1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2011-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 /* Theory of operation:
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
33 * Receive: the packet's reception time is converted to an appropriate
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
47 #include "mcdi_pcol.h"
49 #include "farch_regs.h"
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
83 #define PTP_DPORT_OFFSET 22
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
97 #define PTP_V1_MIN_LENGTH 64
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
119 #define PTP_V2_MIN_LENGTH 63
121 #define PTP_MIN_LENGTH 63
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
130 #define PTP_VERSION_V1 1
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
135 enum ptp_packet_state
{
136 PTP_PACKET_STATE_UNMATCHED
= 0,
137 PTP_PACKET_STATE_MATCHED
,
138 PTP_PACKET_STATE_TIMED_OUT
,
139 PTP_PACKET_STATE_MATCH_UNWANTED
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
152 /* Number of bits required to hold the above */
153 #define MAX_PPB_BITS 20
155 /* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
159 #define PPB_EXTRA_BITS 2
161 /* Precalculate scale word to avoid long long division at runtime */
162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
165 #define PTP_SYNC_ATTEMPTS 4
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
175 struct efx_ptp_match
{
176 u32 words
[DIV_ROUND_UP(PTP_V1_UUID_LENGTH
, 4)];
177 unsigned long expiry
;
178 enum ptp_packet_state state
;
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
187 struct efx_ptp_event_rx
{
188 struct list_head link
;
192 unsigned long expiry
;
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @major: Hardware timestamp, major
199 * @minor: Hardware timestamp, minor
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
206 struct efx_ptp_timeset
{
212 u32 window
; /* Derived: end - start, allowing for wrap */
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 * @efx: The NIC context
218 * @channel: The PTP channel (Siena only)
219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
221 * @rxq: Receive queue (awaiting timestamps)
222 * @txq: Transmit queue
223 * @evt_list: List of MC receive events awaiting packets
224 * @evt_free_list: List of free events
225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
226 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
227 * @workwq: Work queue for processing pending PTP operations
229 * @reset_required: A serious error has occurred and the PTP task needs to be
230 * reset (disable, enable).
231 * @rxfilter_event: Receive filter when operating
232 * @rxfilter_general: Receive filter when operating
233 * @config: Current timestamp configuration
234 * @enabled: PTP operation enabled
235 * @mode: Mode in which PTP operating (PTP version)
236 * @time_format: Time format supported by this NIC
237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
238 * @nic_to_kernel_time: Function to convert from NIC to kernel time
239 * @min_synchronisation_ns: Minimum acceptable corrected sync window
240 * @ts_corrections.tx: Required driver correction of transmit timestamps
241 * @ts_corrections.rx: Required driver correction of receive timestamps
242 * @ts_corrections.pps_out: PPS output error (information only)
243 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
244 * @evt_frags: Partly assembled PTP events
245 * @evt_frag_idx: Current fragment number
246 * @evt_code: Last event code
247 * @start: Address at which MC indicates ready for synchronisation
248 * @host_time_pps: Host time at last PPS
249 * @current_adjfreq: Current ppb adjustment.
250 * @phc_clock: Pointer to registered phc device (if primary function)
251 * @phc_clock_info: Registration structure for phc device
252 * @pps_work: pps work task for handling pps events
253 * @pps_workwq: pps work queue
254 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
255 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
256 * allocations in main data path).
257 * @good_syncs: Number of successful synchronisations.
258 * @fast_syncs: Number of synchronisations requiring short delay
259 * @bad_syncs: Number of failed synchronisations.
260 * @sync_timeouts: Number of synchronisation timeouts
261 * @no_time_syncs: Number of synchronisations with no good times.
262 * @invalid_sync_windows: Number of sync windows with bad durations.
263 * @undersize_sync_windows: Number of corrected sync windows that are too small
264 * @oversize_sync_windows: Number of corrected sync windows that are too large
265 * @rx_no_timestamp: Number of packets received without a timestamp.
266 * @timeset: Last set of synchronisation statistics.
268 struct efx_ptp_data
{
270 struct efx_channel
*channel
;
272 struct sk_buff_head rxq
;
273 struct sk_buff_head txq
;
274 struct list_head evt_list
;
275 struct list_head evt_free_list
;
277 struct efx_ptp_event_rx rx_evts
[MAX_RECEIVE_EVENTS
];
278 struct workqueue_struct
*workwq
;
279 struct work_struct work
;
282 u32 rxfilter_general
;
283 bool rxfilter_installed
;
284 struct hwtstamp_config config
;
287 unsigned int time_format
;
288 void (*ns_to_nic_time
)(s64 ns
, u32
*nic_major
, u32
*nic_minor
);
289 ktime_t (*nic_to_kernel_time
)(u32 nic_major
, u32 nic_minor
,
291 unsigned int min_synchronisation_ns
;
298 efx_qword_t evt_frags
[MAX_EVENT_FRAGS
];
301 struct efx_buffer start
;
302 struct pps_event_time host_time_pps
;
304 struct ptp_clock
*phc_clock
;
305 struct ptp_clock_info phc_clock_info
;
306 struct work_struct pps_work
;
307 struct workqueue_struct
*pps_workwq
;
309 MCDI_DECLARE_BUF(txbuf
, MC_CMD_PTP_IN_TRANSMIT_LENMAX
);
311 unsigned int good_syncs
;
312 unsigned int fast_syncs
;
313 unsigned int bad_syncs
;
314 unsigned int sync_timeouts
;
315 unsigned int no_time_syncs
;
316 unsigned int invalid_sync_windows
;
317 unsigned int undersize_sync_windows
;
318 unsigned int oversize_sync_windows
;
319 unsigned int rx_no_timestamp
;
320 struct efx_ptp_timeset
321 timeset
[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM
];
324 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
);
325 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
);
326 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec
*ts
);
327 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
328 const struct timespec
*e_ts
);
329 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
330 struct ptp_clock_request
*request
, int on
);
332 #define PTP_SW_STAT(ext_name, field_name) \
333 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
334 #define PTP_MC_STAT(ext_name, mcdi_name) \
335 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
336 static const struct efx_hw_stat_desc efx_ptp_stat_desc
[] = {
337 PTP_SW_STAT(ptp_good_syncs
, good_syncs
),
338 PTP_SW_STAT(ptp_fast_syncs
, fast_syncs
),
339 PTP_SW_STAT(ptp_bad_syncs
, bad_syncs
),
340 PTP_SW_STAT(ptp_sync_timeouts
, sync_timeouts
),
341 PTP_SW_STAT(ptp_no_time_syncs
, no_time_syncs
),
342 PTP_SW_STAT(ptp_invalid_sync_windows
, invalid_sync_windows
),
343 PTP_SW_STAT(ptp_undersize_sync_windows
, undersize_sync_windows
),
344 PTP_SW_STAT(ptp_oversize_sync_windows
, oversize_sync_windows
),
345 PTP_SW_STAT(ptp_rx_no_timestamp
, rx_no_timestamp
),
346 PTP_MC_STAT(ptp_tx_timestamp_packets
, TX
),
347 PTP_MC_STAT(ptp_rx_timestamp_packets
, RX
),
348 PTP_MC_STAT(ptp_timestamp_packets
, TS
),
349 PTP_MC_STAT(ptp_filter_matches
, FM
),
350 PTP_MC_STAT(ptp_non_filter_matches
, NFM
),
352 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
353 static const unsigned long efx_ptp_stat_mask
[] = {
354 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT
) - 1] = ~0UL,
357 size_t efx_ptp_describe_stats(struct efx_nic
*efx
, u8
*strings
)
362 return efx_nic_describe_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
363 efx_ptp_stat_mask
, strings
);
366 size_t efx_ptp_update_stats(struct efx_nic
*efx
, u64
*stats
)
368 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_STATUS_LEN
);
369 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_STATUS_LEN
);
376 /* Copy software statistics */
377 for (i
= 0; i
< PTP_STAT_COUNT
; i
++) {
378 if (efx_ptp_stat_desc
[i
].dma_width
)
380 stats
[i
] = *(unsigned int *)((char *)efx
->ptp_data
+
381 efx_ptp_stat_desc
[i
].offset
);
384 /* Fetch MC statistics. We *must* fill in all statistics or
385 * risk leaking kernel memory to userland, so if the MCDI
386 * request fails we pretend we got zeroes.
