Merge branch 'clockevents/4.21' of http://git.linaro.org/people/daniel.lezcano/linux...
[linux/fpc-iii.git] / arch / x86 / kernel / traps.c
blob9b7c4ca8f0a7358ce19741de1c875a75e8f52f8e
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
63 #include <asm/umip.h>
65 #ifdef CONFIG_X86_64
66 #include <asm/x86_init.h>
67 #include <asm/pgalloc.h>
68 #include <asm/proto.h>
69 #else
70 #include <asm/processor-flags.h>
71 #include <asm/setup.h>
72 #include <asm/proto.h>
73 #endif
75 DECLARE_BITMAP(system_vectors, NR_VECTORS);
77 static inline void cond_local_irq_enable(struct pt_regs *regs)
79 if (regs->flags & X86_EFLAGS_IF)
80 local_irq_enable();
83 static inline void cond_local_irq_disable(struct pt_regs *regs)
85 if (regs->flags & X86_EFLAGS_IF)
86 local_irq_disable();
90 * In IST context, we explicitly disable preemption. This serves two
91 * purposes: it makes it much less likely that we would accidentally
92 * schedule in IST context and it will force a warning if we somehow
93 * manage to schedule by accident.
95 void ist_enter(struct pt_regs *regs)
97 if (user_mode(regs)) {
98 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
99 } else {
101 * We might have interrupted pretty much anything. In
102 * fact, if we're a machine check, we can even interrupt
103 * NMI processing. We don't want in_nmi() to return true,
104 * but we need to notify RCU.
106 rcu_nmi_enter();
109 preempt_disable();
111 /* This code is a bit fragile. Test it. */
112 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
115 void ist_exit(struct pt_regs *regs)
117 preempt_enable_no_resched();
119 if (!user_mode(regs))
120 rcu_nmi_exit();
124 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
125 * @regs: regs passed to the IST exception handler
127 * IST exception handlers normally cannot schedule. As a special
128 * exception, if the exception interrupted userspace code (i.e.
129 * user_mode(regs) would return true) and the exception was not
130 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
131 * begins a non-atomic section within an ist_enter()/ist_exit() region.
132 * Callers are responsible for enabling interrupts themselves inside
133 * the non-atomic section, and callers must call ist_end_non_atomic()
134 * before ist_exit().
136 void ist_begin_non_atomic(struct pt_regs *regs)
138 BUG_ON(!user_mode(regs));
141 * Sanity check: we need to be on the normal thread stack. This
142 * will catch asm bugs and any attempt to use ist_preempt_enable
143 * from double_fault.
145 BUG_ON(!on_thread_stack());
147 preempt_enable_no_resched();
151 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
153 * Ends a non-atomic section started with ist_begin_non_atomic().
155 void ist_end_non_atomic(void)
157 preempt_disable();
160 int is_valid_bugaddr(unsigned long addr)
162 unsigned short ud;
164 if (addr < TASK_SIZE_MAX)
165 return 0;
167 if (probe_kernel_address((unsigned short *)addr, ud))
168 return 0;
170 return ud == INSN_UD0 || ud == INSN_UD2;
173 int fixup_bug(struct pt_regs *regs, int trapnr)
175 if (trapnr != X86_TRAP_UD)
176 return 0;
178 switch (report_bug(regs->ip, regs)) {
179 case BUG_TRAP_TYPE_NONE:
180 case BUG_TRAP_TYPE_BUG:
181 break;
183 case BUG_TRAP_TYPE_WARN:
184 regs->ip += LEN_UD2;
185 return 1;
188 return 0;
191 static nokprobe_inline int
192 do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
193 struct pt_regs *regs, long error_code)
195 if (v8086_mode(regs)) {
197 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
198 * On nmi (interrupt 2), do_trap should not be called.
