2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
58 * Array of node states.
60 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
61 [N_POSSIBLE
] = NODE_MASK_ALL
,
62 [N_ONLINE
] = { { [0] = 1UL } },
64 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
66 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
68 [N_CPU
] = { { [0] = 1UL } },
71 EXPORT_SYMBOL(node_states
);
73 unsigned long totalram_pages __read_mostly
;
74 unsigned long totalreserve_pages __read_mostly
;
75 int percpu_pagelist_fraction
;
76 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly
;
82 static void __free_pages_ok(struct page
*page
, unsigned int order
);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
96 #ifdef CONFIG_ZONE_DMA
99 #ifdef CONFIG_ZONE_DMA32
102 #ifdef CONFIG_HIGHMEM
108 EXPORT_SYMBOL(totalram_pages
);
110 static char * const zone_names
[MAX_NR_ZONES
] = {
111 #ifdef CONFIG_ZONE_DMA
114 #ifdef CONFIG_ZONE_DMA32
118 #ifdef CONFIG_HIGHMEM
124 int min_free_kbytes
= 1024;
126 static unsigned long __meminitdata nr_kernel_pages
;
127 static unsigned long __meminitdata nr_all_pages
;
128 static unsigned long __meminitdata dma_reserve
;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
151 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
152 static int __meminitdata nr_nodemap_entries
;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
155 static unsigned long __initdata required_kernelcore
;
156 static unsigned long __initdata required_movablecore
;
157 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 EXPORT_SYMBOL(movable_zone
);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
166 int nr_online_nodes __read_mostly
= 1;
167 EXPORT_SYMBOL(nr_node_ids
);
168 EXPORT_SYMBOL(nr_online_nodes
);
171 int page_group_by_mobility_disabled __read_mostly
;
173 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
176 if (unlikely(page_group_by_mobility_disabled
))
177 migratetype
= MIGRATE_UNMOVABLE
;
179 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
180 PB_migrate
, PB_migrate_end
);
183 bool oom_killer_disabled __read_mostly
;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
190 unsigned long pfn
= page_to_pfn(page
);
193 seq
= zone_span_seqbegin(zone
);
194 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
196 else if (pfn
< zone
->zone_start_pfn
)
198 } while (zone_span_seqretry(zone
, seq
));
203 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
205 if (!pfn_valid_within(page_to_pfn(page
)))
207 if (zone
!= page_zone(page
))
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone
*zone
, struct page
*page
)
217 if (page_outside_zone_boundaries(zone
, page
))
219 if (!page_is_consistent(zone
, page
))
225 static inline int bad_range(struct zone
*zone
, struct page
*page
)
231 static void bad_page(struct page
*page
)
233 static unsigned long resume
;
234 static unsigned long nr_shown
;
235 static unsigned long nr_unshown
;
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page
)) {
239 __ClearPageBuddy(page
);
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
247 if (nr_shown
== 60) {
248 if (time_before(jiffies
, resume
)) {
254 "BUG: Bad page state: %lu messages suppressed\n",
261 resume
= jiffies
+ 60 * HZ
;
263 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
264 current
->comm
, page_to_pfn(page
));
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page
, (void *)page
->flags
, page_count(page
),
268 page_mapcount(page
), page
->mapping
, page
->index
);
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page
);
274 add_taint(TAINT_BAD_PAGE
);
278 * Higher-order pages are called "compound pages". They are structured thusly:
280 * The first PAGE_SIZE page is called the "head page".
282 * The remaining PAGE_SIZE pages are called "tail pages".
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
292 static void free_compound_page(struct page
*page
)
294 __free_pages_ok(page
, compound_order(page
));
297 void prep_compound_page(struct page
*page
, unsigned long order
)
300 int nr_pages
= 1 << order
;
302 set_compound_page_dtor(page
, free_compound_page
);
303 set_compound_order(page
, order
);
305 for (i
= 1; i
< nr_pages
; i
++) {
306 struct page
*p
= page
+ i
;
309 p
->first_page
= page
;
313 static int destroy_compound_page(struct page
*page
, unsigned long order
)
316 int nr_pages
= 1 << order
;
319 if (unlikely(compound_order(page
) != order
) ||
320 unlikely(!PageHead(page
))) {
325 __ClearPageHead(page
);
327 for (i
= 1; i
< nr_pages
; i
++) {
328 struct page
*p
= page
+ i
;
330 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
340 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
349 for (i
= 0; i
< (1 << order
); i
++)
350 clear_highpage(page
+ i
);
353 static inline void set_page_order(struct page
*page
, int order
)
355 set_page_private(page
, order
);
356 __SetPageBuddy(page
);
359 static inline void rmv_page_order(struct page
*page
)
361 __ClearPageBuddy(page
);
362 set_page_private(page
, 0);
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
372 * For example, if the starting buddy (buddy2) is #8 its order
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 static inline struct page
*
383 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
385 unsigned long buddy_idx
= page_idx
^ (1 << order
);
387 return page
+ (buddy_idx
- page_idx
);
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx
, unsigned int order
)
393 return (page_idx
& ~(1 << order
));
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
399 * (a) the buddy is not in a hole &&
400 * (b) the buddy is in the buddy system &&
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 * For recording page's order, we use page_private(page).
409 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
412 if (!pfn_valid_within(page_to_pfn(buddy
)))
415 if (page_zone_id(page
) != page_zone_id(buddy
))
418 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
419 VM_BUG_ON(page_count(buddy
) != 0);
426 * Freeing function for a buddy system allocator.
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
439 * order is recorded in page_private(page) field.
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
449 static inline void __free_one_page(struct page
*page
,
450 struct zone
*zone
, unsigned int order
,
453 unsigned long page_idx
;
455 if (unlikely(PageCompound(page
)))
456 if (unlikely(destroy_compound_page(page
, order
)))
459 VM_BUG_ON(migratetype
== -1);
461 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
463 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
464 VM_BUG_ON(bad_range(zone
, page
));
466 while (order
< MAX_ORDER
-1) {
467 unsigned long combined_idx
;
470 buddy
= __page_find_buddy(page
, page_idx
, order
);
471 if (!page_is_buddy(page
, buddy
, order
))
474 /* Our buddy is free, merge with it and move up one order. */
475 list_del(&buddy
->lru
);
476 zone
->free_area
[order
].nr_free
--;
477 rmv_page_order(buddy
);
478 combined_idx
= __find_combined_index(page_idx
, order
);
479 page
= page
+ (combined_idx
- page_idx
);
480 page_idx
= combined_idx
;
483 set_page_order(page
, order
);
485 &zone
->free_area
[order
].free_list
[migratetype
]);
486 zone
->free_area
[order
].nr_free
++;
489 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page
*page
)
497 __dec_zone_page_state(page
, NR_MLOCK
);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
501 static void free_page_mlock(struct page
*page
) { }
504 static inline int free_pages_check(struct page
*page
)
506 if (unlikely(page_mapcount(page
) |
507 (page
->mapping
!= NULL
) |
508 (atomic_read(&page
->_count
) != 0) |
509 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
513 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
514 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
519 * Frees a number of pages from the PCP lists
520 * Assumes all pages on list are in same zone, and of same order.
521 * count is the number of pages to free.
523 * If the zone was previously in an "all pages pinned" state then look to
524 * see if this freeing clears that state.
526 * And clear the zone's pages_scanned counter, to hold off the "all pages are
527 * pinned" detection logic.
529 static void free_pcppages_bulk(struct zone
*zone
, int count
,
530 struct per_cpu_pages
*pcp
)
535 spin_lock(&zone
->lock
);
536 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
537 zone
->pages_scanned
= 0;
539 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
542 struct list_head
*list
;
545 * Remove pages from lists in a round-robin fashion. A
546 * batch_free count is maintained that is incremented when an
547 * empty list is encountered. This is so more pages are freed
548 * off fuller lists instead of spinning excessively around empty
553 if (++migratetype
== MIGRATE_PCPTYPES
)
555 list
= &pcp
->lists
[migratetype
];
556 } while (list_empty(list
));
559 page
= list_entry(list
->prev
, struct page
, lru
);
560 /* must delete as __free_one_page list manipulates */
561 list_del(&page
->lru
);
562 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
563 __free_one_page(page
, zone
, 0, page_private(page
));
564 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
565 } while (--count
&& --batch_free
&& !list_empty(list
));
567 spin_unlock(&zone
->lock
);
570 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
573 spin_lock(&zone
->lock
);
574 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
575 zone
->pages_scanned
= 0;
577 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
578 __free_one_page(page
, zone
, order
, migratetype
);
579 spin_unlock(&zone
->lock
);
582 static void __free_pages_ok(struct page
*page
, unsigned int order
)
587 int wasMlocked
= __TestClearPageMlocked(page
);
589 kmemcheck_free_shadow(page
, order
);
591 for (i
= 0 ; i
< (1 << order
) ; ++i
)
592 bad
+= free_pages_check(page
+ i
);
596 if (!PageHighMem(page
)) {
597 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
598 debug_check_no_obj_freed(page_address(page
),
601 arch_free_page(page
, order
);
602 kernel_map_pages(page
, 1 << order
, 0);
604 local_irq_save(flags
);
605 if (unlikely(wasMlocked
))
606 free_page_mlock(page
);
607 __count_vm_events(PGFREE
, 1 << order
);
608 free_one_page(page_zone(page
), page
, order
,
609 get_pageblock_migratetype(page
));
610 local_irq_restore(flags
);
614 * permit the bootmem allocator to evade page validation on high-order frees
616 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
619 __ClearPageReserved(page
);
620 set_page_count(page
, 0);
621 set_page_refcounted(page
);
627 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
628 struct page
*p
= &page
[loop
];
630 if (loop
+ 1 < BITS_PER_LONG
)
632 __ClearPageReserved(p
);
633 set_page_count(p
, 0);
636 set_page_refcounted(page
);
637 __free_pages(page
, order
);
643 * The order of subdivision here is critical for the IO subsystem.
644 * Please do not alter this order without good reasons and regression
645 * testing. Specifically, as large blocks of memory are subdivided,
646 * the order in which smaller blocks are delivered depends on the order
647 * they're subdivided in this function. This is the primary factor
648 * influencing the order in which pages are delivered to the IO
649 * subsystem according to empirical testing, and this is also justified
650 * by considering the behavior of a buddy system containing a single
651 * large block of memory acted on by a series of small allocations.
652 * This behavior is a critical factor in sglist merging's success.
