mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory is low...
[linux/fpc-iii.git] / mm / page_alloc.c
blob8793c00b0349b28518d4f38f6366776df299dd38
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
58 * Array of node states.
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
71 EXPORT_SYMBOL(node_states);
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
82 static void __free_pages_ok(struct page *page, unsigned int order);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
104 #endif
108 EXPORT_SYMBOL(totalram_pages);
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
124 int min_free_kbytes = 1024;
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
171 int page_group_by_mobility_disabled __read_mostly;
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
183 bool oom_killer_disabled __read_mostly;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
200 return ret;
203 static int page_is_consistent(struct zone *zone, struct page *page)
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
210 return 1;
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone *zone, struct page *page)
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
222 return 0;
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
227 return 0;
229 #endif
231 static void bad_page(struct page *page)
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page)) {
239 __ClearPageBuddy(page);
240 return;
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
247 if (nr_shown == 60) {
248 if (time_before(jiffies, resume)) {
249 nr_unshown++;
250 goto out;
252 if (nr_unshown) {
253 printk(KERN_ALERT
254 "BUG: Bad page state: %lu messages suppressed\n",
255 nr_unshown);
256 nr_unshown = 0;
258 nr_shown = 0;
260 if (nr_shown++ == 0)
261 resume = jiffies + 60 * HZ;
263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
264 current->comm, page_to_pfn(page));
265 printk(KERN_ALERT
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page, (void *)page->flags, page_count(page),
268 page_mapcount(page), page->mapping, page->index);
270 dump_stack();
271 out:
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page);
274 add_taint(TAINT_BAD_PAGE);
278 * Higher-order pages are called "compound pages". They are structured thusly:
280 * The first PAGE_SIZE page is called the "head page".
282 * The remaining PAGE_SIZE pages are called "tail pages".
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
292 static void free_compound_page(struct page *page)
294 __free_pages_ok(page, compound_order(page));
297 void prep_compound_page(struct page *page, unsigned long order)
299 int i;
300 int nr_pages = 1 << order;
302 set_compound_page_dtor(page, free_compound_page);
303 set_compound_order(page, order);
304 __SetPageHead(page);
305 for (i = 1; i < nr_pages; i++) {
306 struct page *p = page + i;
308 __SetPageTail(p);
309 p->first_page = page;
313 static int destroy_compound_page(struct page *page, unsigned long order)
315 int i;
316 int nr_pages = 1 << order;
317 int bad = 0;
319 if (unlikely(compound_order(page) != order) ||
320 unlikely(!PageHead(page))) {
321 bad_page(page);
322 bad++;
325 __ClearPageHead(page);
327 for (i = 1; i < nr_pages; i++) {
328 struct page *p = page + i;
330 if (unlikely(!PageTail(p) || (p->first_page != page))) {
331 bad_page(page);
332 bad++;
334 __ClearPageTail(p);
337 return bad;
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342 int i;
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
349 for (i = 0; i < (1 << order); i++)
350 clear_highpage(page + i);
353 static inline void set_page_order(struct page *page, int order)
355 set_page_private(page, order);
356 __SetPageBuddy(page);
359 static inline void rmv_page_order(struct page *page)
361 __ClearPageBuddy(page);
362 set_page_private(page, 0);
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
371 * B2 = B1 ^ (1 << O)
372 * For example, if the starting buddy (buddy2) is #8 its order
373 * 1 buddy is #10:
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
378 * P = B & ~(1 << O)
380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 static inline struct page *
383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385 unsigned long buddy_idx = page_idx ^ (1 << order);
387 return page + (buddy_idx - page_idx);
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx, unsigned int order)
393 return (page_idx & ~(1 << order));
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
399 * (a) the buddy is not in a hole &&
400 * (b) the buddy is in the buddy system &&
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 * For recording page's order, we use page_private(page).
409 static inline int page_is_buddy(struct page *page, struct page *buddy,
410 int order)
412 if (!pfn_valid_within(page_to_pfn(buddy)))
413 return 0;
415 if (page_zone_id(page) != page_zone_id(buddy))
416 return 0;
418 if (PageBuddy(buddy) && page_order(buddy) == order) {
419 VM_BUG_ON(page_count(buddy) != 0);
420 return 1;
422 return 0;
426 * Freeing function for a buddy system allocator.
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
439 * order is recorded in page_private(page) field.
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
446 * -- wli
449 static inline void __free_one_page(struct page *page,
450 struct zone *zone, unsigned int order,
451 int migratetype)
453 unsigned long page_idx;
455 if (unlikely(PageCompound(page)))
456 if (unlikely(destroy_compound_page(page, order)))
457 return;
459 VM_BUG_ON(migratetype == -1);
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463 VM_BUG_ON(page_idx & ((1 << order) - 1));
464 VM_BUG_ON(bad_range(zone, page));
466 while (order < MAX_ORDER-1) {
467 unsigned long combined_idx;
468 struct page *buddy;
470 buddy = __page_find_buddy(page, page_idx, order);
471 if (!page_is_buddy(page, buddy, order))
472 break;
474 /* Our buddy is free, merge with it and move up one order. */
475 list_del(&buddy->lru);
476 zone->free_area[order].nr_free--;
477 rmv_page_order(buddy);
478 combined_idx = __find_combined_index(page_idx, order);
479 page = page + (combined_idx - page_idx);
480 page_idx = combined_idx;
481 order++;
483 set_page_order(page, order);
484 list_add(&page->lru,
485 &zone->free_area[order].free_list[migratetype]);
486 zone->free_area[order].nr_free++;
489 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page *page)
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
500 #else
501 static void free_page_mlock(struct page *page) { }
502 #endif
504 static inline int free_pages_check(struct page *page)
506 if (unlikely(page_mapcount(page) |
507 (page->mapping != NULL) |
508 (atomic_read(&page->_count) != 0) |
509 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
510 bad_page(page);
511 return 1;
513 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
514 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
515 return 0;
519 * Frees a number of pages from the PCP lists
520 * Assumes all pages on list are in same zone, and of same order.
521 * count is the number of pages to free.
523 * If the zone was previously in an "all pages pinned" state then look to
524 * see if this freeing clears that state.
526 * And clear the zone's pages_scanned counter, to hold off the "all pages are
527 * pinned" detection logic.
529 static void free_pcppages_bulk(struct zone *zone, int count,
530 struct per_cpu_pages *pcp)
532 int migratetype = 0;
533 int batch_free = 0;
535 spin_lock(&zone->lock);
536 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
537 zone->pages_scanned = 0;
539 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
540 while (count) {
541 struct page *page;
542 struct list_head *list;
545 * Remove pages from lists in a round-robin fashion. A
546 * batch_free count is maintained that is incremented when an
547 * empty list is encountered. This is so more pages are freed
548 * off fuller lists instead of spinning excessively around empty
549 * lists
551 do {
552 batch_free++;
553 if (++migratetype == MIGRATE_PCPTYPES)
554 migratetype = 0;
555 list = &pcp->lists[migratetype];
556 } while (list_empty(list));
558 do {
559 page = list_entry(list->prev, struct page, lru);
560 /* must delete as __free_one_page list manipulates */
561 list_del(&page->lru);
562 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
563 __free_one_page(page, zone, 0, page_private(page));
564 trace_mm_page_pcpu_drain(page, 0, page_private(page));
565 } while (--count && --batch_free && !list_empty(list));
567 spin_unlock(&zone->lock);
570 static void free_one_page(struct zone *zone, struct page *page, int order,
571 int migratetype)
573 spin_lock(&zone->lock);
574 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
575 zone->pages_scanned = 0;
577 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
578 __free_one_page(page, zone, order, migratetype);
579 spin_unlock(&zone->lock);
582 static void __free_pages_ok(struct page *page, unsigned int order)
584 unsigned long flags;
585 int i;
586 int bad = 0;
587 int wasMlocked = __TestClearPageMlocked(page);
589 kmemcheck_free_shadow(page, order);
591 for (i = 0 ; i < (1 << order) ; ++i)
592 bad += free_pages_check(page + i);
593 if (bad)
594 return;
596 if (!PageHighMem(page)) {
597 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
598 debug_check_no_obj_freed(page_address(page),
599 PAGE_SIZE << order);
601 arch_free_page(page, order);
602 kernel_map_pages(page, 1 << order, 0);
604 local_irq_save(flags);
605 if (unlikely(wasMlocked))
606 free_page_mlock(page);
607 __count_vm_events(PGFREE, 1 << order);
608 free_one_page(page_zone(page), page, order,
609 get_pageblock_migratetype(page));
610 local_irq_restore(flags);
614 * permit the bootmem allocator to evade page validation on high-order frees
616 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
618 if (order == 0) {
619 __ClearPageReserved(page);
620 set_page_count(page, 0);
621 set_page_refcounted(page);
622 __free_page(page);
623 } else {
624 int loop;
626 prefetchw(page);
627 for (loop = 0; loop < BITS_PER_LONG; loop++) {
628 struct page *p = &page[loop];
630 if (loop + 1 < BITS_PER_LONG)
631 prefetchw(p + 1);
632 __ClearPageReserved(p);
633 set_page_count(p, 0);
636 set_page_refcounted(page);
637 __free_pages(page, order);
643 * The order of subdivision here is critical for the IO subsystem.
644 * Please do not alter this order without good reasons and regression
645 * testing. Specifically, as large blocks of memory are subdivided,
646 * the order in which smaller blocks are delivered depends on the order
647 * they're subdivided in this function. This is the primary factor
648 * influencing the order in which pages are delivered to the IO
649 * subsystem according to empirical testing, and this is also justified
650 * by considering the behavior of a buddy system containing a single
651 * large block of memory acted on by a series of small allocations.
652 * This behavior is a critical factor in sglist merging's success.
654 * -- wli
656 static inline void expand(struct zone *zone, struct page *page,
657 int low, int high, struct free_area *area,
658 int migratetype)
660 unsigned long size = 1 << high;
662 while (high > low) {
663 area--;
664 high--;
665 size >>= 1;
666 VM_BUG_ON(bad_range(zone, &page[size]));
667 list_add(&page[size].lru, &area->free_list[migratetype]);
668 area->nr_free++;
669 set_page_order(&page[size], high);
674 * This page is about to be returned from the page allocator
676 static inline int check_new_page(struct page *page)
678 if (unlikely(page_mapcount(page) |
679 (page->mapping != NULL) |
680 (atomic_read(&page->_count) != 0) |
681 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
682 bad_page(page);
683 return 1;
685 return 0;
688 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
690 int i;
692 for (i = 0; i < (1 << order); i++) {
693 struct page *p = page + i;
694 if (unlikely(check_new_page(p)))
695 return 1;
698 set_page_private(page, 0);
699 set_page_refcounted(page);
701 arch_alloc_page(page, order);
702 kernel_map_pages(page, 1 << order, 1);
704 if (gfp_flags & __GFP_ZERO)
705 prep_zero_page(page, order, gfp_flags);
707 if (order && (gfp_flags & __GFP_COMP))
708 prep_compound_page(page, order);
710 return 0;
714 * Go through the free lists for the given migratetype and remove
715 * the smallest available page from the freelists
717 static inline
718 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
719 int migratetype)
721 unsigned int current_order;
722 struct free_area * area;
723 struct page *page;
725 /* Find a page of the appropriate size in the preferred list */
726 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
727 area = &(zone->free_area[current_order]);
728 if (list_empty(&area->free_list[migratetype]))
729 continue;
731 page = list_entry(area->free_list[migratetype].next,
732 struct page, lru);
733 list_del(&page->lru);
734 rmv_page_order(page);
735 area->nr_free--;
736 expand(zone, page, order, current_order, area, migratetype);
737 return page;
740 return NULL;
745 * This array describes the order lists are fallen back to when
746 * the free lists for the desirable migrate type are depleted
748 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
749 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
750 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
751 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
752 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
756 * Move the free pages in a range to the free lists of the requested type.
757 * Note that start_page and end_pages are not aligned on a pageblock
758 * boundary. If alignment is required, use move_freepages_block()
760 static int move_freepages(struct zone *zone,
761 struct page *start_page, struct page *end_page,
762 int migratetype)
764 struct page *page;
765 unsigned long order;
766 int pages_moved = 0;
768 #ifndef CONFIG_HOLES_IN_ZONE
770 * page_zone is not safe to call in this context when
771 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
772 * anyway as we check zone boundaries in move_freepages_block().
773 * Remove at a later date when no bug reports exist related to
774 * grouping pages by mobility
776 BUG_ON(page_zone(start_page) != page_zone(end_page));
777 #endif
779 for (page = start_page; page <= end_page;) {
780 /* Make sure we are not inadvertently changing nodes */
781 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
783 if (!pfn_valid_within(page_to_pfn(page))) {
784 page++;
785 continue;
788 if (!PageBuddy(page)) {
789 page++;
790 continue;
793 order = page_order(page);
794 list_del(&page->lru);
795 list_add(&page->lru,
796 &zone->free_area[order].free_list[migratetype]);
797 page += 1 << order;
798 pages_moved += 1 << order;
801 return pages_moved;
804 static int move_freepages_block(struct zone *zone, struct page *page,
805 int migratetype)
807 unsigned long start_pfn, end_pfn;
808 struct page *start_page, *end_page;
810 start_pfn = page_to_pfn(page);
811 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
812 start_page = pfn_to_page(start_pfn);
813 end_page = start_page + pageblock_nr_pages - 1;
814 end_pfn = start_pfn + pageblock_nr_pages - 1;
816 /* Do not cross zone boundaries */
817 if (start_pfn < zone->zone_start_pfn)
818 start_page = page;
819 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
820 return 0;
822 return move_freepages(zone, start_page, end_page, migratetype);
825 static void change_pageblock_range(struct page *pageblock_page,
826 int start_order, int migratetype)
828 int nr_pageblocks = 1 << (start_order - pageblock_order);
830 while (nr_pageblocks--) {
831 set_pageblock_migratetype(pageblock_page, migratetype);
832 pageblock_page += pageblock_nr_pages;
836 /* Remove an element from the buddy allocator from the fallback list */
837 static inline struct page *
838 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
840 struct free_area * area;
841 int current_order;
842 struct page *page;
843 int migratetype, i;
845 /* Find the largest possible block of pages in the other list */
846 for (current_order = MAX_ORDER-1; current_order >= order;
847 --current_order) {
848 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
849 migratetype = fallbacks[start_migratetype][i];
851 /* MIGRATE_RESERVE handled later if necessary */
852 if (migratetype == MIGRATE_RESERVE)
853 continue;
855 area = &(zone->free_area[current_order]);
856 if (list_empty(&area->free_list[migratetype]))
857 continue;
859 page = list_entry(area->free_list[migratetype].next,
860 struct page, lru);
861 area->nr_free--;
864 * If breaking a large block of pages, move all free
865 * pages to the preferred allocation list. If falling
866 * back for a reclaimable kernel allocation, be more
867 * agressive about taking ownership of free pages
869 if (unlikely(current_order >= (pageblock_order >> 1)) ||
870 start_migratetype == MIGRATE_RECLAIMABLE ||
871 page_group_by_mobility_disabled) {
872 unsigned long pages;
873 pages = move_freepages_block(zone, page,
874 start_migratetype);
876 /* Claim the whole block if over half of it is free */
877 if (pages >= (1 << (pageblock_order-1)) ||
878 page_group_by_mobility_disabled)
879 set_pageblock_migratetype(page,
880 start_migratetype);
882 migratetype = start_migratetype;
885 /* Remove the page from the freelists */
886 list_del(&page->lru);
887 rmv_page_order(page);
889 /* Take ownership for orders >= pageblock_order */
890 if (current_order >= pageblock_order)
891 change_pageblock_range(page, current_order,
892 start_migratetype);
894 expand(zone, page, order, current_order, area, migratetype);
896 trace_mm_page_alloc_extfrag(page, order, current_order,
897 start_migratetype, migratetype);
899 return page;
903 return NULL;
907 * Do the hard work of removing an element from the buddy allocator.
908 * Call me with the zone->lock already held.
910 static struct page *__rmqueue(struct zone *zone, unsigned int order,
911 int migratetype)
913 struct page *page;
915 retry_reserve:
916 page = __rmqueue_smallest(zone, order, migratetype);
918 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
919 page = __rmqueue_fallback(zone, order, migratetype);
922 * Use MIGRATE_RESERVE rather than fail an allocation. goto
923 * is used because __rmqueue_smallest is an inline function
924 * and we want just one call site
926 if (!page) {
927 migratetype = MIGRATE_RESERVE;
928 goto retry_reserve;
932 trace_mm_page_alloc_zone_locked(page, order, migratetype);
933 return page;
937 * Obtain a specified number of elements from the buddy allocator, all under
938 * a single hold of the lock, for efficiency. Add them to the supplied list.