388 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_STATUS
);
389 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
390 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
391 outbuf
, sizeof(outbuf
), NULL
);
393 netif_err(efx
, hw
, efx
->net_dev
,
394 "MC_CMD_PTP_OP_STATUS failed (%d)\n", rc
);
395 memset(outbuf
, 0, sizeof(outbuf
));
397 efx_nic_update_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
399 stats
, _MCDI_PTR(outbuf
, 0), false);
401 return PTP_STAT_COUNT
;
404 /* For Siena platforms NIC time is s and ns */
405 static void efx_ptp_ns_to_s_ns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
407 struct timespec ts
= ns_to_timespec(ns
);
408 *nic_major
= ts
.tv_sec
;
409 *nic_minor
= ts
.tv_nsec
;
412 static ktime_t
efx_ptp_s_ns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
415 ktime_t kt
= ktime_set(nic_major
, nic_minor
);
417 kt
= ktime_add_ns(kt
, (u64
)correction
);
419 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
423 /* To convert from s27 format to ns we multiply then divide by a power of 2.
424 * For the conversion from ns to s27, the operation is also converted to a
425 * multiply and shift.
427 #define S27_TO_NS_SHIFT (27)
428 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
429 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
430 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
432 /* For Huntington platforms NIC time is in seconds and fractions of a second
433 * where the minor register only uses 27 bits in units of 2^-27s.
435 static void efx_ptp_ns_to_s27(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
437 struct timespec ts
= ns_to_timespec(ns
);
439 u32 min
= (u32
)(((u64
)ts
.tv_nsec
* NS_TO_S27_MULT
+
440 (1ULL << (NS_TO_S27_SHIFT
- 1))) >> NS_TO_S27_SHIFT
);
442 /* The conversion can result in the minor value exceeding the maximum.
443 * In this case, round up to the next second.
445 if (min
>= S27_MINOR_MAX
) {
446 min
-= S27_MINOR_MAX
;
454 static inline ktime_t
efx_ptp_s27_to_ktime(u32 nic_major
, u32 nic_minor
)
456 u32 ns
= (u32
)(((u64
)nic_minor
* NSEC_PER_SEC
+
457 (1ULL << (S27_TO_NS_SHIFT
- 1))) >> S27_TO_NS_SHIFT
);
458 return ktime_set(nic_major
, ns
);
461 static ktime_t
efx_ptp_s27_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
464 /* Apply the correction and deal with carry */
465 nic_minor
+= correction
;
466 if ((s32
)nic_minor
< 0) {
467 nic_minor
+= S27_MINOR_MAX
;
469 } else if (nic_minor
>= S27_MINOR_MAX
) {
470 nic_minor
-= S27_MINOR_MAX
;
474 return efx_ptp_s27_to_ktime(nic_major
, nic_minor
);
477 /* Get PTP attributes and set up time conversions */
478 static int efx_ptp_get_attributes(struct efx_nic
*efx
)
480 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN
);
481 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
);
482 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
487 /* Get the PTP attributes. If the NIC doesn't support the operation we
488 * use the default format for compatibility with older NICs i.e.
489 * seconds and nanoseconds.
491 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_GET_ATTRIBUTES
);
492 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
493 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
494 outbuf
, sizeof(outbuf
), &out_len
);
496 fmt
= MCDI_DWORD(outbuf
, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT
);
497 else if (rc
== -EINVAL
)
498 fmt
= MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
;
502 if (fmt
== MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION
) {
503 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s27
;
504 ptp
->nic_to_kernel_time
= efx_ptp_s27_to_ktime_correction
;
505 } else if (fmt
== MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
) {
506 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_ns
;
507 ptp
->nic_to_kernel_time
= efx_ptp_s_ns_to_ktime_correction
;
512 ptp
->time_format
= fmt
;
514 /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
515 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
516 * to use for the minimum acceptable corrected synchronization window.
517 * If we have the extra information store it. For older firmware that
518 * does not implement the extended command use the default value.
520 if (rc
== 0 && out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
)
521 ptp
->min_synchronisation_ns
=
523 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN
);
525 ptp
->min_synchronisation_ns
= DEFAULT_MIN_SYNCHRONISATION_NS
;
530 /* Get PTP timestamp corrections */
531 static int efx_ptp_get_timestamp_corrections(struct efx_nic
*efx
)
533 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN
);
534 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN
);
537 /* Get the timestamp corrections from the NIC. If this operation is
538 * not supported (older NICs) then no correction is required.
540 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
,
541 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS
);
542 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
544 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
545 outbuf
, sizeof(outbuf
), NULL
);
547 efx
->ptp_data
->ts_corrections
.tx
= MCDI_DWORD(outbuf
,
548 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT
);
549 efx
->ptp_data
->ts_corrections
.rx
= MCDI_DWORD(outbuf
,
550 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE
);
551 efx
->ptp_data
->ts_corrections
.pps_out
= MCDI_DWORD(outbuf
,
552 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT
);
553 efx
->ptp_data
->ts_corrections
.pps_in
= MCDI_DWORD(outbuf
,
554 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN
);
555 } else if (rc
== -EINVAL
) {
556 efx
->ptp_data
->ts_corrections
.tx
= 0;
557 efx
->ptp_data
->ts_corrections
.rx
= 0;
558 efx
->ptp_data
->ts_corrections
.pps_out
= 0;
559 efx
->ptp_data
->ts_corrections
.pps_in
= 0;
567 /* Enable MCDI PTP support. */
568 static int efx_ptp_enable(struct efx_nic
*efx
)
570 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ENABLE_LEN
);
571 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf
, 0);
574 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ENABLE
);
575 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
576 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_QUEUE
,
577 efx
->ptp_data
->channel
?
578 efx
->ptp_data
->channel
->channel
: 0);
579 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_MODE
, efx
->ptp_data
->mode
);
581 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
582 outbuf
, sizeof(outbuf
), NULL
);
583 rc
= (rc
== -EALREADY
) ? 0 : rc
;
585 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
586 MC_CMD_PTP_IN_ENABLE_LEN
,
587 outbuf
, sizeof(outbuf
), rc
);
591 /* Disable MCDI PTP support.
