secs after the setup
1191 /* SETUP pid, and interrupt after SETUP completion */
1192 qtd_fill(ehci
, qtd
, urb
->setup_dma
,
1193 sizeof(struct usb_ctrlrequest
),
1194 QTD_IOC
| token
| (2 /* "setup" */ << 8), 8);
1196 submit_async(ehci
, urb
, &qtd_list
, GFP_ATOMIC
);
1197 return 0; /*Return now; we shall come back after 15 seconds*/
1201 * IN: data transfer stage: buffer setup : start the IN txn phase for
1202 * the get_Desc SETUP which was sent 15seconds back
1204 token
^= QTD_TOGGLE
; /*We need to start IN with DATA-1 Pid-sequence*/
1205 buf
= urb
->transfer_dma
;
1207 token
|= (1 /* "in" */ << 8); /*This is IN stage*/
1209 maxpacket
= usb_maxpacket(urb
->dev
, urb
->pipe
, 0);
1211 qtd_fill(ehci
, qtd
, buf
, len
, token
, maxpacket
);
1214 * Our IN phase shall always be a short read; so keep the queue running
1215 * and let it advance to the next qtd which zero length OUT status
1217 qtd
->hw_alt_next
= EHCI_LIST_END(ehci
);
1219 /* STATUS stage for GetDesc control request */
1220 token
^= 0x0100; /* "in" <--> "out" */
1221 token
|= QTD_TOGGLE
; /* force DATA1 */
1224 qtd
= ehci_qtd_alloc(ehci
, GFP_ATOMIC
);
1228 qtd_prev
->hw_next
= QTD_NEXT(ehci
, qtd
->qtd_dma
);
1229 list_add_tail(&qtd
->qtd_list
, head
);
1231 /* Interrupt after STATUS completion */
1232 qtd_fill(ehci
, qtd
, 0, 0, token
| QTD_IOC
, 0);
1234 submit_async(ehci
, urb
, &qtd_list
, GFP_KERNEL
);
1239 qtd_list_free(ehci
, urb
, head
);
1242 #endif /* CONFIG_USB_HCD_TEST_MODE */
1244 /*-------------------------------------------------------------------------*/
1246 static void single_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1248 struct ehci_qh
*prev
;
1250 /* Add to the end of the list of QHs waiting for the next IAAD */
1251 qh
->qh_state
= QH_STATE_UNLINK_WAIT
;
1252 list_add_tail(&qh
->unlink_node
, &ehci
->async_unlink
);
1254 /* Unlink it from the schedule */
1256 while (prev
->qh_next
.qh
!= qh
)
1257 prev
= prev
->qh_next
.qh
;
1259 prev
->hw
->hw_next
= qh
->hw
->hw_next
;
1260 prev
->qh_next
= qh
->qh_next
;
1261 if (ehci
->qh_scan_next
== qh
)
1262 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1265 static void start_iaa_cycle(struct ehci_hcd
*ehci
)
1267 /* If the controller isn't running, we don't have to wait for it */
1268 if (unlikely(ehci
->rh_state
< EHCI_RH_RUNNING
)) {
1269 end_unlink_async(ehci
);
1271 /* Otherwise start a new IAA cycle if one isn't already running */
1272 } else if (ehci
->rh_state
== EHCI_RH_RUNNING
&&
1273 !ehci
->iaa_in_progress
) {
1275 /* Make sure the unlinks are all visible to the hardware */
1278 ehci_writel(ehci
, ehci
->command
| CMD_IAAD
,
1279 &ehci
->regs
->command
);
1280 ehci_readl(ehci
, &ehci
->regs
->command
);
1281 ehci
->iaa_in_progress
= true;
1282 ehci_enable_event(ehci
, EHCI_HRTIMER_IAA_WATCHDOG
, true);
1286 static void end_iaa_cycle(struct ehci_hcd
*ehci
)
1288 if (ehci
->has_synopsys_hc_bug
)
1289 ehci_writel(ehci
, (u32
) ehci
->async
->qh_dma
,
1290 &ehci
->regs
->async_next
);
1292 /* The current IAA cycle has ended */
1293 ehci
->iaa_in_progress
= false;
1295 end_unlink_async(ehci
);
1298 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1300 static void end_unlink_async(struct ehci_hcd
*ehci
)
1305 if (list_empty(&ehci
->async_unlink
))
1307 qh
= list_first_entry(&ehci
->async_unlink
, struct ehci_qh
,
1308 unlink_node
); /* QH whose IAA cycle just ended */
1311 * If async_unlinking is set then this routine is already running,
1312 * either on the stack or on another CPU.