939 * Returns the number of new pages which were placed at *list.
941 static int rmqueue_bulk(struct zone *zone, unsigned int order,
942 unsigned long count, struct list_head *list,
943 int migratetype, int cold)
945 int i;
947 spin_lock(&zone->lock);
948 for (i = 0; i < count; ++i) {
949 struct page *page = __rmqueue(zone, order, migratetype);
950 if (unlikely(page == NULL))
951 break;
954 * Split buddy pages returned by expand() are received here
955 * in physical page order. The page is added to the callers and
956 * list and the list head then moves forward. From the callers
957 * perspective, the linked list is ordered by page number in
958 * some conditions. This is useful for IO devices that can
959 * merge IO requests if the physical pages are ordered
960 * properly.
962 if (likely(cold == 0))
963 list_add(&page->lru, list);
964 else
965 list_add_tail(&page->lru, list);
966 set_page_private(page, migratetype);
967 list = &page->lru;
969 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
970 spin_unlock(&zone->lock);
971 return i;
974 #ifdef CONFIG_NUMA
976 * Called from the vmstat counter updater to drain pagesets of this
977 * currently executing processor on remote nodes after they have
978 * expired.
980 * Note that this function must be called with the thread pinned to
981 * a single processor.
983 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
985 unsigned long flags;
986 int to_drain;
988 local_irq_save(flags);
989 if (pcp->count >= pcp->batch)
990 to_drain = pcp->batch;
991 else
992 to_drain = pcp->count;
993 free_pcppages_bulk(zone, to_drain, pcp);
994 pcp->count -= to_drain;
995 local_irq_restore(flags);
997 #endif
1000 * Drain pages of the indicated processor.
1002 * The processor must either be the current processor and the
1003 * thread pinned to the current processor or a processor that
1004 * is not online.
1006 static void drain_pages(unsigned int cpu)
1008 unsigned long flags;
1009 struct zone *zone;
1011 for_each_populated_zone(zone) {
1012 struct per_cpu_pageset *pset;
1013 struct per_cpu_pages *pcp;
1015 pset = zone_pcp(zone, cpu);
1017 pcp = &pset->pcp;
1018 local_irq_save(flags);
1019 free_pcppages_bulk(zone, pcp->count, pcp);
1020 pcp->count = 0;
1021 local_irq_restore(flags);
1026 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1028 void drain_local_pages(void *arg)
1030 drain_pages(smp_processor_id());
1034 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1036 void drain_all_pages(void)
1038 on_each_cpu(drain_local_pages, NULL, 1);
1041 #ifdef CONFIG_HIBERNATION
1043 void mark_free_pages(struct zone *zone)
1045 unsigned long pfn, max_zone_pfn;
1046 unsigned long flags;
1047 int order, t;
1048 struct list_head *curr;
1050 if (!zone->spanned_pages)
1051 return;
1053 spin_lock_irqsave(&zone->lock, flags);
1055 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1056 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1057 if (pfn_valid(pfn)) {
1058 struct page *page = pfn_to_page(pfn);
1060 if (!swsusp_page_is_forbidden(page))
1061 swsusp_unset_page_free(page);
1064 for_each_migratetype_order(order, t) {
1065 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1066 unsigned long i;
1068 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1069 for (i = 0; i < (1UL << order); i++)
1070 swsusp_set_page_free(pfn_to_page(pfn + i));
1073 spin_unlock_irqrestore(&zone->lock, flags);
1075 #endif /* CONFIG_PM */
1078 * Free a 0-order page
1080 static void free_hot_cold_page(struct page *page, int cold)
1082 struct zone *zone = page_zone(page);
1083 struct per_cpu_pages *pcp;
1084 unsigned long flags;
1085 int migratetype;
1086 int wasMlocked = __TestClearPageMlocked(page);
1088 kmemcheck_free_shadow(page, 0);
1090 if (PageAnon(page))
1091 page->mapping = NULL;
1092 if (free_pages_check(page))
1093 return;
1095 if (!PageHighMem(page)) {
1096 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1097 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1099 arch_free_page(page, 0);
1100 kernel_map_pages(page, 1, 0);
1102 pcp = &zone_pcp(zone, get_cpu())->pcp;
1103 migratetype = get_pageblock_migratetype(page);
1104 set_page_private(page, migratetype);
1105 local_irq_save(flags);
1106 if (unlikely(wasMlocked))
1107 free_page_mlock(page);
1108 __count_vm_event(PGFREE);
1111 * We only track unmovable, reclaimable and movable on pcp lists.
1112 * Free ISOLATE pages back to the allocator because they are being
1113 * offlined but treat RESERVE as movable pages so we can get those
1114 * areas back if necessary. Otherwise, we may have to free
1115 * excessively into the page allocator
1117 if (migratetype >= MIGRATE_PCPTYPES) {
1118 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1119 free_one_page(zone, page, 0, migratetype);
1120 goto out;
1122 migratetype = MIGRATE_MOVABLE;
1125 if (cold)
1126 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1127 else
1128 list_add(&page->lru, &pcp->lists[migratetype]);
1129 pcp->count++;
1130 if (pcp->count >= pcp->high) {
1131 free_pcppages_bulk(zone, pcp->batch, pcp);
1132 pcp->count -= pcp->batch;
1135 out:
1136 local_irq_restore(flags);
1137 put_cpu();
1140 void free_hot_page(struct page *page)
1142 trace_mm_page_free_direct(page, 0);
1143 free_hot_cold_page(page, 0);
1147 * split_page takes a non-compound higher-order page, and splits it into
1148 * n (1<<order) sub-pages: page[0..n]
1149 * Each sub-page must be freed individually.
1151 * Note: this is probably too low level an operation for use in drivers.
1152 * Please consult with lkml before using this in your driver.
1154 void split_page(struct page *page, unsigned int order)
1156 int i;
1158 VM_BUG_ON(PageCompound(page));
1159 VM_BUG_ON(!page_count(page));
1161 #ifdef CONFIG_KMEMCHECK
1163 * Split shadow pages too, because free(page[0]) would
1164 * otherwise free the whole shadow.
1166 if (kmemcheck_page_is_tracked(page))
1167 split_page(virt_to_page(page[0].shadow), order);
1168 #endif
1170 for (i = 1; i < (1 << order); i++)
1171 set_page_refcounted(page + i);
1175 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1176 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1177 * or two.
1179 static inline
1180 struct page *buffered_rmqueue(struct zone *preferred_zone,
1181 struct zone *zone, int order, gfp_t gfp_flags,
1182 int migratetype)
1184 unsigned long flags;
1185 struct page *page;
1186 int cold = !!(gfp_flags & __GFP_COLD);
1187 int cpu;
1189 again:
1190 cpu = get_cpu();
1191 if (likely(order == 0)) {
1192 struct per_cpu_pages *pcp;
1193 struct list_head *list;
1195 pcp = &zone_pcp(zone, cpu)->pcp;
1196 list = &pcp->lists[migratetype];
1197 local_irq_save(flags);
1198 if (list_empty(list)) {
1199 pcp->count += rmqueue_bulk(zone, 0,
1200 pcp->batch, list,
1201 migratetype, cold);
1202 if (unlikely(list_empty(list)))
1203 goto failed;
1206 if (cold)
1207 page = list_entry(list->prev, struct page, lru);
1208 else
1209 page = list_entry(list->next, struct page, lru);
1211 list_del(&page->lru);
1212 pcp->count--;
1213 } else {
1214 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1216 * __GFP_NOFAIL is not to be used in new code.
1218 * All __GFP_NOFAIL callers should be fixed so that they
1219 * properly detect and handle allocation failures.
1221 * We most definitely don't want callers attempting to
1222 * allocate greater than order-1 page units with
1223 * __GFP_NOFAIL.
1225 WARN_ON_ONCE(order > 1);
1227 spin_lock_irqsave(&zone->lock, flags);
1228 page = __rmqueue(zone, order, migratetype);
1229 spin_unlock(&zone->lock);
1230 if (!page)
1231 goto failed;
1232 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1235 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1236 zone_statistics(preferred_zone, zone);
1237 local_irq_restore(flags);
1238 put_cpu();
1240 VM_BUG_ON(bad_range(zone, page));
1241 if (prep_new_page(page, order, gfp_flags))
1242 goto again;
1243 return page;
1245 failed:
1246 local_irq_restore(flags);
1247 put_cpu();
1248 return NULL;
1251 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1252 #define ALLOC_WMARK_MIN WMARK_MIN
1253 #define ALLOC_WMARK_LOW WMARK_LOW
1254 #define ALLOC_WMARK_HIGH WMARK_HIGH
1255 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1257 /* Mask to get the watermark bits */
1258 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1260 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1261 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1262 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1264 #ifdef CONFIG_FAIL_PAGE_ALLOC
1266 static struct fail_page_alloc_attr {
1267 struct fault_attr attr;
1269 u32 ignore_gfp_highmem;
1270 u32 ignore_gfp_wait;
1271 u32 min_order;
1273 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1275 struct dentry *ignore_gfp_highmem_file;
1276 struct dentry *ignore_gfp_wait_file;
1277 struct dentry *min_order_file;
1279 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1281 } fail_page_alloc = {
1282 .attr = FAULT_ATTR_INITIALIZER,
1283 .ignore_gfp_wait = 1,
1284 .ignore_gfp_highmem = 1,
1285 .min_order = 1,
1288 static int __init setup_fail_page_alloc(char *str)
1290 return setup_fault_attr(&fail_page_alloc.attr, str);
1292 __setup("fail_page_alloc=", setup_fail_page_alloc);
1294 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1296 if (order < fail_page_alloc.min_order)
1297 return 0;
1298 if (gfp_mask & __GFP_NOFAIL)
1299 return 0;
1300 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1301 return 0;
1302 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1303 return 0;
1305 return should_fail(&fail_page_alloc.attr, 1 << order);
1308 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1310 static int __init fail_page_alloc_debugfs(void)
1312 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1313 struct dentry *dir;
1314 int err;
1316 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1317 "fail_page_alloc");
1318 if (err)
1319 return err;
1320 dir = fail_page_alloc.attr.dentries.dir;
1322 fail_page_alloc.ignore_gfp_wait_file =
1323 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1324 &fail_page_alloc.ignore_gfp_wait);
1326 fail_page_alloc.ignore_gfp_highmem_file =
1327 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1328 &fail_page_alloc.ignore_gfp_highmem);
1329 fail_page_alloc.min_order_file =
1330 debugfs_create_u32("min-order", mode, dir,
1331 &fail_page_alloc.min_order);
1333 if (!fail_page_alloc.ignore_gfp_wait_file ||
1334 !fail_page_alloc.ignore_gfp_highmem_file ||
1335 !fail_page_alloc.min_order_file) {
1336 err = -ENOMEM;
1337 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1338 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1339 debugfs_remove(fail_page_alloc.min_order_file);
1340 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1343 return err;
1346 late_initcall(fail_page_alloc_debugfs);
1348 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1350 #else /* CONFIG_FAIL_PAGE_ALLOC */
1352 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1354 return 0;
1357 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1360 * Return 1 if free pages are above 'mark'. This takes into account the order
1361 * of the allocation.
1363 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1364 int classzone_idx, int alloc_flags)
1366 /* free_pages my go negative - that's OK */
1367 long min = mark;
1368 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1369 int o;
1371 if (alloc_flags & ALLOC_HIGH)
1372 min -= min / 2;
1373 if (alloc_flags & ALLOC_HARDER)
1374 min -= min / 4;
1376 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1377 return 0;
1378 for (o = 0; o < order; o++) {
1379 /* At the next order, this order's pages become unavailable */
1380 free_pages -= z->free_area[o].nr_free << o;
1382 /* Require fewer higher order pages to be free */
1383 min >>= 1;
1385 if (free_pages <= min)
1386 return 0;
1388 return 1;
1391 #ifdef CONFIG_NUMA
1393 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1394 * skip over zones that are not allowed by the cpuset, or that have
1395 * been recently (in last second) found to be nearly full. See further
1396 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1397 * that have to skip over a lot of full or unallowed zones.
1399 * If the zonelist cache is present in the passed in zonelist, then
1400 * returns a pointer to the allowed node mask (either the current
1401 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1403 * If the zonelist cache is not available for this zonelist, does
1404 * nothing and returns NULL.
1406 * If the fullzones BITMAP in the zonelist cache is stale (more than
1407 * a second since last zap'd) then we zap it out (clear its bits.)
1409 * We hold off even calling zlc_setup, until after we've checked the
1410 * first zone in the zonelist, on the theory that most allocations will
1411 * be satisfied from that first zone, so best to examine that zone as
1412 * quickly as we can.
1414 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1416 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1417 nodemask_t *allowednodes; /* zonelist_cache approximation */
1419 zlc = zonelist->zlcache_ptr;
1420 if (!zlc)
1421 return NULL;
1423 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1424 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1425 zlc->last_full_zap = jiffies;
1428 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1429 &cpuset_current_mems_allowed :
1430 &node_states[N_HIGH_MEMORY];
1431 return allowednodes;
1435 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1436 * if it is worth looking at further for free memory:
1437 * 1) Check that the zone isn't thought to be full (doesn't have its
1438 * bit set in the zonelist_cache fullzones BITMAP).
1439 * 2) Check that the zones node (obtained from the zonelist_cache
1440 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1441 * Return true (non-zero) if zone is worth looking at further, or
1442 * else return false (zero) if it is not.
1444 * This check -ignores- the distinction between various watermarks,
1445 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1446 * found to be full for any variation of these watermarks, it will
1447 * be considered full for up to one second by all requests, unless
1448 * we are so low on memory on all allowed nodes that we are forced
1449 * into the second scan of the zonelist.
1451 * In the second scan we ignore this zonelist cache and exactly
1452 * apply the watermarks to all zones, even it is slower to do so.
1453 * We are low on memory in the second scan, and should leave no stone
1454 * unturned looking for a free page.
1456 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1457 nodemask_t *allowednodes)
1459 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1460 int i; /* index of *z in zonelist zones */
1461 int n; /* node that zone *z is on */
1463 zlc = zonelist->zlcache_ptr;
1464 if (!zlc)
1465 return 1;
1467 i = z - zonelist->_zonerefs;
1468 n = zlc->z_to_n[i];
1470 /* This zone is worth trying if it is allowed but not full */
1471 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1475 * Given 'z' scanning a zonelist, set the corresponding bit in
1476 * zlc->fullzones, so that subsequent attempts to allocate a page
1477 * from that zone don't waste time re-examining it.
1479 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1481 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1482 int i; /* index of *z in zonelist zones */
1484 zlc = zonelist->zlcache_ptr;
1485 if (!zlc)
1486 return;
1488 i = z - zonelist->_zonerefs;
1490 set_bit(i, zlc->fullzones);
1493 #else /* CONFIG_NUMA */
1495 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1497 return NULL;
1500 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1501 nodemask_t *allowednodes)
1503 return 1;
1506 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1509 #endif /* CONFIG_NUMA */
1512 * get_page_from_freelist goes through the zonelist trying to allocate
1513 * a page.
1515 static struct page *
1516 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1517 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1518 struct zone *preferred_zone, int migratetype)
1520 struct zoneref *z;
1521 struct page *page = NULL;
1522 int classzone_idx;
1523 struct zone *zone;
1524 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1525 int zlc_active = 0; /* set if using zonelist_cache */
1526 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1528 classzone_idx = zone_idx(preferred_zone);
1529 zonelist_scan:
1531 * Scan zonelist, looking for a zone with enough free.