200 if (trapnr < X86_TRAP_UD) {
201 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
202 error_code, trapnr))
203 return 0;
205 } else if (!user_mode(regs)) {
206 if (fixup_exception(regs, trapnr, error_code, 0))
207 return 0;
209 tsk->thread.error_code = error_code;
210 tsk->thread.trap_nr = trapnr;
211 die(str, regs, error_code);
215 * We want error_code and trap_nr set for userspace faults and
216 * kernelspace faults which result in die(), but not
217 * kernelspace faults which are fixed up. die() gives the
218 * process no chance to handle the signal and notice the
219 * kernel fault information, so that won't result in polluting
220 * the information about previously queued, but not yet
221 * delivered, faults. See also do_general_protection below.
223 tsk->thread.error_code = error_code;
224 tsk->thread.trap_nr = trapnr;
226 return -1;
229 static void show_signal(struct task_struct *tsk, int signr,
230 const char *type, const char *desc,
231 struct pt_regs *regs, long error_code)
233 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
234 printk_ratelimit()) {
235 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
236 tsk->comm, task_pid_nr(tsk), type, desc,
237 regs->ip, regs->sp, error_code);
238 print_vma_addr(KERN_CONT " in ", regs->ip);
239 pr_cont("\n");
243 static void
244 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
245 long error_code, int sicode, void __user *addr)
247 struct task_struct *tsk = current;
250 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
251 return;
253 show_signal(tsk, signr, "trap ", str, regs, error_code);
255 if (!sicode)
256 force_sig(signr, tsk);
257 else
258 force_sig_fault(signr, sicode, addr, tsk);
260 NOKPROBE_SYMBOL(do_trap);
262 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
263 unsigned long trapnr, int signr, int sicode, void __user *addr)
265 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
268 * WARN*()s end up here; fix them up before we call the
269 * notifier chain.
271 if (!user_mode(regs) && fixup_bug(regs, trapnr))
272 return;
274 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
275 NOTIFY_STOP) {
276 cond_local_irq_enable(regs);
277 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
281 #define IP ((void __user *)uprobe_get_trap_addr(regs))
282 #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \
283 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
285 do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \
288 DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error)
289 DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow)
290 DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op)
291 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun)
292 DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS)
293 DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present)
294 DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment)
295 DO_ERROR(X86_TRAP_AC, SIGBUS, BUS_ADRALN, NULL, "alignment check", alignment_check)
296 #undef IP
298 #ifdef CONFIG_VMAP_STACK
299 __visible void __noreturn handle_stack_overflow(const char *message,
300 struct pt_regs *regs,
301 unsigned long fault_address)
303 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
304 (void *)fault_address, current->stack,
305 (char *)current->stack + THREAD_SIZE - 1);
306 die(message, regs, 0);
308 /* Be absolutely certain we don't return. */
309 panic("%s", message);
311 #endif
313 #ifdef CONFIG_X86_64
314 /* Runs on IST stack */
315 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
317 static const char str[] = "double fault";
318 struct task_struct *tsk = current;
319 #ifdef CONFIG_VMAP_STACK
320 unsigned long cr2;
321 #endif
323 #ifdef CONFIG_X86_ESPFIX64
324 extern unsigned char native_irq_return_iret[];
327 * If IRET takes a non-IST fault on the espfix64 stack, then we
328 * end up promoting it to a doublefault. In that case, take
329 * advantage of the fact that we're not using the normal (TSS.sp0)
330 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
331 * and then modify our own IRET frame so that, when we return,
332 * we land directly at the #GP(0) vector with the stack already
333 * set up according to its expectations.
335 * The net result is that our #GP handler will think that we
336 * entered from usermode with the bad user context.
338 * No need for ist_enter here because we don't use RCU.
340 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
341 regs->cs == __KERNEL_CS &&
342 regs->ip == (unsigned long)native_irq_return_iret)
344 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
347 * regs->sp points to the failing IRET frame on the
348 * ESPFIX64 stack. Copy it to the entry stack. This fills
349 * in gpregs->ss through gpregs->ip.
352 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
353 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
356 * Adjust our frame so that we return straight to the #GP
357 * vector with the expected RSP value. This is safe because
358 * we won't enable interupts or schedule before we invoke
359 * general_protection, so nothing will clobber the stack
360 * frame we just set up.