593 * Note that this function should never rely on the presence of ptp_data -
594 * may be called before that exists.
596 static int efx_ptp_disable(struct efx_nic
*efx
)
598 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_DISABLE_LEN
);
599 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf
, 0);
602 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_DISABLE
);
603 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
604 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
605 outbuf
, sizeof(outbuf
), NULL
);
606 rc
= (rc
== -EALREADY
) ? 0 : rc
;
608 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
609 MC_CMD_PTP_IN_DISABLE_LEN
,
610 outbuf
, sizeof(outbuf
), rc
);
614 static void efx_ptp_deliver_rx_queue(struct sk_buff_head
*q
)
618 while ((skb
= skb_dequeue(q
))) {
620 netif_receive_skb(skb
);
625 static void efx_ptp_handle_no_channel(struct efx_nic
*efx
)
627 netif_err(efx
, drv
, efx
->net_dev
,
628 "ERROR: PTP requires MSI-X and 1 additional interrupt"
629 "vector. PTP disabled\n");
632 /* Repeatedly send the host time to the MC which will capture the hardware
635 static void efx_ptp_send_times(struct efx_nic
*efx
,
636 struct pps_event_time
*last_time
)
638 struct pps_event_time now
;
639 struct timespec limit
;
640 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
641 struct timespec start
;
642 int *mc_running
= ptp
->start
.addr
;
647 timespec_add_ns(&limit
, SYNCHRONISE_PERIOD_NS
);
649 /* Write host time for specified period or until MC is done */
650 while ((timespec_compare(&now
.ts_real
, &limit
) < 0) &&
651 ACCESS_ONCE(*mc_running
)) {
652 struct timespec update_time
;
653 unsigned int host_time
;
655 /* Don't update continuously to avoid saturating the PCIe bus */
656 update_time
= now
.ts_real
;
657 timespec_add_ns(&update_time
, SYNCHRONISATION_GRANULARITY_NS
);
660 } while ((timespec_compare(&now
.ts_real
, &update_time
) < 0) &&
661 ACCESS_ONCE(*mc_running
));
663 /* Synchronise NIC with single word of time only */
664 host_time
= (now
.ts_real
.tv_sec
<< MC_NANOSECOND_BITS
|
665 now
.ts_real
.tv_nsec
);
666 /* Update host time in NIC memory */
667 efx
->type
->ptp_write_host_time(efx
, host_time
);
672 /* Read a timeset from the MC's results and partial process. */
673 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data
),
674 struct efx_ptp_timeset
*timeset
)
676 unsigned start_ns
, end_ns
;
678 timeset
->host_start
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTSTART
);
679 timeset
->major
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MAJOR
);
680 timeset
->minor
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MINOR
);
681 timeset
->host_end
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTEND
),
682 timeset
->wait
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_WAITNS
);
685 start_ns
= timeset
->host_start
& MC_NANOSECOND_MASK
;
686 end_ns
= timeset
->host_end
& MC_NANOSECOND_MASK
;
687 /* Allow for rollover */
688 if (end_ns
< start_ns
)
689 end_ns
+= NSEC_PER_SEC
;
690 /* Determine duration of operation */
691 timeset
->window
= end_ns
- start_ns
;
694 /* Process times received from MC.
696 * Extract times from returned results, and establish the minimum value
697 * seen. The minimum value represents the "best" possible time and events
698 * too much greater than this are rejected - the machine is, perhaps, too
699 * busy. A number of readings are taken so that, hopefully, at least one good
700 * synchronisation will be seen in the results.
703 efx_ptp_process_times(struct efx_nic
*efx
, MCDI_DECLARE_STRUCT_PTR(synch_buf
),
704 size_t response_length
,
705 const struct pps_event_time
*last_time
)
707 unsigned number_readings
=
708 MCDI_VAR_ARRAY_LEN(response_length
,
709 PTP_OUT_SYNCHRONIZE_TIMESET
);
712 unsigned last_good
= 0;
713 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
716 struct timespec delta
;
719 if (number_readings
== 0)
722 /* Read the set of results and find the last good host-MC
723 * synchronization result. The MC times when it finishes reading the
724 * host time so the corrected window time should be fairly constant
725 * for a given platform. Increment stats for any results that appear
728 for (i
= 0; i
< number_readings
; i
++) {
729 s32 window
, corrected
;
730 struct timespec wait
;
732 efx_ptp_read_timeset(
733 MCDI_ARRAY_STRUCT_PTR(synch_buf
,
734 PTP_OUT_SYNCHRONIZE_TIMESET
, i
),
737 wait
= ktime_to_timespec(
738 ptp
->nic_to_kernel_time(0, ptp
->timeset
[i
].wait
, 0));
739 window
= ptp
->timeset
[i
].window
;
740 corrected
= window
- wait
.tv_nsec
;
742 /* We expect the uncorrected synchronization window to be at
743 * least as large as the interval between host start and end
744 * times. If it is smaller than this then this is mostly likely
745 * to be a consequence of the host's time being adjusted.
746 * Check that the corrected sync window is in a reasonable
747 * range. If it is out of range it is likely to be because an
748 * interrupt or other delay occurred between reading the system
749 * time and writing it to MC memory.
751 if (window
< SYNCHRONISATION_GRANULARITY_NS
) {
752 ++ptp
->invalid_sync_windows
;
753 } else if (corrected
>= MAX_SYNCHRONISATION_NS
) {
754 ++ptp
->oversize_sync_windows
;
755 } else if (corrected
< ptp
->min_synchronisation_ns
) {
756 ++ptp
->undersize_sync_windows
;
764 netif_warn(efx
, drv
, efx
->net_dev
,
765 "PTP no suitable synchronisations\n");
769 /* Calculate delay from last good sync (host time) to last_time.
770 * It is possible that the seconds rolled over between taking
771 * the start reading and the last value written by the host. The
772 * timescales are such that a gap of more than one second is never
773 * expected. delta is *not* normalised.
775 start_sec
= ptp
->timeset
[last_good
].host_start
>> MC_NANOSECOND_BITS
;
776 last_sec
= last_time
->ts_real
.tv_sec
& MC_SECOND_MASK
;
777 if (start_sec
!= last_sec
&&
778 ((start_sec
+ 1) & MC_SECOND_MASK
) != last_sec
) {
779 netif_warn(efx
, hw
, efx
->net_dev
,
780 "PTP bad synchronisation seconds\n");
783 delta
.tv_sec
= (last_sec
- start_sec
) & 1;
785 last_time
->ts_real
.tv_nsec
-
786 (ptp
->timeset
[last_good
].host_start
& MC_NANOSECOND_MASK
);
788 /* Convert the NIC time at last good sync into kernel time.