656 static inline void expand(struct zone
*zone
, struct page
*page
,
657 int low
, int high
, struct free_area
*area
,
660 unsigned long size
= 1 << high
;
666 VM_BUG_ON(bad_range(zone
, &page
[size
]));
667 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
669 set_page_order(&page
[size
], high
);
674 * This page is about to be returned from the page allocator
676 static inline int check_new_page(struct page
*page
)
678 if (unlikely(page_mapcount(page
) |
679 (page
->mapping
!= NULL
) |
680 (atomic_read(&page
->_count
) != 0) |
681 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
688 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
692 for (i
= 0; i
< (1 << order
); i
++) {
693 struct page
*p
= page
+ i
;
694 if (unlikely(check_new_page(p
)))
698 set_page_private(page
, 0);
699 set_page_refcounted(page
);
701 arch_alloc_page(page
, order
);
702 kernel_map_pages(page
, 1 << order
, 1);
704 if (gfp_flags
& __GFP_ZERO
)
705 prep_zero_page(page
, order
, gfp_flags
);
707 if (order
&& (gfp_flags
& __GFP_COMP
))
708 prep_compound_page(page
, order
);
714 * Go through the free lists for the given migratetype and remove
715 * the smallest available page from the freelists
718 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
721 unsigned int current_order
;
722 struct free_area
* area
;
725 /* Find a page of the appropriate size in the preferred list */
726 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
727 area
= &(zone
->free_area
[current_order
]);
728 if (list_empty(&area
->free_list
[migratetype
]))
731 page
= list_entry(area
->free_list
[migratetype
].next
,
733 list_del(&page
->lru
);
734 rmv_page_order(page
);
736 expand(zone
, page
, order
, current_order
, area
, migratetype
);
745 * This array describes the order lists are fallen back to when
746 * the free lists for the desirable migrate type are depleted
748 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
749 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
750 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
751 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
752 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
756 * Move the free pages in a range to the free lists of the requested type.
757 * Note that start_page and end_pages are not aligned on a pageblock
758 * boundary. If alignment is required, use move_freepages_block()
760 static int move_freepages(struct zone
*zone
,
761 struct page
*start_page
, struct page
*end_page
,
768 #ifndef CONFIG_HOLES_IN_ZONE
770 * page_zone is not safe to call in this context when
771 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
772 * anyway as we check zone boundaries in move_freepages_block().
773 * Remove at a later date when no bug reports exist related to
774 * grouping pages by mobility
776 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
779 for (page
= start_page
; page
<= end_page
;) {
780 /* Make sure we are not inadvertently changing nodes */
781 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
783 if (!pfn_valid_within(page_to_pfn(page
))) {
788 if (!PageBuddy(page
)) {
793 order
= page_order(page
);
794 list_del(&page
->lru
);
796 &zone
->free_area
[order
].free_list
[migratetype
]);
798 pages_moved
+= 1 << order
;
804 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
807 unsigned long start_pfn
, end_pfn
;
808 struct page
*start_page
, *end_page
;
810 start_pfn
= page_to_pfn(page
);
811 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
812 start_page
= pfn_to_page(start_pfn
);
813 end_page
= start_page
+ pageblock_nr_pages
- 1;
814 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
816 /* Do not cross zone boundaries */
817 if (start_pfn
< zone
->zone_start_pfn
)
819 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
822 return move_freepages(zone
, start_page
, end_page
, migratetype
);
825 static void change_pageblock_range(struct page
*pageblock_page
,
826 int start_order
, int migratetype
)
828 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
830 while (nr_pageblocks
--) {
831 set_pageblock_migratetype(pageblock_page
, migratetype
);
832 pageblock_page
+= pageblock_nr_pages
;
836 /* Remove an element from the buddy allocator from the fallback list */
837 static inline struct page
*
838 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
840 struct free_area
* area
;
845 /* Find the largest possible block of pages in the other list */
846 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
848 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
849 migratetype
= fallbacks
[start_migratetype
][i
];
851 /* MIGRATE_RESERVE handled later if necessary */
852 if (migratetype
== MIGRATE_RESERVE
)
855 area
= &(zone
->free_area
[current_order
]);
856 if (list_empty(&area
->free_list
[migratetype
]))
859 page
= list_entry(area
->free_list
[migratetype
].next
,
864 * If breaking a large block of pages, move all free
865 * pages to the preferred allocation list. If falling
866 * back for a reclaimable kernel allocation, be more
867 * agressive about taking ownership of free pages
869 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
870 start_migratetype
== MIGRATE_RECLAIMABLE
||
871 page_group_by_mobility_disabled
) {
873 pages
= move_freepages_block(zone
, page
,
876 /* Claim the whole block if over half of it is free */
877 if (pages
>= (1 << (pageblock_order
-1)) ||
878 page_group_by_mobility_disabled
)
879 set_pageblock_migratetype(page
,
882 migratetype
= start_migratetype
;
885 /* Remove the page from the freelists */
886 list_del(&page
->lru
);
887 rmv_page_order(page
);
889 /* Take ownership for orders >= pageblock_order */
890 if (current_order
>= pageblock_order
)
891 change_pageblock_range(page
, current_order
,
894 expand(zone
, page
, order
, current_order
, area
, migratetype
);
896 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
897 start_migratetype
, migratetype
);
907 * Do the hard work of removing an element from the buddy allocator.
908 * Call me with the zone->lock already held.
910 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
916 page
= __rmqueue_smallest(zone
, order
, migratetype
);
918 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
919 page
= __rmqueue_fallback(zone
, order
, migratetype
);
922 * Use MIGRATE_RESERVE rather than fail an allocation. goto
923 * is used because __rmqueue_smallest is an inline function
924 * and we want just one call site
927 migratetype
= MIGRATE_RESERVE
;
932 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
937 * Obtain a specified number of elements from the buddy allocator, all under
938 * a single hold of the lock, for efficiency. Add them to the supplied list.
939 * Returns the number of new pages which were placed at *list.
941 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
942 unsigned long count
, struct list_head
*list
,
943 int migratetype
, int cold
)
947 spin_lock(&zone
->lock
);
948 for (i
= 0; i
< count
; ++i
) {
949 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
950 if (unlikely(page
== NULL
))
954 * Split buddy pages returned by expand() are received here
955 * in physical page order. The page is added to the callers and
956 * list and the list head then moves forward. From the callers
957 * perspective, the linked list is ordered by page number in
958 * some conditions. This is useful for IO devices that can
959 * merge IO requests if the physical pages are ordered
962 if (likely(cold
== 0))
963 list_add(&page
->lru
, list
);
965 list_add_tail(&page
->lru
, list
);
966 set_page_private(page
, migratetype
);
969 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
970 spin_unlock(&zone
->lock
);
976 * Called from the vmstat counter updater to drain pagesets of this
977 * currently executing processor on remote nodes after they have
980 * Note that this function must be called with the thread pinned to
981 * a single processor.
983 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
988 local_irq_save(flags
);
989 if (pcp
->count
>= pcp
->batch
)
990 to_drain
= pcp
->batch
;
992 to_drain
= pcp
->count
;
993 free_pcppages_bulk(zone
, to_drain
, pcp
);
994 pcp
->count
-= to_drain
;
995 local_irq_restore(flags
);
1000 * Drain pages of the indicated processor.
1002 * The processor must either be the current processor and the
1003 * thread pinned to the current processor or a processor that
1006 static void drain_pages(unsigned int cpu
)
1008 unsigned long flags
;
1011 for_each_populated_zone(zone
) {
1012 struct per_cpu_pageset
*pset
;
1013 struct per_cpu_pages
*pcp
;
1015 pset
= zone_pcp(zone
, cpu
);
1018 local_irq_save(flags
);
1019 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1021 local_irq_restore(flags
);
1026 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1028 void drain_local_pages(void *arg
)
1030 drain_pages(smp_processor_id());
1034 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1036 void drain_all_pages(void)
1038 on_each_cpu(drain_local_pages
, NULL
, 1);
1041 #ifdef CONFIG_HIBERNATION
1043 void mark_free_pages(struct zone
*zone
)
1045 unsigned long pfn
, max_zone_pfn
;
1046 unsigned long flags
;
1048 struct list_head
*curr
;
1050 if (!zone
->spanned_pages
)
1053 spin_lock_irqsave(&zone
->lock
, flags
);
1055 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1056 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1057 if (pfn_valid(pfn
)) {
1058 struct page
*page
= pfn_to_page(pfn
);
1060 if (!swsusp_page_is_forbidden(page
))
1061 swsusp_unset_page_free(page
);
1064 for_each_migratetype_order(order
, t
) {
1065 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1068 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1069 for (i
= 0; i
< (1UL << order
); i
++)
1070 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1073 spin_unlock_irqrestore(&zone
->lock
, flags
);
1075 #endif /* CONFIG_PM */
1078 * Free a 0-order page
1080 static void free_hot_cold_page(struct page
*page
, int cold
)
1082 struct zone
*zone
= page_zone(page
);
1083 struct per_cpu_pages
*pcp
;
1084 unsigned long flags
;
1086 int wasMlocked
= __TestClearPageMlocked(page
);
1088 kmemcheck_free_shadow(page
, 0);
1091 page
->mapping
= NULL
;
1092 if (free_pages_check(page
))
1095 if (!PageHighMem(page
)) {
1096 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1097 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1099 arch_free_page(page
, 0);
1100 kernel_map_pages(page
, 1, 0);
1102 pcp
= &zone_pcp(zone
, get_cpu())->pcp
;
1103 migratetype
= get_pageblock_migratetype(page
);
1104 set_page_private(page
, migratetype
);
1105 local_irq_save(flags
);
1106 if (unlikely(wasMlocked
))
1107 free_page_mlock(page
);
1108 __count_vm_event(PGFREE
);
1111 * We only track unmovable, reclaimable and movable on pcp lists.
1112 * Free ISOLATE pages back to the allocator because they are being
1113 * offlined but treat RESERVE as movable pages so we can get those
1114 * areas back if necessary. Otherwise, we may have to free
1115 * excessively into the page allocator
1117 if (migratetype
>= MIGRATE_PCPTYPES
) {
1118 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1119 free_one_page(zone
, page
, 0, migratetype
);
1122 migratetype
= MIGRATE_MOVABLE
;
1126 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1128 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1130 if (pcp
->count
>= pcp
->high
) {
1131 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1132 pcp
->count
-= pcp
->batch
;
1136 local_irq_restore(flags
);
1140 void free_hot_page(struct page
*page
)
1142 trace_mm_page_free_direct(page
, 0);
1143 free_hot_cold_page(page
, 0);
1147 * split_page takes a non-compound higher-order page, and splits it into
1148 * n (1<<order) sub-pages: page[0..n]
1149 * Each sub-page must be freed individually.
1151 * Note: this is probably too low level an operation for use in drivers.
1152 * Please consult with lkml before using this in your driver.
1154 void split_page(struct page
*page
, unsigned int order
)
1158 VM_BUG_ON(PageCompound(page
));
1159 VM_BUG_ON(!page_count(page
));
1161 #ifdef CONFIG_KMEMCHECK
1163 * Split shadow pages too, because free(page[0]) would
1164 * otherwise free the whole shadow.
1166 if (kmemcheck_page_is_tracked(page
))
1167 split_page(virt_to_page(page
[0].shadow
), order
);
1170 for (i
= 1; i
< (1 << order
); i
++)
1171 set_page_refcounted(page
+ i
);
1175 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1176 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1180 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1181 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1184 unsigned long flags
;
1186 int cold
= !!(gfp_flags
& __GFP_COLD
);
1191 if (likely(order
== 0)) {
1192 struct per_cpu_pages
*pcp
;
1193 struct list_head
*list
;
1195 pcp
= &zone_pcp(zone
, cpu
)->pcp
;
1196 list
= &pcp
->lists
[migratetype
];
1197 local_irq_save(flags
);
1198 if (list_empty(list
)) {
1199 pcp
->count
+= rmqueue_bulk(zone
, 0,
1202 if (unlikely(list_empty(list
)))
1207 page
= list_entry(list
->prev
, struct page
, lru
);
1209 page
= list_entry(list
->next
, struct page
, lru
);
1211 list_del(&page
->lru
);
1214 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1216 * __GFP_NOFAIL is not to be used in new code.