362 * We will enter general_protection with kernel GSBASE,
363 * which is what the stub expects, given that the faulting
364 * RIP will be the IRET instruction.
366 regs->ip = (unsigned long)general_protection;
367 regs->sp = (unsigned long)&gpregs->orig_ax;
369 return;
371 #endif
373 ist_enter(regs);
374 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
376 tsk->thread.error_code = error_code;
377 tsk->thread.trap_nr = X86_TRAP_DF;
379 #ifdef CONFIG_VMAP_STACK
381 * If we overflow the stack into a guard page, the CPU will fail
382 * to deliver #PF and will send #DF instead. Similarly, if we
383 * take any non-IST exception while too close to the bottom of
384 * the stack, the processor will get a page fault while
385 * delivering the exception and will generate a double fault.
387 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
388 * Page-Fault Exception (#PF):
390 * Processors update CR2 whenever a page fault is detected. If a
391 * second page fault occurs while an earlier page fault is being
392 * delivered, the faulting linear address of the second fault will
393 * overwrite the contents of CR2 (replacing the previous
394 * address). These updates to CR2 occur even if the page fault
395 * results in a double fault or occurs during the delivery of a
396 * double fault.
398 * The logic below has a small possibility of incorrectly diagnosing
399 * some errors as stack overflows. For example, if the IDT or GDT
400 * gets corrupted such that #GP delivery fails due to a bad descriptor
401 * causing #GP and we hit this condition while CR2 coincidentally
402 * points to the stack guard page, we'll think we overflowed the
403 * stack. Given that we're going to panic one way or another
404 * if this happens, this isn't necessarily worth fixing.
406 * If necessary, we could improve the test by only diagnosing
407 * a stack overflow if the saved RSP points within 47 bytes of
408 * the bottom of the stack: if RSP == tsk_stack + 48 and we
409 * take an exception, the stack is already aligned and there
410 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
411 * possible error code, so a stack overflow would *not* double
412 * fault. With any less space left, exception delivery could
413 * fail, and, as a practical matter, we've overflowed the
414 * stack even if the actual trigger for the double fault was
415 * something else.
417 cr2 = read_cr2();
418 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
419 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
420 #endif
422 #ifdef CONFIG_DOUBLEFAULT
423 df_debug(regs, error_code);
424 #endif
426 * This is always a kernel trap and never fixable (and thus must
427 * never return).
429 for (;;)
430 die(str, regs, error_code);
432 #endif
434 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
436 const struct mpx_bndcsr *bndcsr;
438 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
439 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
440 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
441 return;
442 cond_local_irq_enable(regs);
444 if (!user_mode(regs))
445 die("bounds", regs, error_code);
447 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
448 /* The exception is not from Intel MPX */
449 goto exit_trap;
453 * We need to look at BNDSTATUS to resolve this exception.
454 * A NULL here might mean that it is in its 'init state',
455 * which is all zeros which indicates MPX was not
456 * responsible for the exception.
458 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
459 if (!bndcsr)
460 goto exit_trap;
462 trace_bounds_exception_mpx(bndcsr);
464 * The error code field of the BNDSTATUS register communicates status
465 * information of a bound range exception #BR or operation involving
466 * bound directory.
468 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
469 case 2: /* Bound directory has invalid entry. */
470 if (mpx_handle_bd_fault())
471 goto exit_trap;
472 break; /* Success, it was handled */
473 case 1: /* Bound violation. */
475 struct task_struct *tsk = current;
476 struct mpx_fault_info mpx;
478 if (mpx_fault_info(&mpx, regs)) {
480 * We failed to decode the MPX instruction. Act as if
481 * the exception was not caused by MPX.
483 goto exit_trap;
486 * Success, we decoded the instruction and retrieved
487 * an 'mpx' containing the address being accessed
488 * which caused the exception. This information
489 * allows and application to possibly handle the
490 * #BR exception itself.