789 * No correction is required - this time is the output of a
792 mc_time
= ptp
->nic_to_kernel_time(ptp
->timeset
[last_good
].major
,
793 ptp
->timeset
[last_good
].minor
, 0);
795 /* Calculate delay from NIC top of second to last_time */
796 delta
.tv_nsec
+= ktime_to_timespec(mc_time
).tv_nsec
;
798 /* Set PPS timestamp to match NIC top of second */
799 ptp
->host_time_pps
= *last_time
;
800 pps_sub_ts(&ptp
->host_time_pps
, delta
);
805 /* Synchronize times between the host and the MC */
806 static int efx_ptp_synchronize(struct efx_nic
*efx
, unsigned int num_readings
)
808 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
809 MCDI_DECLARE_BUF(synch_buf
, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX
);
810 size_t response_length
;
812 unsigned long timeout
;
813 struct pps_event_time last_time
= {};
814 unsigned int loops
= 0;
815 int *start
= ptp
->start
.addr
;
817 MCDI_SET_DWORD(synch_buf
, PTP_IN_OP
, MC_CMD_PTP_OP_SYNCHRONIZE
);
818 MCDI_SET_DWORD(synch_buf
, PTP_IN_PERIPH_ID
, 0);
819 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_NUMTIMESETS
,
821 MCDI_SET_QWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR
,
822 ptp
->start
.dma_addr
);
824 /* Clear flag that signals MC ready */
825 ACCESS_ONCE(*start
) = 0;
826 rc
= efx_mcdi_rpc_start(efx
, MC_CMD_PTP
, synch_buf
,
827 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
);
828 EFX_BUG_ON_PARANOID(rc
);
830 /* Wait for start from MCDI (or timeout) */
831 timeout
= jiffies
+ msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS
);
832 while (!ACCESS_ONCE(*start
) && (time_before(jiffies
, timeout
))) {
833 udelay(20); /* Usually start MCDI execution quickly */
839 if (!time_before(jiffies
, timeout
))
840 ++ptp
->sync_timeouts
;
842 if (ACCESS_ONCE(*start
))
843 efx_ptp_send_times(efx
, &last_time
);
845 /* Collect results */
846 rc
= efx_mcdi_rpc_finish(efx
, MC_CMD_PTP
,
847 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
,
848 synch_buf
, sizeof(synch_buf
),
851 rc
= efx_ptp_process_times(efx
, synch_buf
, response_length
,
856 ++ptp
->no_time_syncs
;
859 /* Increment the bad syncs counter if the synchronize fails, whatever
868 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
869 static int efx_ptp_xmit_skb(struct efx_nic
*efx
, struct sk_buff
*skb
)
871 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
872 struct skb_shared_hwtstamps timestamps
;
874 MCDI_DECLARE_BUF(txtime
, MC_CMD_PTP_OUT_TRANSMIT_LEN
);
877 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TRANSMIT
);
878 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_PERIPH_ID
, 0);
879 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_TRANSMIT_LENGTH
, skb
->len
);
880 if (skb_shinfo(skb
)->nr_frags
!= 0) {
881 rc
= skb_linearize(skb
);
886 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
887 rc
= skb_checksum_help(skb
);
891 skb_copy_from_linear_data(skb
,
892 MCDI_PTR(ptp_data
->txbuf
,
893 PTP_IN_TRANSMIT_PACKET
),
895 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
,
896 ptp_data
->txbuf
, MC_CMD_PTP_IN_TRANSMIT_LEN(skb
->len
),
897 txtime
, sizeof(txtime
), &len
);
901 memset(×tamps
, 0, sizeof(timestamps
));
902 timestamps
.hwtstamp
= ptp_data
->nic_to_kernel_time(
903 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MAJOR
),
904 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MINOR
),
905 ptp_data
->ts_corrections
.tx
);
907 skb_tstamp_tx(skb
, ×tamps
);
917 static void efx_ptp_drop_time_expired_events(struct efx_nic
*efx
)
919 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
920 struct list_head
*cursor
;
921 struct list_head
*next
;
923 if (ptp
->rx_ts_inline
)
926 /* Drop time-expired events */
927 spin_lock_bh(&ptp
->evt_lock
);
928 if (!list_empty(&ptp
->evt_list
)) {
929 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
930 struct efx_ptp_event_rx
*evt
;
932 evt
= list_entry(cursor
, struct efx_ptp_event_rx
,
934 if (time_after(jiffies
, evt
->expiry
)) {
935 list_move(&evt
->link
, &ptp
->evt_free_list
);
936 netif_warn(efx
, hw
, efx
->net_dev
,
937 "PTP rx event dropped\n");
941 spin_unlock_bh(&ptp
->evt_lock
);
944 static enum ptp_packet_state
efx_ptp_match_rx(struct efx_nic
*efx
,
947 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
949 struct list_head
*cursor
;
950 struct list_head
*next
;
951 struct efx_ptp_match
*match
;
952 enum ptp_packet_state rc
= PTP_PACKET_STATE_UNMATCHED
;
954 WARN_ON_ONCE(ptp
->rx_ts_inline
);
956 spin_lock_bh(&ptp
->evt_lock
);
957 evts_waiting
= !list_empty(&ptp
->evt_list
);
958 spin_unlock_bh(&ptp
->evt_lock
);
961 return PTP_PACKET_STATE_UNMATCHED
;
963 match
= (struct efx_ptp_match
*)skb
->cb
;
964 /* Look for a matching timestamp in the event queue */
965 spin_lock_bh(&ptp
->evt_lock
);
966 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
967 struct efx_ptp_event_rx
*evt
;
969 evt
= list_entry(cursor
, struct efx_ptp_event_rx
, link
);
970 if ((evt
->seq0
== match
->words
[0]) &&
971 (evt
->seq1
== match
->words
[1])) {
972 struct skb_shared_hwtstamps
*timestamps
;
974 /* Match - add in hardware timestamp */
975 timestamps
= skb_hwtstamps(skb
);
976 timestamps
->hwtstamp
= evt
->hwtimestamp
;
978 match
->state
= PTP_PACKET_STATE_MATCHED
;
979 rc
= PTP_PACKET_STATE_MATCHED
;
980 list_move(&evt
->link
, &ptp
->evt_free_list
);
984 spin_unlock_bh(&ptp
->evt_lock
);
989 /* Process any queued receive events and corresponding packets
991 * q is returned with all the packets that are ready for delivery.
993 static void efx_ptp_process_events(struct efx_nic
*efx
, struct sk_buff_head
*q
)
995 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
998 while ((skb
= skb_dequeue(&ptp
->rxq
))) {
999 struct efx_ptp_match
*match
;
1001 match
= (struct efx_ptp_match
*)skb
->cb
;
1002 if (match
->state
== PTP_PACKET_STATE_MATCH_UNWANTED
) {
1003 __skb_queue_tail(q
, skb
);
1004 } else if (efx_ptp_match_rx(efx
, skb
) ==
1005 PTP_PACKET_STATE_MATCHED
) {
1006 __skb_queue_tail(q
, skb
);
1007 } else if (time_after(jiffies
, match
->expiry
)) {
1008 match
->state
= PTP_PACKET_STATE_TIMED_OUT
;
1009 ++ptp
->rx_no_timestamp
;
1010 __skb_queue_tail(q
, skb
);
1012 /* Replace unprocessed entry and stop */
1013 skb_queue_head(&ptp
->rxq
, skb
);
1019 /* Complete processing of a received packet */
1020 static inline void efx_ptp_process_rx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1023 netif_receive_skb(skb
);
1027 static void efx_ptp_remove_multicast_filters(struct efx_nic
*efx
)
1029 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1031 if (ptp
->rxfilter_installed
) {
1032 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1033 ptp
->rxfilter_general
);
1034 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1035 ptp
->rxfilter_event
);
1036 ptp
->rxfilter_installed
= false;
1040 static int efx_ptp_insert_multicast_filters(struct efx_nic
*efx
)
1042 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1043 struct efx_filter_spec rxfilter
;
1046 if (!ptp
->channel
|| ptp
->rxfilter_installed
)
1049 /* Must filter on both event and general ports to ensure
1050 * that there is no packet re-ordering.