1532 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1535 high_zoneidx, nodemask) {
1536 if (NUMA_BUILD && zlc_active &&
1537 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1538 continue;
1539 if ((alloc_flags & ALLOC_CPUSET) &&
1540 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1541 goto try_next_zone;
1543 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1544 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1545 unsigned long mark;
1546 int ret;
1548 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1549 if (zone_watermark_ok(zone, order, mark,
1550 classzone_idx, alloc_flags))
1551 goto try_this_zone;
1553 if (zone_reclaim_mode == 0)
1554 goto this_zone_full;
1556 ret = zone_reclaim(zone, gfp_mask, order);
1557 switch (ret) {
1558 case ZONE_RECLAIM_NOSCAN:
1559 /* did not scan */
1560 goto try_next_zone;
1561 case ZONE_RECLAIM_FULL:
1562 /* scanned but unreclaimable */
1563 goto this_zone_full;
1564 default:
1565 /* did we reclaim enough */
1566 if (!zone_watermark_ok(zone, order, mark,
1567 classzone_idx, alloc_flags))
1568 goto this_zone_full;
1572 try_this_zone:
1573 page = buffered_rmqueue(preferred_zone, zone, order,
1574 gfp_mask, migratetype);
1575 if (page)
1576 break;
1577 this_zone_full:
1578 if (NUMA_BUILD)
1579 zlc_mark_zone_full(zonelist, z);
1580 try_next_zone:
1581 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1583 * we do zlc_setup after the first zone is tried but only
1584 * if there are multiple nodes make it worthwhile
1586 allowednodes = zlc_setup(zonelist, alloc_flags);
1587 zlc_active = 1;
1588 did_zlc_setup = 1;
1592 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1593 /* Disable zlc cache for second zonelist scan */
1594 zlc_active = 0;
1595 goto zonelist_scan;
1597 return page;
1600 static inline int
1601 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1602 unsigned long pages_reclaimed)
1604 /* Do not loop if specifically requested */
1605 if (gfp_mask & __GFP_NORETRY)
1606 return 0;
1609 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1610 * means __GFP_NOFAIL, but that may not be true in other
1611 * implementations.
1613 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1614 return 1;
1617 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1618 * specified, then we retry until we no longer reclaim any pages
1619 * (above), or we've reclaimed an order of pages at least as
1620 * large as the allocation's order. In both cases, if the
1621 * allocation still fails, we stop retrying.
1623 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1624 return 1;
1627 * Don't let big-order allocations loop unless the caller
1628 * explicitly requests that.
1630 if (gfp_mask & __GFP_NOFAIL)
1631 return 1;
1633 return 0;
1636 static inline struct page *
1637 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1638 struct zonelist *zonelist, enum zone_type high_zoneidx,
1639 nodemask_t *nodemask, struct zone *preferred_zone,
1640 int migratetype)
1642 struct page *page;
1644 /* Acquire the OOM killer lock for the zones in zonelist */
1645 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1646 schedule_timeout_uninterruptible(1);
1647 return NULL;
1651 * Go through the zonelist yet one more time, keep very high watermark
1652 * here, this is only to catch a parallel oom killing, we must fail if
1653 * we're still under heavy pressure.
1655 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1656 order, zonelist, high_zoneidx,
1657 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1658 preferred_zone, migratetype);
1659 if (page)
1660 goto out;
1662 /* The OOM killer will not help higher order allocs */
1663 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1664 goto out;
1666 /* Exhausted what can be done so it's blamo time */
1667 out_of_memory(zonelist, gfp_mask, order);
1669 out:
1670 clear_zonelist_oom(zonelist, gfp_mask);
1671 return page;
1674 /* The really slow allocator path where we enter direct reclaim */
1675 static inline struct page *
1676 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1677 struct zonelist *zonelist, enum zone_type high_zoneidx,
1678 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1679 int migratetype, unsigned long *did_some_progress)
1681 struct page *page = NULL;
1682 struct reclaim_state reclaim_state;
1683 struct task_struct *p = current;
1684 bool drained = false;
1686 cond_resched();
1688 /* We now go into synchronous reclaim */
1689 cpuset_memory_pressure_bump();
1690 p->flags |= PF_MEMALLOC;
1691 lockdep_set_current_reclaim_state(gfp_mask);
1692 reclaim_state.reclaimed_slab = 0;
1693 p->reclaim_state = &reclaim_state;
1695 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1697 p->reclaim_state = NULL;
1698 lockdep_clear_current_reclaim_state();
1699 p->flags &= ~PF_MEMALLOC;
1701 cond_resched();
1703 if (unlikely(!(*did_some_progress)))
1704 return NULL;
1706 retry:
1707 page = get_page_from_freelist(gfp_mask, nodemask, order,
1708 zonelist, high_zoneidx,
1709 alloc_flags, preferred_zone,
1710 migratetype);
1713 * If an allocation failed after direct reclaim, it could be because
1714 * pages are pinned on the per-cpu lists. Drain them and try again
1716 if (!page && !drained) {
1717 drain_all_pages();
1718 drained = true;
1719 goto retry;
1722 return page;
1726 * This is called in the allocator slow-path if the allocation request is of
1727 * sufficient urgency to ignore watermarks and take other desperate measures
1729 static inline struct page *
1730 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1731 struct zonelist *zonelist, enum zone_type high_zoneidx,
1732 nodemask_t *nodemask, struct zone *preferred_zone,
1733 int migratetype)
1735 struct page *page;
1737 do {
1738 page = get_page_from_freelist(gfp_mask, nodemask, order,
1739 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1740 preferred_zone, migratetype);
1742 if (!page && gfp_mask & __GFP_NOFAIL)
1743 congestion_wait(BLK_RW_ASYNC, HZ/50);
1744 } while (!page && (gfp_mask & __GFP_NOFAIL));
1746 return page;
1749 static inline
1750 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1751 enum zone_type high_zoneidx)
1753 struct zoneref *z;
1754 struct zone *zone;
1756 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1757 wakeup_kswapd(zone, order);
1760 static inline int
1761 gfp_to_alloc_flags(gfp_t gfp_mask)
1763 struct task_struct *p = current;
1764 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1765 const gfp_t wait = gfp_mask & __GFP_WAIT;
1767 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1768 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1771 * The caller may dip into page reserves a bit more if the caller
1772 * cannot run direct reclaim, or if the caller has realtime scheduling
1773 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1774 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1776 alloc_flags |= (gfp_mask & __GFP_HIGH);
1778 if (!wait) {
1779 alloc_flags |= ALLOC_HARDER;
1781 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1782 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1784 alloc_flags &= ~ALLOC_CPUSET;
1785 } else if (unlikely(rt_task(p)) && !in_interrupt())
1786 alloc_flags |= ALLOC_HARDER;
1788 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1789 if (!in_interrupt() &&
1790 ((p->flags & PF_MEMALLOC) ||
1791 unlikely(test_thread_flag(TIF_MEMDIE))))
1792 alloc_flags |= ALLOC_NO_WATERMARKS;
1795 return alloc_flags;
1798 static inline struct page *
1799 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1800 struct zonelist *zonelist, enum zone_type high_zoneidx,
1801 nodemask_t *nodemask, struct zone *preferred_zone,
1802 int migratetype)
1804 const gfp_t wait = gfp_mask & __GFP_WAIT;
1805 struct page *page = NULL;
1806 int alloc_flags;
1807 unsigned long pages_reclaimed = 0;
1808 unsigned long did_some_progress;
1809 struct task_struct *p = current;
1812 * In the slowpath, we sanity check order to avoid ever trying to
1813 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1814 * be using allocators in order of preference for an area that is
1815 * too large.
1817 if (order >= MAX_ORDER) {
1818 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1819 return NULL;
1823 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1824 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1825 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1826 * using a larger set of nodes after it has established that the
1827 * allowed per node queues are empty and that nodes are
1828 * over allocated.
1830 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1831 goto nopage;
1833 restart:
1834 wake_all_kswapd(order, zonelist, high_zoneidx);
1837 * OK, we're below the kswapd watermark and have kicked background
1838 * reclaim. Now things get more complex, so set up alloc_flags according
1839 * to how we want to proceed.
1841 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1843 /* This is the last chance, in general, before the goto nopage. */
1844 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1845 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1846 preferred_zone, migratetype);
1847 if (page)
1848 goto got_pg;
1850 rebalance:
1851 /* Allocate without watermarks if the context allows */
1852 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1853 page = __alloc_pages_high_priority(gfp_mask, order,
1854 zonelist, high_zoneidx, nodemask,
1855 preferred_zone, migratetype);
1856 if (page)
1857 goto got_pg;
1860 /* Atomic allocations - we can't balance anything */
1861 if (!wait)
1862 goto nopage;
1864 /* Avoid recursion of direct reclaim */
1865 if (p->flags & PF_MEMALLOC)
1866 goto nopage;
1868 /* Avoid allocations with no watermarks from looping endlessly */
1869 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1870 goto nopage;
1872 /* Try direct reclaim and then allocating */
1873 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1874 zonelist, high_zoneidx,
1875 nodemask,
1876 alloc_flags, preferred_zone,
1877 migratetype, &did_some_progress);
1878 if (page)
1879 goto got_pg;
1882 * If we failed to make any progress reclaiming, then we are
1883 * running out of options and have to consider going OOM
1885 if (!did_some_progress) {
1886 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1887 if (oom_killer_disabled)
1888 goto nopage;
1889 page = __alloc_pages_may_oom(gfp_mask, order,
1890 zonelist, high_zoneidx,
1891 nodemask, preferred_zone,
1892 migratetype);
1893 if (page)
1894 goto got_pg;
1897 * The OOM killer does not trigger for high-order
1898 * ~__GFP_NOFAIL allocations so if no progress is being
1899 * made, there are no other options and retrying is
1900 * unlikely to help.
1902 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1903 !(gfp_mask & __GFP_NOFAIL))
1904 goto nopage;
1906 goto restart;
1910 /* Check if we should retry the allocation */
1911 pages_reclaimed += did_some_progress;
1912 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1913 /* Wait for some write requests to complete then retry */
1914 congestion_wait(BLK_RW_ASYNC, HZ/50);
1915 goto rebalance;
1918 nopage:
1919 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1920 printk(KERN_WARNING "%s: page allocation failure."
1921 " order:%d, mode:0x%x\n",
1922 p->comm, order, gfp_mask);
1923 dump_stack();
1924 show_mem();
1926 return page;
1927 got_pg:
1928 if (kmemcheck_enabled)
1929 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1930 return page;
1935 * This is the 'heart' of the zoned buddy allocator.
1937 struct page *
1938 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1939 struct zonelist *zonelist, nodemask_t *nodemask)
1941 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1942 struct zone *preferred_zone;
1943 struct page *page;
1944 int migratetype = allocflags_to_migratetype(gfp_mask);
1946 gfp_mask &= gfp_allowed_mask;
1948 lockdep_trace_alloc(gfp_mask);
1950 might_sleep_if(gfp_mask & __GFP_WAIT);
1952 if (should_fail_alloc_page(gfp_mask, order))
1953 return NULL;
1956 * Check the zones suitable for the gfp_mask contain at least one
1957 * valid zone. It's possible to have an empty zonelist as a result
1958 * of GFP_THISNODE and a memoryless node
1960 if (unlikely(!zonelist->_zonerefs->zone))
1961 return NULL;
1963 /* The preferred zone is used for statistics later */
1964 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1965 if (!preferred_zone)
1966 return NULL;
1968 /* First allocation attempt */
1969 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1970 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1971 preferred_zone, migratetype);
1972 if (unlikely(!page))
1973 page = __alloc_pages_slowpath(gfp_mask, order,
1974 zonelist, high_zoneidx, nodemask,
1975 preferred_zone, migratetype);
1977 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1978 return page;
1980 EXPORT_SYMBOL(__alloc_pages_nodemask);
1983 * Common helper functions.
1985 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1987 struct page *page;
1990 * __get_free_pages() returns a 32-bit address, which cannot represent
1991 * a highmem page
1993 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1995 page = alloc_pages(gfp_mask, order);
1996 if (!page)
1997 return 0;
1998 return (unsigned long) page_address(page);
2000 EXPORT_SYMBOL(__get_free_pages);
2002 unsigned long get_zeroed_page(gfp_t gfp_mask)
2004 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2006 EXPORT_SYMBOL(get_zeroed_page);
2008 void __pagevec_free(struct pagevec *pvec)
2010 int i = pagevec_count(pvec);
2012 while (--i >= 0) {
2013 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2014 free_hot_cold_page(pvec->pages[i], pvec->cold);
2018 void __free_pages(struct page *page, unsigned int order)
2020 if (put_page_testzero(page)) {
2021 trace_mm_page_free_direct(page, order);
2022 if (order == 0)
2023 free_hot_page(page);
2024 else
2025 __free_pages_ok(page, order);
2029 EXPORT_SYMBOL(__free_pages);
2031 void free_pages(unsigned long addr, unsigned int order)
2033 if (addr != 0) {
2034 VM_BUG_ON(!virt_addr_valid((void *)addr));
2035 __free_pages(virt_to_page((void *)addr), order);
2039 EXPORT_SYMBOL(free_pages);
2042 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2043 * @size: the number of bytes to allocate
2044 * @gfp_mask: GFP flags for the allocation
2046 * This function is similar to alloc_pages(), except that it allocates the
2047 * minimum number of pages to satisfy the request. alloc_pages() can only
2048 * allocate memory in power-of-two pages.
2050 * This function is also limited by MAX_ORDER.
2052 * Memory allocated by this function must be released by free_pages_exact().
2054 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2056 unsigned int order = get_order(size);
2057 unsigned long addr;
2059 addr = __get_free_pages(gfp_mask, order);
2060 if (addr) {
2061 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2062 unsigned long used = addr + PAGE_ALIGN(size);
2064 split_page(virt_to_page((void *)addr), order);
2065 while (used < alloc_end) {
2066 free_page(used);
2067 used += PAGE_SIZE;
2071 return (void *)addr;
2073 EXPORT_SYMBOL(alloc_pages_exact);
2076 * free_pages_exact - release memory allocated via alloc_pages_exact()
2077 * @virt: the value returned by alloc_pages_exact.
2078 * @size: size of allocation, same value as passed to alloc_pages_exact().
2080 * Release the memory allocated by a previous call to alloc_pages_exact.
2082 void free_pages_exact(void *virt, size_t size)
2084 unsigned long addr = (unsigned long)virt;
2085 unsigned long end = addr + PAGE_ALIGN(size);
2087 while (addr < end) {
2088 free_page(addr);
2089 addr += PAGE_SIZE;
2092 EXPORT_SYMBOL(free_pages_exact);
2094 static unsigned int nr_free_zone_pages(int offset)
2096 struct zoneref *z;
2097 struct zone *zone;
2099 /* Just pick one node, since fallback list is circular */
2100 unsigned int sum = 0;
2102 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2104 for_each_zone_zonelist(zone, z, zonelist, offset) {
2105 unsigned long size = zone->present_pages;
2106 unsigned long high = high_wmark_pages(zone);
2107 if (size > high)
2108 sum += size - high;
2111 return sum;
2115 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2117 unsigned int nr_free_buffer_pages(void)
2119 return nr_free_zone_pages(gfp_zone(GFP_USER));
2121 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2124 * Amount of free RAM allocatable within all zones
2126 unsigned int nr_free_pagecache_pages(void)
2128 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2131 static inline void show_node(struct zone *zone)
2133 if (NUMA_BUILD)
2134 printk("Node %d ", zone_to_nid(zone));
2137 void si_meminfo(struct sysinfo *val)
2139 val->totalram = totalram_pages;
2140 val->sharedram = 0;
2141 val->freeram = global_page_state(NR_FREE_PAGES);
2142 val->bufferram = nr_blockdev_pages();
2143 val->totalhigh = totalhigh_pages;
2144 val->freehigh = nr_free_highpages();
2145 val->mem_unit = PAGE_SIZE;
2148 EXPORT_SYMBOL(si_meminfo);
2150 #ifdef CONFIG_NUMA
2151 void si_meminfo_node(struct sysinfo *val, int nid)
2153 pg_data_t *pgdat = NODE_DATA(nid);
2155 val->totalram = pgdat->node_present_pages;
2156 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2157 #ifdef CONFIG_HIGHMEM
2158 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2159 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2160 NR_FREE_PAGES);
2161 #else
2162 val->totalhigh = 0;
2163 val->freehigh = 0;
2164 #endif
2165 val->mem_unit = PAGE_SIZE;
2167 #endif
2169 #define K(x) ((x) << (PAGE_SHIFT-10))
2172 * Show free area list (used inside shift_scroll-lock stuff)
2173 * We also calculate the percentage fragmentation. We do this by counting the
2174 * memory on each free list with the exception of the first item on the list.