492 if (!do_trap_no_signal(tsk, X86_TRAP_BR, "bounds", regs,
493 error_code))
494 break;
496 show_signal(tsk, SIGSEGV, "trap ", "bounds", regs, error_code);
498 force_sig_bnderr(mpx.addr, mpx.lower, mpx.upper);
499 break;
501 case 0: /* No exception caused by Intel MPX operations. */
502 goto exit_trap;
503 default:
504 die("bounds", regs, error_code);
507 return;
509 exit_trap:
511 * This path out is for all the cases where we could not
512 * handle the exception in some way (like allocating a
513 * table or telling userspace about it. We will also end
514 * up here if the kernel has MPX turned off at compile
515 * time..
517 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL);
520 dotraplinkage void
521 do_general_protection(struct pt_regs *regs, long error_code)
523 const char *desc = "general protection fault";
524 struct task_struct *tsk;
526 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
527 cond_local_irq_enable(regs);
529 if (static_cpu_has(X86_FEATURE_UMIP)) {
530 if (user_mode(regs) && fixup_umip_exception(regs))
531 return;
534 if (v8086_mode(regs)) {
535 local_irq_enable();
536 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
537 return;
540 tsk = current;
541 if (!user_mode(regs)) {
542 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
543 return;
545 tsk->thread.error_code = error_code;
546 tsk->thread.trap_nr = X86_TRAP_GP;
549 * To be potentially processing a kprobe fault and to
550 * trust the result from kprobe_running(), we have to
551 * be non-preemptible.
553 if (!preemptible() && kprobe_running() &&
554 kprobe_fault_handler(regs, X86_TRAP_GP))
555 return;
557 if (notify_die(DIE_GPF, desc, regs, error_code,
558 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
559 die(desc, regs, error_code);
560 return;
563 tsk->thread.error_code = error_code;
564 tsk->thread.trap_nr = X86_TRAP_GP;
566 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
568 force_sig(SIGSEGV, tsk);
570 NOKPROBE_SYMBOL(do_general_protection);
572 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
574 #ifdef CONFIG_DYNAMIC_FTRACE
576 * ftrace must be first, everything else may cause a recursive crash.
577 * See note by declaration of modifying_ftrace_code in ftrace.c
579 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
580 ftrace_int3_handler(regs))
581 return;
582 #endif
583 if (poke_int3_handler(regs))
584 return;
587 * Use ist_enter despite the fact that we don't use an IST stack.
588 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
589 * mode or even during context tracking state changes.
591 * This means that we can't schedule. That's okay.
593 ist_enter(regs);
594 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
595 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
596 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
597 SIGTRAP) == NOTIFY_STOP)
598 goto exit;
599 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
601 #ifdef CONFIG_KPROBES
602 if (kprobe_int3_handler(regs))
603 goto exit;
604 #endif
606 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
607 SIGTRAP) == NOTIFY_STOP)
608 goto exit;
610 cond_local_irq_enable(regs);
611 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL);
612 cond_local_irq_disable(regs);
614 exit:
615 ist_exit(regs);
617 NOKPROBE_SYMBOL(do_int3);
619 #ifdef CONFIG_X86_64
621 * Help handler running on a per-cpu (IST or entry trampoline) stack
622 * to switch to the normal thread stack if the interrupted code was in
623 * user mode. The actual stack switch is done in entry_64.S
625 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
627 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
628 if (regs != eregs)
629 *regs = *eregs;
630 return regs;
632 NOKPROBE_SYMBOL(sync_regs);
634 struct bad_iret_stack {
635 void *error_entry_ret;
636 struct pt_regs regs;
639 asmlinkage __visible notrace
640 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
643 * This is called from entry_64.S early in handling a fault
644 * caused by a bad iret to user mode. To handle the fault
645 * correctly, we want to move our stack frame to where it would
646 * be had we entered directly on the entry stack (rather than
647 * just below the IRET frame) and we want to pretend that the
648 * exception came from the IRET target.