1218 * All __GFP_NOFAIL callers should be fixed so that they
1219 * properly detect and handle allocation failures.
1221 * We most definitely don't want callers attempting to
1222 * allocate greater than order-1 page units with
1225 WARN_ON_ONCE(order
> 1);
1227 spin_lock_irqsave(&zone
->lock
, flags
);
1228 page
= __rmqueue(zone
, order
, migratetype
);
1229 spin_unlock(&zone
->lock
);
1232 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1235 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1236 zone_statistics(preferred_zone
, zone
);
1237 local_irq_restore(flags
);
1240 VM_BUG_ON(bad_range(zone
, page
));
1241 if (prep_new_page(page
, order
, gfp_flags
))
1246 local_irq_restore(flags
);
1251 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1252 #define ALLOC_WMARK_MIN WMARK_MIN
1253 #define ALLOC_WMARK_LOW WMARK_LOW
1254 #define ALLOC_WMARK_HIGH WMARK_HIGH
1255 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1257 /* Mask to get the watermark bits */
1258 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1260 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1261 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1262 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1264 #ifdef CONFIG_FAIL_PAGE_ALLOC
1266 static struct fail_page_alloc_attr
{
1267 struct fault_attr attr
;
1269 u32 ignore_gfp_highmem
;
1270 u32 ignore_gfp_wait
;
1273 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1275 struct dentry
*ignore_gfp_highmem_file
;
1276 struct dentry
*ignore_gfp_wait_file
;
1277 struct dentry
*min_order_file
;
1279 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1281 } fail_page_alloc
= {
1282 .attr
= FAULT_ATTR_INITIALIZER
,
1283 .ignore_gfp_wait
= 1,
1284 .ignore_gfp_highmem
= 1,
1288 static int __init
setup_fail_page_alloc(char *str
)
1290 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1292 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1294 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1296 if (order
< fail_page_alloc
.min_order
)
1298 if (gfp_mask
& __GFP_NOFAIL
)
1300 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1302 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1305 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1308 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1310 static int __init
fail_page_alloc_debugfs(void)
1312 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1316 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1320 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1322 fail_page_alloc
.ignore_gfp_wait_file
=
1323 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1324 &fail_page_alloc
.ignore_gfp_wait
);
1326 fail_page_alloc
.ignore_gfp_highmem_file
=
1327 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1328 &fail_page_alloc
.ignore_gfp_highmem
);
1329 fail_page_alloc
.min_order_file
=
1330 debugfs_create_u32("min-order", mode
, dir
,
1331 &fail_page_alloc
.min_order
);
1333 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1334 !fail_page_alloc
.ignore_gfp_highmem_file
||
1335 !fail_page_alloc
.min_order_file
) {
1337 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1338 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1339 debugfs_remove(fail_page_alloc
.min_order_file
);
1340 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1346 late_initcall(fail_page_alloc_debugfs
);
1348 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1350 #else /* CONFIG_FAIL_PAGE_ALLOC */
1352 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1357 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1360 * Return 1 if free pages are above 'mark'. This takes into account the order
1361 * of the allocation.
1363 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1364 int classzone_idx
, int alloc_flags
)
1366 /* free_pages my go negative - that's OK */
1368 long free_pages
= zone_nr_free_pages(z
) - (1 << order
) + 1;
1371 if (alloc_flags
& ALLOC_HIGH
)
1373 if (alloc_flags
& ALLOC_HARDER
)
1376 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1378 for (o
= 0; o
< order
; o
++) {
1379 /* At the next order, this order's pages become unavailable */
1380 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1382 /* Require fewer higher order pages to be free */
1385 if (free_pages
<= min
)
1393 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1394 * skip over zones that are not allowed by the cpuset, or that have
1395 * been recently (in last second) found to be nearly full. See further
1396 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1397 * that have to skip over a lot of full or unallowed zones.
1399 * If the zonelist cache is present in the passed in zonelist, then
1400 * returns a pointer to the allowed node mask (either the current
1401 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1403 * If the zonelist cache is not available for this zonelist, does
1404 * nothing and returns NULL.
1406 * If the fullzones BITMAP in the zonelist cache is stale (more than
1407 * a second since last zap'd) then we zap it out (clear its bits.)
1409 * We hold off even calling zlc_setup, until after we've checked the
1410 * first zone in the zonelist, on the theory that most allocations will
1411 * be satisfied from that first zone, so best to examine that zone as
1412 * quickly as we can.
1414 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1416 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1417 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1419 zlc
= zonelist
->zlcache_ptr
;
1423 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1424 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1425 zlc
->last_full_zap
= jiffies
;
1428 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1429 &cpuset_current_mems_allowed
:
1430 &node_states
[N_HIGH_MEMORY
];
1431 return allowednodes
;
1435 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1436 * if it is worth looking at further for free memory:
1437 * 1) Check that the zone isn't thought to be full (doesn't have its
1438 * bit set in the zonelist_cache fullzones BITMAP).
1439 * 2) Check that the zones node (obtained from the zonelist_cache
1440 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1441 * Return true (non-zero) if zone is worth looking at further, or
1442 * else return false (zero) if it is not.
1444 * This check -ignores- the distinction between various watermarks,
1445 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1446 * found to be full for any variation of these watermarks, it will
1447 * be considered full for up to one second by all requests, unless
1448 * we are so low on memory on all allowed nodes that we are forced
1449 * into the second scan of the zonelist.
1451 * In the second scan we ignore this zonelist cache and exactly
1452 * apply the watermarks to all zones, even it is slower to do so.
1453 * We are low on memory in the second scan, and should leave no stone
1454 * unturned looking for a free page.
1456 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1457 nodemask_t
*allowednodes
)
1459 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1460 int i
; /* index of *z in zonelist zones */
1461 int n
; /* node that zone *z is on */
1463 zlc
= zonelist
->zlcache_ptr
;
1467 i
= z
- zonelist
->_zonerefs
;
1470 /* This zone is worth trying if it is allowed but not full */
1471 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1475 * Given 'z' scanning a zonelist, set the corresponding bit in
1476 * zlc->fullzones, so that subsequent attempts to allocate a page
1477 * from that zone don't waste time re-examining it.
1479 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1481 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1482 int i
; /* index of *z in zonelist zones */
1484 zlc
= zonelist
->zlcache_ptr
;
1488 i
= z
- zonelist
->_zonerefs
;
1490 set_bit(i
, zlc
->fullzones
);
1493 #else /* CONFIG_NUMA */
1495 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1500 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1501 nodemask_t
*allowednodes
)
1506 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1509 #endif /* CONFIG_NUMA */
1512 * get_page_from_freelist goes through the zonelist trying to allocate
1515 static struct page
*
1516 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1517 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1518 struct zone
*preferred_zone
, int migratetype
)
1521 struct page
*page
= NULL
;
1524 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1525 int zlc_active
= 0; /* set if using zonelist_cache */
1526 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1528 classzone_idx
= zone_idx(preferred_zone
);
1531 * Scan zonelist, looking for a zone with enough free.
1532 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1535 high_zoneidx
, nodemask
) {
1536 if (NUMA_BUILD
&& zlc_active
&&
1537 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1539 if ((alloc_flags
& ALLOC_CPUSET
) &&
1540 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1543 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1544 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1548 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1549 if (zone_watermark_ok(zone
, order
, mark
,
1550 classzone_idx
, alloc_flags
))
1553 if (zone_reclaim_mode
== 0)
1554 goto this_zone_full
;
1556 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1558 case ZONE_RECLAIM_NOSCAN
:
1561 case ZONE_RECLAIM_FULL
:
1562 /* scanned but unreclaimable */
1563 goto this_zone_full
;
1565 /* did we reclaim enough */
1566 if (!zone_watermark_ok(zone
, order
, mark
,
1567 classzone_idx
, alloc_flags
))
1568 goto this_zone_full
;
1573 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1574 gfp_mask
, migratetype
);
1579 zlc_mark_zone_full(zonelist
, z
);
1581 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1583 * we do zlc_setup after the first zone is tried but only
1584 * if there are multiple nodes make it worthwhile
1586 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1592 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1593 /* Disable zlc cache for second zonelist scan */
1601 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1602 unsigned long pages_reclaimed
)
1604 /* Do not loop if specifically requested */
1605 if (gfp_mask
& __GFP_NORETRY
)
1609 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1610 * means __GFP_NOFAIL, but that may not be true in other
1613 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1617 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1618 * specified, then we retry until we no longer reclaim any pages
1619 * (above), or we've reclaimed an order of pages at least as
1620 * large as the allocation's order. In both cases, if the
1621 * allocation still fails, we stop retrying.
1623 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1627 * Don't let big-order allocations loop unless the caller
1628 * explicitly requests that.
1630 if (gfp_mask
& __GFP_NOFAIL
)
1636 static inline struct page
*
1637 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1638 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1639 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1644 /* Acquire the OOM killer lock for the zones in zonelist */
1645 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1646 schedule_timeout_uninterruptible(1);
1651 * Go through the zonelist yet one more time, keep very high watermark
1652 * here, this is only to catch a parallel oom killing, we must fail if
1653 * we're still under heavy pressure.
1655 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1656 order
, zonelist
, high_zoneidx
,
1657 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1658 preferred_zone
, migratetype
);
1662 /* The OOM killer will not help higher order allocs */
1663 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_NOFAIL
))
1666 /* Exhausted what can be done so it's blamo time */
1667 out_of_memory(zonelist
, gfp_mask
, order
);
1670 clear_zonelist_oom(zonelist
, gfp_mask
);
1674 /* The really slow allocator path where we enter direct reclaim */
1675 static inline struct page
*
1676 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1677 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1678 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1679 int migratetype
, unsigned long *did_some_progress
)
1681 struct page
*page
= NULL
;
1682 struct reclaim_state reclaim_state
;
1683 struct task_struct
*p
= current
;
1684 bool drained
= false;
1688 /* We now go into synchronous reclaim */
1689 cpuset_memory_pressure_bump();
1690 p
->flags
|= PF_MEMALLOC
;
1691 lockdep_set_current_reclaim_state(gfp_mask
);
1692 reclaim_state
.reclaimed_slab
= 0;
1693 p
->reclaim_state
= &reclaim_state
;
1695 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1697 p
->reclaim_state
= NULL
;
1698 lockdep_clear_current_reclaim_state();
1699 p
->flags
&= ~PF_MEMALLOC
;
1703 if (unlikely(!(*did_some_progress
)))
1707 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1708 zonelist
, high_zoneidx
,
1709 alloc_flags
, preferred_zone
,
1713 * If an allocation failed after direct reclaim, it could be because
1714 * pages are pinned on the per-cpu lists. Drain them and try again
1716 if (!page
&& !drained
) {
1726 * This is called in the allocator slow-path if the allocation request is of
1727 * sufficient urgency to ignore watermarks and take other desperate measures
1729 static inline struct page
*
1730 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1731 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1732 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1738 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1739 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1740 preferred_zone
, migratetype
);
1742 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1743 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1744 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1750 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1751 enum zone_type high_zoneidx
)
1756 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1757 wakeup_kswapd(zone
, order
);
1761 gfp_to_alloc_flags(gfp_t gfp_mask
)
1763 struct task_struct
*p
= current
;
1764 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1765 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1767 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1768 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1771 * The caller may dip into page reserves a bit more if the caller
1772 * cannot run direct reclaim, or if the caller has realtime scheduling
1773 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1774 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1776 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1779 alloc_flags
|= ALLOC_HARDER
;
1781 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1782 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1784 alloc_flags
&= ~ALLOC_CPUSET
;
1785 } else if (unlikely(rt_task(p
)) && !in_interrupt())
1786 alloc_flags
|= ALLOC_HARDER
;
1788 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1789 if (!in_interrupt() &&
1790 ((p
->flags
& PF_MEMALLOC
) ||
1791 unlikely(test_thread_flag(TIF_MEMDIE
))))
1792 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1798 static inline struct page
*
1799 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1800 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1801 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1804 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1805 struct page
*page
= NULL
;
1807 unsigned long pages_reclaimed
= 0;
1808 unsigned long did_some_progress
;
1809 struct task_struct
*p
= current
;
1812 * In the slowpath, we sanity check order to avoid ever trying to
1813 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1814 * be using allocators in order of preference for an area that is
1817 if (order
>= MAX_ORDER
) {
1818 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1823 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1824 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1825 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1826 * using a larger set of nodes after it has established that the
1827 * allowed per node queues are empty and that nodes are
1830 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1834 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1837 * OK, we're below the kswapd watermark and have kicked background
1838 * reclaim. Now things get more complex, so set up alloc_flags according
1839 * to how we want to proceed.