1052 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1054 efx_channel_get_rx_queue(ptp
->channel
)));
1055 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1057 htons(PTP_EVENT_PORT
));
1061 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1064 ptp
->rxfilter_event
= rc
;
1066 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1068 efx_channel_get_rx_queue(ptp
->channel
)));
1069 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1071 htons(PTP_GENERAL_PORT
));
1075 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1078 ptp
->rxfilter_general
= rc
;
1080 ptp
->rxfilter_installed
= true;
1084 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1085 ptp
->rxfilter_event
);
1089 static int efx_ptp_start(struct efx_nic
*efx
)
1091 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1094 ptp
->reset_required
= false;
1096 rc
= efx_ptp_insert_multicast_filters(efx
);
1100 rc
= efx_ptp_enable(efx
);
1104 ptp
->evt_frag_idx
= 0;
1105 ptp
->current_adjfreq
= 0;
1110 efx_ptp_remove_multicast_filters(efx
);
1114 static int efx_ptp_stop(struct efx_nic
*efx
)
1116 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1117 struct list_head
*cursor
;
1118 struct list_head
*next
;
1124 rc
= efx_ptp_disable(efx
);
1126 efx_ptp_remove_multicast_filters(efx
);
1128 /* Make sure RX packets are really delivered */
1129 efx_ptp_deliver_rx_queue(&efx
->ptp_data
->rxq
);
1130 skb_queue_purge(&efx
->ptp_data
->txq
);
1132 /* Drop any pending receive events */
1133 spin_lock_bh(&efx
->ptp_data
->evt_lock
);
1134 list_for_each_safe(cursor
, next
, &efx
->ptp_data
->evt_list
) {
1135 list_move(cursor
, &efx
->ptp_data
->evt_free_list
);
1137 spin_unlock_bh(&efx
->ptp_data
->evt_lock
);
1142 static int efx_ptp_restart(struct efx_nic
*efx
)
1144 if (efx
->ptp_data
&& efx
->ptp_data
->enabled
)
1145 return efx_ptp_start(efx
);
1149 static void efx_ptp_pps_worker(struct work_struct
*work
)
1151 struct efx_ptp_data
*ptp
=
1152 container_of(work
, struct efx_ptp_data
, pps_work
);
1153 struct efx_nic
*efx
= ptp
->efx
;
1154 struct ptp_clock_event ptp_evt
;
1156 if (efx_ptp_synchronize(efx
, PTP_SYNC_ATTEMPTS
))
1159 ptp_evt
.type
= PTP_CLOCK_PPSUSR
;
1160 ptp_evt
.pps_times
= ptp
->host_time_pps
;
1161 ptp_clock_event(ptp
->phc_clock
, &ptp_evt
);
1164 static void efx_ptp_worker(struct work_struct
*work
)
1166 struct efx_ptp_data
*ptp_data
=
1167 container_of(work
, struct efx_ptp_data
, work
);
1168 struct efx_nic
*efx
= ptp_data
->efx
;
1169 struct sk_buff
*skb
;
1170 struct sk_buff_head tempq
;
1172 if (ptp_data
->reset_required
) {
1178 efx_ptp_drop_time_expired_events(efx
);
1180 __skb_queue_head_init(&tempq
);
1181 efx_ptp_process_events(efx
, &tempq
);
1183 while ((skb
= skb_dequeue(&ptp_data
->txq
)))
1184 efx_ptp_xmit_skb(efx
, skb
);
1186 while ((skb
= __skb_dequeue(&tempq
)))
1187 efx_ptp_process_rx(efx
, skb
);
1190 static const struct ptp_clock_info efx_phc_clock_info
= {
1191 .owner
= THIS_MODULE
,
1199 .adjfreq
= efx_phc_adjfreq
,
1200 .adjtime
= efx_phc_adjtime
,
1201 .gettime
= efx_phc_gettime
,
1202 .settime
= efx_phc_settime
,
1203 .enable
= efx_phc_enable
,
1206 /* Initialise PTP state. */
1207 int efx_ptp_probe(struct efx_nic
*efx
, struct efx_channel
*channel
)
1209 struct efx_ptp_data
*ptp
;
1213 ptp
= kzalloc(sizeof(struct efx_ptp_data
), GFP_KERNEL
);
1214 efx
->ptp_data
= ptp
;
1219 ptp
->channel
= channel
;
1220 ptp
->rx_ts_inline
= efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
;
1222 rc
= efx_nic_alloc_buffer(efx
, &ptp
->start
, sizeof(int), GFP_KERNEL
);
1226 skb_queue_head_init(&ptp
->rxq
);
1227 skb_queue_head_init(&ptp
->txq
);
1228 ptp
->workwq
= create_singlethread_workqueue("sfc_ptp");
1234 INIT_WORK(&ptp
->work
, efx_ptp_worker
);
1235 ptp
->config
.flags
= 0;
1236 ptp
->config
.tx_type
= HWTSTAMP_TX_OFF
;
1237 ptp
->config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1238 INIT_LIST_HEAD(&ptp
->evt_list
);
1239 INIT_LIST_HEAD(&ptp
->evt_free_list
);
1240 spin_lock_init(&ptp
->evt_lock
);
1241 for (pos
= 0; pos
< MAX_RECEIVE_EVENTS
; pos
++)
1242 list_add(&ptp
->rx_evts
[pos
].link
, &ptp
->evt_free_list
);
1244 /* Get the NIC PTP attributes and set up time conversions */
1245 rc
= efx_ptp_get_attributes(efx
);
1249 /* Get the timestamp corrections */
1250 rc
= efx_ptp_get_timestamp_corrections(efx
);
1254 if (efx
->mcdi
->fn_flags
&
1255 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
)) {
1256 ptp
->phc_clock_info
= efx_phc_clock_info
;
1257 ptp
->phc_clock
= ptp_clock_register(&ptp
->phc_clock_info
,
1258 &efx
->pci_dev
->dev
);
1259 if (IS_ERR(ptp
->phc_clock
)) {
1260 rc
= PTR_ERR(ptp
->phc_clock
);
1264 INIT_WORK(&ptp
->pps_work
, efx_ptp_pps_worker
);
1265 ptp
->pps_workwq
= create_singlethread_workqueue("sfc_pps");
1266 if (!ptp
->pps_workwq
) {
1271 ptp
->nic_ts_enabled
= false;
1275 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1278 destroy_workqueue(efx
->ptp_data
->workwq
);
1281 efx_nic_free_buffer(efx
, &ptp
->start
);
1284 kfree(efx
->ptp_data
);
1285 efx
->ptp_data
= NULL
;
1290 /* Initialise PTP channel.