2176 void show_free_areas(void)
2178 int cpu;
2179 struct zone *zone;
2181 for_each_populated_zone(zone) {
2182 show_node(zone);
2183 printk("%s per-cpu:\n", zone->name);
2185 for_each_online_cpu(cpu) {
2186 struct per_cpu_pageset *pageset;
2188 pageset = zone_pcp(zone, cpu);
2190 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2191 cpu, pageset->pcp.high,
2192 pageset->pcp.batch, pageset->pcp.count);
2196 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2197 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2198 " unevictable:%lu"
2199 " dirty:%lu writeback:%lu unstable:%lu\n"
2200 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2201 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2202 global_page_state(NR_ACTIVE_ANON),
2203 global_page_state(NR_INACTIVE_ANON),
2204 global_page_state(NR_ISOLATED_ANON),
2205 global_page_state(NR_ACTIVE_FILE),
2206 global_page_state(NR_INACTIVE_FILE),
2207 global_page_state(NR_ISOLATED_FILE),
2208 global_page_state(NR_UNEVICTABLE),
2209 global_page_state(NR_FILE_DIRTY),
2210 global_page_state(NR_WRITEBACK),
2211 global_page_state(NR_UNSTABLE_NFS),
2212 global_page_state(NR_FREE_PAGES),
2213 global_page_state(NR_SLAB_RECLAIMABLE),
2214 global_page_state(NR_SLAB_UNRECLAIMABLE),
2215 global_page_state(NR_FILE_MAPPED),
2216 global_page_state(NR_SHMEM),
2217 global_page_state(NR_PAGETABLE),
2218 global_page_state(NR_BOUNCE));
2220 for_each_populated_zone(zone) {
2221 int i;
2223 show_node(zone);
2224 printk("%s"
2225 " free:%lukB"
2226 " min:%lukB"
2227 " low:%lukB"
2228 " high:%lukB"
2229 " active_anon:%lukB"
2230 " inactive_anon:%lukB"
2231 " active_file:%lukB"
2232 " inactive_file:%lukB"
2233 " unevictable:%lukB"
2234 " isolated(anon):%lukB"
2235 " isolated(file):%lukB"
2236 " present:%lukB"
2237 " mlocked:%lukB"
2238 " dirty:%lukB"
2239 " writeback:%lukB"
2240 " mapped:%lukB"
2241 " shmem:%lukB"
2242 " slab_reclaimable:%lukB"
2243 " slab_unreclaimable:%lukB"
2244 " kernel_stack:%lukB"
2245 " pagetables:%lukB"
2246 " unstable:%lukB"
2247 " bounce:%lukB"
2248 " writeback_tmp:%lukB"
2249 " pages_scanned:%lu"
2250 " all_unreclaimable? %s"
2251 "\n",
2252 zone->name,
2253 K(zone_nr_free_pages(zone)),
2254 K(min_wmark_pages(zone)),
2255 K(low_wmark_pages(zone)),
2256 K(high_wmark_pages(zone)),
2257 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2258 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2259 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2260 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2261 K(zone_page_state(zone, NR_UNEVICTABLE)),
2262 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2263 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2264 K(zone->present_pages),
2265 K(zone_page_state(zone, NR_MLOCK)),
2266 K(zone_page_state(zone, NR_FILE_DIRTY)),
2267 K(zone_page_state(zone, NR_WRITEBACK)),
2268 K(zone_page_state(zone, NR_FILE_MAPPED)),
2269 K(zone_page_state(zone, NR_SHMEM)),
2270 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2271 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2272 zone_page_state(zone, NR_KERNEL_STACK) *
2273 THREAD_SIZE / 1024,
2274 K(zone_page_state(zone, NR_PAGETABLE)),
2275 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2276 K(zone_page_state(zone, NR_BOUNCE)),
2277 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2278 zone->pages_scanned,
2279 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2281 printk("lowmem_reserve[]:");
2282 for (i = 0; i < MAX_NR_ZONES; i++)
2283 printk(" %lu", zone->lowmem_reserve[i]);
2284 printk("\n");
2287 for_each_populated_zone(zone) {
2288 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2290 show_node(zone);
2291 printk("%s: ", zone->name);
2293 spin_lock_irqsave(&zone->lock, flags);
2294 for (order = 0; order < MAX_ORDER; order++) {
2295 nr[order] = zone->free_area[order].nr_free;
2296 total += nr[order] << order;
2298 spin_unlock_irqrestore(&zone->lock, flags);
2299 for (order = 0; order < MAX_ORDER; order++)
2300 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2301 printk("= %lukB\n", K(total));
2304 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2306 show_swap_cache_info();
2309 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2311 zoneref->zone = zone;
2312 zoneref->zone_idx = zone_idx(zone);
2316 * Builds allocation fallback zone lists.
2318 * Add all populated zones of a node to the zonelist.
2320 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2321 int nr_zones, enum zone_type zone_type)
2323 struct zone *zone;
2325 BUG_ON(zone_type >= MAX_NR_ZONES);
2326 zone_type++;
2328 do {
2329 zone_type--;
2330 zone = pgdat->node_zones + zone_type;
2331 if (populated_zone(zone)) {
2332 zoneref_set_zone(zone,
2333 &zonelist->_zonerefs[nr_zones++]);
2334 check_highest_zone(zone_type);
2337 } while (zone_type);
2338 return nr_zones;
2343 * zonelist_order:
2344 * 0 = automatic detection of better ordering.
2345 * 1 = order by ([node] distance, -zonetype)
2346 * 2 = order by (-zonetype, [node] distance)
2348 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2349 * the same zonelist. So only NUMA can configure this param.
2351 #define ZONELIST_ORDER_DEFAULT 0
2352 #define ZONELIST_ORDER_NODE 1
2353 #define ZONELIST_ORDER_ZONE 2
2355 /* zonelist order in the kernel.
2356 * set_zonelist_order() will set this to NODE or ZONE.
2358 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2359 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2362 #ifdef CONFIG_NUMA
2363 /* The value user specified ....changed by config */
2364 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2365 /* string for sysctl */
2366 #define NUMA_ZONELIST_ORDER_LEN 16
2367 char numa_zonelist_order[16] = "default";
2370 * interface for configure zonelist ordering.
2371 * command line option "numa_zonelist_order"
2372 * = "[dD]efault - default, automatic configuration.
2373 * = "[nN]ode - order by node locality, then by zone within node
2374 * = "[zZ]one - order by zone, then by locality within zone
2377 static int __parse_numa_zonelist_order(char *s)
2379 if (*s == 'd' || *s == 'D') {
2380 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2381 } else if (*s == 'n' || *s == 'N') {
2382 user_zonelist_order = ZONELIST_ORDER_NODE;
2383 } else if (*s == 'z' || *s == 'Z') {
2384 user_zonelist_order = ZONELIST_ORDER_ZONE;
2385 } else {
2386 printk(KERN_WARNING
2387 "Ignoring invalid numa_zonelist_order value: "
2388 "%s\n", s);
2389 return -EINVAL;
2391 return 0;
2394 static __init int setup_numa_zonelist_order(char *s)
2396 if (s)
2397 return __parse_numa_zonelist_order(s);
2398 return 0;
2400 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2403 * sysctl handler for numa_zonelist_order
2405 int numa_zonelist_order_handler(ctl_table *table, int write,
2406 void __user *buffer, size_t *length,
2407 loff_t *ppos)
2409 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2410 int ret;
2412 if (write)
2413 strncpy(saved_string, (char*)table->data,
2414 NUMA_ZONELIST_ORDER_LEN);
2415 ret = proc_dostring(table, write, buffer, length, ppos);
2416 if (ret)
2417 return ret;
2418 if (write) {
2419 int oldval = user_zonelist_order;
2420 if (__parse_numa_zonelist_order((char*)table->data)) {
2422 * bogus value. restore saved string
2424 strncpy((char*)table->data, saved_string,
2425 NUMA_ZONELIST_ORDER_LEN);
2426 user_zonelist_order = oldval;
2427 } else if (oldval != user_zonelist_order)
2428 build_all_zonelists();
2430 return 0;
2434 #define MAX_NODE_LOAD (nr_online_nodes)
2435 static int node_load[MAX_NUMNODES];
2438 * find_next_best_node - find the next node that should appear in a given node's fallback list
2439 * @node: node whose fallback list we're appending
2440 * @used_node_mask: nodemask_t of already used nodes
2442 * We use a number of factors to determine which is the next node that should
2443 * appear on a given node's fallback list. The node should not have appeared
2444 * already in @node's fallback list, and it should be the next closest node
2445 * according to the distance array (which contains arbitrary distance values
2446 * from each node to each node in the system), and should also prefer nodes
2447 * with no CPUs, since presumably they'll have very little allocation pressure
2448 * on them otherwise.
2449 * It returns -1 if no node is found.
2451 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2453 int n, val;
2454 int min_val = INT_MAX;
2455 int best_node = -1;
2456 const struct cpumask *tmp = cpumask_of_node(0);
2458 /* Use the local node if we haven't already */
2459 if (!node_isset(node, *used_node_mask)) {
2460 node_set(node, *used_node_mask);
2461 return node;
2464 for_each_node_state(n, N_HIGH_MEMORY) {
2466 /* Don't want a node to appear more than once */
2467 if (node_isset(n, *used_node_mask))
2468 continue;
2470 /* Use the distance array to find the distance */
2471 val = node_distance(node, n);
2473 /* Penalize nodes under us ("prefer the next node") */
2474 val += (n < node);
2476 /* Give preference to headless and unused nodes */
2477 tmp = cpumask_of_node(n);
2478 if (!cpumask_empty(tmp))
2479 val += PENALTY_FOR_NODE_WITH_CPUS;
2481 /* Slight preference for less loaded node */
2482 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2483 val += node_load[n];
2485 if (val < min_val) {
2486 min_val = val;
2487 best_node = n;
2491 if (best_node >= 0)
2492 node_set(best_node, *used_node_mask);
2494 return best_node;
2499 * Build zonelists ordered by node and zones within node.
2500 * This results in maximum locality--normal zone overflows into local
2501 * DMA zone, if any--but risks exhausting DMA zone.
2503 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2505 int j;
2506 struct zonelist *zonelist;
2508 zonelist = &pgdat->node_zonelists[0];
2509 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2511 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2512 MAX_NR_ZONES - 1);
2513 zonelist->_zonerefs[j].zone = NULL;
2514 zonelist->_zonerefs[j].zone_idx = 0;
2518 * Build gfp_thisnode zonelists
2520 static void build_thisnode_zonelists(pg_data_t *pgdat)
2522 int j;
2523 struct zonelist *zonelist;
2525 zonelist = &pgdat->node_zonelists[1];
2526 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2527 zonelist->_zonerefs[j].zone = NULL;
2528 zonelist->_zonerefs[j].zone_idx = 0;
2532 * Build zonelists ordered by zone and nodes within zones.
2533 * This results in conserving DMA zone[s] until all Normal memory is
2534 * exhausted, but results in overflowing to remote node while memory
2535 * may still exist in local DMA zone.
2537 static int node_order[MAX_NUMNODES];
2539 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2541 int pos, j, node;
2542 int zone_type; /* needs to be signed */
2543 struct zone *z;
2544 struct zonelist *zonelist;
2546 zonelist = &pgdat->node_zonelists[0];
2547 pos = 0;
2548 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2549 for (j = 0; j < nr_nodes; j++) {
2550 node = node_order[j];
2551 z = &NODE_DATA(node)->node_zones[zone_type];
2552 if (populated_zone(z)) {
2553 zoneref_set_zone(z,
2554 &zonelist->_zonerefs[pos++]);
2555 check_highest_zone(zone_type);
2559 zonelist->_zonerefs[pos].zone = NULL;
2560 zonelist->_zonerefs[pos].zone_idx = 0;
2563 static int default_zonelist_order(void)
2565 int nid, zone_type;
2566 unsigned long low_kmem_size,total_size;
2567 struct zone *z;
2568 int average_size;
2570 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2571 * If they are really small and used heavily, the system can fall
2572 * into OOM very easily.
2573 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2575 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2576 low_kmem_size = 0;
2577 total_size = 0;
2578 for_each_online_node(nid) {
2579 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2580 z = &NODE_DATA(nid)->node_zones[zone_type];
2581 if (populated_zone(z)) {
2582 if (zone_type < ZONE_NORMAL)
2583 low_kmem_size += z->present_pages;
2584 total_size += z->present_pages;
2588 if (!low_kmem_size || /* there are no DMA area. */
2589 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2590 return ZONELIST_ORDER_NODE;
2592 * look into each node's config.
2593 * If there is a node whose DMA/DMA32 memory is very big area on
2594 * local memory, NODE_ORDER may be suitable.
2596 average_size = total_size /
2597 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2598 for_each_online_node(nid) {
2599 low_kmem_size = 0;
2600 total_size = 0;
2601 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2602 z = &NODE_DATA(nid)->node_zones[zone_type];
2603 if (populated_zone(z)) {
2604 if (zone_type < ZONE_NORMAL)
2605 low_kmem_size += z->present_pages;
2606 total_size += z->present_pages;
2609 if (low_kmem_size &&
2610 total_size > average_size && /* ignore small node */
2611 low_kmem_size > total_size * 70/100)
2612 return ZONELIST_ORDER_NODE;
2614 return ZONELIST_ORDER_ZONE;
2617 static void set_zonelist_order(void)
2619 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2620 current_zonelist_order = default_zonelist_order();
2621 else
2622 current_zonelist_order = user_zonelist_order;
2625 static void build_zonelists(pg_data_t *pgdat)
2627 int j, node, load;
2628 enum zone_type i;
2629 nodemask_t used_mask;
2630 int local_node, prev_node;
2631 struct zonelist *zonelist;
2632 int order = current_zonelist_order;
2634 /* initialize zonelists */
2635 for (i = 0; i < MAX_ZONELISTS; i++) {
2636 zonelist = pgdat->node_zonelists + i;
2637 zonelist->_zonerefs[0].zone = NULL;
2638 zonelist->_zonerefs[0].zone_idx = 0;
2641 /* NUMA-aware ordering of nodes */
2642 local_node = pgdat->node_id;
2643 load = nr_online_nodes;
2644 prev_node = local_node;
2645 nodes_clear(used_mask);
2647 memset(node_order, 0, sizeof(node_order));
2648 j = 0;
2650 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2651 int distance = node_distance(local_node, node);
2654 * If another node is sufficiently far away then it is better
2655 * to reclaim pages in a zone before going off node.
2657 if (distance > RECLAIM_DISTANCE)
2658 zone_reclaim_mode = 1;
2661 * We don't want to pressure a particular node.
2662 * So adding penalty to the first node in same
2663 * distance group to make it round-robin.
2665 if (distance != node_distance(local_node, prev_node))
2666 node_load[node] = load;
2668 prev_node = node;
2669 load--;
2670 if (order == ZONELIST_ORDER_NODE)
2671 build_zonelists_in_node_order(pgdat, node);
2672 else
2673 node_order[j++] = node; /* remember order */
2676 if (order == ZONELIST_ORDER_ZONE) {
2677 /* calculate node order -- i.e., DMA last! */
2678 build_zonelists_in_zone_order(pgdat, j);
2681 build_thisnode_zonelists(pgdat);
2684 /* Construct the zonelist performance cache - see further mmzone.h */
2685 static void build_zonelist_cache(pg_data_t *pgdat)
2687 struct zonelist *zonelist;
2688 struct zonelist_cache *zlc;
2689 struct zoneref *z;
2691 zonelist = &pgdat->node_zonelists[0];
2692 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2693 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2694 for (z = zonelist->_zonerefs; z->zone; z++)
2695 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2699 #else /* CONFIG_NUMA */
2701 static void set_zonelist_order(void)
2703 current_zonelist_order = ZONELIST_ORDER_ZONE;
2706 static void build_zonelists(pg_data_t *pgdat)
2708 int node, local_node;
2709 enum zone_type j;
2710 struct zonelist *zonelist;
2712 local_node = pgdat->node_id;
2714 zonelist = &pgdat->node_zonelists[0];
2715 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2718 * Now we build the zonelist so that it contains the zones
2719 * of all the other nodes.