1841 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1843 /* This is the last chance, in general, before the goto nopage. */
1844 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1845 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1846 preferred_zone
, migratetype
);
1851 /* Allocate without watermarks if the context allows */
1852 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
1853 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1854 zonelist
, high_zoneidx
, nodemask
,
1855 preferred_zone
, migratetype
);
1860 /* Atomic allocations - we can't balance anything */
1864 /* Avoid recursion of direct reclaim */
1865 if (p
->flags
& PF_MEMALLOC
)
1868 /* Avoid allocations with no watermarks from looping endlessly */
1869 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
1872 /* Try direct reclaim and then allocating */
1873 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1874 zonelist
, high_zoneidx
,
1876 alloc_flags
, preferred_zone
,
1877 migratetype
, &did_some_progress
);
1882 * If we failed to make any progress reclaiming, then we are
1883 * running out of options and have to consider going OOM
1885 if (!did_some_progress
) {
1886 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1887 if (oom_killer_disabled
)
1889 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1890 zonelist
, high_zoneidx
,
1891 nodemask
, preferred_zone
,
1897 * The OOM killer does not trigger for high-order
1898 * ~__GFP_NOFAIL allocations so if no progress is being
1899 * made, there are no other options and retrying is
1902 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
1903 !(gfp_mask
& __GFP_NOFAIL
))
1910 /* Check if we should retry the allocation */
1911 pages_reclaimed
+= did_some_progress
;
1912 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1913 /* Wait for some write requests to complete then retry */
1914 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1919 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1920 printk(KERN_WARNING
"%s: page allocation failure."
1921 " order:%d, mode:0x%x\n",
1922 p
->comm
, order
, gfp_mask
);
1928 if (kmemcheck_enabled
)
1929 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1935 * This is the 'heart' of the zoned buddy allocator.
1938 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1939 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1941 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1942 struct zone
*preferred_zone
;
1944 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1946 gfp_mask
&= gfp_allowed_mask
;
1948 lockdep_trace_alloc(gfp_mask
);
1950 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1952 if (should_fail_alloc_page(gfp_mask
, order
))
1956 * Check the zones suitable for the gfp_mask contain at least one
1957 * valid zone. It's possible to have an empty zonelist as a result
1958 * of GFP_THISNODE and a memoryless node
1960 if (unlikely(!zonelist
->_zonerefs
->zone
))
1963 /* The preferred zone is used for statistics later */
1964 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1965 if (!preferred_zone
)
1968 /* First allocation attempt */
1969 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1970 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1971 preferred_zone
, migratetype
);
1972 if (unlikely(!page
))
1973 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1974 zonelist
, high_zoneidx
, nodemask
,
1975 preferred_zone
, migratetype
);
1977 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
1980 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1983 * Common helper functions.
1985 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1990 * __get_free_pages() returns a 32-bit address, which cannot represent
1993 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1995 page
= alloc_pages(gfp_mask
, order
);
1998 return (unsigned long) page_address(page
);
2000 EXPORT_SYMBOL(__get_free_pages
);
2002 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2004 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2006 EXPORT_SYMBOL(get_zeroed_page
);
2008 void __pagevec_free(struct pagevec
*pvec
)
2010 int i
= pagevec_count(pvec
);
2013 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2014 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2018 void __free_pages(struct page
*page
, unsigned int order
)
2020 if (put_page_testzero(page
)) {
2021 trace_mm_page_free_direct(page
, order
);
2023 free_hot_page(page
);
2025 __free_pages_ok(page
, order
);
2029 EXPORT_SYMBOL(__free_pages
);
2031 void free_pages(unsigned long addr
, unsigned int order
)
2034 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2035 __free_pages(virt_to_page((void *)addr
), order
);
2039 EXPORT_SYMBOL(free_pages
);
2042 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2043 * @size: the number of bytes to allocate
2044 * @gfp_mask: GFP flags for the allocation
2046 * This function is similar to alloc_pages(), except that it allocates the
2047 * minimum number of pages to satisfy the request. alloc_pages() can only
2048 * allocate memory in power-of-two pages.
2050 * This function is also limited by MAX_ORDER.
2052 * Memory allocated by this function must be released by free_pages_exact().
2054 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2056 unsigned int order
= get_order(size
);
2059 addr
= __get_free_pages(gfp_mask
, order
);
2061 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2062 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2064 split_page(virt_to_page((void *)addr
), order
);
2065 while (used
< alloc_end
) {
2071 return (void *)addr
;
2073 EXPORT_SYMBOL(alloc_pages_exact
);
2076 * free_pages_exact - release memory allocated via alloc_pages_exact()
2077 * @virt: the value returned by alloc_pages_exact.
2078 * @size: size of allocation, same value as passed to alloc_pages_exact().
2080 * Release the memory allocated by a previous call to alloc_pages_exact.
2082 void free_pages_exact(void *virt
, size_t size
)
2084 unsigned long addr
= (unsigned long)virt
;
2085 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2087 while (addr
< end
) {
2092 EXPORT_SYMBOL(free_pages_exact
);
2094 static unsigned int nr_free_zone_pages(int offset
)
2099 /* Just pick one node, since fallback list is circular */
2100 unsigned int sum
= 0;
2102 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2104 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2105 unsigned long size
= zone
->present_pages
;
2106 unsigned long high
= high_wmark_pages(zone
);
2115 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2117 unsigned int nr_free_buffer_pages(void)
2119 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2121 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2124 * Amount of free RAM allocatable within all zones
2126 unsigned int nr_free_pagecache_pages(void)
2128 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2131 static inline void show_node(struct zone
*zone
)
2134 printk("Node %d ", zone_to_nid(zone
));
2137 void si_meminfo(struct sysinfo
*val
)
2139 val
->totalram
= totalram_pages
;
2141 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2142 val
->bufferram
= nr_blockdev_pages();
2143 val
->totalhigh
= totalhigh_pages
;
2144 val
->freehigh
= nr_free_highpages();
2145 val
->mem_unit
= PAGE_SIZE
;
2148 EXPORT_SYMBOL(si_meminfo
);
2151 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2153 pg_data_t
*pgdat
= NODE_DATA(nid
);
2155 val
->totalram
= pgdat
->node_present_pages
;
2156 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2157 #ifdef CONFIG_HIGHMEM
2158 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2159 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2165 val
->mem_unit
= PAGE_SIZE
;
2169 #define K(x) ((x) << (PAGE_SHIFT-10))
2172 * Show free area list (used inside shift_scroll-lock stuff)
2173 * We also calculate the percentage fragmentation. We do this by counting the
2174 * memory on each free list with the exception of the first item on the list.
2176 void show_free_areas(void)
2181 for_each_populated_zone(zone
) {
2183 printk("%s per-cpu:\n", zone
->name
);
2185 for_each_online_cpu(cpu
) {
2186 struct per_cpu_pageset
*pageset
;
2188 pageset
= zone_pcp(zone
, cpu
);
2190 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2191 cpu
, pageset
->pcp
.high
,
2192 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2196 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2197 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2199 " dirty:%lu writeback:%lu unstable:%lu\n"
2200 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2201 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2202 global_page_state(NR_ACTIVE_ANON
),
2203 global_page_state(NR_INACTIVE_ANON
),
2204 global_page_state(NR_ISOLATED_ANON
),
2205 global_page_state(NR_ACTIVE_FILE
),
2206 global_page_state(NR_INACTIVE_FILE
),
2207 global_page_state(NR_ISOLATED_FILE
),
2208 global_page_state(NR_UNEVICTABLE
),
2209 global_page_state(NR_FILE_DIRTY
),
2210 global_page_state(NR_WRITEBACK
),
2211 global_page_state(NR_UNSTABLE_NFS
),
2212 global_page_state(NR_FREE_PAGES
),
2213 global_page_state(NR_SLAB_RECLAIMABLE
),
2214 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2215 global_page_state(NR_FILE_MAPPED
),
2216 global_page_state(NR_SHMEM
),
2217 global_page_state(NR_PAGETABLE
),
2218 global_page_state(NR_BOUNCE
));
2220 for_each_populated_zone(zone
) {
2229 " active_anon:%lukB"
2230 " inactive_anon:%lukB"
2231 " active_file:%lukB"
2232 " inactive_file:%lukB"
2233 " unevictable:%lukB"
2234 " isolated(anon):%lukB"
2235 " isolated(file):%lukB"
2242 " slab_reclaimable:%lukB"
2243 " slab_unreclaimable:%lukB"
2244 " kernel_stack:%lukB"
2248 " writeback_tmp:%lukB"
2249 " pages_scanned:%lu"
2250 " all_unreclaimable? %s"
2253 K(zone_nr_free_pages(zone
)),
2254 K(min_wmark_pages(zone
)),
2255 K(low_wmark_pages(zone
)),
2256 K(high_wmark_pages(zone
)),
2257 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2258 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2259 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2260 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2261 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2262 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2263 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2264 K(zone
->present_pages
),
2265 K(zone_page_state(zone
, NR_MLOCK
)),
2266 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2267 K(zone_page_state(zone
, NR_WRITEBACK
)),
2268 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2269 K(zone_page_state(zone
, NR_SHMEM
)),
2270 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2271 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2272 zone_page_state(zone
, NR_KERNEL_STACK
) *
2274 K(zone_page_state(zone
, NR_PAGETABLE
)),
2275 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2276 K(zone_page_state(zone
, NR_BOUNCE
)),
2277 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2278 zone
->pages_scanned
,
2279 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
2281 printk("lowmem_reserve[]:");
2282 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2283 printk(" %lu", zone
->lowmem_reserve
[i
]);
2287 for_each_populated_zone(zone
) {
2288 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2291 printk("%s: ", zone
->name
);
2293 spin_lock_irqsave(&zone
->lock
, flags
);
2294 for (order
= 0; order
< MAX_ORDER
; order
++) {
2295 nr
[order
] = zone
->free_area
[order
].nr_free
;
2296 total
+= nr
[order
] << order
;
2298 spin_unlock_irqrestore(&zone
->lock
, flags
);
2299 for (order
= 0; order
< MAX_ORDER
; order
++)
2300 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2301 printk("= %lukB\n", K(total
));
2304 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2306 show_swap_cache_info();
2309 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2311 zoneref
->zone
= zone
;
2312 zoneref
->zone_idx
= zone_idx(zone
);
2316 * Builds allocation fallback zone lists.