1292 * Setting core_index to zero causes the queue to be initialised and doesn't
1293 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1295 static int efx_ptp_probe_channel(struct efx_channel
*channel
)
1297 struct efx_nic
*efx
= channel
->efx
;
1299 channel
->irq_moderation
= 0;
1300 channel
->rx_queue
.core_index
= 0;
1302 return efx_ptp_probe(efx
, channel
);
1305 void efx_ptp_remove(struct efx_nic
*efx
)
1310 (void)efx_ptp_disable(efx
);
1312 cancel_work_sync(&efx
->ptp_data
->work
);
1313 cancel_work_sync(&efx
->ptp_data
->pps_work
);
1315 skb_queue_purge(&efx
->ptp_data
->rxq
);
1316 skb_queue_purge(&efx
->ptp_data
->txq
);
1318 if (efx
->ptp_data
->phc_clock
) {
1319 destroy_workqueue(efx
->ptp_data
->pps_workwq
);
1320 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1323 destroy_workqueue(efx
->ptp_data
->workwq
);
1325 efx_nic_free_buffer(efx
, &efx
->ptp_data
->start
);
1326 kfree(efx
->ptp_data
);
1329 static void efx_ptp_remove_channel(struct efx_channel
*channel
)
1331 efx_ptp_remove(channel
->efx
);
1334 static void efx_ptp_get_channel_name(struct efx_channel
*channel
,
1335 char *buf
, size_t len
)
1337 snprintf(buf
, len
, "%s-ptp", channel
->efx
->name
);
1340 /* Determine whether this packet should be processed by the PTP module
1341 * or transmitted conventionally.
1343 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1345 return efx
->ptp_data
&&
1346 efx
->ptp_data
->enabled
&&
1347 skb
->len
>= PTP_MIN_LENGTH
&&
1348 skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
&&
1349 likely(skb
->protocol
== htons(ETH_P_IP
)) &&
1350 skb_transport_header_was_set(skb
) &&
1351 skb_network_header_len(skb
) >= sizeof(struct iphdr
) &&
1352 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
1354 skb_transport_offset(skb
) + sizeof(struct udphdr
) &&
1355 udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
);
1358 /* Receive a PTP packet. Packets are queued until the arrival of
1359 * the receive timestamp from the MC - this will probably occur after the
1360 * packet arrival because of the processing in the MC.
1362 static bool efx_ptp_rx(struct efx_channel
*channel
, struct sk_buff
*skb
)
1364 struct efx_nic
*efx
= channel
->efx
;
1365 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1366 struct efx_ptp_match
*match
= (struct efx_ptp_match
*)skb
->cb
;
1367 u8
*match_data_012
, *match_data_345
;
1368 unsigned int version
;
1371 match
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1373 /* Correct version? */
1374 if (ptp
->mode
== MC_CMD_PTP_MODE_V1
) {
1375 if (!pskb_may_pull(skb
, PTP_V1_MIN_LENGTH
)) {
1379 version
= ntohs(*(__be16
*)&data
[PTP_V1_VERSION_OFFSET
]);
1380 if (version
!= PTP_VERSION_V1
) {
1384 /* PTP V1 uses all six bytes of the UUID to match the packet
1387 match_data_012
= data
+ PTP_V1_UUID_OFFSET
;
1388 match_data_345
= data
+ PTP_V1_UUID_OFFSET
+ 3;
1390 if (!pskb_may_pull(skb
, PTP_V2_MIN_LENGTH
)) {
1394 version
= data
[PTP_V2_VERSION_OFFSET
];
1395 if ((version
& PTP_VERSION_V2_MASK
) != PTP_VERSION_V2
) {
1399 /* The original V2 implementation uses bytes 2-7 of
1400 * the UUID to match the packet to the timestamp. This
1401 * discards two of the bytes of the MAC address used
1402 * to create the UUID (SF bug 33070). The PTP V2
1403 * enhanced mode fixes this issue and uses bytes 0-2
1404 * and byte 5-7 of the UUID.
1406 match_data_345
= data
+ PTP_V2_UUID_OFFSET
+ 5;
1407 if (ptp
->mode
== MC_CMD_PTP_MODE_V2
) {
1408 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 2;
1410 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 0;
1411 BUG_ON(ptp
->mode
!= MC_CMD_PTP_MODE_V2_ENHANCED
);
1415 /* Does this packet require timestamping? */
1416 if (ntohs(*(__be16
*)&data
[PTP_DPORT_OFFSET
]) == PTP_EVENT_PORT
) {
1417 match
->state
= PTP_PACKET_STATE_UNMATCHED
;
1419 /* We expect the sequence number to be in the same position in
1420 * the packet for PTP V1 and V2
1422 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET
!= PTP_V2_SEQUENCE_OFFSET
);
1423 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH
!= PTP_V2_SEQUENCE_LENGTH
);
1425 /* Extract UUID/Sequence information */
1426 match
->words
[0] = (match_data_012
[0] |
1427 (match_data_012
[1] << 8) |
1428 (match_data_012
[2] << 16) |
1429 (match_data_345
[0] << 24));
1430 match
->words
[1] = (match_data_345
[1] |
1431 (match_data_345
[2] << 8) |
1432 (data
[PTP_V1_SEQUENCE_OFFSET
+
1433 PTP_V1_SEQUENCE_LENGTH
- 1] <<
1436 match
->state
= PTP_PACKET_STATE_MATCH_UNWANTED
;
1439 skb_queue_tail(&ptp
->rxq
, skb
);
1440 queue_work(ptp
->workwq
, &ptp
->work
);
1445 /* Transmit a PTP packet. This has to be transmitted by the MC
1446 * itself, through an MCDI call. MCDI calls aren't permitted
1447 * in the transmit path so defer the actual transmission to a suitable worker.
