Merge branch 'x86/microcode' into x86/urgent, to pick up cleanup
[linux/fpc-iii.git] / arch / x86 / power / cpu.c
blob66ade16c769363ecd1bef435eccfd4977ffd5228
1 /*
2 * Suspend support specific for i386/x86-64.
4 * Distribute under GPLv2
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
9 */
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 #include <linux/tboot.h>
17 #include <asm/pgtable.h>
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/internal.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <linux/dmi.h>
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
37 static void msr_save_context(struct saved_context *ctxt)
39 struct saved_msr *msr = ctxt->saved_msrs.array;
40 struct saved_msr *end = msr + ctxt->saved_msrs.num;
42 while (msr < end) {
43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 msr++;
48 static void msr_restore_context(struct saved_context *ctxt)
50 struct saved_msr *msr = ctxt->saved_msrs.array;
51 struct saved_msr *end = msr + ctxt->saved_msrs.num;
53 while (msr < end) {
54 if (msr->valid)
55 wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 msr++;
60 /**
61 * __save_processor_state - save CPU registers before creating a
62 * hibernation image and before restoring the memory state from it
63 * @ctxt - structure to store the registers contents in
65 * NOTE: If there is a CPU register the modification of which by the
66 * boot kernel (ie. the kernel used for loading the hibernation image)
67 * might affect the operations of the restored target kernel (ie. the one
68 * saved in the hibernation image), then its contents must be saved by this
69 * function. In other words, if kernel A is hibernated and different
70 * kernel B is used for loading the hibernation image into memory, the
71 * kernel A's __save_processor_state() function must save all registers
72 * needed by kernel A, so that it can operate correctly after the resume
73 * regardless of what kernel B does in the meantime.
75 static void __save_processor_state(struct saved_context *ctxt)
77 #ifdef CONFIG_X86_32
78 mtrr_save_fixed_ranges(NULL);
79 #endif
80 kernel_fpu_begin();
83 * descriptor tables
85 #ifdef CONFIG_X86_32
86 store_idt(&ctxt->idt);
87 #else
88 /* CONFIG_X86_64 */
89 store_idt((struct desc_ptr *)&ctxt->idt_limit);
90 #endif
92 * We save it here, but restore it only in the hibernate case.
93 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
94 * mode in "secondary_startup_64". In 32-bit mode it is done via
95 * 'pmode_gdt' in wakeup_start.
97 ctxt->gdt_desc.size = GDT_SIZE - 1;
98 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
100 store_tr(ctxt->tr);
102 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
104 * segment registers
106 #ifdef CONFIG_X86_32
107 savesegment(es, ctxt->es);
108 savesegment(fs, ctxt->fs);
109 savesegment(gs, ctxt->gs);
110 savesegment(ss, ctxt->ss);
111 #else
112 /* CONFIG_X86_64 */
113 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
114 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
115 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
116 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
117 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
119 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
120 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
121 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
122 mtrr_save_fixed_ranges(NULL);
124 rdmsrl(MSR_EFER, ctxt->efer);
125 #endif
128 * control registers
130 ctxt->cr0 = read_cr0();
131 ctxt->cr2 = read_cr2();
132 ctxt->cr3 = read_cr3();
133 ctxt->cr4 = __read_cr4();
134 #ifdef CONFIG_X86_64
135 ctxt->cr8 = read_cr8();
136 #endif
137 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
138 &ctxt->misc_enable);
139 msr_save_context(ctxt);
142 /* Needed by apm.c */
143 void save_processor_state(void)
145 __save_processor_state(&saved_context);
146 x86_platform.save_sched_clock_state();
148 #ifdef CONFIG_X86_32
149 EXPORT_SYMBOL(save_processor_state);
150 #endif
152 static void do_fpu_end(void)
155 * Restore FPU regs if necessary.
157 kernel_fpu_end();
160 static void fix_processor_context(void)
162 int cpu = smp_processor_id();
163 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
164 #ifdef CONFIG_X86_64
165 struct desc_struct *desc = get_cpu_gdt_table(cpu);
166 tss_desc tss;
167 #endif
168 set_tss_desc(cpu, t); /*
169 * This just modifies memory; should not be
170 * necessary. But... This is necessary, because
171 * 386 hardware has concept of busy TSS or some
172 * similar stupidity.
175 #ifdef CONFIG_X86_64
176 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
177 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
178 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
180 syscall_init(); /* This sets MSR_*STAR and related */
181 #endif
182 load_TR_desc(); /* This does ltr */
183 load_mm_ldt(current->active_mm); /* This does lldt */
185 fpu__resume_cpu();
189 * __restore_processor_state - restore the contents of CPU registers saved
190 * by __save_processor_state()
191 * @ctxt - structure to load the registers contents from
193 static void notrace __restore_processor_state(struct saved_context *ctxt)
195 if (ctxt->misc_enable_saved)
196 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
198 * control registers
200 /* cr4 was introduced in the Pentium CPU */
201 #ifdef CONFIG_X86_32
202 if (ctxt->cr4)
203 __write_cr4(ctxt->cr4);
204 #else
205 /* CONFIG X86_64 */
206 wrmsrl(MSR_EFER, ctxt->efer);
207 write_cr8(ctxt->cr8);
208 __write_cr4(ctxt->cr4);
209 #endif
210 write_cr3(ctxt->cr3);
211 write_cr2(ctxt->cr2);
212 write_cr0(ctxt->cr0);
215 * now restore the descriptor tables to their proper values
216 * ltr is done i fix_processor_context().
