2 * Copyright (C) 2015 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
10 * DOC: VC4 plane module
12 * Each DRM plane is a layer of pixels being scanned out by the HVS.
14 * At atomic modeset check time, we compute the HVS display element
15 * state that would be necessary for displaying the plane (giving us a
16 * chance to figure out if a plane configuration is invalid), then at
17 * atomic flush time the CRTC will ask us to write our element state
18 * into the region of the HVS that it has allocated for us.
23 #include "drm_atomic_helper.h"
24 #include "drm_fb_cma_helper.h"
25 #include "drm_plane_helper.h"
27 enum vc4_scaling_mode
{
33 struct vc4_plane_state
{
34 struct drm_plane_state base
;
35 /* System memory copy of the display list for this element, computed
36 * at atomic_check time.
39 u32 dlist_size
; /* Number of dwords allocated for the display list */
40 u32 dlist_count
; /* Number of used dwords in the display list. */
42 /* Offset in the dlist to various words, for pageflip or
49 /* Offset where the plane's dlist was last stored in the
50 * hardware at vc4_crtc_atomic_flush() time.
52 u32 __iomem
*hw_dlist
;
54 /* Clipped coordinates of the plane on the display. */
55 int crtc_x
, crtc_y
, crtc_w
, crtc_h
;
56 /* Clipped area being scanned from in the FB. */
59 u32 src_w
[2], src_h
[2];
61 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
62 enum vc4_scaling_mode x_scaling
[2], y_scaling
[2];
66 /* Offset to start scanning out from the start of the plane's
71 /* Our allocation in LBM for temporary storage during scaling. */
72 struct drm_mm_node lbm
;
75 static inline struct vc4_plane_state
*
76 to_vc4_plane_state(struct drm_plane_state
*state
)
78 return (struct vc4_plane_state
*)state
;
81 static const struct hvs_format
{
82 u32 drm
; /* DRM_FORMAT_* */
83 u32 hvs
; /* HVS_FORMAT_* */
89 .drm
= DRM_FORMAT_XRGB8888
, .hvs
= HVS_PIXEL_FORMAT_RGBA8888
,
90 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= false,
93 .drm
= DRM_FORMAT_ARGB8888
, .hvs
= HVS_PIXEL_FORMAT_RGBA8888
,
94 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= true,
97 .drm
= DRM_FORMAT_ABGR8888
, .hvs
= HVS_PIXEL_FORMAT_RGBA8888
,
98 .pixel_order
= HVS_PIXEL_ORDER_ARGB
, .has_alpha
= true,
101 .drm
= DRM_FORMAT_XBGR8888
, .hvs
= HVS_PIXEL_FORMAT_RGBA8888
,
102 .pixel_order
= HVS_PIXEL_ORDER_ARGB
, .has_alpha
= false,
105 .drm
= DRM_FORMAT_RGB565
, .hvs
= HVS_PIXEL_FORMAT_RGB565
,
106 .pixel_order
= HVS_PIXEL_ORDER_XRGB
, .has_alpha
= false,
109 .drm
= DRM_FORMAT_BGR565
, .hvs
= HVS_PIXEL_FORMAT_RGB565
,
110 .pixel_order
= HVS_PIXEL_ORDER_XBGR
, .has_alpha
= false,
113 .drm
= DRM_FORMAT_ARGB1555
, .hvs
= HVS_PIXEL_FORMAT_RGBA5551
,
114 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= true,
117 .drm
= DRM_FORMAT_XRGB1555
, .hvs
= HVS_PIXEL_FORMAT_RGBA5551
,
118 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= false,
121 .drm
= DRM_FORMAT_YUV422
,
122 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE
,
125 .drm
= DRM_FORMAT_YVU422
,
126 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE
,
130 .drm
= DRM_FORMAT_YUV420
,
131 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE
,
134 .drm
= DRM_FORMAT_YVU420
,
135 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE
,
139 .drm
= DRM_FORMAT_NV12
,
140 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE
,
143 .drm
= DRM_FORMAT_NV16
,
144 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE
,
148 static const struct hvs_format
*vc4_get_hvs_format(u32 drm_format
)
152 for (i
= 0; i
< ARRAY_SIZE(hvs_formats
); i
++) {
153 if (hvs_formats
[i
].drm
== drm_format
)
154 return &hvs_formats
[i
];
160 static enum vc4_scaling_mode
vc4_get_scaling_mode(u32 src
, u32 dst
)
163 return VC4_SCALING_PPF
;
165 return VC4_SCALING_TPZ
;
167 return VC4_SCALING_NONE
;
170 static bool plane_enabled(struct drm_plane_state
*state
)
172 return state
->fb
&& state
->crtc
;
175 static struct drm_plane_state
*vc4_plane_duplicate_state(struct drm_plane
*plane
)
177 struct vc4_plane_state
*vc4_state
;
179 if (WARN_ON(!plane
->state
))
182 vc4_state
= kmemdup(plane
->state
, sizeof(*vc4_state
), GFP_KERNEL
);
186 memset(&vc4_state
->lbm
, 0, sizeof(vc4_state
->lbm
));
188 __drm_atomic_helper_plane_duplicate_state(plane
, &vc4_state
->base
);
190 if (vc4_state
->dlist
) {
191 vc4_state
->dlist
= kmemdup(vc4_state
->dlist
,
192 vc4_state
->dlist_count
* 4,
194 if (!vc4_state
->dlist
) {
198 vc4_state
->dlist_size
= vc4_state
->dlist_count
;
201 return &vc4_state
->base
;
204 static void vc4_plane_destroy_state(struct drm_plane
*plane
,
205 struct drm_plane_state
*state
)
207 struct vc4_dev
*vc4
= to_vc4_dev(plane
->dev
);
208 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
210 if (vc4_state
->lbm
.allocated
) {
211 unsigned long irqflags
;
213 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, irqflags
);
214 drm_mm_remove_node(&vc4_state
->lbm
);
215 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, irqflags
);
218 kfree(vc4_state
->dlist
);
219 __drm_atomic_helper_plane_destroy_state(&vc4_state
->base
);
223 /* Called during init to allocate the plane's atomic state. */
224 static void vc4_plane_reset(struct drm_plane
*plane
)
226 struct vc4_plane_state
*vc4_state
;
228 WARN_ON(plane
->state
);
230 vc4_state
= kzalloc(sizeof(*vc4_state
), GFP_KERNEL
);
234 plane
->state
= &vc4_state
->base
;
235 vc4_state
->base
.plane
= plane
;
238 static void vc4_dlist_write(struct vc4_plane_state
*vc4_state
, u32 val
)
240 if (vc4_state
->dlist_count
== vc4_state
->dlist_size
) {
241 u32 new_size
= max(4u, vc4_state
->dlist_count
* 2);
242 u32
*new_dlist
= kmalloc(new_size
* 4, GFP_KERNEL
);
246 memcpy(new_dlist
, vc4_state
->dlist
, vc4_state
->dlist_count
* 4);
248 kfree(vc4_state
->dlist
);
249 vc4_state
->dlist
= new_dlist
;
250 vc4_state
->dlist_size
= new_size
;
253 vc4_state
->dlist
[vc4_state
->dlist_count
++] = val
;
256 /* Returns the scl0/scl1 field based on whether the dimensions need to
257 * be up/down/non-scaled.
259 * This is a replication of a table from the spec.
261 static u32
vc4_get_scl_field(struct drm_plane_state
*state
, int plane
)
263 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
265 switch (vc4_state
->x_scaling
[plane
] << 2 | vc4_state
->y_scaling
[plane
]) {
266 case VC4_SCALING_PPF
<< 2 | VC4_SCALING_PPF
:
267 return SCALER_CTL0_SCL_H_PPF_V_PPF
;
268 case VC4_SCALING_TPZ
<< 2 | VC4_SCALING_PPF
:
269 return SCALER_CTL0_SCL_H_TPZ_V_PPF
;
270 case VC4_SCALING_PPF