2318 * Add all populated zones of a node to the zonelist.
2320 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2321 int nr_zones
, enum zone_type zone_type
)
2325 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2330 zone
= pgdat
->node_zones
+ zone_type
;
2331 if (populated_zone(zone
)) {
2332 zoneref_set_zone(zone
,
2333 &zonelist
->_zonerefs
[nr_zones
++]);
2334 check_highest_zone(zone_type
);
2337 } while (zone_type
);
2344 * 0 = automatic detection of better ordering.
2345 * 1 = order by ([node] distance, -zonetype)
2346 * 2 = order by (-zonetype, [node] distance)
2348 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2349 * the same zonelist. So only NUMA can configure this param.
2351 #define ZONELIST_ORDER_DEFAULT 0
2352 #define ZONELIST_ORDER_NODE 1
2353 #define ZONELIST_ORDER_ZONE 2
2355 /* zonelist order in the kernel.
2356 * set_zonelist_order() will set this to NODE or ZONE.
2358 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2359 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2363 /* The value user specified ....changed by config */
2364 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2365 /* string for sysctl */
2366 #define NUMA_ZONELIST_ORDER_LEN 16
2367 char numa_zonelist_order
[16] = "default";
2370 * interface for configure zonelist ordering.
2371 * command line option "numa_zonelist_order"
2372 * = "[dD]efault - default, automatic configuration.
2373 * = "[nN]ode - order by node locality, then by zone within node
2374 * = "[zZ]one - order by zone, then by locality within zone
2377 static int __parse_numa_zonelist_order(char *s
)
2379 if (*s
== 'd' || *s
== 'D') {
2380 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2381 } else if (*s
== 'n' || *s
== 'N') {
2382 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2383 } else if (*s
== 'z' || *s
== 'Z') {
2384 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2387 "Ignoring invalid numa_zonelist_order value: "
2394 static __init
int setup_numa_zonelist_order(char *s
)
2397 return __parse_numa_zonelist_order(s
);
2400 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2403 * sysctl handler for numa_zonelist_order
2405 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2406 void __user
*buffer
, size_t *length
,
2409 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2413 strncpy(saved_string
, (char*)table
->data
,
2414 NUMA_ZONELIST_ORDER_LEN
);
2415 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2419 int oldval
= user_zonelist_order
;
2420 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2422 * bogus value. restore saved string
2424 strncpy((char*)table
->data
, saved_string
,
2425 NUMA_ZONELIST_ORDER_LEN
);
2426 user_zonelist_order
= oldval
;
2427 } else if (oldval
!= user_zonelist_order
)
2428 build_all_zonelists();
2434 #define MAX_NODE_LOAD (nr_online_nodes)
2435 static int node_load
[MAX_NUMNODES
];
2438 * find_next_best_node - find the next node that should appear in a given node's fallback list
2439 * @node: node whose fallback list we're appending
2440 * @used_node_mask: nodemask_t of already used nodes
2442 * We use a number of factors to determine which is the next node that should
2443 * appear on a given node's fallback list. The node should not have appeared
2444 * already in @node's fallback list, and it should be the next closest node
2445 * according to the distance array (which contains arbitrary distance values
2446 * from each node to each node in the system), and should also prefer nodes
2447 * with no CPUs, since presumably they'll have very little allocation pressure
2448 * on them otherwise.
2449 * It returns -1 if no node is found.
2451 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2454 int min_val
= INT_MAX
;
2456 const struct cpumask
*tmp
= cpumask_of_node(0);
2458 /* Use the local node if we haven't already */
2459 if (!node_isset(node
, *used_node_mask
)) {
2460 node_set(node
, *used_node_mask
);
2464 for_each_node_state(n
, N_HIGH_MEMORY
) {
2466 /* Don't want a node to appear more than once */
2467 if (node_isset(n
, *used_node_mask
))
2470 /* Use the distance array to find the distance */
2471 val
= node_distance(node
, n
);
2473 /* Penalize nodes under us ("prefer the next node") */
2476 /* Give preference to headless and unused nodes */
2477 tmp
= cpumask_of_node(n
);
2478 if (!cpumask_empty(tmp
))
2479 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2481 /* Slight preference for less loaded node */
2482 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2483 val
+= node_load
[n
];
2485 if (val
< min_val
) {
2492 node_set(best_node
, *used_node_mask
);
2499 * Build zonelists ordered by node and zones within node.
2500 * This results in maximum locality--normal zone overflows into local
2501 * DMA zone, if any--but risks exhausting DMA zone.
2503 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2506 struct zonelist
*zonelist
;
2508 zonelist
= &pgdat
->node_zonelists
[0];
2509 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2511 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2513 zonelist
->_zonerefs
[j
].zone
= NULL
;
2514 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2518 * Build gfp_thisnode zonelists
2520 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2523 struct zonelist
*zonelist
;
2525 zonelist
= &pgdat
->node_zonelists
[1];
2526 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2527 zonelist
->_zonerefs
[j
].zone
= NULL
;
2528 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2532 * Build zonelists ordered by zone and nodes within zones.
2533 * This results in conserving DMA zone[s] until all Normal memory is
2534 * exhausted, but results in overflowing to remote node while memory
2535 * may still exist in local DMA zone.
2537 static int node_order
[MAX_NUMNODES
];
2539 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2542 int zone_type
; /* needs to be signed */
2544 struct zonelist
*zonelist
;
2546 zonelist
= &pgdat
->node_zonelists
[0];
2548 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2549 for (j
= 0; j
< nr_nodes
; j
++) {
2550 node
= node_order
[j
];
2551 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2552 if (populated_zone(z
)) {
2554 &zonelist
->_zonerefs
[pos
++]);
2555 check_highest_zone(zone_type
);
2559 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2560 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2563 static int default_zonelist_order(void)
2566 unsigned long low_kmem_size
,total_size
;
2570 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2571 * If they are really small and used heavily, the system can fall
2572 * into OOM very easily.
2573 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2575 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2578 for_each_online_node(nid
) {
2579 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2580 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2581 if (populated_zone(z
)) {
2582 if (zone_type
< ZONE_NORMAL
)
2583 low_kmem_size
+= z
->present_pages
;
2584 total_size
+= z
->present_pages
;
2588 if (!low_kmem_size
|| /* there are no DMA area. */
2589 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2590 return ZONELIST_ORDER_NODE
;
2592 * look into each node's config.
2593 * If there is a node whose DMA/DMA32 memory is very big area on
2594 * local memory, NODE_ORDER may be suitable.
2596 average_size
= total_size
/
2597 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2598 for_each_online_node(nid
) {
2601 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2602 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2603 if (populated_zone(z
)) {
2604 if (zone_type
< ZONE_NORMAL
)
2605 low_kmem_size
+= z
->present_pages
;
2606 total_size
+= z
->present_pages
;
2609 if (low_kmem_size
&&
2610 total_size
> average_size
&& /* ignore small node */
2611 low_kmem_size
> total_size
* 70/100)
2612 return ZONELIST_ORDER_NODE
;
2614 return ZONELIST_ORDER_ZONE
;
2617 static void set_zonelist_order(void)
2619 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2620 current_zonelist_order
= default_zonelist_order();
2622 current_zonelist_order
= user_zonelist_order
;
2625 static void build_zonelists(pg_data_t
*pgdat
)
2629 nodemask_t used_mask
;
2630 int local_node
, prev_node
;
2631 struct zonelist
*zonelist
;
2632 int order
= current_zonelist_order
;
2634 /* initialize zonelists */
2635 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2636 zonelist
= pgdat
->node_zonelists
+ i
;
2637 zonelist
->_zonerefs
[0].zone
= NULL
;
2638 zonelist
->_zonerefs
[0].zone_idx
= 0;
2641 /* NUMA-aware ordering of nodes */
2642 local_node
= pgdat
->node_id
;
2643 load
= nr_online_nodes
;
2644 prev_node
= local_node
;
2645 nodes_clear(used_mask
);
2647 memset(node_order
, 0, sizeof(node_order
));
2650 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2651 int distance
= node_distance(local_node
, node
);
2654 * If another node is sufficiently far away then it is better
2655 * to reclaim pages in a zone before going off node.
2657 if (distance
> RECLAIM_DISTANCE
)
2658 zone_reclaim_mode
= 1;
2661 * We don't want to pressure a particular node.
2662 * So adding penalty to the first node in same
2663 * distance group to make it round-robin.
2665 if (distance
!= node_distance(local_node
, prev_node
))
2666 node_load
[node
] = load
;
2670 if (order
== ZONELIST_ORDER_NODE
)
2671 build_zonelists_in_node_order(pgdat
, node
);
2673 node_order
[j
++] = node
; /* remember order */
2676 if (order
== ZONELIST_ORDER_ZONE
) {
2677 /* calculate node order -- i.e., DMA last! */
2678 build_zonelists_in_zone_order(pgdat
, j
);
2681 build_thisnode_zonelists(pgdat
);
2684 /* Construct the zonelist performance cache - see further mmzone.h */
2685 static void build_zonelist_cache(pg_data_t
*pgdat
)
2687 struct zonelist
*zonelist
;
2688 struct zonelist_cache
*zlc
;
2691 zonelist
= &pgdat
->node_zonelists
[0];
2692 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2693 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2694 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2695 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2699 #else /* CONFIG_NUMA */
2701 static void set_zonelist_order(void)
2703 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2706 static void build_zonelists(pg_data_t
*pgdat
)
2708 int node
, local_node
;
2710 struct zonelist
*zonelist
;
2712 local_node
= pgdat
->node_id
;
2714 zonelist
= &pgdat
->node_zonelists
[0];
2715 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2718 * Now we build the zonelist so that it contains the zones
2719 * of all the other nodes.