650 struct bad_iret_stack *new_stack =
651 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
653 /* Copy the IRET target to the new stack. */
654 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
656 /* Copy the remainder of the stack from the current stack. */
657 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
659 BUG_ON(!user_mode(&new_stack->regs));
660 return new_stack;
662 NOKPROBE_SYMBOL(fixup_bad_iret);
663 #endif
665 static bool is_sysenter_singlestep(struct pt_regs *regs)
668 * We don't try for precision here. If we're anywhere in the region of
669 * code that can be single-stepped in the SYSENTER entry path, then
670 * assume that this is a useless single-step trap due to SYSENTER
671 * being invoked with TF set. (We don't know in advance exactly
672 * which instructions will be hit because BTF could plausibly
673 * be set.)
675 #ifdef CONFIG_X86_32
676 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
677 (unsigned long)__end_SYSENTER_singlestep_region -
678 (unsigned long)__begin_SYSENTER_singlestep_region;
679 #elif defined(CONFIG_IA32_EMULATION)
680 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
681 (unsigned long)__end_entry_SYSENTER_compat -
682 (unsigned long)entry_SYSENTER_compat;
683 #else
684 return false;
685 #endif
689 * Our handling of the processor debug registers is non-trivial.
690 * We do not clear them on entry and exit from the kernel. Therefore
691 * it is possible to get a watchpoint trap here from inside the kernel.
692 * However, the code in ./ptrace.c has ensured that the user can
693 * only set watchpoints on userspace addresses. Therefore the in-kernel
694 * watchpoint trap can only occur in code which is reading/writing
695 * from user space. Such code must not hold kernel locks (since it
696 * can equally take a page fault), therefore it is safe to call
697 * force_sig_info even though that claims and releases locks.
699 * Code in ./signal.c ensures that the debug control register
700 * is restored before we deliver any signal, and therefore that
701 * user code runs with the correct debug control register even though
702 * we clear it here.
704 * Being careful here means that we don't have to be as careful in a
705 * lot of more complicated places (task switching can be a bit lazy
706 * about restoring all the debug state, and ptrace doesn't have to
707 * find every occurrence of the TF bit that could be saved away even
708 * by user code)
710 * May run on IST stack.
712 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
714 struct task_struct *tsk = current;
715 int user_icebp = 0;
716 unsigned long dr6;
717 int si_code;
719 ist_enter(regs);
721 get_debugreg(dr6, 6);
723 * The Intel SDM says:
725 * Certain debug exceptions may clear bits 0-3. The remaining
726 * contents of the DR6 register are never cleared by the
727 * processor. To avoid confusion in identifying debug
728 * exceptions, debug handlers should clear the register before
729 * returning to the interrupted task.
731 * Keep it simple: clear DR6 immediately.
733 set_debugreg(0, 6);
735 /* Filter out all the reserved bits which are preset to 1 */
736 dr6 &= ~DR6_RESERVED;
739 * The SDM says "The processor clears the BTF flag when it
740 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
741 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
743 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
745 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
746 is_sysenter_singlestep(regs))) {
747 dr6 &= ~DR_STEP;
748 if (!dr6)
749 goto exit;
751 * else we might have gotten a single-step trap and hit a
752 * watchpoint at the same time, in which case we should fall
753 * through and handle the watchpoint.
758 * If dr6 has no reason to give us about the origin of this trap,
759 * then it's very likely the result of an icebp/int01 trap.
760 * User wants a sigtrap for that.
762 if (!dr6 && user_mode(regs))
763 user_icebp = 1;
765 /* Store the virtualized DR6 value */
766 tsk->thread.debugreg6 = dr6;
768 #ifdef CONFIG_KPROBES
769 if (kprobe_debug_handler(regs))
770 goto exit;
771 #endif
773 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
774 SIGTRAP) == NOTIFY_STOP)
775 goto exit;
778 * Let others (NMI) know that the debug stack is in use
779 * as we may switch to the interrupt stack.