<< 2 | VC4_SCALING_TPZ
:
271 return SCALER_CTL0_SCL_H_PPF_V_TPZ
;
272 case VC4_SCALING_TPZ
<< 2 | VC4_SCALING_TPZ
:
273 return SCALER_CTL0_SCL_H_TPZ_V_TPZ
;
274 case VC4_SCALING_PPF
<< 2 | VC4_SCALING_NONE
:
275 return SCALER_CTL0_SCL_H_PPF_V_NONE
;
276 case VC4_SCALING_NONE
<< 2 | VC4_SCALING_PPF
:
277 return SCALER_CTL0_SCL_H_NONE_V_PPF
;
278 case VC4_SCALING_NONE
<< 2 | VC4_SCALING_TPZ
:
279 return SCALER_CTL0_SCL_H_NONE_V_TPZ
;
280 case VC4_SCALING_TPZ
<< 2 | VC4_SCALING_NONE
:
281 return SCALER_CTL0_SCL_H_TPZ_V_NONE
;
283 case VC4_SCALING_NONE
<< 2 | VC4_SCALING_NONE
:
284 /* The unity case is independently handled by
291 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state
*state
)
293 struct drm_plane
*plane
= state
->plane
;
294 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
295 struct drm_framebuffer
*fb
= state
->fb
;
296 struct drm_gem_cma_object
*bo
= drm_fb_cma_get_gem_obj(fb
, 0);
297 u32 subpixel_src_mask
= (1 << 16) - 1;
298 u32 format
= fb
->pixel_format
;
299 int num_planes
= drm_format_num_planes(format
);
304 for (i
= 0; i
< num_planes
; i
++)
305 vc4_state
->offsets
[i
] = bo
->paddr
+ fb
->offsets
[i
];
307 /* We don't support subpixel source positioning for scaling. */
308 if ((state
->src_x
& subpixel_src_mask
) ||
309 (state
->src_y
& subpixel_src_mask
) ||
310 (state
->src_w
& subpixel_src_mask
) ||
311 (state
->src_h
& subpixel_src_mask
)) {
315 vc4_state
->src_x
= state
->src_x
>> 16;
316 vc4_state
->src_y
= state
->src_y
>> 16;
317 vc4_state
->src_w
[0] = state
->src_w
>> 16;
318 vc4_state
->src_h
[0] = state
->src_h
>> 16;
320 vc4_state
->crtc_x
= state
->crtc_x
;
321 vc4_state
->crtc_y
= state
->crtc_y
;
322 vc4_state
->crtc_w
= state
->crtc_w
;
323 vc4_state
->crtc_h
= state
->crtc_h
;
325 vc4_state
->x_scaling
[0] = vc4_get_scaling_mode(vc4_state
->src_w
[0],
327 vc4_state
->y_scaling
[0] = vc4_get_scaling_mode(vc4_state
->src_h
[0],
330 vc4_state
->is_unity
= (vc4_state
->x_scaling
[0] == VC4_SCALING_NONE
&&
331 vc4_state
->y_scaling
[0] == VC4_SCALING_NONE
);
333 if (num_planes
> 1) {
334 vc4_state
->is_yuv
= true;
336 h_subsample
= drm_format_horz_chroma_subsampling(format
);
337 v_subsample
= drm_format_vert_chroma_subsampling(format
);
338 vc4_state
->src_w
[1] = vc4_state
->src_w
[0] / h_subsample
;
339 vc4_state
->src_h
[1] = vc4_state
->src_h
[0] / v_subsample
;
341 vc4_state
->x_scaling
[1] =
342 vc4_get_scaling_mode(vc4_state
->src_w
[1],
344 vc4_state
->y_scaling
[1] =
345 vc4_get_scaling_mode(vc4_state
->src_h
[1],
348 /* YUV conversion requires that horizontal scaling be enabled,
349 * even on a plane that's otherwise 1:1. Looks like only PPF
350 * works in that case, so let's pick that one.
352 if (vc4_state
->is_unity
)
353 vc4_state
->x_scaling
[0] = VC4_SCALING_PPF
;
355 vc4_state
->x_scaling
[1] = VC4_SCALING_NONE
;
356 vc4_state
->y_scaling
[1] = VC4_SCALING_NONE
;
359 /* No configuring scaling on the cursor plane, since it gets
360 non-vblank-synced updates, and scaling requires requires
361 LBM changes which have to be vblank-synced.
363 if (plane
->type
== DRM_PLANE_TYPE_CURSOR
&& !vc4_state
->is_unity
)
366 /* Clamp the on-screen start x/y to 0. The hardware doesn't
367 * support negative y, and negative x wastes bandwidth.