2720 * We don't want to pressure a particular node, so when
2721 * building the zones for node N, we make sure that the
2722 * zones coming right after the local ones are those from
2723 * node N+1 (modulo N)
2725 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2726 if (!node_online(node
))
2728 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2731 for (node
= 0; node
< local_node
; node
++) {
2732 if (!node_online(node
))
2734 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2738 zonelist
->_zonerefs
[j
].zone
= NULL
;
2739 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2742 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2743 static void build_zonelist_cache(pg_data_t
*pgdat
)
2745 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2748 #endif /* CONFIG_NUMA */
2750 /* return values int ....just for stop_machine() */
2751 static int __build_all_zonelists(void *dummy
)
2756 memset(node_load
, 0, sizeof(node_load
));
2758 for_each_online_node(nid
) {
2759 pg_data_t
*pgdat
= NODE_DATA(nid
);
2761 build_zonelists(pgdat
);
2762 build_zonelist_cache(pgdat
);
2767 void build_all_zonelists(void)
2769 set_zonelist_order();
2771 if (system_state
== SYSTEM_BOOTING
) {
2772 __build_all_zonelists(NULL
);
2773 mminit_verify_zonelist();
2774 cpuset_init_current_mems_allowed();
2776 /* we have to stop all cpus to guarantee there is no user
2778 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2779 /* cpuset refresh routine should be here */
2781 vm_total_pages
= nr_free_pagecache_pages();
2783 * Disable grouping by mobility if the number of pages in the
2784 * system is too low to allow the mechanism to work. It would be
2785 * more accurate, but expensive to check per-zone. This check is
2786 * made on memory-hotadd so a system can start with mobility
2787 * disabled and enable it later
2789 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2790 page_group_by_mobility_disabled
= 1;
2792 page_group_by_mobility_disabled
= 0;
2794 printk("Built %i zonelists in %s order, mobility grouping %s. "
2795 "Total pages: %ld\n",
2797 zonelist_order_name
[current_zonelist_order
],
2798 page_group_by_mobility_disabled
? "off" : "on",
2801 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2806 * Helper functions to size the waitqueue hash table.
2807 * Essentially these want to choose hash table sizes sufficiently
2808 * large so that collisions trying to wait on pages are rare.
2809 * But in fact, the number of active page waitqueues on typical
2810 * systems is ridiculously low, less than 200. So this is even
2811 * conservative, even though it seems large.
2813 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2814 * waitqueues, i.e. the size of the waitq table given the number of pages.
2816 #define PAGES_PER_WAITQUEUE 256
2818 #ifndef CONFIG_MEMORY_HOTPLUG
2819 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2821 unsigned long size
= 1;
2823 pages
/= PAGES_PER_WAITQUEUE
;
2825 while (size
< pages
)
2829 * Once we have dozens or even hundreds of threads sleeping
2830 * on IO we've got bigger problems than wait queue collision.
2831 * Limit the size of the wait table to a reasonable size.
2833 size
= min(size
, 4096UL);
2835 return max(size
, 4UL);
2839 * A zone's size might be changed by hot-add, so it is not possible to determine
2840 * a suitable size for its wait_table. So we use the maximum size now.
2842 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2844 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2845 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2846 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2848 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2849 * or more by the traditional way. (See above). It equals:
2851 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2852 * ia64(16K page size) : = ( 8G + 4M)byte.
2853 * powerpc (64K page size) : = (32G +16M)byte.
2855 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2862 * This is an integer logarithm so that shifts can be used later
2863 * to extract the more random high bits from the multiplicative
2864 * hash function before the remainder is taken.
2866 static inline unsigned long wait_table_bits(unsigned long size
)
2871 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2874 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2875 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2876 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2877 * higher will lead to a bigger reserve which will get freed as contiguous
2878 * blocks as reclaim kicks in
2880 static void setup_zone_migrate_reserve(struct zone
*zone
)
2882 unsigned long start_pfn
, pfn
, end_pfn
;
2884 unsigned long block_migratetype
;
2887 /* Get the start pfn, end pfn and the number of blocks to reserve */
2888 start_pfn
= zone
->zone_start_pfn
;
2889 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2890 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
2894 * Reserve blocks are generally in place to help high-order atomic
2895 * allocations that are short-lived. A min_free_kbytes value that
2896 * would result in more than 2 reserve blocks for atomic allocations
2897 * is assumed to be in place to help anti-fragmentation for the
2898 * future allocation of hugepages at runtime.
2900 reserve
= min(2, reserve
);
2902 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2903 if (!pfn_valid(pfn
))
2905 page
= pfn_to_page(pfn
);
2907 /* Watch out for overlapping nodes */
2908 if (page_to_nid(page
) != zone_to_nid(zone
))
2911 /* Blocks with reserved pages will never free, skip them. */
2912 if (PageReserved(page
))
2915 block_migratetype
= get_pageblock_migratetype(page
);
2917 /* If this block is reserved, account for it */
2918 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2923 /* Suitable for reserving if this block is movable */
2924 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2925 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2926 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2932 * If the reserve is met and this is a previous reserved block,
2935 if (block_migratetype
== MIGRATE_RESERVE
) {
2936 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2937 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2943 * Initially all pages are reserved - free ones are freed
2944 * up by free_all_bootmem() once the early boot process is
2945 * done. Non-atomic initialization, single-pass.
2947 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2948 unsigned long start_pfn
, enum memmap_context context
)
2951 unsigned long end_pfn
= start_pfn
+ size
;
2955 if (highest_memmap_pfn
< end_pfn
- 1)
2956 highest_memmap_pfn
= end_pfn
- 1;
2958 z
= &NODE_DATA(nid
)->node_zones
[zone
];
2959 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2961 * There can be holes in boot-time mem_map[]s
2962 * handed to this function. They do not
2963 * exist on hotplugged memory.
2965 if (context
== MEMMAP_EARLY
) {
2966 if (!early_pfn_valid(pfn
))
2968 if (!early_pfn_in_nid(pfn
, nid
))
2971 page
= pfn_to_page(pfn
);
2972 set_page_links(page
, zone
, nid
, pfn
);
2973 mminit_verify_page_links(page
, zone
, nid
, pfn
);
2974 init_page_count(page
);
2975 reset_page_mapcount(page
);
2976 SetPageReserved(page
);
2978 * Mark the block movable so that blocks are reserved for
2979 * movable at startup. This will force kernel allocations
2980 * to reserve their blocks rather than leaking throughout
2981 * the address space during boot when many long-lived
2982 * kernel allocations are made. Later some blocks near
2983 * the start are marked MIGRATE_RESERVE by
2984 * setup_zone_migrate_reserve()
2986 * bitmap is created for zone's valid pfn range. but memmap
2987 * can be created for invalid pages (for alignment)
2988 * check here not to call set_pageblock_migratetype() against
2991 if ((z
->zone_start_pfn
<= pfn
)
2992 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
2993 && !(pfn
& (pageblock_nr_pages
- 1)))
2994 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2996 INIT_LIST_HEAD(&page
->lru
);
2997 #ifdef WANT_PAGE_VIRTUAL
2998 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2999 if (!is_highmem_idx(zone
))
3000 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3005 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3008 for_each_migratetype_order(order
, t
) {
3009 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3010 zone
->free_area
[order
].nr_free
= 0;
3014 #ifndef __HAVE_ARCH_MEMMAP_INIT
3015 #define memmap_init(size, nid, zone, start_pfn) \
3016 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3019 static int zone_batchsize(struct zone
*zone
)
3025 * The per-cpu-pages pools are set to around 1000th of the
3026 * size of the zone. But no more than 1/2 of a meg.
3028 * OK, so we don't know how big the cache is. So guess.
3030 batch
= zone
->present_pages
/ 1024;
3031 if (batch
* PAGE_SIZE
> 512 * 1024)
3032 batch
= (512 * 1024) / PAGE_SIZE
;
3033 batch
/= 4; /* We effectively *= 4 below */
3038 * Clamp the batch to a 2^n - 1 value. Having a power
3039 * of 2 value was found to be more likely to have
3040 * suboptimal cache aliasing properties in some cases.
3042 * For example if 2 tasks are alternately allocating
3043 * batches of pages, one task can end up with a lot
3044 * of pages of one half of the possible page colors
3045 * and the other with pages of the other colors.
3047 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3052 /* The deferral and batching of frees should be suppressed under NOMMU
3055 * The problem is that NOMMU needs to be able to allocate large chunks
3056 * of contiguous memory as there's no hardware page translation to
3057 * assemble apparent contiguous memory from discontiguous pages.
3059 * Queueing large contiguous runs of pages for batching, however,
3060 * causes the pages to actually be freed in smaller chunks. As there
3061 * can be a significant delay between the individual batches being
3062 * recycled, this leads to the once large chunks of space being
3063 * fragmented and becoming unavailable for high-order allocations.
3069 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3071 struct per_cpu_pages
*pcp
;
3074 memset(p
, 0, sizeof(*p
));
3078 pcp
->high
= 6 * batch
;
3079 pcp
->batch
= max(1UL, 1 * batch
);
3080 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3081 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3085 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3086 * to the value high for the pageset p.
3089 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3092 struct per_cpu_pages
*pcp
;
3096 pcp
->batch
= max(1UL, high
/4);
3097 if ((high
/4) > (PAGE_SHIFT
* 8))
3098 pcp
->batch
= PAGE_SHIFT
* 8;
3104 * Boot pageset table. One per cpu which is going to be used for all
3105 * zones and all nodes. The parameters will be set in such a way
3106 * that an item put on a list will immediately be handed over to
3107 * the buddy list. This is safe since pageset manipulation is done
3108 * with interrupts disabled.
3110 * Some NUMA counter updates may also be caught by the boot pagesets.
3112 * The boot_pagesets must be kept even after bootup is complete for
3113 * unused processors and/or zones. They do play a role for bootstrapping
3114 * hotplugged processors.
3116 * zoneinfo_show() and maybe other functions do
3117 * not check if the processor is online before following the pageset pointer.
3118 * Other parts of the kernel may not check if the zone is available.
3120 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
3123 * Dynamically allocate memory for the
3124 * per cpu pageset array in struct zone.
3126 static int __cpuinit
process_zones(int cpu
)
3128 struct zone
*zone
, *dzone
;
3129 int node
= cpu_to_node(cpu
);
3131 node_set_state(node
, N_CPU
); /* this node has a cpu */
3133 for_each_populated_zone(zone
) {
3134 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
3136 if (!zone_pcp(zone
, cpu
))
3139 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
3141 if (percpu_pagelist_fraction
)
3142 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
3143 (zone
->present_pages
/ percpu_pagelist_fraction
));
3148 for_each_zone(dzone
) {
3149 if (!populated_zone(dzone
))
3153 kfree(zone_pcp(dzone
, cpu
));
3154 zone_pcp(dzone
, cpu
) = &boot_pageset
[cpu
];
3159 static inline void free_zone_pagesets(int cpu
)
3163 for_each_zone(zone
) {
3164 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
3166 /* Free per_cpu_pageset if it is slab allocated */
3167 if (pset
!= &boot_pageset
[cpu
])
3169 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3173 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
3174 unsigned long action
,
3177 int cpu
= (long)hcpu
;
3178 int ret
= NOTIFY_OK
;
3181 case CPU_UP_PREPARE
:
3182 case CPU_UP_PREPARE_FROZEN
:
3183 if (process_zones(cpu
))
3186 case CPU_UP_CANCELED
:
3187 case CPU_UP_CANCELED_FROZEN
:
3189 case CPU_DEAD_FROZEN
:
3190 free_zone_pagesets(cpu
);
3198 static struct notifier_block __cpuinitdata pageset_notifier
=
3199 { &pageset_cpuup_callback
, NULL
, 0 };
3201 void __init
setup_per_cpu_pageset(void)
3205 /* Initialize per_cpu_pageset for cpu 0.