2720 * We don't want to pressure a particular node, so when
2721 * building the zones for node N, we make sure that the
2722 * zones coming right after the local ones are those from
2723 * node N+1 (modulo N)
2725 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2726 if (!node_online(node))
2727 continue;
2728 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2729 MAX_NR_ZONES - 1);
2731 for (node = 0; node < local_node; node++) {
2732 if (!node_online(node))
2733 continue;
2734 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2735 MAX_NR_ZONES - 1);
2738 zonelist->_zonerefs[j].zone = NULL;
2739 zonelist->_zonerefs[j].zone_idx = 0;
2742 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2743 static void build_zonelist_cache(pg_data_t *pgdat)
2745 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2748 #endif /* CONFIG_NUMA */
2750 /* return values int ....just for stop_machine() */
2751 static int __build_all_zonelists(void *dummy)
2753 int nid;
2755 #ifdef CONFIG_NUMA
2756 memset(node_load, 0, sizeof(node_load));
2757 #endif
2758 for_each_online_node(nid) {
2759 pg_data_t *pgdat = NODE_DATA(nid);
2761 build_zonelists(pgdat);
2762 build_zonelist_cache(pgdat);
2764 return 0;
2767 void build_all_zonelists(void)
2769 set_zonelist_order();
2771 if (system_state == SYSTEM_BOOTING) {
2772 __build_all_zonelists(NULL);
2773 mminit_verify_zonelist();
2774 cpuset_init_current_mems_allowed();
2775 } else {
2776 /* we have to stop all cpus to guarantee there is no user
2777 of zonelist */
2778 stop_machine(__build_all_zonelists, NULL, NULL);
2779 /* cpuset refresh routine should be here */
2781 vm_total_pages = nr_free_pagecache_pages();
2783 * Disable grouping by mobility if the number of pages in the
2784 * system is too low to allow the mechanism to work. It would be
2785 * more accurate, but expensive to check per-zone. This check is
2786 * made on memory-hotadd so a system can start with mobility
2787 * disabled and enable it later
2789 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2790 page_group_by_mobility_disabled = 1;
2791 else
2792 page_group_by_mobility_disabled = 0;
2794 printk("Built %i zonelists in %s order, mobility grouping %s. "
2795 "Total pages: %ld\n",
2796 nr_online_nodes,
2797 zonelist_order_name[current_zonelist_order],
2798 page_group_by_mobility_disabled ? "off" : "on",
2799 vm_total_pages);
2800 #ifdef CONFIG_NUMA
2801 printk("Policy zone: %s\n", zone_names[policy_zone]);
2802 #endif
2806 * Helper functions to size the waitqueue hash table.
2807 * Essentially these want to choose hash table sizes sufficiently
2808 * large so that collisions trying to wait on pages are rare.
2809 * But in fact, the number of active page waitqueues on typical
2810 * systems is ridiculously low, less than 200. So this is even
2811 * conservative, even though it seems large.
2813 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2814 * waitqueues, i.e. the size of the waitq table given the number of pages.
2816 #define PAGES_PER_WAITQUEUE 256
2818 #ifndef CONFIG_MEMORY_HOTPLUG
2819 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2821 unsigned long size = 1;
2823 pages /= PAGES_PER_WAITQUEUE;
2825 while (size < pages)
2826 size <<= 1;
2829 * Once we have dozens or even hundreds of threads sleeping
2830 * on IO we've got bigger problems than wait queue collision.
2831 * Limit the size of the wait table to a reasonable size.
2833 size = min(size, 4096UL);
2835 return max(size, 4UL);
2837 #else
2839 * A zone's size might be changed by hot-add, so it is not possible to determine
2840 * a suitable size for its wait_table. So we use the maximum size now.
2842 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2844 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2845 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2846 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2848 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2849 * or more by the traditional way. (See above). It equals:
2851 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2852 * ia64(16K page size) : = ( 8G + 4M)byte.
2853 * powerpc (64K page size) : = (32G +16M)byte.
2855 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2857 return 4096UL;
2859 #endif
2862 * This is an integer logarithm so that shifts can be used later
2863 * to extract the more random high bits from the multiplicative
2864 * hash function before the remainder is taken.
2866 static inline unsigned long wait_table_bits(unsigned long size)
2868 return ffz(~size);
2871 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2874 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2875 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2876 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2877 * higher will lead to a bigger reserve which will get freed as contiguous
2878 * blocks as reclaim kicks in
2880 static void setup_zone_migrate_reserve(struct zone *zone)
2882 unsigned long start_pfn, pfn, end_pfn;
2883 struct page *page;
2884 unsigned long block_migratetype;
2885 int reserve;
2887 /* Get the start pfn, end pfn and the number of blocks to reserve */
2888 start_pfn = zone->zone_start_pfn;
2889 end_pfn = start_pfn + zone->spanned_pages;
2890 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2891 pageblock_order;
2894 * Reserve blocks are generally in place to help high-order atomic
2895 * allocations that are short-lived. A min_free_kbytes value that
2896 * would result in more than 2 reserve blocks for atomic allocations
2897 * is assumed to be in place to help anti-fragmentation for the
2898 * future allocation of hugepages at runtime.
2900 reserve = min(2, reserve);
2902 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2903 if (!pfn_valid(pfn))
2904 continue;
2905 page = pfn_to_page(pfn);
2907 /* Watch out for overlapping nodes */
2908 if (page_to_nid(page) != zone_to_nid(zone))
2909 continue;
2911 /* Blocks with reserved pages will never free, skip them. */
2912 if (PageReserved(page))
2913 continue;
2915 block_migratetype = get_pageblock_migratetype(page);
2917 /* If this block is reserved, account for it */
2918 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2919 reserve--;
2920 continue;
2923 /* Suitable for reserving if this block is movable */
2924 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2925 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2926 move_freepages_block(zone, page, MIGRATE_RESERVE);
2927 reserve--;
2928 continue;
2932 * If the reserve is met and this is a previous reserved block,
2933 * take it back
2935 if (block_migratetype == MIGRATE_RESERVE) {
2936 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2937 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2943 * Initially all pages are reserved - free ones are freed
2944 * up by free_all_bootmem() once the early boot process is
2945 * done. Non-atomic initialization, single-pass.
2947 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2948 unsigned long start_pfn, enum memmap_context context)
2950 struct page *page;
2951 unsigned long end_pfn = start_pfn + size;
2952 unsigned long pfn;
2953 struct zone *z;
2955 if (highest_memmap_pfn < end_pfn - 1)
2956 highest_memmap_pfn = end_pfn - 1;
2958 z = &NODE_DATA(nid)->node_zones[zone];
2959 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2961 * There can be holes in boot-time mem_map[]s
2962 * handed to this function. They do not
2963 * exist on hotplugged memory.
2965 if (context == MEMMAP_EARLY) {
2966 if (!early_pfn_valid(pfn))
2967 continue;
2968 if (!early_pfn_in_nid(pfn, nid))
2969 continue;
2971 page = pfn_to_page(pfn);
2972 set_page_links(page, zone, nid, pfn);
2973 mminit_verify_page_links(page, zone, nid, pfn);
2974 init_page_count(page);
2975 reset_page_mapcount(page);
2976 SetPageReserved(page);
2978 * Mark the block movable so that blocks are reserved for
2979 * movable at startup. This will force kernel allocations
2980 * to reserve their blocks rather than leaking throughout
2981 * the address space during boot when many long-lived
2982 * kernel allocations are made. Later some blocks near
2983 * the start are marked MIGRATE_RESERVE by
2984 * setup_zone_migrate_reserve()
2986 * bitmap is created for zone's valid pfn range. but memmap
2987 * can be created for invalid pages (for alignment)
2988 * check here not to call set_pageblock_migratetype() against
2989 * pfn out of zone.
2991 if ((z->zone_start_pfn <= pfn)
2992 && (pfn < z->zone_start_pfn + z->spanned_pages)
2993 && !(pfn & (pageblock_nr_pages - 1)))
2994 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2996 INIT_LIST_HEAD(&page->lru);
2997 #ifdef WANT_PAGE_VIRTUAL
2998 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2999 if (!is_highmem_idx(zone))
3000 set_page_address(page, __va(pfn << PAGE_SHIFT));
3001 #endif
3005 static void __meminit zone_init_free_lists(struct zone *zone)
3007 int order, t;
3008 for_each_migratetype_order(order, t) {
3009 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3010 zone->free_area[order].nr_free = 0;
3014 #ifndef __HAVE_ARCH_MEMMAP_INIT
3015 #define memmap_init(size, nid, zone, start_pfn) \
3016 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3017 #endif
3019 static int zone_batchsize(struct zone *zone)
3021 #ifdef CONFIG_MMU
3022 int batch;
3025 * The per-cpu-pages pools are set to around 1000th of the
3026 * size of the zone. But no more than 1/2 of a meg.
3028 * OK, so we don't know how big the cache is. So guess.
3030 batch = zone->present_pages / 1024;
3031 if (batch * PAGE_SIZE > 512 * 1024)
3032 batch = (512 * 1024) / PAGE_SIZE;
3033 batch /= 4; /* We effectively *= 4 below */
3034 if (batch < 1)
3035 batch = 1;
3038 * Clamp the batch to a 2^n - 1 value. Having a power
3039 * of 2 value was found to be more likely to have
3040 * suboptimal cache aliasing properties in some cases.
3042 * For example if 2 tasks are alternately allocating
3043 * batches of pages, one task can end up with a lot
3044 * of pages of one half of the possible page colors
3045 * and the other with pages of the other colors.
3047 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3049 return batch;
3051 #else
3052 /* The deferral and batching of frees should be suppressed under NOMMU
3053 * conditions.
3055 * The problem is that NOMMU needs to be able to allocate large chunks
3056 * of contiguous memory as there's no hardware page translation to
3057 * assemble apparent contiguous memory from discontiguous pages.
3059 * Queueing large contiguous runs of pages for batching, however,
3060 * causes the pages to actually be freed in smaller chunks. As there
3061 * can be a significant delay between the individual batches being
3062 * recycled, this leads to the once large chunks of space being
3063 * fragmented and becoming unavailable for high-order allocations.
3065 return 0;
3066 #endif
3069 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3071 struct per_cpu_pages *pcp;
3072 int migratetype;
3074 memset(p, 0, sizeof(*p));
3076 pcp = &p->pcp;
3077 pcp->count = 0;
3078 pcp->high = 6 * batch;
3079 pcp->batch = max(1UL, 1 * batch);
3080 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3081 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3085 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3086 * to the value high for the pageset p.
3089 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3090 unsigned long high)
3092 struct per_cpu_pages *pcp;
3094 pcp = &p->pcp;
3095 pcp->high = high;
3096 pcp->batch = max(1UL, high/4);
3097 if ((high/4) > (PAGE_SHIFT * 8))
3098 pcp->batch = PAGE_SHIFT * 8;
3102 #ifdef CONFIG_NUMA
3104 * Boot pageset table. One per cpu which is going to be used for all
3105 * zones and all nodes. The parameters will be set in such a way
3106 * that an item put on a list will immediately be handed over to
3107 * the buddy list. This is safe since pageset manipulation is done
3108 * with interrupts disabled.
3110 * Some NUMA counter updates may also be caught by the boot pagesets.
3112 * The boot_pagesets must be kept even after bootup is complete for
3113 * unused processors and/or zones. They do play a role for bootstrapping
3114 * hotplugged processors.
3116 * zoneinfo_show() and maybe other functions do
3117 * not check if the processor is online before following the pageset pointer.
3118 * Other parts of the kernel may not check if the zone is available.
3120 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3123 * Dynamically allocate memory for the
3124 * per cpu pageset array in struct zone.
3126 static int __cpuinit process_zones(int cpu)
3128 struct zone *zone, *dzone;
3129 int node = cpu_to_node(cpu);
3131 node_set_state(node, N_CPU); /* this node has a cpu */
3133 for_each_populated_zone(zone) {
3134 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3135 GFP_KERNEL, node);
3136 if (!zone_pcp(zone, cpu))
3137 goto bad;
3139 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3141 if (percpu_pagelist_fraction)
3142 setup_pagelist_highmark(zone_pcp(zone, cpu),
3143 (zone->present_pages / percpu_pagelist_fraction));
3146 return 0;
3147 bad:
3148 for_each_zone(dzone) {
3149 if (!populated_zone(dzone))
3150 continue;
3151 if (dzone == zone)
3152 break;
3153 kfree(zone_pcp(dzone, cpu));
3154 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3156 return -ENOMEM;
3159 static inline void free_zone_pagesets(int cpu)
3161 struct zone *zone;
3163 for_each_zone(zone) {
3164 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3166 /* Free per_cpu_pageset if it is slab allocated */
3167 if (pset != &boot_pageset[cpu])
3168 kfree(pset);
3169 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3173 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3174 unsigned long action,
3175 void *hcpu)
3177 int cpu = (long)hcpu;
3178 int ret = NOTIFY_OK;
3180 switch (action) {
3181 case CPU_UP_PREPARE:
3182 case CPU_UP_PREPARE_FROZEN:
3183 if (process_zones(cpu))
3184 ret = NOTIFY_BAD;
3185 break;
3186 case CPU_UP_CANCELED:
3187 case CPU_UP_CANCELED_FROZEN:
3188 case CPU_DEAD:
3189 case CPU_DEAD_FROZEN:
3190 free_zone_pagesets(cpu);
3191 break;
3192 default:
3193 break;
3195 return ret;
3198 static struct notifier_block __cpuinitdata pageset_notifier =
3199 { &pageset_cpuup_callback, NULL, 0 };
3201 void __init setup_per_cpu_pageset(void)
3203 int err;
3205 /* Initialize per_cpu_pageset for cpu 0.
3206 * A cpuup callback will do this for every cpu
3207 * as it comes online
3209 err = process_zones(smp_processor_id());
3210 BUG_ON(err);
3211 register_cpu_notifier(&pageset_notifier);
3214 #endif
3216 static noinline __init_refok
3217 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3219 int i;
3220 struct pglist_data *pgdat = zone->zone_pgdat;
3221 size_t alloc_size;
3224 * The per-page waitqueue mechanism uses hashed waitqueues
3225 * per zone.
3227 zone->wait_table_hash_nr_entries =
3228 wait_table_hash_nr_entries(zone_size_pages);
3229 zone->wait_table_bits =
3230 wait_table_bits(zone->wait_table_hash_nr_entries);
3231 alloc_size = zone->wait_table_hash_nr_entries
3232 * sizeof(wait_queue_head_t);
3234 if (!slab_is_available()) {
3235 zone->wait_table = (wait_queue_head_t *)
3236 alloc_bootmem_node(pgdat, alloc_size);
3237 } else {
3239 * This case means that a zone whose size was 0 gets new memory
3240 * via memory hot-add.
3241 * But it may be the case that a new node was hot-added. In
3242 * this case vmalloc() will not be able to use this new node's
3243 * memory - this wait_table must be initialized to use this new
3244 * node itself as well.
3245 * To use this new node's memory, further consideration will be
3246 * necessary.
3248 zone->wait_table = vmalloc(alloc_size);
3250 if (!zone->wait_table)
3251 return -ENOMEM;
3253 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3254 init_waitqueue_head(zone->wait_table + i);
3256 return 0;
3259 static int __zone_pcp_update(void *data)
3261 struct zone *zone = data;
3262 int cpu;
3263 unsigned long batch = zone_batchsize(zone), flags;
3265 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3266 struct per_cpu_pageset *pset;
3267 struct per_cpu_pages *pcp;
3269 pset = zone_pcp(zone, cpu);
3270 pcp = &pset->pcp;
3272 local_irq_save(flags);
3273 free_pcppages_bulk(zone, pcp->count, pcp);
3274 setup_pageset(pset, batch);
3275 local_irq_restore(flags);
3277 return 0;
3280 void zone_pcp_update(struct zone *zone)
3282 stop_machine(__zone_pcp_update, zone, NULL);
3285 static __meminit void zone_pcp_init(struct zone *zone)
3287 int cpu;
3288 unsigned long batch = zone_batchsize(zone);
3290 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3291 #ifdef CONFIG_NUMA
3292 /* Early boot. Slab allocator not functional yet */
3293 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3294 setup_pageset(&boot_pageset[cpu],0);
3295 #else
3296 setup_pageset(zone_pcp(zone,cpu), batch);
3297 #endif
3299 if (zone->present_pages)
3300 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3301 zone->name, zone->present_pages, batch);
3304 __meminit int init_currently_empty_zone(struct zone *zone,
3305 unsigned long zone_start_pfn,
3306 unsigned long size,
3307 enum memmap_context context)
3309 struct pglist_data *pgdat = zone->zone_pgdat;
3310 int ret;
3311 ret = zone_wait_table_init(zone, size);
3312 if (ret)
3313 return ret;
3314 pgdat->nr_zones = zone_idx(zone) + 1;
3316 zone->zone_start_pfn = zone_start_pfn;
3318 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3319 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3320 pgdat->node_id,
3321 (unsigned long)zone_idx(zone),
3322 zone_start_pfn, (zone_start_pfn + size));
3324 zone_init_free_lists(zone);
3326 return 0;
3329 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3331 * Basic iterator support. Return the first range of PFNs for a node
3332 * Note: nid == MAX_NUMNODES returns first region regardless of node
3334 static int __meminit first_active_region_index_in_nid(int nid)
3336 int i;
3338 for (i = 0; i < nr_nodemap_entries; i++)
3339 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3340 return i;
3342 return -1;
3346 * Basic iterator support. Return the next active range of PFNs for a node
3347 * Note: nid == MAX_NUMNODES returns next region regardless of node
3349 static int __meminit next_active_region_index_in_nid(int index, int nid)
3351 for (index = index + 1; index < nr_nodemap_entries; index++)
3352 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3353 return index;
3355 return -1;
3358 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3360 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3361 * Architectures may implement their own version but if add_active_range()
3362 * was used and there are no special requirements, this is a convenient
3363 * alternative
3365 int __meminit __early_pfn_to_nid(unsigned long pfn)
3367 int i;
3369 for (i = 0; i < nr_nodemap_entries; i++) {
3370 unsigned long start_pfn = early_node_map[i].start_pfn;
3371 unsigned long end_pfn = early_node_map[i].end_pfn;
3373 if (start_pfn <= pfn && pfn < end_pfn)
3374 return early_node_map[i].nid;
3376 /* This is a memory hole */
3377 return -1;
3379 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3381 int __meminit early_pfn_to_nid(unsigned long pfn)
3383 int nid;
3385 nid = __early_pfn_to_nid(pfn);
3386 if (nid >= 0)
3387 return nid;
3388 /* just returns 0 */
3389 return 0;
3392 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3393 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3395 int nid;
3397 nid = __early_pfn_to_nid(pfn);
3398 if (nid >= 0 && nid != node)
3399 return false;
3400 return true;
3402 #endif
3404 /* Basic iterator support to walk early_node_map[] */
3405 #define for_each_active_range_index_in_nid(i, nid) \
3406 for (i = first_active_region_index_in_nid(nid); i != -1; \
3407 i = next_active_region_index_in_nid(i, nid))
3410 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3411 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3412 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3414 * If an architecture guarantees that all ranges registered with
3415 * add_active_ranges() contain no holes and may be freed, this
3416 * this function may be used instead of calling free_bootmem() manually.