369 if (vc4_state
->crtc_x
< 0) {
370 for (i
= 0; i
< num_planes
; i
++) {
371 u32 cpp
= drm_format_plane_cpp(fb
->pixel_format
, i
);
372 u32 subs
= ((i
== 0) ? 1 : h_subsample
);
374 vc4_state
->offsets
[i
] += (cpp
*
375 (-vc4_state
->crtc_x
) / subs
);
377 vc4_state
->src_w
[0] += vc4_state
->crtc_x
;
378 vc4_state
->src_w
[1] += vc4_state
->crtc_x
/ h_subsample
;
379 vc4_state
->crtc_x
= 0;
382 if (vc4_state
->crtc_y
< 0) {
383 for (i
= 0; i
< num_planes
; i
++) {
384 u32 subs
= ((i
== 0) ? 1 : v_subsample
);
386 vc4_state
->offsets
[i
] += (fb
->pitches
[i
] *
387 (-vc4_state
->crtc_y
) / subs
);
389 vc4_state
->src_h
[0] += vc4_state
->crtc_y
;
390 vc4_state
->src_h
[1] += vc4_state
->crtc_y
/ v_subsample
;
391 vc4_state
->crtc_y
= 0;
397 static void vc4_write_tpz(struct vc4_plane_state
*vc4_state
, u32 src
, u32 dst
)
401 scale
= (1 << 16) * src
/ dst
;
403 /* The specs note that while the reciprocal would be defined
404 * as (1<<32)/scale, ~0 is close enough.
408 vc4_dlist_write(vc4_state
,
409 VC4_SET_FIELD(scale
, SCALER_TPZ0_SCALE
) |
410 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE
));
411 vc4_dlist_write(vc4_state
,
412 VC4_SET_FIELD(recip
, SCALER_TPZ1_RECIP
));
415 static void vc4_write_ppf(struct vc4_plane_state
*vc4_state
, u32 src
, u32 dst
)
417 u32 scale
= (1 << 16) * src
/ dst
;
419 vc4_dlist_write(vc4_state
,
421 VC4_SET_FIELD(scale
, SCALER_PPF_SCALE
) |
422 VC4_SET_FIELD(0, SCALER_PPF_IPHASE
));
425 static u32
vc4_lbm_size(struct drm_plane_state
*state
)
427 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
428 /* This is the worst case number. One of the two sizes will
429 * be used depending on the scaling configuration.
431 u32 pix_per_line
= max(vc4_state
->src_w
[0], (u32
)vc4_state
->crtc_w
);
434 if (!vc4_state
->is_yuv
) {
435 if (vc4_state
->is_unity
)
437 else if (vc4_state
->y_scaling
[0] == VC4_SCALING_TPZ
)
438 lbm
= pix_per_line
* 8;
440 /* In special cases, this multiplier might be 12. */
441 lbm
= pix_per_line
* 16;
444 /* There are cases for this going down to a multiplier
445 * of 2, but according to the firmware source, the
446 * table in the docs is somewhat wrong.
448 lbm
= pix_per_line
* 16;
451 lbm
= roundup(lbm
, 32);
456 static void vc4_write_scaling_parameters(struct drm_plane_state
*state
,
459 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
461 /* Ch0 H-PPF Word 0: Scaling Parameters */
462 if (vc4_state
->x_scaling
[channel
] == VC4_SCALING_PPF
) {
463 vc4_write_ppf(vc4_state
,
464 vc4_state
->src_w
[channel
], vc4_state
->crtc_w
);
467 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
468 if (vc4_state
->y_scaling
[channel
] == VC4_SCALING_PPF
) {
469 vc4_write_ppf(vc4_state
,
470 vc4_state
->src_h
[channel
], vc4_state
->crtc_h
);
471 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
474 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
475 if (vc4_state
->x_scaling
[channel
] == VC4_SCALING_TPZ
) {
476 vc4_write_tpz(vc4_state
,
477 vc4_state
->src_w
[channel
], vc4_state
->crtc_w
);
480 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
481 if (vc4_state
->y_scaling
[channel
] == VC4_SCALING_TPZ
) {
482 vc4_write_tpz(vc4_state
,
483 vc4_state
->src_h
[channel
], vc4_state
->crtc_h
);
484 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
488 /* Writes out a full display list for an active plane to the plane's
489 * private dlist state.
491 static int vc4_plane_mode_set(struct drm_plane
*plane
,
492 struct drm_plane_state
*state
)
494 struct vc4_dev
*vc4
= to_vc4_dev(plane
->dev
);
495 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
496 struct drm_framebuffer
*fb
= state
->fb
;
497 u32 ctl0_offset
= vc4_state
->dlist_count
;
498 const struct hvs_format
*format
= vc4_get_hvs_format(fb
->pixel_format
);
499 int num_planes
= drm_format_num_planes(format
->drm
);
502 unsigned long irqflags
;
505 ret
= vc4_plane_setup_clipping_and_scaling(state
);
509 /* Allocate the LBM memory that the HVS will use for temporary
510 * storage due to our scaling/format conversion.