218 #ifdef CONFIG_X86_32
219 load_idt(&ctxt->idt);
220 #else
221 /* CONFIG_X86_64 */
222 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
223 #endif
226 * segment registers
228 #ifdef CONFIG_X86_32
229 loadsegment(es, ctxt->es);
230 loadsegment(fs, ctxt->fs);
231 loadsegment(gs, ctxt->gs);
232 loadsegment(ss, ctxt->ss);
235 * sysenter MSRs
237 if (boot_cpu_has(X86_FEATURE_SEP))
238 enable_sep_cpu();
239 #else
240 /* CONFIG_X86_64 */
241 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
242 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
243 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
244 load_gs_index(ctxt->gs);
245 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
247 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
248 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
249 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
250 #endif
252 fix_processor_context();
254 do_fpu_end();
255 tsc_verify_tsc_adjust(true);
256 x86_platform.restore_sched_clock_state();
257 mtrr_bp_restore();
258 perf_restore_debug_store();
259 msr_restore_context(ctxt);
262 /* Needed by apm.c */
263 void notrace restore_processor_state(void)
265 __restore_processor_state(&saved_context);
267 #ifdef CONFIG_X86_32
268 EXPORT_SYMBOL(restore_processor_state);
269 #endif
271 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
272 static void resume_play_dead(void)
274 play_dead_common();
275 tboot_shutdown(TB_SHUTDOWN_WFS);
276 hlt_play_dead();
279 int hibernate_resume_nonboot_cpu_disable(void)
281 void (*play_dead)(void) = smp_ops.play_dead;
282 int ret;
285 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
286 * during hibernate image restoration, because it is likely that the
287 * monitored address will be actually written to at that time and then
288 * the "dead" CPU will attempt to execute instructions again, but the
289 * address in its instruction pointer may not be possible to resolve
290 * any more at that point (the page tables used by it previously may
291 * have been overwritten by hibernate image data).
293 smp_ops.play_dead = resume_play_dead;
294 ret = disable_nonboot_cpus();
295 smp_ops.play_dead = play_dead;
296 return ret;
298 #endif
301 * When bsp_check() is called in hibernate and suspend, cpu hotplug
302 * is disabled already. So it's unnessary to handle race condition between
303 * cpumask query and cpu hotplug.
305 static int bsp_check(void)
307 if (cpumask_first(cpu_online_mask) != 0) {
308 pr_warn("CPU0 is offline.\n");
309 return -ENODEV;
312 return 0;
315 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
316 void *ptr)
318 int ret = 0;
320 switch (action) {
321 case PM_SUSPEND_PREPARE:
322 case PM_HIBERNATION_PREPARE:
323 ret = bsp_check();
324 break;
325 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
326 case PM_RESTORE_PREPARE:
328 * When system resumes from hibernation, online CPU0 because
329 * 1. it's required for resume and
330 * 2. the CPU was online before hibernation
332 if (!cpu_online(0))
333 _debug_hotplug_cpu(0, 1);
334 break;
335 case PM_POST_RESTORE:
337 * When a resume really happens, this code won't be called.
339 * This code is called only when user space hibernation software
340 * prepares for snapshot device during boot time. So we just
341 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
342 * preparing the snapshot device.
344 * This works for normal boot case in our CPU0 hotplug debug
345 * mode, i.e. CPU0 is offline and user mode hibernation
346 * software initializes during boot time.
348 * If CPU0 is online and user application accesses snapshot
349 * device after boot time, this will offline CPU0 and user may
350 * see different CPU0 state before and after accessing
351 * the snapshot device. But hopefully this is not a case when
352 * user debugging CPU0 hotplug. Even if users hit this case,
353 * they can easily online CPU0 back.
355 * To simplify this debug code, we only consider normal boot
356 * case. Otherwise we need to remember CPU0's state and restore
357 * to that state and resolve racy conditions etc.
359 _debug_hotplug_cpu(0, 0);
360 break;
361 #endif
362 default:
363 break;
365 return notifier_from_errno(ret);
368 static int __init bsp_pm_check_init(void)
371 * Set this bsp_pm_callback as lower priority than
372 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
373 * earlier to disable cpu hotplug before bsp online check.
375 pm_notifier(bsp_pm_callback, -INT_MAX);
376 return 0;
379 core_initcall(bsp_pm_check_init);
381 static int msr_init_context(const u32 *msr_id, const int total_num)
383 int i = 0;
384 struct saved_msr *msr_array;
386 if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
387 pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
388 return -EINVAL;
391 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
392 if (!msr_array) {
393 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
394 return -ENOMEM;
397 for (i = 0; i < total_num; i++) {
398 msr_array[i].info.msr_no = msr_id[i];
399 msr_array[i].valid = false;
400 msr_array[i].info.reg.q = 0;
402 saved_context.saved_msrs.num = total_num;
403 saved_context.saved_msrs.array = msr_array;
405 return 0;
409 * The following section is a quirk framework for problematic BIOSen:
410 * Sometimes MSRs are modified by the BIOSen after suspended to
411 * RAM, this might cause unexpected behavior after wakeup.
412 * Thus we save/restore these specified MSRs across suspend/resume
413 * in order to work around it.
415 * For any further problematic BIOSen/platforms,
416 * please add your own function similar to msr_initialize_bdw.
418 static int msr_initialize_bdw(const struct dmi_system_id *d)
420 /* Add any extra MSR ids into this array. */
421 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
423 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
424 return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
427 static struct dmi_system_id msr_save_dmi_table[] = {
429 .callback = msr_initialize_bdw,
430 .ident = "BROADWELL BDX_EP",
431 .matches = {
432 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
433 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
439 static int pm_check_save_msr(void)
441 dmi_check_system(msr_save_dmi_table);
442 return 0;
445 device_initcall(pm_check_save_msr);