781 debug_stack_usage_inc();
783 /* It's safe to allow irq's after DR6 has been saved */
784 cond_local_irq_enable(regs);
786 if (v8086_mode(regs)) {
787 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
788 X86_TRAP_DB);
789 cond_local_irq_disable(regs);
790 debug_stack_usage_dec();
791 goto exit;
794 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
796 * Historical junk that used to handle SYSENTER single-stepping.
797 * This should be unreachable now. If we survive for a while
798 * without anyone hitting this warning, we'll turn this into
799 * an oops.
801 tsk->thread.debugreg6 &= ~DR_STEP;
802 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
803 regs->flags &= ~X86_EFLAGS_TF;
805 si_code = get_si_code(tsk->thread.debugreg6);
806 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
807 send_sigtrap(tsk, regs, error_code, si_code);
808 cond_local_irq_disable(regs);
809 debug_stack_usage_dec();
811 exit:
812 ist_exit(regs);
814 NOKPROBE_SYMBOL(do_debug);
817 * Note that we play around with the 'TS' bit in an attempt to get
818 * the correct behaviour even in the presence of the asynchronous
819 * IRQ13 behaviour
821 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
823 struct task_struct *task = current;
824 struct fpu *fpu = &task->thread.fpu;
825 int si_code;
826 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
827 "simd exception";
829 cond_local_irq_enable(regs);
831 if (!user_mode(regs)) {
832 if (fixup_exception(regs, trapnr, error_code, 0))
833 return;
835 task->thread.error_code = error_code;
836 task->thread.trap_nr = trapnr;
838 if (notify_die(DIE_TRAP, str, regs, error_code,
839 trapnr, SIGFPE) != NOTIFY_STOP)
840 die(str, regs, error_code);
841 return;
845 * Save the info for the exception handler and clear the error.
847 fpu__save(fpu);
849 task->thread.trap_nr = trapnr;
850 task->thread.error_code = error_code;
852 si_code = fpu__exception_code(fpu, trapnr);
853 /* Retry when we get spurious exceptions: */
854 if (!si_code)
855 return;
857 force_sig_fault(SIGFPE, si_code,
858 (void __user *)uprobe_get_trap_addr(regs), task);
861 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
863 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
864 math_error(regs, error_code, X86_TRAP_MF);
867 dotraplinkage void
868 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
870 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
871 math_error(regs, error_code, X86_TRAP_XF);
874 dotraplinkage void
875 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
877 cond_local_irq_enable(regs);
880 dotraplinkage void
881 do_device_not_available(struct pt_regs *regs, long error_code)
883 unsigned long cr0;
885 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
887 #ifdef CONFIG_MATH_EMULATION
888 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
889 struct math_emu_info info = { };
891 cond_local_irq_enable(regs);
893 info.regs = regs;
894 math_emulate(&info);
895 return;
897 #endif
899 /* This should not happen. */
900 cr0 = read_cr0();
901 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
902 /* Try to fix it up and carry on. */
903 write_cr0(cr0 & ~X86_CR0_TS);
904 } else {
906 * Something terrible happened, and we're better off trying
907 * to kill the task than getting stuck in a never-ending
908 * loop of #NM faults.
910 die("unexpected #NM exception", regs, error_code);
913 NOKPROBE_SYMBOL(do_device_not_available);
915 #ifdef CONFIG_X86_32
916 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
918 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
919 local_irq_enable();
921 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
922 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
923 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
924 ILL_BADSTK, (void __user *)NULL);
927 #endif
929 void __init trap_init(void)
931 /* Init cpu_entry_area before IST entries are set up */
932 setup_cpu_entry_areas();
934 idt_setup_traps();
937 * Set the IDT descriptor to a fixed read-only location, so that the
938 * "sidt" instruction will not leak the location of the kernel, and
939 * to defend the IDT against arbitrary memory write vulnerabilities.
940 * It will be reloaded in cpu_init() */
941 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
942 PAGE_KERNEL_RO);
943 idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
946 * Should be a barrier for any external CPU state:
948 cpu_init();
950 idt_setup_ist_traps();
952 x86_init.irqs.trap_init();
954 idt_setup_debugidt_traps();