512 lbm_size
= vc4_lbm_size(state
);
514 if (!vc4_state
->lbm
.allocated
) {
515 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, irqflags
);
516 ret
= drm_mm_insert_node(&vc4
->hvs
->lbm_mm
,
519 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, irqflags
);
521 WARN_ON_ONCE(lbm_size
!= vc4_state
->lbm
.size
);
528 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
529 * and 4:4:4, scl1 should be set to scl0 so both channels of
530 * the scaler do the same thing. For YUV, the Y plane needs
531 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
532 * the scl fields here.
534 if (num_planes
== 1) {
535 scl0
= vc4_get_scl_field(state
, 0);
538 scl0
= vc4_get_scl_field(state
, 1);
539 scl1
= vc4_get_scl_field(state
, 0);
543 vc4_dlist_write(vc4_state
,
545 (format
->pixel_order
<< SCALER_CTL0_ORDER_SHIFT
) |
546 (format
->hvs
<< SCALER_CTL0_PIXEL_FORMAT_SHIFT
) |
547 (vc4_state
->is_unity
? SCALER_CTL0_UNITY
: 0) |
548 VC4_SET_FIELD(scl0
, SCALER_CTL0_SCL0
) |
549 VC4_SET_FIELD(scl1
, SCALER_CTL0_SCL1
));
551 /* Position Word 0: Image Positions and Alpha Value */
552 vc4_state
->pos0_offset
= vc4_state
->dlist_count
;
553 vc4_dlist_write(vc4_state
,
554 VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA
) |
555 VC4_SET_FIELD(vc4_state
->crtc_x
, SCALER_POS0_START_X
) |
556 VC4_SET_FIELD(vc4_state
->crtc_y
, SCALER_POS0_START_Y
));
558 /* Position Word 1: Scaled Image Dimensions. */
559 if (!vc4_state
->is_unity
) {
560 vc4_dlist_write(vc4_state
,
561 VC4_SET_FIELD(vc4_state
->crtc_w
,
562 SCALER_POS1_SCL_WIDTH
) |
563 VC4_SET_FIELD(vc4_state
->crtc_h
,
564 SCALER_POS1_SCL_HEIGHT
));
567 /* Position Word 2: Source Image Size, Alpha Mode */
568 vc4_state
->pos2_offset
= vc4_state
->dlist_count
;
569 vc4_dlist_write(vc4_state
,
570 VC4_SET_FIELD(format
->has_alpha
?
571 SCALER_POS2_ALPHA_MODE_PIPELINE
:
572 SCALER_POS2_ALPHA_MODE_FIXED
,
573 SCALER_POS2_ALPHA_MODE
) |
574 VC4_SET_FIELD(vc4_state
->src_w
[0], SCALER_POS2_WIDTH
) |
575 VC4_SET_FIELD(vc4_state
->src_h
[0], SCALER_POS2_HEIGHT
));
577 /* Position Word 3: Context. Written by the HVS. */
578 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
581 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
583 * The pointers may be any byte address.
585 vc4_state
->ptr0_offset
= vc4_state
->dlist_count
;
586 if (!format
->flip_cbcr
) {
587 for (i
= 0; i
< num_planes
; i
++)
588 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[i
]);
590 WARN_ON_ONCE(num_planes
!= 3);
591 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[0]);
592 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[2]);
593 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[1]);
596 /* Pointer Context Word 0/1/2: Written by the HVS */
597 for (i
= 0; i
< num_planes
; i
++)
598 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
600 /* Pitch word 0/1/2 */
601 for (i
= 0; i
< num_planes
; i
++) {
602 vc4_dlist_write(vc4_state
,
603 VC4_SET_FIELD(fb
->pitches
[i
], SCALER_SRC_PITCH
));
606 /* Colorspace conversion words */
607 if (vc4_state
->is_yuv
) {
608 vc4_dlist_write(vc4_state
, SCALER_CSC0_ITR_R_601_5
);
609 vc4_dlist_write(vc4_state
, SCALER_CSC1_ITR_R_601_5
);
610 vc4_dlist_write(vc4_state
, SCALER_CSC2_ITR_R_601_5
);
613 if (vc4_state
->x_scaling
[0] != VC4_SCALING_NONE
||
614 vc4_state
->x_scaling
[1] != VC4_SCALING_NONE
||
615 vc4_state
->y_scaling
[0] != VC4_SCALING_NONE
||
616 vc4_state
->y_scaling
[1] != VC4_SCALING_NONE
) {
617 /* LBM Base Address. */
618 if (vc4_state
->y_scaling
[0] != VC4_SCALING_NONE
||
619 vc4_state
->y_scaling
[1] != VC4_SCALING_NONE
) {
620 vc4_dlist_write(vc4_state
, vc4_state
->lbm
.start
);
623 if (num_planes
> 1) {
624 /* Emit Cb/Cr as channel 0 and Y as channel
625 * 1. This matches how we set up scl0/scl1
628 vc4_write_scaling_parameters(state
, 1);
630 vc4_write_scaling_parameters(state
, 0);
632 /* If any PPF setup was done, then all the kernel
633 * pointers get uploaded.