1449 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1451 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1453 skb_queue_tail(&ptp
->txq
, skb
);
1455 if ((udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
)) &&
1456 (skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
))
1457 efx_xmit_hwtstamp_pending(skb
);
1458 queue_work(ptp
->workwq
, &ptp
->work
);
1460 return NETDEV_TX_OK
;
1463 int efx_ptp_get_mode(struct efx_nic
*efx
)
1465 return efx
->ptp_data
->mode
;
1468 int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
1469 unsigned int new_mode
)
1471 if ((enable_wanted
!= efx
->ptp_data
->enabled
) ||
1472 (enable_wanted
&& (efx
->ptp_data
->mode
!= new_mode
))) {
1475 if (enable_wanted
) {
1476 /* Change of mode requires disable */
1477 if (efx
->ptp_data
->enabled
&&
1478 (efx
->ptp_data
->mode
!= new_mode
)) {
1479 efx
->ptp_data
->enabled
= false;
1480 rc
= efx_ptp_stop(efx
);
1485 /* Set new operating mode and establish
1486 * baseline synchronisation, which must
1489 efx
->ptp_data
->mode
= new_mode
;
1490 if (netif_running(efx
->net_dev
))
1491 rc
= efx_ptp_start(efx
);
1493 rc
= efx_ptp_synchronize(efx
,
1494 PTP_SYNC_ATTEMPTS
* 2);
1499 rc
= efx_ptp_stop(efx
);
1505 efx
->ptp_data
->enabled
= enable_wanted
;
1511 static int efx_ptp_ts_init(struct efx_nic
*efx
, struct hwtstamp_config
*init
)
1518 if ((init
->tx_type
!= HWTSTAMP_TX_OFF
) &&
1519 (init
->tx_type
!= HWTSTAMP_TX_ON
))
1522 rc
= efx
->type
->ptp_set_ts_config(efx
, init
);
1526 efx
->ptp_data
->config
= *init
;
1530 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
)
1532 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1533 struct efx_nic
*primary
= efx
->primary
;
1540 ts_info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
1541 SOF_TIMESTAMPING_RX_HARDWARE
|
1542 SOF_TIMESTAMPING_RAW_HARDWARE
);
1543 if (primary
&& primary
->ptp_data
&& primary
->ptp_data
->phc_clock
)
1544 ts_info
->phc_index
=
1545 ptp_clock_index(primary
->ptp_data
->phc_clock
);
1546 ts_info
->tx_types
= 1 << HWTSTAMP_TX_OFF
| 1 << HWTSTAMP_TX_ON
;
1547 ts_info
->rx_filters
= ptp
->efx
->type
->hwtstamp_filters
;
1550 int efx_ptp_set_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1552 struct hwtstamp_config config
;
1555 /* Not a PTP enabled port */
1559 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1562 rc
= efx_ptp_ts_init(efx
, &config
);
1566 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
))
1570 int efx_ptp_get_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1575 return copy_to_user(ifr
->ifr_data
, &efx
->ptp_data
->config
,
1576 sizeof(efx
->ptp_data
->config
)) ? -EFAULT
: 0;
1579 static void ptp_event_failure(struct efx_nic
*efx
, int expected_frag_len
)
1581 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1583 netif_err(efx
, hw
, efx
->net_dev
,
1584 "PTP unexpected event length: got %d expected %d\n",
1585 ptp
->evt_frag_idx
, expected_frag_len
);
1586 ptp
->reset_required
= true;
1587 queue_work(ptp
->workwq
, &ptp
->work
);
1590 /* Process a completed receive event. Put it on the event queue and
1591 * start worker thread. This is required because event and their
1592 * correspoding packets may come in either order.
1594 static void ptp_event_rx(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1596 struct efx_ptp_event_rx
*evt
= NULL
;
1598 if (WARN_ON_ONCE(ptp
->rx_ts_inline
))
1601 if (ptp
->evt_frag_idx
!= 3) {
1602 ptp_event_failure(efx
, 3);
1606 spin_lock_bh(&ptp
->evt_lock
);
1607 if (!list_empty(&ptp
->evt_free_list
)) {
1608 evt
= list_first_entry(&ptp
->evt_free_list
,
1609 struct efx_ptp_event_rx
, link
);
1610 list_del(&evt
->link
);
1612 evt
->seq0
= EFX_QWORD_FIELD(ptp
->evt_frags
[2], MCDI_EVENT_DATA
);
1613 evt
->seq1
= (EFX_QWORD_FIELD(ptp
->evt_frags
[2],
1615 (EFX_QWORD_FIELD(ptp
->evt_frags
[1],
1616 MCDI_EVENT_SRC
) << 8) |
1617 (EFX_QWORD_FIELD(ptp
->evt_frags
[0],
1618 MCDI_EVENT_SRC
) << 16));
1619 evt
->hwtimestamp
= efx
->ptp_data
->nic_to_kernel_time(
1620 EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
),
1621 EFX_QWORD_FIELD(ptp
->evt_frags
[1], MCDI_EVENT_DATA
),
1622 ptp
->ts_corrections
.rx
);
1623 evt
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1624 list_add_tail(&evt
->link
, &ptp
->evt_list
);
1626 queue_work(ptp
->workwq
, &ptp
->work
);
1627 } else if (net_ratelimit()) {
1628 /* Log a rate-limited warning message. */
1629 netif_err(efx
, rx_err
, efx
->net_dev
, "PTP event queue overflow\n");
1631 spin_unlock_bh(&ptp
->evt_lock
);
1634 static void ptp_event_fault(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1636 int code
= EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
);
1637 if (ptp
->evt_frag_idx
!= 1) {
1638 ptp_event_failure(efx
, 1);
1642 netif_err(efx
, hw
, efx
->net_dev
, "PTP error %d\n", code
);
1645 static void ptp_event_pps(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1647 if (ptp
->nic_ts_enabled
)
1648 queue_work(ptp
->pps_workwq
, &ptp
->pps_work
);
1651 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
)
1653 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1654 int code
= EFX_QWORD_FIELD(*ev
, MCDI_EVENT_CODE
);
1657 if (net_ratelimit())
1658 netif_warn(efx
, drv
, efx
->net_dev
,
1659 "Received PTP event but PTP not set up\n");
1666 if (ptp
->evt_frag_idx
== 0) {
1667 ptp
->evt_code
= code
;
1668 } else if (ptp
->evt_code
!= code
) {
1669 netif_err(efx
, hw
, efx
->net_dev
,
1670 "PTP out of sequence event %d\n", code
);
1671 ptp
->evt_frag_idx
= 0;
1674 ptp
->evt_frags
[ptp
->evt_frag_idx
++] = *ev
;
1675 if (!MCDI_EVENT_FIELD(*ev
, CONT
)) {
1676 /* Process resulting event */
1678 case MCDI_EVENT_CODE_PTP_RX
:
1679 ptp_event_rx(efx
, ptp
);
1681 case MCDI_EVENT_CODE_PTP_FAULT
:
1682 ptp_event_fault(efx
, ptp
);
1684 case MCDI_EVENT_CODE_PTP_PPS
:
1685 ptp_event_pps(efx
, ptp
);
1688 netif_err(efx
, hw
, efx
->net_dev
,
1689 "PTP unknown event %d\n", code
);
1692 ptp
->evt_frag_idx
= 0;
1693 } else if (MAX_EVENT_FRAGS
== ptp
->evt_frag_idx
) {
1694 netif_err(efx
, hw
, efx
->net_dev
,
1695 "PTP too many event fragments\n");
1696 ptp
->evt_frag_idx
= 0;
1700 void efx_time_sync_event(struct efx_channel
*channel
, efx_qword_t
*ev
)
1702 channel
->sync_timestamp_major
= MCDI_EVENT_FIELD(*ev
, PTP_TIME_MAJOR
);
1703 channel
->sync_timestamp_minor
=
1704 MCDI_EVENT_FIELD(*ev
, PTP_TIME_MINOR_26_19
) << 19;
1705 /* if sync events have been disabled then we want to silently ignore
1706 * this event, so throw away result.