3206 * A cpuup callback will do this for every cpu
3207 * as it comes online
3209 err
= process_zones(smp_processor_id());
3211 register_cpu_notifier(&pageset_notifier
);
3216 static noinline __init_refok
3217 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3220 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3224 * The per-page waitqueue mechanism uses hashed waitqueues
3227 zone
->wait_table_hash_nr_entries
=
3228 wait_table_hash_nr_entries(zone_size_pages
);
3229 zone
->wait_table_bits
=
3230 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3231 alloc_size
= zone
->wait_table_hash_nr_entries
3232 * sizeof(wait_queue_head_t
);
3234 if (!slab_is_available()) {
3235 zone
->wait_table
= (wait_queue_head_t
*)
3236 alloc_bootmem_node(pgdat
, alloc_size
);
3239 * This case means that a zone whose size was 0 gets new memory
3240 * via memory hot-add.
3241 * But it may be the case that a new node was hot-added. In
3242 * this case vmalloc() will not be able to use this new node's
3243 * memory - this wait_table must be initialized to use this new
3244 * node itself as well.
3245 * To use this new node's memory, further consideration will be
3248 zone
->wait_table
= vmalloc(alloc_size
);
3250 if (!zone
->wait_table
)
3253 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3254 init_waitqueue_head(zone
->wait_table
+ i
);
3259 static int __zone_pcp_update(void *data
)
3261 struct zone
*zone
= data
;
3263 unsigned long batch
= zone_batchsize(zone
), flags
;
3265 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3266 struct per_cpu_pageset
*pset
;
3267 struct per_cpu_pages
*pcp
;
3269 pset
= zone_pcp(zone
, cpu
);
3272 local_irq_save(flags
);
3273 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3274 setup_pageset(pset
, batch
);
3275 local_irq_restore(flags
);
3280 void zone_pcp_update(struct zone
*zone
)
3282 stop_machine(__zone_pcp_update
, zone
, NULL
);
3285 static __meminit
void zone_pcp_init(struct zone
*zone
)
3288 unsigned long batch
= zone_batchsize(zone
);
3290 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
3292 /* Early boot. Slab allocator not functional yet */
3293 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
3294 setup_pageset(&boot_pageset
[cpu
],0);
3296 setup_pageset(zone_pcp(zone
,cpu
), batch
);
3299 if (zone
->present_pages
)
3300 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
3301 zone
->name
, zone
->present_pages
, batch
);
3304 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3305 unsigned long zone_start_pfn
,
3307 enum memmap_context context
)
3309 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3311 ret
= zone_wait_table_init(zone
, size
);
3314 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3316 zone
->zone_start_pfn
= zone_start_pfn
;
3318 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3319 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3321 (unsigned long)zone_idx(zone
),
3322 zone_start_pfn
, (zone_start_pfn
+ size
));
3324 zone_init_free_lists(zone
);
3329 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3331 * Basic iterator support. Return the first range of PFNs for a node
3332 * Note: nid == MAX_NUMNODES returns first region regardless of node
3334 static int __meminit
first_active_region_index_in_nid(int nid
)
3338 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3339 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3346 * Basic iterator support. Return the next active range of PFNs for a node
3347 * Note: nid == MAX_NUMNODES returns next region regardless of node
3349 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3351 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3352 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3358 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3360 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3361 * Architectures may implement their own version but if add_active_range()
3362 * was used and there are no special requirements, this is a convenient
3365 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3369 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3370 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3371 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3373 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3374 return early_node_map
[i
].nid
;
3376 /* This is a memory hole */
3379 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3381 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3385 nid
= __early_pfn_to_nid(pfn
);
3388 /* just returns 0 */
3392 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3393 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3397 nid
= __early_pfn_to_nid(pfn
);
3398 if (nid
>= 0 && nid
!= node
)
3404 /* Basic iterator support to walk early_node_map[] */
3405 #define for_each_active_range_index_in_nid(i, nid) \
3406 for (i = first_active_region_index_in_nid(nid); i != -1; \
3407 i = next_active_region_index_in_nid(i, nid))
3410 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3411 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3412 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3414 * If an architecture guarantees that all ranges registered with
3415 * add_active_ranges() contain no holes and may be freed, this
3416 * this function may be used instead of calling free_bootmem() manually.
3418 void __init
free_bootmem_with_active_regions(int nid
,
3419 unsigned long max_low_pfn
)
3423 for_each_active_range_index_in_nid(i
, nid
) {
3424 unsigned long size_pages
= 0;
3425 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3427 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3430 if (end_pfn
> max_low_pfn
)
3431 end_pfn
= max_low_pfn
;
3433 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3434 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3435 PFN_PHYS(early_node_map
[i
].start_pfn
),
3436 size_pages
<< PAGE_SHIFT
);
3440 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3445 for_each_active_range_index_in_nid(i
, nid
) {
3446 ret
= work_fn(early_node_map
[i
].start_pfn
,
3447 early_node_map
[i
].end_pfn
, data
);
3453 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3454 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3456 * If an architecture guarantees that all ranges registered with
3457 * add_active_ranges() contain no holes and may be freed, this
3458 * function may be used instead of calling memory_present() manually.
3460 void __init
sparse_memory_present_with_active_regions(int nid
)
3464 for_each_active_range_index_in_nid(i
, nid
)
3465 memory_present(early_node_map
[i
].nid
,
3466 early_node_map
[i
].start_pfn
,
3467 early_node_map
[i
].end_pfn
);
3471 * get_pfn_range_for_nid - Return the start and end page frames for a node
3472 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3473 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3474 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3476 * It returns the start and end page frame of a node based on information
3477 * provided by an arch calling add_active_range(). If called for a node
3478 * with no available memory, a warning is printed and the start and end
3481 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3482 unsigned long *start_pfn
, unsigned long *end_pfn
)
3488 for_each_active_range_index_in_nid(i
, nid
) {
3489 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3490 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3493 if (*start_pfn
== -1UL)
3498 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3499 * assumption is made that zones within a node are ordered in monotonic
3500 * increasing memory addresses so that the "highest" populated zone is used
3502 static void __init
find_usable_zone_for_movable(void)
3505 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3506 if (zone_index
== ZONE_MOVABLE
)
3509 if (arch_zone_highest_possible_pfn
[zone_index
] >
3510 arch_zone_lowest_possible_pfn
[zone_index
])
3514 VM_BUG_ON(zone_index
== -1);
3515 movable_zone
= zone_index
;
3519 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3520 * because it is sized independant of architecture. Unlike the other zones,
3521 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3522 * in each node depending on the size of each node and how evenly kernelcore
3523 * is distributed. This helper function adjusts the zone ranges
3524 * provided by the architecture for a given node by using the end of the
3525 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3526 * zones within a node are in order of monotonic increases memory addresses
3528 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3529 unsigned long zone_type
,
3530 unsigned long node_start_pfn
,
3531 unsigned long node_end_pfn
,
3532 unsigned long *zone_start_pfn
,
3533 unsigned long *zone_end_pfn
)
3535 /* Only adjust if ZONE_MOVABLE is on this node */
3536 if (zone_movable_pfn
[nid
]) {
3537 /* Size ZONE_MOVABLE */
3538 if (zone_type
== ZONE_MOVABLE
) {
3539 *zone_start_pfn
= zone_movable_pfn
[nid
];
3540 *zone_end_pfn
= min(node_end_pfn
,
3541 arch_zone_highest_possible_pfn
[movable_zone
]);
3543 /* Adjust for ZONE_MOVABLE starting within this range */
3544 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3545 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3546 *zone_end_pfn
= zone_movable_pfn
[nid
];
3548 /* Check if this whole range is within ZONE_MOVABLE */
3549 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3550 *zone_start_pfn
= *zone_end_pfn
;
3555 * Return the number of pages a zone spans in a node, including holes
3556 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3558 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3559 unsigned long zone_type
,
3560 unsigned long *ignored
)
3562 unsigned long node_start_pfn
, node_end_pfn
;
3563 unsigned long zone_start_pfn
, zone_end_pfn
;
3565 /* Get the start and end of the node and zone */
3566 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3567 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3568 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3569 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3570 node_start_pfn
, node_end_pfn
,
3571 &zone_start_pfn
, &zone_end_pfn
);
3573 /* Check that this node has pages within the zone's required range */
3574 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3577 /* Move the zone boundaries inside the node if necessary */
3578 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3579 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3581 /* Return the spanned pages */
3582 return zone_end_pfn
- zone_start_pfn
;
3586 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3587 * then all holes in the requested range will be accounted for.
3589 static unsigned long __meminit
__absent_pages_in_range(int nid
,
3590 unsigned long range_start_pfn
,
3591 unsigned long range_end_pfn
)
3594 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3595 unsigned long start_pfn
;
3597 /* Find the end_pfn of the first active range of pfns in the node */
3598 i
= first_active_region_index_in_nid(nid
);
3602 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3604 /* Account for ranges before physical memory on this node */
3605 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3606 hole_pages
= prev_end_pfn
- range_start_pfn
;
3608 /* Find all holes for the zone within the node */
3609 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3611 /* No need to continue if prev_end_pfn is outside the zone */
3612 if (prev_end_pfn
>= range_end_pfn
)
3615 /* Make sure the end of the zone is not within the hole */
3616 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3617 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3619 /* Update the hole size cound and move on */
3620 if (start_pfn
> range_start_pfn
) {
3621 BUG_ON(prev_end_pfn
> start_pfn
);
3622 hole_pages
+= start_pfn
- prev_end_pfn
;
3624 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3627 /* Account for ranges past physical memory on this node */
3628 if (range_end_pfn
> prev_end_pfn
)
3629 hole_pages
+= range_end_pfn
-
3630 max(range_start_pfn
, prev_end_pfn
);
3636 * absent_pages_in_range - Return number of page frames in holes within a range
3637 * @start_pfn: The start PFN to start searching for holes
3638 * @end_pfn: The end PFN to stop searching for holes
3640 * It returns the number of pages frames in memory holes within a range.
3642 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3643 unsigned long end_pfn
)
3645 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3648 /* Return the number of page frames in holes in a zone on a node */
3649 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3650 unsigned long zone_type
,
3651 unsigned long *ignored
)
3653 unsigned long node_start_pfn
, node_end_pfn
;
3654 unsigned long zone_start_pfn
, zone_end_pfn
;
3656 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3657 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3659 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3662 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3663 node_start_pfn
, node_end_pfn
,
3664 &zone_start_pfn
, &zone_end_pfn
);
3665 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3669 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3670 unsigned long zone_type
,
3671 unsigned long *zones_size
)
3673 return zones_size
[zone_type
];
3676 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3677 unsigned long zone_type
,
3678 unsigned long *zholes_size
)
3683 return zholes_size
[zone_type
];
3688 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3689 unsigned long *zones_size
, unsigned long *zholes_size
)
3691 unsigned long realtotalpages
, totalpages
= 0;
3694 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3695 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3697 pgdat
->node_spanned_pages
= totalpages
;
3699 realtotalpages
= totalpages
;
3700 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3702 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3704 pgdat
->node_present_pages
= realtotalpages
;
3705 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3709 #ifndef CONFIG_SPARSEMEM
3711 * Calculate the size of the zone->blockflags rounded to an unsigned long
3712 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3713 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3714 * round what is now in bits to nearest long in bits, then return it in
3717 static unsigned long __init
usemap_size(unsigned long zonesize
)
3719 unsigned long usemapsize
;
3721 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3722 usemapsize
= usemapsize
>> pageblock_order
;
3723 usemapsize
*= NR_PAGEBLOCK_BITS
;
3724 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3726 return usemapsize
/ 8;
3729 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3730 struct zone
*zone
, unsigned long zonesize
)
3732 unsigned long usemapsize
= usemap_size(zonesize
);
3733 zone
->pageblock_flags
= NULL
;
3735 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3738 static void inline setup_usemap(struct pglist_data
*pgdat
,
3739 struct zone
*zone
, unsigned long zonesize
) {}
3740 #endif /* CONFIG_SPARSEMEM */
3742 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3744 /* Return a sensible default order for the pageblock size. */
3745 static inline int pageblock_default_order(void)
3747 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3748 return HUGETLB_PAGE_ORDER
;
3753 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3754 static inline void __init
set_pageblock_order(unsigned int order
)
3756 /* Check that pageblock_nr_pages has not already been setup */
3757 if (pageblock_order
)
3761 * Assume the largest contiguous order of interest is a huge page.