635 if (vc4_state
->x_scaling
[0] == VC4_SCALING_PPF
||
636 vc4_state
->y_scaling
[0] == VC4_SCALING_PPF
||
637 vc4_state
->x_scaling
[1] == VC4_SCALING_PPF
||
638 vc4_state
->y_scaling
[1] == VC4_SCALING_PPF
) {
639 u32 kernel
= VC4_SET_FIELD(vc4
->hvs
->mitchell_netravali_filter
.start
,
640 SCALER_PPF_KERNEL_OFFSET
);
643 vc4_dlist_write(vc4_state
, kernel
);
645 vc4_dlist_write(vc4_state
, kernel
);
647 vc4_dlist_write(vc4_state
, kernel
);
649 vc4_dlist_write(vc4_state
, kernel
);
653 vc4_state
->dlist
[ctl0_offset
] |=
654 VC4_SET_FIELD(vc4_state
->dlist_count
, SCALER_CTL0_SIZE
);
659 /* If a modeset involves changing the setup of a plane, the atomic
660 * infrastructure will call this to validate a proposed plane setup.
661 * However, if a plane isn't getting updated, this (and the
662 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
663 * compute the dlist here and have all active plane dlists get updated
664 * in the CRTC's flush.
666 static int vc4_plane_atomic_check(struct drm_plane
*plane
,
667 struct drm_plane_state
*state
)
669 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
671 vc4_state
->dlist_count
= 0;
673 if (plane_enabled(state
))
674 return vc4_plane_mode_set(plane
, state
);
679 static void vc4_plane_atomic_update(struct drm_plane
*plane
,
680 struct drm_plane_state
*old_state
)
682 /* No contents here. Since we don't know where in the CRTC's
683 * dlist we should be stored, our dlist is uploaded to the
684 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
689 u32
vc4_plane_write_dlist(struct drm_plane
*plane
, u32 __iomem
*dlist
)
691 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(plane
->state
);
694 vc4_state
->hw_dlist
= dlist
;
696 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
697 for (i
= 0; i
< vc4_state
->dlist_count
; i
++)
698 writel(vc4_state
->dlist
[i
], &dlist
[i
]);
700 return vc4_state
->dlist_count
;
703 u32
vc4_plane_dlist_size(const struct drm_plane_state
*state
)
705 const struct vc4_plane_state
*vc4_state
=
706 container_of(state
, typeof(*vc4_state
), base
);
708 return vc4_state
->dlist_count
;
711 /* Updates the plane to immediately (well, once the FIFO needs
712 * refilling) scan out from at a new framebuffer.
714 void vc4_plane_async_set_fb(struct drm_plane
*plane
, struct drm_framebuffer
*fb
)
716 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(plane
->state
);
717 struct drm_gem_cma_object
*bo
= drm_fb_cma_get_gem_obj(fb
, 0);
720 /* We're skipping the address adjustment for negative origin,
721 * because this is only called on the primary plane.
723 WARN_ON_ONCE(plane
->state
->crtc_x
< 0 || plane
->state
->crtc_y
< 0);
724 addr
= bo
->paddr
+ fb
->offsets
[0];
726 /* Write the new address into the hardware immediately. The
727 * scanout will start from this address as soon as the FIFO
728 * needs to refill with pixels.
730 writel(addr
, &vc4_state
->hw_dlist
[vc4_state
->ptr0_offset
]);
732 /* Also update the CPU-side dlist copy, so that any later
733 * atomic updates that don't do a new modeset on our plane
734 * also use our updated address.