3418 void __init free_bootmem_with_active_regions(int nid,
3419 unsigned long max_low_pfn)
3421 int i;
3423 for_each_active_range_index_in_nid(i, nid) {
3424 unsigned long size_pages = 0;
3425 unsigned long end_pfn = early_node_map[i].end_pfn;
3427 if (early_node_map[i].start_pfn >= max_low_pfn)
3428 continue;
3430 if (end_pfn > max_low_pfn)
3431 end_pfn = max_low_pfn;
3433 size_pages = end_pfn - early_node_map[i].start_pfn;
3434 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3435 PFN_PHYS(early_node_map[i].start_pfn),
3436 size_pages << PAGE_SHIFT);
3440 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3442 int i;
3443 int ret;
3445 for_each_active_range_index_in_nid(i, nid) {
3446 ret = work_fn(early_node_map[i].start_pfn,
3447 early_node_map[i].end_pfn, data);
3448 if (ret)
3449 break;
3453 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3454 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3456 * If an architecture guarantees that all ranges registered with
3457 * add_active_ranges() contain no holes and may be freed, this
3458 * function may be used instead of calling memory_present() manually.
3460 void __init sparse_memory_present_with_active_regions(int nid)
3462 int i;
3464 for_each_active_range_index_in_nid(i, nid)
3465 memory_present(early_node_map[i].nid,
3466 early_node_map[i].start_pfn,
3467 early_node_map[i].end_pfn);
3471 * get_pfn_range_for_nid - Return the start and end page frames for a node
3472 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3473 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3474 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3476 * It returns the start and end page frame of a node based on information
3477 * provided by an arch calling add_active_range(). If called for a node
3478 * with no available memory, a warning is printed and the start and end
3479 * PFNs will be 0.
3481 void __meminit get_pfn_range_for_nid(unsigned int nid,
3482 unsigned long *start_pfn, unsigned long *end_pfn)
3484 int i;
3485 *start_pfn = -1UL;
3486 *end_pfn = 0;
3488 for_each_active_range_index_in_nid(i, nid) {
3489 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3490 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3493 if (*start_pfn == -1UL)
3494 *start_pfn = 0;
3498 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3499 * assumption is made that zones within a node are ordered in monotonic
3500 * increasing memory addresses so that the "highest" populated zone is used
3502 static void __init find_usable_zone_for_movable(void)
3504 int zone_index;
3505 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3506 if (zone_index == ZONE_MOVABLE)
3507 continue;
3509 if (arch_zone_highest_possible_pfn[zone_index] >
3510 arch_zone_lowest_possible_pfn[zone_index])
3511 break;
3514 VM_BUG_ON(zone_index == -1);
3515 movable_zone = zone_index;
3519 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3520 * because it is sized independant of architecture. Unlike the other zones,
3521 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3522 * in each node depending on the size of each node and how evenly kernelcore
3523 * is distributed. This helper function adjusts the zone ranges
3524 * provided by the architecture for a given node by using the end of the
3525 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3526 * zones within a node are in order of monotonic increases memory addresses
3528 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3529 unsigned long zone_type,
3530 unsigned long node_start_pfn,
3531 unsigned long node_end_pfn,
3532 unsigned long *zone_start_pfn,
3533 unsigned long *zone_end_pfn)
3535 /* Only adjust if ZONE_MOVABLE is on this node */
3536 if (zone_movable_pfn[nid]) {
3537 /* Size ZONE_MOVABLE */
3538 if (zone_type == ZONE_MOVABLE) {
3539 *zone_start_pfn = zone_movable_pfn[nid];
3540 *zone_end_pfn = min(node_end_pfn,
3541 arch_zone_highest_possible_pfn[movable_zone]);
3543 /* Adjust for ZONE_MOVABLE starting within this range */
3544 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3545 *zone_end_pfn > zone_movable_pfn[nid]) {
3546 *zone_end_pfn = zone_movable_pfn[nid];
3548 /* Check if this whole range is within ZONE_MOVABLE */
3549 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3550 *zone_start_pfn = *zone_end_pfn;
3555 * Return the number of pages a zone spans in a node, including holes
3556 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3558 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3559 unsigned long zone_type,
3560 unsigned long *ignored)
3562 unsigned long node_start_pfn, node_end_pfn;
3563 unsigned long zone_start_pfn, zone_end_pfn;
3565 /* Get the start and end of the node and zone */
3566 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3567 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3568 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3569 adjust_zone_range_for_zone_movable(nid, zone_type,
3570 node_start_pfn, node_end_pfn,
3571 &zone_start_pfn, &zone_end_pfn);
3573 /* Check that this node has pages within the zone's required range */
3574 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3575 return 0;
3577 /* Move the zone boundaries inside the node if necessary */
3578 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3579 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3581 /* Return the spanned pages */
3582 return zone_end_pfn - zone_start_pfn;
3586 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3587 * then all holes in the requested range will be accounted for.
3589 static unsigned long __meminit __absent_pages_in_range(int nid,
3590 unsigned long range_start_pfn,
3591 unsigned long range_end_pfn)
3593 int i = 0;
3594 unsigned long prev_end_pfn = 0, hole_pages = 0;
3595 unsigned long start_pfn;
3597 /* Find the end_pfn of the first active range of pfns in the node */
3598 i = first_active_region_index_in_nid(nid);
3599 if (i == -1)
3600 return 0;
3602 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3604 /* Account for ranges before physical memory on this node */
3605 if (early_node_map[i].start_pfn > range_start_pfn)
3606 hole_pages = prev_end_pfn - range_start_pfn;
3608 /* Find all holes for the zone within the node */
3609 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3611 /* No need to continue if prev_end_pfn is outside the zone */
3612 if (prev_end_pfn >= range_end_pfn)
3613 break;
3615 /* Make sure the end of the zone is not within the hole */
3616 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3617 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3619 /* Update the hole size cound and move on */
3620 if (start_pfn > range_start_pfn) {
3621 BUG_ON(prev_end_pfn > start_pfn);
3622 hole_pages += start_pfn - prev_end_pfn;
3624 prev_end_pfn = early_node_map[i].end_pfn;
3627 /* Account for ranges past physical memory on this node */
3628 if (range_end_pfn > prev_end_pfn)
3629 hole_pages += range_end_pfn -
3630 max(range_start_pfn, prev_end_pfn);
3632 return hole_pages;
3636 * absent_pages_in_range - Return number of page frames in holes within a range
3637 * @start_pfn: The start PFN to start searching for holes
3638 * @end_pfn: The end PFN to stop searching for holes
3640 * It returns the number of pages frames in memory holes within a range.
3642 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3643 unsigned long end_pfn)
3645 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3648 /* Return the number of page frames in holes in a zone on a node */
3649 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3650 unsigned long zone_type,
3651 unsigned long *ignored)
3653 unsigned long node_start_pfn, node_end_pfn;
3654 unsigned long zone_start_pfn, zone_end_pfn;
3656 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3657 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3658 node_start_pfn);
3659 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3660 node_end_pfn);
3662 adjust_zone_range_for_zone_movable(nid, zone_type,
3663 node_start_pfn, node_end_pfn,
3664 &zone_start_pfn, &zone_end_pfn);
3665 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3668 #else
3669 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3670 unsigned long zone_type,
3671 unsigned long *zones_size)
3673 return zones_size[zone_type];
3676 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3677 unsigned long zone_type,
3678 unsigned long *zholes_size)
3680 if (!zholes_size)
3681 return 0;
3683 return zholes_size[zone_type];
3686 #endif
3688 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3689 unsigned long *zones_size, unsigned long *zholes_size)
3691 unsigned long realtotalpages, totalpages = 0;
3692 enum zone_type i;
3694 for (i = 0; i < MAX_NR_ZONES; i++)
3695 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3696 zones_size);
3697 pgdat->node_spanned_pages = totalpages;
3699 realtotalpages = totalpages;
3700 for (i = 0; i < MAX_NR_ZONES; i++)
3701 realtotalpages -=
3702 zone_absent_pages_in_node(pgdat->node_id, i,
3703 zholes_size);
3704 pgdat->node_present_pages = realtotalpages;
3705 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3706 realtotalpages);
3709 #ifndef CONFIG_SPARSEMEM
3711 * Calculate the size of the zone->blockflags rounded to an unsigned long
3712 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3713 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3714 * round what is now in bits to nearest long in bits, then return it in
3715 * bytes.
3717 static unsigned long __init usemap_size(unsigned long zonesize)
3719 unsigned long usemapsize;
3721 usemapsize = roundup(zonesize, pageblock_nr_pages);
3722 usemapsize = usemapsize >> pageblock_order;
3723 usemapsize *= NR_PAGEBLOCK_BITS;
3724 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3726 return usemapsize / 8;
3729 static void __init setup_usemap(struct pglist_data *pgdat,
3730 struct zone *zone, unsigned long zonesize)
3732 unsigned long usemapsize = usemap_size(zonesize);
3733 zone->pageblock_flags = NULL;
3734 if (usemapsize)
3735 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3737 #else
3738 static void inline setup_usemap(struct pglist_data *pgdat,
3739 struct zone *zone, unsigned long zonesize) {}
3740 #endif /* CONFIG_SPARSEMEM */
3742 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3744 /* Return a sensible default order for the pageblock size. */
3745 static inline int pageblock_default_order(void)
3747 if (HPAGE_SHIFT > PAGE_SHIFT)
3748 return HUGETLB_PAGE_ORDER;
3750 return MAX_ORDER-1;
3753 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3754 static inline void __init set_pageblock_order(unsigned int order)
3756 /* Check that pageblock_nr_pages has not already been setup */
3757 if (pageblock_order)
3758 return;
3761 * Assume the largest contiguous order of interest is a huge page.
3762 * This value may be variable depending on boot parameters on IA64
3764 pageblock_order = order;
3766 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3769 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3770 * and pageblock_default_order() are unused as pageblock_order is set
3771 * at compile-time. See include/linux/pageblock-flags.h for the values of
3772 * pageblock_order based on the kernel config
3774 static inline int pageblock_default_order(unsigned int order)
3776 return MAX_ORDER-1;
3778 #define set_pageblock_order(x) do {} while (0)
3780 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3783 * Set up the zone data structures:
3784 * - mark all pages reserved
3785 * - mark all memory queues empty
3786 * - clear the memory bitmaps
3788 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3789 unsigned long *zones_size, unsigned long *zholes_size)
3791 enum zone_type j;
3792 int nid = pgdat->node_id;
3793 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3794 int ret;
3796 pgdat_resize_init(pgdat);
3797 pgdat->nr_zones = 0;
3798 init_waitqueue_head(&pgdat->kswapd_wait);
3799 pgdat->kswapd_max_order = 0;
3800 pgdat_page_cgroup_init(pgdat);
3802 for (j = 0; j < MAX_NR_ZONES; j++) {
3803 struct zone *zone = pgdat->node_zones + j;
3804 unsigned long size, realsize, memmap_pages;
3805 enum lru_list l;
3807 size = zone_spanned_pages_in_node(nid, j, zones_size);
3808 realsize = size - zone_absent_pages_in_node(nid, j,
3809 zholes_size);
3812 * Adjust realsize so that it accounts for how much memory
3813 * is used by this zone for memmap. This affects the watermark
3814 * and per-cpu initialisations
3816 memmap_pages =
3817 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3818 if (realsize >= memmap_pages) {
3819 realsize -= memmap_pages;
3820 if (memmap_pages)
3821 printk(KERN_DEBUG
3822 " %s zone: %lu pages used for memmap\n",
3823 zone_names[j], memmap_pages);
3824 } else
3825 printk(KERN_WARNING
3826 " %s zone: %lu pages exceeds realsize %lu\n",
3827 zone_names[j], memmap_pages, realsize);
3829 /* Account for reserved pages */
3830 if (j == 0 && realsize > dma_reserve) {
3831 realsize -= dma_reserve;
3832 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3833 zone_names[0], dma_reserve);
3836 if (!is_highmem_idx(j))
3837 nr_kernel_pages += realsize;
3838 nr_all_pages += realsize;
3840 zone->spanned_pages = size;
3841 zone->present_pages = realsize;
3842 #ifdef CONFIG_NUMA
3843 zone->node = nid;
3844 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3845 / 100;
3846 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3847 #endif
3848 zone->name = zone_names[j];
3849 spin_lock_init(&zone->lock);
3850 spin_lock_init(&zone->lru_lock);
3851 zone_seqlock_init(zone);
3852 zone->zone_pgdat = pgdat;
3854 zone->prev_priority = DEF_PRIORITY;
3856 zone_pcp_init(zone);
3857 for_each_lru(l) {
3858 INIT_LIST_HEAD(&zone->lru[l].list);
3859 zone->reclaim_stat.nr_saved_scan[l] = 0;
3861 zone->reclaim_stat.recent_rotated[0] = 0;
3862 zone->reclaim_stat.recent_rotated[1] = 0;
3863 zone->reclaim_stat.recent_scanned[0] = 0;
3864 zone->reclaim_stat.recent_scanned[1] = 0;
3865 zap_zone_vm_stats(zone);
3866 zone->flags = 0;
3867 if (!size)
3868 continue;
3870 set_pageblock_order(pageblock_default_order());
3871 setup_usemap(pgdat, zone, size);
3872 ret = init_currently_empty_zone(zone, zone_start_pfn,
3873 size, MEMMAP_EARLY);
3874 BUG_ON(ret);
3875 memmap_init(size, nid, j, zone_start_pfn);
3876 zone_start_pfn += size;
3880 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3882 /* Skip empty nodes */
3883 if (!pgdat->node_spanned_pages)
3884 return;
3886 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3887 /* ia64 gets its own node_mem_map, before this, without bootmem */
3888 if (!pgdat->node_mem_map) {
3889 unsigned long size, start, end;
3890 struct page *map;
3893 * The zone's endpoints aren't required to be MAX_ORDER
3894 * aligned but the node_mem_map endpoints must be in order
3895 * for the buddy allocator to function correctly.
3897 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3898 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3899 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3900 size = (end - start) * sizeof(struct page);
3901 map = alloc_remap(pgdat->node_id, size);
3902 if (!map)
3903 map = alloc_bootmem_node(pgdat, size);
3904 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3906 #ifndef CONFIG_NEED_MULTIPLE_NODES
3908 * With no DISCONTIG, the global mem_map is just set as node 0's
3910 if (pgdat == NODE_DATA(0)) {
3911 mem_map = NODE_DATA(0)->node_mem_map;
3912 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3913 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3914 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3915 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3917 #endif
3918 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3921 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3922 unsigned long node_start_pfn, unsigned long *zholes_size)
3924 pg_data_t *pgdat = NODE_DATA(nid);
3926 pgdat->node_id = nid;
3927 pgdat->node_start_pfn = node_start_pfn;
3928 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3930 alloc_node_mem_map(pgdat);
3931 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3932 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3933 nid, (unsigned long)pgdat,
3934 (unsigned long)pgdat->node_mem_map);
3935 #endif
3937 free_area_init_core(pgdat, zones_size, zholes_size);
3940 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3942 #if MAX_NUMNODES > 1
3944 * Figure out the number of possible node ids.