1314 early_exit
= ehci
->async_unlinking
;
1316 /* If the controller isn't running, process all the waiting QHs */
1317 if (ehci
->rh_state
< EHCI_RH_RUNNING
)
1318 list_splice_tail_init(&ehci
->async_unlink
, &ehci
->async_idle
);
1321 * Intel (?) bug: The HC can write back the overlay region even
1322 * after the IAA interrupt occurs. In self-defense, always go
1323 * through two IAA cycles for each QH.
1325 else if (qh
->qh_state
== QH_STATE_UNLINK
) {
1327 * Second IAA cycle has finished. Process only the first
1328 * waiting QH (NVIDIA (?) bug).
1330 list_move_tail(&qh
->unlink_node
, &ehci
->async_idle
);
1334 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1335 * after the IAA interrupt occurs. To prevent problems, QHs that
1336 * may still be active will wait until 2 ms have passed with no
1337 * change to the hw_current and hw_token fields (this delay occurs
1338 * between the two IAA cycles).
1340 * The EHCI spec (4.8.2) says that active QHs must not be removed
1341 * from the async schedule and recommends waiting until the QH
1342 * goes inactive. This is ridiculous because the QH will _never_
1343 * become inactive if the endpoint NAKs indefinitely.
1346 /* Some reasons for unlinking guarantee the QH can't be active */
1347 else if (qh
->unlink_reason
& (QH_UNLINK_HALTED
|
1348 QH_UNLINK_SHORT_READ
| QH_UNLINK_DUMMY_OVERLAY
))
1351 /* The QH can't be active if the queue was and still is empty... */
1352 else if ((qh
->unlink_reason
& QH_UNLINK_QUEUE_EMPTY
) &&
1353 list_empty(&qh
->qtd_list
))
1356 /* ... or if the QH has halted */
1357 else if (qh
->hw
->hw_token
& cpu_to_hc32(ehci
, QTD_STS_HALT
))
1360 /* Otherwise we have to wait until the QH stops changing */
1362 __hc32 qh_current
, qh_token
;
1364 qh_current
= qh
->hw
->hw_current
;
1365 qh_token
= qh
->hw
->hw_token
;
1366 if (qh_current
!= ehci
->old_current
||
1367 qh_token
!= ehci
->old_token
) {
1368 ehci
->old_current
= qh_current
;
1369 ehci
->old_token
= qh_token
;
1370 ehci_enable_event(ehci
,
1371 EHCI_HRTIMER_ACTIVE_UNLINK
, true);
1375 qh
->qh_state
= QH_STATE_UNLINK
;
1378 ehci
->old_current
= ~0; /* Prepare for next QH */
1380 /* Start a new IAA cycle if any QHs are waiting for it */
1381 if (!list_empty(&ehci
->async_unlink
))
1382 start_iaa_cycle(ehci
);
1385 * Don't allow nesting or concurrent calls,
1386 * or wait for the second IAA cycle for the next QH.