1708 (void) cmpxchg(&channel
->sync_events_state
, SYNC_EVENTS_REQUESTED
,
1712 /* make some assumptions about the time representation rather than abstract it,
1713 * since we currently only support one type of inline timestamping and only on
1716 #define MINOR_TICKS_PER_SECOND 0x8000000
1717 /* Fuzz factor for sync events to be out of order with RX events */
1718 #define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1719 #define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1721 static inline u32
efx_rx_buf_timestamp_minor(struct efx_nic
*efx
, const u8
*eh
)
1723 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1724 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_ts_offset
));
1726 const u8
*data
= eh
+ efx
->rx_packet_ts_offset
;
1727 return (u32
)data
[0] |
1729 (u32
)data
[2] << 16 |
1734 void __efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
1735 struct sk_buff
*skb
)
1737 struct efx_nic
*efx
= channel
->efx
;
1738 u32 pkt_timestamp_major
, pkt_timestamp_minor
;
1740 struct skb_shared_hwtstamps
*timestamps
;
1742 pkt_timestamp_minor
= (efx_rx_buf_timestamp_minor(efx
,
1743 skb_mac_header(skb
)) +
1744 (u32
) efx
->ptp_data
->ts_corrections
.rx
) &
1745 (MINOR_TICKS_PER_SECOND
- 1);
1747 /* get the difference between the packet and sync timestamps,
1750 diff
= (pkt_timestamp_minor
- channel
->sync_timestamp_minor
) &
1751 (MINOR_TICKS_PER_SECOND
- 1);
1752 /* do we roll over a second boundary and need to carry the one? */
1753 carry
= channel
->sync_timestamp_minor
+ diff
> MINOR_TICKS_PER_SECOND
?
1756 if (diff
<= MINOR_TICKS_PER_SECOND
/ EXPECTED_SYNC_EVENTS_PER_SECOND
+
1758 /* packet is ahead of the sync event by a quarter of a second or
1759 * less (allowing for fuzz)
1761 pkt_timestamp_major
= channel
->sync_timestamp_major
+ carry
;
1762 } else if (diff
>= MINOR_TICKS_PER_SECOND
- FUZZ
) {
1763 /* packet is behind the sync event but within the fuzz factor.
1764 * This means the RX packet and sync event crossed as they were
1765 * placed on the event queue, which can sometimes happen.
1767 pkt_timestamp_major
= channel
->sync_timestamp_major
- 1 + carry
;
1769 /* it's outside tolerance in both directions. this might be
1770 * indicative of us missing sync events for some reason, so
1771 * we'll call it an error rather than risk giving a bogus
1774 netif_vdbg(efx
, drv
, efx
->net_dev
,
1775 "packet timestamp %x too far from sync event %x:%x\n",
1776 pkt_timestamp_minor
, channel
->sync_timestamp_major
,
1777 channel
->sync_timestamp_minor
);
1781 /* attach the timestamps to the skb */
1782 timestamps
= skb_hwtstamps(skb
);
1783 timestamps
->hwtstamp
=
1784 efx_ptp_s27_to_ktime(pkt_timestamp_major
, pkt_timestamp_minor
);
1787 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
)
1789 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1790 struct efx_ptp_data
,
1792 struct efx_nic
*efx
= ptp_data
->efx
;
1793 MCDI_DECLARE_BUF(inadj
, MC_CMD_PTP_IN_ADJUST_LEN
);
1797 if (delta
> MAX_PPB
)
1799 else if (delta
< -MAX_PPB
)
1802 /* Convert ppb to fixed point ns. */
1803 adjustment_ns
= (((s64
)delta
* PPB_SCALE_WORD
) >>
1804 (PPB_EXTRA_BITS
+ MAX_PPB_BITS
));
1806 MCDI_SET_DWORD(inadj
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
1807 MCDI_SET_DWORD(inadj
, PTP_IN_PERIPH_ID
, 0);
1808 MCDI_SET_QWORD(inadj
, PTP_IN_ADJUST_FREQ
, adjustment_ns
);
1809 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_SECONDS
, 0);
1810 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_NANOSECONDS
, 0);
1811 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inadj
, sizeof(inadj
),
1816 ptp_data
->current_adjfreq
= adjustment_ns
;
1820 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
1822 u32 nic_major
, nic_minor
;
1823 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1824 struct efx_ptp_data
,
1826 struct efx_nic
*efx
= ptp_data
->efx
;
1827 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ADJUST_LEN
);
1829 efx
->ptp_data
->ns_to_nic_time(delta
, &nic_major
, &nic_minor
);
1831 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
1832 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
1833 MCDI_SET_QWORD(inbuf
, PTP_IN_ADJUST_FREQ
, ptp_data
->current_adjfreq
);
1834 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MAJOR
, nic_major
);
1835 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MINOR
, nic_minor
);
1836 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
1840 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec
*ts
)
1842 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1843 struct efx_ptp_data
,
1845 struct efx_nic
*efx
= ptp_data
->efx
;
1846 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_READ_NIC_TIME_LEN
);
1847 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN
);
1851 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_READ_NIC_TIME
);
1852 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
1854 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
1855 outbuf
, sizeof(outbuf
), NULL
);
1859 kt
= ptp_data
->nic_to_kernel_time(
1860 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MAJOR
),
1861 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MINOR
), 0);
1862 *ts
= ktime_to_timespec(kt
);
1866 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
1867 const struct timespec
*e_ts
)
1869 /* Get the current NIC time, efx_phc_gettime.
1870 * Subtract from the desired time to get the offset
1871 * call efx_phc_adjtime with the offset
1874 struct timespec time_now
;
1875 struct timespec delta
;
1877 rc
= efx_phc_gettime(ptp
, &time_now
);
1881 delta
= timespec_sub(*e_ts
, time_now
);
1883 rc
= efx_phc_adjtime(ptp
, timespec_to_ns(&delta
));
1890 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
1891 struct ptp_clock_request
*request
,
1894 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
1895 struct efx_ptp_data
,
1897 if (request
->type
!= PTP_CLK_REQ_PPS
)
1900 ptp_data
->nic_ts_enabled
= !!enable
;
1904 static const struct efx_channel_type efx_ptp_channel_type
= {
1905 .handle_no_channel
= efx_ptp_handle_no_channel
,
1906 .pre_probe
= efx_ptp_probe_channel
,
1907 .post_remove
= efx_ptp_remove_channel
,
1908 .get_name
= efx_ptp_get_channel_name
,
1909 /* no copy operation; there is no need to reallocate this channel */
1910 .receive_skb
= efx_ptp_rx
,
1911 .keep_eventq
= false,
1914 void efx_ptp_defer_probe_with_channel(struct efx_nic
*efx
)
1916 /* Check whether PTP is implemented on this NIC. The DISABLE
1917 * operation will succeed if and only if it is implemented.
1919 if (efx_ptp_disable(efx
) == 0)
1920 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_PTP
] =
1921 &efx_ptp_channel_type
;
1924 void efx_ptp_start_datapath(struct efx_nic
*efx
)
1926 if (efx_ptp_restart(efx
))
1927 netif_err(efx
, drv
, efx
->net_dev
, "Failed to restart PTP.\n");
1928 /* re-enable timestamping if it was previously enabled */
1929 if (efx
->type
->ptp_set_ts_sync_events
)
1930 efx
->type
->ptp_set_ts_sync_events(efx
, true, true);
1933 void efx_ptp_stop_datapath(struct efx_nic
*efx
)
1935 /* temporarily disable timestamping */
1936 if (efx
->type
->ptp_set_ts_sync_events
)
1937 efx
->type
->ptp_set_ts_sync_events(efx
, false, true);