3946 static void __init setup_nr_node_ids(void)
3948 unsigned int node;
3949 unsigned int highest = 0;
3951 for_each_node_mask(node, node_possible_map)
3952 highest = node;
3953 nr_node_ids = highest + 1;
3955 #else
3956 static inline void setup_nr_node_ids(void)
3959 #endif
3962 * add_active_range - Register a range of PFNs backed by physical memory
3963 * @nid: The node ID the range resides on
3964 * @start_pfn: The start PFN of the available physical memory
3965 * @end_pfn: The end PFN of the available physical memory
3967 * These ranges are stored in an early_node_map[] and later used by
3968 * free_area_init_nodes() to calculate zone sizes and holes. If the
3969 * range spans a memory hole, it is up to the architecture to ensure
3970 * the memory is not freed by the bootmem allocator. If possible
3971 * the range being registered will be merged with existing ranges.
3973 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3974 unsigned long end_pfn)
3976 int i;
3978 mminit_dprintk(MMINIT_TRACE, "memory_register",
3979 "Entering add_active_range(%d, %#lx, %#lx) "
3980 "%d entries of %d used\n",
3981 nid, start_pfn, end_pfn,
3982 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3984 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3986 /* Merge with existing active regions if possible */
3987 for (i = 0; i < nr_nodemap_entries; i++) {
3988 if (early_node_map[i].nid != nid)
3989 continue;
3991 /* Skip if an existing region covers this new one */
3992 if (start_pfn >= early_node_map[i].start_pfn &&
3993 end_pfn <= early_node_map[i].end_pfn)
3994 return;
3996 /* Merge forward if suitable */
3997 if (start_pfn <= early_node_map[i].end_pfn &&
3998 end_pfn > early_node_map[i].end_pfn) {
3999 early_node_map[i].end_pfn = end_pfn;
4000 return;
4003 /* Merge backward if suitable */
4004 if (start_pfn < early_node_map[i].end_pfn &&
4005 end_pfn >= early_node_map[i].start_pfn) {
4006 early_node_map[i].start_pfn = start_pfn;
4007 return;
4011 /* Check that early_node_map is large enough */
4012 if (i >= MAX_ACTIVE_REGIONS) {
4013 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4014 MAX_ACTIVE_REGIONS);
4015 return;
4018 early_node_map[i].nid = nid;
4019 early_node_map[i].start_pfn = start_pfn;
4020 early_node_map[i].end_pfn = end_pfn;
4021 nr_nodemap_entries = i + 1;
4025 * remove_active_range - Shrink an existing registered range of PFNs
4026 * @nid: The node id the range is on that should be shrunk
4027 * @start_pfn: The new PFN of the range
4028 * @end_pfn: The new PFN of the range
4030 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4031 * The map is kept near the end physical page range that has already been
4032 * registered. This function allows an arch to shrink an existing registered
4033 * range.
4035 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4036 unsigned long end_pfn)
4038 int i, j;
4039 int removed = 0;
4041 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4042 nid, start_pfn, end_pfn);
4044 /* Find the old active region end and shrink */
4045 for_each_active_range_index_in_nid(i, nid) {
4046 if (early_node_map[i].start_pfn >= start_pfn &&
4047 early_node_map[i].end_pfn <= end_pfn) {
4048 /* clear it */
4049 early_node_map[i].start_pfn = 0;
4050 early_node_map[i].end_pfn = 0;
4051 removed = 1;
4052 continue;
4054 if (early_node_map[i].start_pfn < start_pfn &&
4055 early_node_map[i].end_pfn > start_pfn) {
4056 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4057 early_node_map[i].end_pfn = start_pfn;
4058 if (temp_end_pfn > end_pfn)
4059 add_active_range(nid, end_pfn, temp_end_pfn);
4060 continue;
4062 if (early_node_map[i].start_pfn >= start_pfn &&
4063 early_node_map[i].end_pfn > end_pfn &&
4064 early_node_map[i].start_pfn < end_pfn) {
4065 early_node_map[i].start_pfn = end_pfn;
4066 continue;
4070 if (!removed)
4071 return;
4073 /* remove the blank ones */
4074 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4075 if (early_node_map[i].nid != nid)
4076 continue;
4077 if (early_node_map[i].end_pfn)
4078 continue;
4079 /* we found it, get rid of it */
4080 for (j = i; j < nr_nodemap_entries - 1; j++)
4081 memcpy(&early_node_map[j], &early_node_map[j+1],
4082 sizeof(early_node_map[j]));
4083 j = nr_nodemap_entries - 1;
4084 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4085 nr_nodemap_entries--;
4090 * remove_all_active_ranges - Remove all currently registered regions
4092 * During discovery, it may be found that a table like SRAT is invalid
4093 * and an alternative discovery method must be used. This function removes
4094 * all currently registered regions.
4096 void __init remove_all_active_ranges(void)
4098 memset(early_node_map, 0, sizeof(early_node_map));
4099 nr_nodemap_entries = 0;
4102 /* Compare two active node_active_regions */
4103 static int __init cmp_node_active_region(const void *a, const void *b)
4105 struct node_active_region *arange = (struct node_active_region *)a;
4106 struct node_active_region *brange = (struct node_active_region *)b;
4108 /* Done this way to avoid overflows */
4109 if (arange->start_pfn > brange->start_pfn)
4110 return 1;
4111 if (arange->start_pfn < brange->start_pfn)
4112 return -1;
4114 return 0;
4117 /* sort the node_map by start_pfn */
4118 static void __init sort_node_map(void)
4120 sort(early_node_map, (size_t)nr_nodemap_entries,
4121 sizeof(struct node_active_region),
4122 cmp_node_active_region, NULL);
4125 /* Find the lowest pfn for a node */
4126 static unsigned long __init find_min_pfn_for_node(int nid)
4128 int i;
4129 unsigned long min_pfn = ULONG_MAX;
4131 /* Assuming a sorted map, the first range found has the starting pfn */
4132 for_each_active_range_index_in_nid(i, nid)
4133 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4135 if (min_pfn == ULONG_MAX) {
4136 printk(KERN_WARNING
4137 "Could not find start_pfn for node %d\n", nid);
4138 return 0;
4141 return min_pfn;
4145 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4147 * It returns the minimum PFN based on information provided via
4148 * add_active_range().
4150 unsigned long __init find_min_pfn_with_active_regions(void)
4152 return find_min_pfn_for_node(MAX_NUMNODES);
4156 * early_calculate_totalpages()
4157 * Sum pages in active regions for movable zone.
4158 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4160 static unsigned long __init early_calculate_totalpages(void)
4162 int i;
4163 unsigned long totalpages = 0;
4165 for (i = 0; i < nr_nodemap_entries; i++) {
4166 unsigned long pages = early_node_map[i].end_pfn -
4167 early_node_map[i].start_pfn;
4168 totalpages += pages;
4169 if (pages)
4170 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4172 return totalpages;
4176 * Find the PFN the Movable zone begins in each node. Kernel memory
4177 * is spread evenly between nodes as long as the nodes have enough
4178 * memory. When they don't, some nodes will have more kernelcore than
4179 * others
4181 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4183 int i, nid;
4184 unsigned long usable_startpfn;
4185 unsigned long kernelcore_node, kernelcore_remaining;
4186 /* save the state before borrow the nodemask */
4187 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4188 unsigned long totalpages = early_calculate_totalpages();
4189 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4192 * If movablecore was specified, calculate what size of
4193 * kernelcore that corresponds so that memory usable for
4194 * any allocation type is evenly spread. If both kernelcore
4195 * and movablecore are specified, then the value of kernelcore
4196 * will be used for required_kernelcore if it's greater than
4197 * what movablecore would have allowed.
4199 if (required_movablecore) {
4200 unsigned long corepages;
4203 * Round-up so that ZONE_MOVABLE is at least as large as what
4204 * was requested by the user
4206 required_movablecore =
4207 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4208 corepages = totalpages - required_movablecore;
4210 required_kernelcore = max(required_kernelcore, corepages);
4213 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4214 if (!required_kernelcore)
4215 goto out;
4217 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4218 find_usable_zone_for_movable();
4219 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4221 restart:
4222 /* Spread kernelcore memory as evenly as possible throughout nodes */
4223 kernelcore_node = required_kernelcore / usable_nodes;
4224 for_each_node_state(nid, N_HIGH_MEMORY) {
4226 * Recalculate kernelcore_node if the division per node
4227 * now exceeds what is necessary to satisfy the requested
4228 * amount of memory for the kernel
4230 if (required_kernelcore < kernelcore_node)
4231 kernelcore_node = required_kernelcore / usable_nodes;
4234 * As the map is walked, we track how much memory is usable
4235 * by the kernel using kernelcore_remaining. When it is
4236 * 0, the rest of the node is usable by ZONE_MOVABLE
4238 kernelcore_remaining = kernelcore_node;
4240 /* Go through each range of PFNs within this node */
4241 for_each_active_range_index_in_nid(i, nid) {
4242 unsigned long start_pfn, end_pfn;
4243 unsigned long size_pages;
4245 start_pfn = max(early_node_map[i].start_pfn,
4246 zone_movable_pfn[nid]);
4247 end_pfn = early_node_map[i].end_pfn;
4248 if (start_pfn >= end_pfn)
4249 continue;
4251 /* Account for what is only usable for kernelcore */
4252 if (start_pfn < usable_startpfn) {
4253 unsigned long kernel_pages;
4254 kernel_pages = min(end_pfn, usable_startpfn)
4255 - start_pfn;
4257 kernelcore_remaining -= min(kernel_pages,
4258 kernelcore_remaining);
4259 required_kernelcore -= min(kernel_pages,
4260 required_kernelcore);
4262 /* Continue if range is now fully accounted */
4263 if (end_pfn <= usable_startpfn) {
4266 * Push zone_movable_pfn to the end so
4267 * that if we have to rebalance
4268 * kernelcore across nodes, we will
4269 * not double account here
4271 zone_movable_pfn[nid] = end_pfn;
4272 continue;
4274 start_pfn = usable_startpfn;
4278 * The usable PFN range for ZONE_MOVABLE is from
4279 * start_pfn->end_pfn. Calculate size_pages as the
4280 * number of pages used as kernelcore
4282 size_pages = end_pfn - start_pfn;
4283 if (size_pages > kernelcore_remaining)
4284 size_pages = kernelcore_remaining;
4285 zone_movable_pfn[nid] = start_pfn + size_pages;
4288 * Some kernelcore has been met, update counts and
4289 * break if the kernelcore for this node has been
4290 * satisified
4292 required_kernelcore -= min(required_kernelcore,
4293 size_pages);
4294 kernelcore_remaining -= size_pages;
4295 if (!kernelcore_remaining)
4296 break;
4301 * If there is still required_kernelcore, we do another pass with one
4302 * less node in the count. This will push zone_movable_pfn[nid] further
4303 * along on the nodes that still have memory until kernelcore is
4304 * satisified
4306 usable_nodes--;
4307 if (usable_nodes && required_kernelcore > usable_nodes)
4308 goto restart;
4310 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4311 for (nid = 0; nid < MAX_NUMNODES; nid++)
4312 zone_movable_pfn[nid] =
4313 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4315 out:
4316 /* restore the node_state */
4317 node_states[N_HIGH_MEMORY] = saved_node_state;
4320 /* Any regular memory on that node ? */
4321 static void check_for_regular_memory(pg_data_t *pgdat)
4323 #ifdef CONFIG_HIGHMEM
4324 enum zone_type zone_type;
4326 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4327 struct zone *zone = &pgdat->node_zones[zone_type];
4328 if (zone->present_pages)
4329 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4331 #endif
4335 * free_area_init_nodes - Initialise all pg_data_t and zone data
4336 * @max_zone_pfn: an array of max PFNs for each zone
4338 * This will call free_area_init_node() for each active node in the system.
4339 * Using the page ranges provided by add_active_range(), the size of each
4340 * zone in each node and their holes is calculated. If the maximum PFN
4341 * between two adjacent zones match, it is assumed that the zone is empty.
4342 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4343 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4344 * starts where the previous one ended. For example, ZONE_DMA32 starts
4345 * at arch_max_dma_pfn.
4347 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4349 unsigned long nid;
4350 int i;
4352 /* Sort early_node_map as initialisation assumes it is sorted */
4353 sort_node_map();
4355 /* Record where the zone boundaries are */
4356 memset(arch_zone_lowest_possible_pfn, 0,
4357 sizeof(arch_zone_lowest_possible_pfn));
4358 memset(arch_zone_highest_possible_pfn, 0,
4359 sizeof(arch_zone_highest_possible_pfn));
4360 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4361 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4362 for (i = 1; i < MAX_NR_ZONES; i++) {
4363 if (i == ZONE_MOVABLE)
4364 continue;
4365 arch_zone_lowest_possible_pfn[i] =
4366 arch_zone_highest_possible_pfn[i-1];
4367 arch_zone_highest_possible_pfn[i] =
4368 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4370 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4371 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4373 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4374 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4375 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4377 /* Print out the zone ranges */
4378 printk("Zone PFN ranges:\n");
4379 for (i = 0; i < MAX_NR_ZONES; i++) {
4380 if (i == ZONE_MOVABLE)
4381 continue;
4382 printk(" %-8s %0#10lx -> %0#10lx\n",
4383 zone_names[i],
4384 arch_zone_lowest_possible_pfn[i],
4385 arch_zone_highest_possible_pfn[i]);
4388 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4389 printk("Movable zone start PFN for each node\n");
4390 for (i = 0; i < MAX_NUMNODES; i++) {
4391 if (zone_movable_pfn[i])
4392 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4395 /* Print out the early_node_map[] */
4396 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4397 for (i = 0; i < nr_nodemap_entries; i++)
4398 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4399 early_node_map[i].start_pfn,
4400 early_node_map[i].end_pfn);
4402 /* Initialise every node */
4403 mminit_verify_pageflags_layout();
4404 setup_nr_node_ids();
4405 for_each_online_node(nid) {
4406 pg_data_t *pgdat = NODE_DATA(nid);
4407 free_area_init_node(nid, NULL,
4408 find_min_pfn_for_node(nid), NULL);
4410 /* Any memory on that node */
4411 if (pgdat->node_present_pages)
4412 node_set_state(nid, N_HIGH_MEMORY);
4413 check_for_regular_memory(pgdat);
4417 static int __init cmdline_parse_core(char *p, unsigned long *core)
4419 unsigned long long coremem;
4420 if (!p)
4421 return -EINVAL;
4423 coremem = memparse(p, &p);
4424 *core = coremem >> PAGE_SHIFT;
4426 /* Paranoid check that UL is enough for the coremem value */
4427 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4429 return 0;
4433 * kernelcore=size sets the amount of memory for use for allocations that
4434 * cannot be reclaimed or migrated.
4436 static int __init cmdline_parse_kernelcore(char *p)
4438 return cmdline_parse_core(p, &required_kernelcore);
4442 * movablecore=size sets the amount of memory for use for allocations that
4443 * can be reclaimed or migrated.
4445 static int __init cmdline_parse_movablecore(char *p)
4447 return cmdline_parse_core(p, &required_movablecore);
4450 early_param("kernelcore", cmdline_parse_kernelcore);
4451 early_param("movablecore", cmdline_parse_movablecore);
4453 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4456 * set_dma_reserve - set the specified number of pages reserved in the first zone
4457 * @new_dma_reserve: The number of pages to mark reserved
4459 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4460 * In the DMA zone, a significant percentage may be consumed by kernel image
4461 * and other unfreeable allocations which can skew the watermarks badly. This
4462 * function may optionally be used to account for unfreeable pages in the
4463 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4464 * smaller per-cpu batchsize.
4466 void __init set_dma_reserve(unsigned long new_dma_reserve)
4468 dma_reserve = new_dma_reserve;
4471 #ifndef CONFIG_NEED_MULTIPLE_NODES
4472 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4473 EXPORT_SYMBOL(contig_page_data);
4474 #endif
4476 void __init free_area_init(unsigned long *zones_size)
4478 free_area_init_node(0, zones_size,
4479 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4482 static int page_alloc_cpu_notify(struct notifier_block *self,
4483 unsigned long action, void *hcpu)
4485 int cpu = (unsigned long)hcpu;
4487 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4488 drain_pages(cpu);
4491 * Spill the event counters of the dead processor
4492 * into the current processors event counters.
4493 * This artificially elevates the count of the current
4494 * processor.
4496 vm_events_fold_cpu(cpu);
4499 * Zero the differential counters of the dead processor
4500 * so that the vm statistics are consistent.