1391 /* Process the idle QHs */
1392 ehci
->async_unlinking
= true;
1393 while (!list_empty(&ehci
->async_idle
)) {
1394 qh
= list_first_entry(&ehci
->async_idle
, struct ehci_qh
,
1396 list_del(&qh
->unlink_node
);
1398 qh
->qh_state
= QH_STATE_IDLE
;
1399 qh
->qh_next
.qh
= NULL
;
1401 if (!list_empty(&qh
->qtd_list
))
1402 qh_completions(ehci
, qh
);
1403 if (!list_empty(&qh
->qtd_list
) &&
1404 ehci
->rh_state
== EHCI_RH_RUNNING
)
1405 qh_link_async(ehci
, qh
);
1406 disable_async(ehci
);
1408 ehci
->async_unlinking
= false;
1411 static void start_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
);
1413 static void unlink_empty_async(struct ehci_hcd
*ehci
)
1416 struct ehci_qh
*qh_to_unlink
= NULL
;
1419 /* Find the last async QH which has been empty for a timer cycle */
1420 for (qh
= ehci
->async
->qh_next
.qh
; qh
; qh
= qh
->qh_next
.qh
) {
1421 if (list_empty(&qh
->qtd_list
) &&
1422 qh
->qh_state
== QH_STATE_LINKED
) {
1424 if (qh
->unlink_cycle
!= ehci
->async_unlink_cycle
)
1429 /* If nothing else is being unlinked, unlink the last empty QH */
1430 if (list_empty(&ehci
->async_unlink
) && qh_to_unlink
) {
1431 qh_to_unlink
->unlink_reason
|= QH_UNLINK_QUEUE_EMPTY
;
1432 start_unlink_async(ehci
, qh_to_unlink
);
1436 /* Other QHs will be handled later */
1438 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1439 ++ehci
->async_unlink_cycle
;
1445 /* The root hub is suspended; unlink all the async QHs */
1446 static void unlink_empty_async_suspended(struct ehci_hcd
*ehci
)
1450 while (ehci
->async
->qh_next
.qh
) {
1451 qh
= ehci
->async
->qh_next
.qh
;
1452 WARN_ON(!list_empty(&qh
->qtd_list
));
1453 single_unlink_async(ehci
, qh
);
1459 /* makes sure the async qh will become idle */
1460 /* caller must own ehci->lock */
1462 static void start_unlink_async(struct ehci_hcd
*ehci
, struct ehci_qh
*qh
)
1464 /* If the QH isn't linked then there's nothing we can do. */
1465 if (qh
->qh_state
!= QH_STATE_LINKED
)
1468 single_unlink_async(ehci
, qh
);
1469 start_iaa_cycle(ehci
);
1472 /*-------------------------------------------------------------------------*/
1474 static void scan_async (struct ehci_hcd
*ehci
)
1477 bool check_unlinks_later
= false;
1479 ehci
->qh_scan_next
= ehci
->async
->qh_next
.qh
;
1480 while (ehci
->qh_scan_next
) {
1481 qh
= ehci
->qh_scan_next
;
1482 ehci
->qh_scan_next
= qh
->qh_next
.qh
;
1484 /* clean any finished work for this qh */
1485 if (!list_empty(&qh
->qtd_list
)) {
1489 * Unlinks could happen here; completion reporting
1490 * drops the lock. That's why ehci->qh_scan_next
1491 * always holds the next qh to scan; if the next qh
1492 * gets unlinked then ehci->qh_scan_next is adjusted
1493 * in single_unlink_async().
1495 temp
= qh_completions(ehci
, qh
);
1496 if (unlikely(temp
)) {
1497 start_unlink_async(ehci
, qh
);
1498 } else if (list_empty(&qh
->qtd_list
)
1499 && qh
->qh_state
== QH_STATE_LINKED
) {
1500 qh
->unlink_cycle
= ehci
->async_unlink_cycle
;
1501 check_unlinks_later
= true;
1507 * Unlink empty entries, reducing DMA usage as well
1508 * as HCD schedule-scanning costs. Delay for any qh
1509 * we just scanned, there's a not-unusual case that it
1510 * doesn't stay idle for long.
1512 if (check_unlinks_later
&& ehci
->rh_state
== EHCI_RH_RUNNING
&&
1513 !(ehci
->enabled_hrtimer_events
&
1514 BIT(EHCI_HRTIMER_ASYNC_UNLINKS
))) {
1515 ehci_enable_event(ehci
, EHCI_HRTIMER_ASYNC_UNLINKS
, true);
1516 ++ehci
->async_unlink_cycle
;