736 vc4_state
->dlist
[vc4_state
->ptr0_offset
] = addr
;
739 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs
= {
740 .atomic_check
= vc4_plane_atomic_check
,
741 .atomic_update
= vc4_plane_atomic_update
,
744 static void vc4_plane_destroy(struct drm_plane
*plane
)
746 drm_plane_helper_disable(plane
);
747 drm_plane_cleanup(plane
);
750 /* Implements immediate (non-vblank-synced) updates of the cursor
751 * position, or falls back to the atomic helper otherwise.
754 vc4_update_plane(struct drm_plane
*plane
,
755 struct drm_crtc
*crtc
,
756 struct drm_framebuffer
*fb
,
757 int crtc_x
, int crtc_y
,
758 unsigned int crtc_w
, unsigned int crtc_h
,
759 uint32_t src_x
, uint32_t src_y
,
760 uint32_t src_w
, uint32_t src_h
)
762 struct drm_plane_state
*plane_state
;
763 struct vc4_plane_state
*vc4_state
;
765 if (plane
!= crtc
->cursor
)
768 plane_state
= plane
->state
;
769 vc4_state
= to_vc4_plane_state(plane_state
);
774 /* If we're changing the cursor contents, do that in the
775 * normal vblank-synced atomic path.
777 if (fb
!= plane_state
->fb
)
780 /* No configuring new scaling in the fast path. */
781 if (crtc_w
!= plane_state
->crtc_w
||
782 crtc_h
!= plane_state
->crtc_h
||
783 src_w
!= plane_state
->src_w
||
784 src_h
!= plane_state
->src_h
) {
788 /* Set the cursor's position on the screen. This is the
789 * expected change from the drm_mode_cursor_universal()
792 plane_state
->crtc_x
= crtc_x
;
793 plane_state
->crtc_y
= crtc_y
;
795 /* Allow changing the start position within the cursor BO, if
798 plane_state
->src_x
= src_x
;
799 plane_state
->src_y
= src_y
;
801 /* Update the display list based on the new crtc_x/y. */
802 vc4_plane_atomic_check(plane
, plane_state
);
804 /* Note that we can't just call vc4_plane_write_dlist()
805 * because that would smash the context data that the HVS is
808 writel(vc4_state
->dlist
[vc4_state
->pos0_offset
],
809 &vc4_state
->hw_dlist
[vc4_state
->pos0_offset
]);
810 writel(vc4_state
->dlist
[vc4_state
->pos2_offset
],
811 &vc4_state
->hw_dlist
[vc4_state
->pos2_offset
]);
812 writel(vc4_state
->dlist
[vc4_state
->ptr0_offset
],
813 &vc4_state
->hw_dlist
[vc4_state
->ptr0_offset
]);
818 return drm_atomic_helper_update_plane(plane
, crtc
, fb
,
825 static const struct drm_plane_funcs vc4_plane_funcs
= {
826 .update_plane
= vc4_update_plane
,
827 .disable_plane
= drm_atomic_helper_disable_plane
,
828 .destroy
= vc4_plane_destroy
,
829 .set_property
= NULL
,
830 .reset
= vc4_plane_reset
,
831 .atomic_duplicate_state
= vc4_plane_duplicate_state
,
832 .atomic_destroy_state
= vc4_plane_destroy_state
,
835 struct drm_plane
*vc4_plane_init(struct drm_device
*dev
,
836 enum drm_plane_type type
)
838 struct drm_plane
*plane
= NULL
;
839 struct vc4_plane
*vc4_plane
;
840 u32 formats
[ARRAY_SIZE(hvs_formats
)];
845 vc4_plane
= devm_kzalloc(dev
->dev
, sizeof(*vc4_plane
),
852 for (i
= 0; i
< ARRAY_SIZE(hvs_formats
); i
++) {
853 /* Don't allow YUV in cursor planes, since that means
854 * tuning on the scaler, which we don't allow for the
857 if (type
!= DRM_PLANE_TYPE_CURSOR
||
858 hvs_formats
[i
].hvs
< HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE
) {
859 formats
[num_formats
++] = hvs_formats
[i
].drm
;
862 plane
= &vc4_plane
->base
;
863 ret
= drm_universal_plane_init(dev
, plane
, 0xff,
865 formats
, num_formats
,
868 drm_plane_helper_add(plane
, &vc4_plane_helper_funcs
);
873 vc4_plane_destroy(plane
);