4502 * This is only okay since the processor is dead and cannot
4503 * race with what we are doing.
4505 refresh_cpu_vm_stats(cpu);
4507 return NOTIFY_OK;
4510 void __init page_alloc_init(void)
4512 hotcpu_notifier(page_alloc_cpu_notify, 0);
4516 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4517 * or min_free_kbytes changes.
4519 static void calculate_totalreserve_pages(void)
4521 struct pglist_data *pgdat;
4522 unsigned long reserve_pages = 0;
4523 enum zone_type i, j;
4525 for_each_online_pgdat(pgdat) {
4526 for (i = 0; i < MAX_NR_ZONES; i++) {
4527 struct zone *zone = pgdat->node_zones + i;
4528 unsigned long max = 0;
4530 /* Find valid and maximum lowmem_reserve in the zone */
4531 for (j = i; j < MAX_NR_ZONES; j++) {
4532 if (zone->lowmem_reserve[j] > max)
4533 max = zone->lowmem_reserve[j];
4536 /* we treat the high watermark as reserved pages. */
4537 max += high_wmark_pages(zone);
4539 if (max > zone->present_pages)
4540 max = zone->present_pages;
4541 reserve_pages += max;
4544 totalreserve_pages = reserve_pages;
4548 * setup_per_zone_lowmem_reserve - called whenever
4549 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4550 * has a correct pages reserved value, so an adequate number of
4551 * pages are left in the zone after a successful __alloc_pages().
4553 static void setup_per_zone_lowmem_reserve(void)
4555 struct pglist_data *pgdat;
4556 enum zone_type j, idx;
4558 for_each_online_pgdat(pgdat) {
4559 for (j = 0; j < MAX_NR_ZONES; j++) {
4560 struct zone *zone = pgdat->node_zones + j;
4561 unsigned long present_pages = zone->present_pages;
4563 zone->lowmem_reserve[j] = 0;
4565 idx = j;
4566 while (idx) {
4567 struct zone *lower_zone;
4569 idx--;
4571 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4572 sysctl_lowmem_reserve_ratio[idx] = 1;
4574 lower_zone = pgdat->node_zones + idx;
4575 lower_zone->lowmem_reserve[j] = present_pages /
4576 sysctl_lowmem_reserve_ratio[idx];
4577 present_pages += lower_zone->present_pages;
4582 /* update totalreserve_pages */
4583 calculate_totalreserve_pages();
4587 * setup_per_zone_wmarks - called when min_free_kbytes changes
4588 * or when memory is hot-{added|removed}
4590 * Ensures that the watermark[min,low,high] values for each zone are set
4591 * correctly with respect to min_free_kbytes.
4593 void setup_per_zone_wmarks(void)
4595 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4596 unsigned long lowmem_pages = 0;
4597 struct zone *zone;
4598 unsigned long flags;
4600 /* Calculate total number of !ZONE_HIGHMEM pages */
4601 for_each_zone(zone) {
4602 if (!is_highmem(zone))
4603 lowmem_pages += zone->present_pages;
4606 for_each_zone(zone) {
4607 u64 tmp;
4609 spin_lock_irqsave(&zone->lock, flags);
4610 tmp = (u64)pages_min * zone->present_pages;
4611 do_div(tmp, lowmem_pages);
4612 if (is_highmem(zone)) {
4614 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4615 * need highmem pages, so cap pages_min to a small
4616 * value here.
4618 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4619 * deltas controls asynch page reclaim, and so should
4620 * not be capped for highmem.
4622 int min_pages;
4624 min_pages = zone->present_pages / 1024;
4625 if (min_pages < SWAP_CLUSTER_MAX)
4626 min_pages = SWAP_CLUSTER_MAX;
4627 if (min_pages > 128)
4628 min_pages = 128;
4629 zone->watermark[WMARK_MIN] = min_pages;
4630 } else {
4632 * If it's a lowmem zone, reserve a number of pages
4633 * proportionate to the zone's size.
4635 zone->watermark[WMARK_MIN] = tmp;
4638 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4639 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4640 setup_zone_migrate_reserve(zone);
4641 spin_unlock_irqrestore(&zone->lock, flags);
4644 /* update totalreserve_pages */
4645 calculate_totalreserve_pages();
4649 * The inactive anon list should be small enough that the VM never has to
4650 * do too much work, but large enough that each inactive page has a chance
4651 * to be referenced again before it is swapped out.
4653 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4654 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4655 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4656 * the anonymous pages are kept on the inactive list.
4658 * total target max
4659 * memory ratio inactive anon
4660 * -------------------------------------
4661 * 10MB 1 5MB
4662 * 100MB 1 50MB
4663 * 1GB 3 250MB
4664 * 10GB 10 0.9GB
4665 * 100GB 31 3GB
4666 * 1TB 101 10GB
4667 * 10TB 320 32GB
4669 void calculate_zone_inactive_ratio(struct zone *zone)
4671 unsigned int gb, ratio;
4673 /* Zone size in gigabytes */
4674 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4675 if (gb)
4676 ratio = int_sqrt(10 * gb);
4677 else
4678 ratio = 1;
4680 zone->inactive_ratio = ratio;
4683 static void __init setup_per_zone_inactive_ratio(void)
4685 struct zone *zone;
4687 for_each_zone(zone)
4688 calculate_zone_inactive_ratio(zone);
4692 * Initialise min_free_kbytes.
4694 * For small machines we want it small (128k min). For large machines
4695 * we want it large (64MB max). But it is not linear, because network
4696 * bandwidth does not increase linearly with machine size. We use
4698 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4699 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4701 * which yields
4703 * 16MB: 512k
4704 * 32MB: 724k
4705 * 64MB: 1024k
4706 * 128MB: 1448k
4707 * 256MB: 2048k
4708 * 512MB: 2896k
4709 * 1024MB: 4096k
4710 * 2048MB: 5792k
4711 * 4096MB: 8192k
4712 * 8192MB: 11584k
4713 * 16384MB: 16384k
4715 static int __init init_per_zone_wmark_min(void)
4717 unsigned long lowmem_kbytes;
4719 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4721 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4722 if (min_free_kbytes < 128)
4723 min_free_kbytes = 128;
4724 if (min_free_kbytes > 65536)
4725 min_free_kbytes = 65536;
4726 setup_per_zone_wmarks();
4727 setup_per_zone_lowmem_reserve();
4728 setup_per_zone_inactive_ratio();
4729 return 0;
4731 module_init(init_per_zone_wmark_min)
4734 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4735 * that we can call two helper functions whenever min_free_kbytes
4736 * changes.
4738 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4739 void __user *buffer, size_t *length, loff_t *ppos)
4741 proc_dointvec(table, write, buffer, length, ppos);
4742 if (write)
4743 setup_per_zone_wmarks();
4744 return 0;
4747 #ifdef CONFIG_NUMA
4748 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4749 void __user *buffer, size_t *length, loff_t *ppos)
4751 struct zone *zone;
4752 int rc;
4754 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4755 if (rc)
4756 return rc;
4758 for_each_zone(zone)
4759 zone->min_unmapped_pages = (zone->present_pages *
4760 sysctl_min_unmapped_ratio) / 100;
4761 return 0;
4764 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4765 void __user *buffer, size_t *length, loff_t *ppos)
4767 struct zone *zone;
4768 int rc;
4770 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4771 if (rc)
4772 return rc;
4774 for_each_zone(zone)
4775 zone->min_slab_pages = (zone->present_pages *
4776 sysctl_min_slab_ratio) / 100;
4777 return 0;
4779 #endif
4782 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4783 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4784 * whenever sysctl_lowmem_reserve_ratio changes.
4786 * The reserve ratio obviously has absolutely no relation with the
4787 * minimum watermarks. The lowmem reserve ratio can only make sense
4788 * if in function of the boot time zone sizes.
4790 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4791 void __user *buffer, size_t *length, loff_t *ppos)
4793 proc_dointvec_minmax(table, write, buffer, length, ppos);
4794 setup_per_zone_lowmem_reserve();
4795 return 0;
4799 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4800 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4801 * can have before it gets flushed back to buddy allocator.
4804 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4805 void __user *buffer, size_t *length, loff_t *ppos)
4807 struct zone *zone;
4808 unsigned int cpu;
4809 int ret;
4811 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4812 if (!write || (ret == -EINVAL))
4813 return ret;
4814 for_each_populated_zone(zone) {
4815 for_each_online_cpu(cpu) {
4816 unsigned long high;
4817 high = zone->present_pages / percpu_pagelist_fraction;
4818 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4821 return 0;
4824 int hashdist = HASHDIST_DEFAULT;
4826 #ifdef CONFIG_NUMA
4827 static int __init set_hashdist(char *str)
4829 if (!str)
4830 return 0;
4831 hashdist = simple_strtoul(str, &str, 0);
4832 return 1;
4834 __setup("hashdist=", set_hashdist);
4835 #endif
4838 * allocate a large system hash table from bootmem
4839 * - it is assumed that the hash table must contain an exact power-of-2
4840 * quantity of entries
4841 * - limit is the number of hash buckets, not the total allocation size
4843 void *__init alloc_large_system_hash(const char *tablename,
4844 unsigned long bucketsize,
4845 unsigned long numentries,
4846 int scale,
4847 int flags,
4848 unsigned int *_hash_shift,
4849 unsigned int *_hash_mask,
4850 unsigned long limit)
4852 unsigned long long max = limit;
4853 unsigned long log2qty, size;
4854 void *table = NULL;
4856 /* allow the kernel cmdline to have a say */
4857 if (!numentries) {
4858 /* round applicable memory size up to nearest megabyte */
4859 numentries = nr_kernel_pages;
4860 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4861 numentries >>= 20 - PAGE_SHIFT;
4862 numentries <<= 20 - PAGE_SHIFT;
4864 /* limit to 1 bucket per 2^scale bytes of low memory */
4865 if (scale > PAGE_SHIFT)
4866 numentries >>= (scale - PAGE_SHIFT);
4867 else
4868 numentries <<= (PAGE_SHIFT - scale);
4870 /* Make sure we've got at least a 0-order allocation.. */
4871 if (unlikely(flags & HASH_SMALL)) {
4872 /* Makes no sense without HASH_EARLY */
4873 WARN_ON(!(flags & HASH_EARLY));
4874 if (!(numentries >> *_hash_shift)) {
4875 numentries = 1UL << *_hash_shift;
4876 BUG_ON(!numentries);
4878 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4879 numentries = PAGE_SIZE / bucketsize;
4881 numentries = roundup_pow_of_two(numentries);
4883 /* limit allocation size to 1/16 total memory by default */
4884 if (max == 0) {
4885 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4886 do_div(max, bucketsize);
4889 if (numentries > max)
4890 numentries = max;
4892 log2qty = ilog2(numentries);
4894 do {
4895 size = bucketsize << log2qty;
4896 if (flags & HASH_EARLY)
4897 table = alloc_bootmem_nopanic(size);
4898 else if (hashdist)
4899 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4900 else {
4902 * If bucketsize is not a power-of-two, we may free
4903 * some pages at the end of hash table which
4904 * alloc_pages_exact() automatically does
4906 if (get_order(size) < MAX_ORDER) {
4907 table = alloc_pages_exact(size, GFP_ATOMIC);
4908 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4911 } while (!table && size > PAGE_SIZE && --log2qty);
4913 if (!table)
4914 panic("Failed to allocate %s hash table\n", tablename);
4916 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4917 tablename,
4918 (1U << log2qty),
4919 ilog2(size) - PAGE_SHIFT,
4920 size);
4922 if (_hash_shift)
4923 *_hash_shift = log2qty;
4924 if (_hash_mask)
4925 *_hash_mask = (1 << log2qty) - 1;
4927 return table;
4930 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4931 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4932 unsigned long pfn)
4934 #ifdef CONFIG_SPARSEMEM
4935 return __pfn_to_section(pfn)->pageblock_flags;
4936 #else
4937 return zone->pageblock_flags;
4938 #endif /* CONFIG_SPARSEMEM */
4941 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4943 #ifdef CONFIG_SPARSEMEM
4944 pfn &= (PAGES_PER_SECTION-1);
4945 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4946 #else
4947 pfn = pfn - zone->zone_start_pfn;
4948 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4949 #endif /* CONFIG_SPARSEMEM */
4953 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4954 * @page: The page within the block of interest
4955 * @start_bitidx: The first bit of interest to retrieve
4956 * @end_bitidx: The last bit of interest
4957 * returns pageblock_bits flags
4959 unsigned long get_pageblock_flags_group(struct page *page,
4960 int start_bitidx, int end_bitidx)
4962 struct zone *zone;
4963 unsigned long *bitmap;
4964 unsigned long pfn, bitidx;
4965 unsigned long flags = 0;
4966 unsigned long value = 1;
4968 zone = page_zone(page);
4969 pfn = page_to_pfn(page);
4970 bitmap = get_pageblock_bitmap(zone, pfn);
4971 bitidx = pfn_to_bitidx(zone, pfn);
4973 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4974 if (test_bit(bitidx + start_bitidx, bitmap))
4975 flags |= value;
4977 return flags;
4981 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4982 * @page: The page within the block of interest
4983 * @start_bitidx: The first bit of interest
4984 * @end_bitidx: The last bit of interest
4985 * @flags: The flags to set
4987 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4988 int start_bitidx, int end_bitidx)
4990 struct zone *zone;
4991 unsigned long *bitmap;
4992 unsigned long pfn, bitidx;
4993 unsigned long value = 1;
4995 zone = page_zone(page);
4996 pfn = page_to_pfn(page);
4997 bitmap = get_pageblock_bitmap(zone, pfn);
4998 bitidx = pfn_to_bitidx(zone, pfn);
4999 VM_BUG_ON(pfn < zone->zone_start_pfn);
5000 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5002 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5003 if (flags & value)
5004 __set_bit(bitidx + start_bitidx, bitmap);
5005 else
5006 __clear_bit(bitidx + start_bitidx, bitmap);
5010 * This is designed as sub function...plz see page_isolation.c also.
5011 * set/clear page block's type to be ISOLATE.
5012 * page allocater never alloc memory from ISOLATE block.
5015 int set_migratetype_isolate(struct page *page)
5017 struct zone *zone;
5018 unsigned long flags;
5019 int ret = -EBUSY;
5020 int zone_idx;
5022 zone = page_zone(page);
5023 zone_idx = zone_idx(zone);
5024 spin_lock_irqsave(&zone->lock, flags);
5026 * In future, more migrate types will be able to be isolation target.
5028 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5029 zone_idx != ZONE_MOVABLE)
5030 goto out;
5031 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5032 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5033 ret = 0;
5034 out:
5035 spin_unlock_irqrestore(&zone->lock, flags);
5036 if (!ret)
5037 drain_all_pages();
5038 return ret;
5041 void unset_migratetype_isolate(struct page *page)
5043 struct zone *zone;
5044 unsigned long flags;
5045 zone = page_zone(page);
5046 spin_lock_irqsave(&zone->lock, flags);
5047 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5048 goto out;
5049 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5050 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5051 out:
5052 spin_unlock_irqrestore(&zone->lock, flags);
5055 #ifdef CONFIG_MEMORY_HOTREMOVE
5057 * All pages in the range must be isolated before calling this.
5059 void
5060 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5062 struct page *page;
5063 struct zone *zone;
5064 int order, i;
5065 unsigned long pfn;
5066 unsigned long flags;
5067 /* find the first valid pfn */
5068 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5069 if (pfn_valid(pfn))
5070 break;
5071 if (pfn == end_pfn)
5072 return;
5073 zone = page_zone(pfn_to_page(pfn));
5074 spin_lock_irqsave(&zone->lock, flags);
5075 pfn = start_pfn;
5076 while (pfn < end_pfn) {
5077 if (!pfn_valid(pfn)) {
5078 pfn++;
5079 continue;
5081 page = pfn_to_page(pfn);
5082 BUG_ON(page_count(page));
5083 BUG_ON(!PageBuddy(page));
5084 order = page_order(page);
5085 #ifdef CONFIG_DEBUG_VM
5086 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5087 pfn, 1 << order, end_pfn);
5088 #endif
5089 list_del(&page->lru);
5090 rmv_page_order(page);
5091 zone->free_area[order].nr_free--;
5092 __mod_zone_page_state(zone, NR_FREE_PAGES,
5093 - (1UL << order));
5094 for (i = 0; i < (1 << order); i++)
5095 SetPageReserved((page+i));
5096 pfn += (1 << order);
5098 spin_unlock_irqrestore(&zone->lock, flags);
5100 #endif