3762 * This value may be variable depending on boot parameters on IA64
3764 pageblock_order
= order
;
3766 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3769 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3770 * and pageblock_default_order() are unused as pageblock_order is set
3771 * at compile-time. See include/linux/pageblock-flags.h for the values of
3772 * pageblock_order based on the kernel config
3774 static inline int pageblock_default_order(unsigned int order
)
3778 #define set_pageblock_order(x) do {} while (0)
3780 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3783 * Set up the zone data structures:
3784 * - mark all pages reserved
3785 * - mark all memory queues empty
3786 * - clear the memory bitmaps
3788 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3789 unsigned long *zones_size
, unsigned long *zholes_size
)
3792 int nid
= pgdat
->node_id
;
3793 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3796 pgdat_resize_init(pgdat
);
3797 pgdat
->nr_zones
= 0;
3798 init_waitqueue_head(&pgdat
->kswapd_wait
);
3799 pgdat
->kswapd_max_order
= 0;
3800 pgdat_page_cgroup_init(pgdat
);
3802 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3803 struct zone
*zone
= pgdat
->node_zones
+ j
;
3804 unsigned long size
, realsize
, memmap_pages
;
3807 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3808 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3812 * Adjust realsize so that it accounts for how much memory
3813 * is used by this zone for memmap. This affects the watermark
3814 * and per-cpu initialisations
3817 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3818 if (realsize
>= memmap_pages
) {
3819 realsize
-= memmap_pages
;
3822 " %s zone: %lu pages used for memmap\n",
3823 zone_names
[j
], memmap_pages
);
3826 " %s zone: %lu pages exceeds realsize %lu\n",
3827 zone_names
[j
], memmap_pages
, realsize
);
3829 /* Account for reserved pages */
3830 if (j
== 0 && realsize
> dma_reserve
) {
3831 realsize
-= dma_reserve
;
3832 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3833 zone_names
[0], dma_reserve
);
3836 if (!is_highmem_idx(j
))
3837 nr_kernel_pages
+= realsize
;
3838 nr_all_pages
+= realsize
;
3840 zone
->spanned_pages
= size
;
3841 zone
->present_pages
= realsize
;
3844 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3846 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3848 zone
->name
= zone_names
[j
];
3849 spin_lock_init(&zone
->lock
);
3850 spin_lock_init(&zone
->lru_lock
);
3851 zone_seqlock_init(zone
);
3852 zone
->zone_pgdat
= pgdat
;
3854 zone
->prev_priority
= DEF_PRIORITY
;
3856 zone_pcp_init(zone
);
3858 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3859 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
3861 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3862 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3863 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3864 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3865 zap_zone_vm_stats(zone
);
3870 set_pageblock_order(pageblock_default_order());
3871 setup_usemap(pgdat
, zone
, size
);
3872 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3873 size
, MEMMAP_EARLY
);
3875 memmap_init(size
, nid
, j
, zone_start_pfn
);
3876 zone_start_pfn
+= size
;
3880 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3882 /* Skip empty nodes */
3883 if (!pgdat
->node_spanned_pages
)
3886 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3887 /* ia64 gets its own node_mem_map, before this, without bootmem */
3888 if (!pgdat
->node_mem_map
) {
3889 unsigned long size
, start
, end
;
3893 * The zone's endpoints aren't required to be MAX_ORDER
3894 * aligned but the node_mem_map endpoints must be in order
3895 * for the buddy allocator to function correctly.
3897 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3898 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3899 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3900 size
= (end
- start
) * sizeof(struct page
);
3901 map
= alloc_remap(pgdat
->node_id
, size
);
3903 map
= alloc_bootmem_node(pgdat
, size
);
3904 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3906 #ifndef CONFIG_NEED_MULTIPLE_NODES
3908 * With no DISCONTIG, the global mem_map is just set as node 0's
3910 if (pgdat
== NODE_DATA(0)) {
3911 mem_map
= NODE_DATA(0)->node_mem_map
;
3912 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3913 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3914 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3915 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3918 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3921 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3922 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3924 pg_data_t
*pgdat
= NODE_DATA(nid
);
3926 pgdat
->node_id
= nid
;
3927 pgdat
->node_start_pfn
= node_start_pfn
;
3928 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3930 alloc_node_mem_map(pgdat
);
3931 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3932 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3933 nid
, (unsigned long)pgdat
,
3934 (unsigned long)pgdat
->node_mem_map
);
3937 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3940 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3942 #if MAX_NUMNODES > 1
3944 * Figure out the number of possible node ids.
3946 static void __init
setup_nr_node_ids(void)
3949 unsigned int highest
= 0;
3951 for_each_node_mask(node
, node_possible_map
)
3953 nr_node_ids
= highest
+ 1;
3956 static inline void setup_nr_node_ids(void)
3962 * add_active_range - Register a range of PFNs backed by physical memory
3963 * @nid: The node ID the range resides on
3964 * @start_pfn: The start PFN of the available physical memory
3965 * @end_pfn: The end PFN of the available physical memory
3967 * These ranges are stored in an early_node_map[] and later used by
3968 * free_area_init_nodes() to calculate zone sizes and holes. If the
3969 * range spans a memory hole, it is up to the architecture to ensure
3970 * the memory is not freed by the bootmem allocator. If possible
3971 * the range being registered will be merged with existing ranges.
3973 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3974 unsigned long end_pfn
)
3978 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3979 "Entering add_active_range(%d, %#lx, %#lx) "
3980 "%d entries of %d used\n",
3981 nid
, start_pfn
, end_pfn
,
3982 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3984 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3986 /* Merge with existing active regions if possible */
3987 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3988 if (early_node_map
[i
].nid
!= nid
)
3991 /* Skip if an existing region covers this new one */
3992 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3993 end_pfn
<= early_node_map
[i
].end_pfn
)
3996 /* Merge forward if suitable */
3997 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3998 end_pfn
> early_node_map
[i
].end_pfn
) {
3999 early_node_map
[i
].end_pfn
= end_pfn
;
4003 /* Merge backward if suitable */
4004 if (start_pfn
< early_node_map
[i
].end_pfn
&&
4005 end_pfn
>= early_node_map
[i
].start_pfn
) {
4006 early_node_map
[i
].start_pfn
= start_pfn
;
4011 /* Check that early_node_map is large enough */
4012 if (i
>= MAX_ACTIVE_REGIONS
) {
4013 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4014 MAX_ACTIVE_REGIONS
);
4018 early_node_map
[i
].nid
= nid
;
4019 early_node_map
[i
].start_pfn
= start_pfn
;
4020 early_node_map
[i
].end_pfn
= end_pfn
;
4021 nr_nodemap_entries
= i
+ 1;
4025 * remove_active_range - Shrink an existing registered range of PFNs
4026 * @nid: The node id the range is on that should be shrunk
4027 * @start_pfn: The new PFN of the range
4028 * @end_pfn: The new PFN of the range
4030 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4031 * The map is kept near the end physical page range that has already been
4032 * registered. This function allows an arch to shrink an existing registered
4035 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4036 unsigned long end_pfn
)
4041 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4042 nid
, start_pfn
, end_pfn
);
4044 /* Find the old active region end and shrink */
4045 for_each_active_range_index_in_nid(i
, nid
) {
4046 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4047 early_node_map
[i
].end_pfn
<= end_pfn
) {
4049 early_node_map
[i
].start_pfn
= 0;
4050 early_node_map
[i
].end_pfn
= 0;
4054 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4055 early_node_map
[i
].end_pfn
> start_pfn
) {
4056 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4057 early_node_map
[i
].end_pfn
= start_pfn
;
4058 if (temp_end_pfn
> end_pfn
)
4059 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4062 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4063 early_node_map
[i
].end_pfn
> end_pfn
&&
4064 early_node_map
[i
].start_pfn
< end_pfn
) {
4065 early_node_map
[i
].start_pfn
= end_pfn
;
4073 /* remove the blank ones */
4074 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4075 if (early_node_map
[i
].nid
!= nid
)
4077 if (early_node_map
[i
].end_pfn
)
4079 /* we found it, get rid of it */
4080 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4081 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4082 sizeof(early_node_map
[j
]));
4083 j
= nr_nodemap_entries
- 1;
4084 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4085 nr_nodemap_entries
--;
4090 * remove_all_active_ranges - Remove all currently registered regions
4092 * During discovery, it may be found that a table like SRAT is invalid
4093 * and an alternative discovery method must be used. This function removes
4094 * all currently registered regions.
4096 void __init
remove_all_active_ranges(void)
4098 memset(early_node_map
, 0, sizeof(early_node_map
));
4099 nr_nodemap_entries
= 0;
4102 /* Compare two active node_active_regions */
4103 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4105 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4106 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4108 /* Done this way to avoid overflows */
4109 if (arange
->start_pfn
> brange
->start_pfn
)
4111 if (arange
->start_pfn
< brange
->start_pfn
)
4117 /* sort the node_map by start_pfn */
4118 static void __init
sort_node_map(void)
4120 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4121 sizeof(struct node_active_region
),
4122 cmp_node_active_region
, NULL
);
4125 /* Find the lowest pfn for a node */
4126 static unsigned long __init
find_min_pfn_for_node(int nid
)
4129 unsigned long min_pfn
= ULONG_MAX
;
4131 /* Assuming a sorted map, the first range found has the starting pfn */
4132 for_each_active_range_index_in_nid(i
, nid
)
4133 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4135 if (min_pfn
== ULONG_MAX
) {
4137 "Could not find start_pfn for node %d\n", nid
);
4145 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4147 * It returns the minimum PFN based on information provided via
4148 * add_active_range().
4150 unsigned long __init
find_min_pfn_with_active_regions(void)
4152 return find_min_pfn_for_node(MAX_NUMNODES
);
4156 * early_calculate_totalpages()
4157 * Sum pages in active regions for movable zone.
4158 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4160 static unsigned long __init
early_calculate_totalpages(void)
4163 unsigned long totalpages
= 0;
4165 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4166 unsigned long pages
= early_node_map
[i
].end_pfn
-
4167 early_node_map
[i
].start_pfn
;
4168 totalpages
+= pages
;
4170 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4176 * Find the PFN the Movable zone begins in each node. Kernel memory
4177 * is spread evenly between nodes as long as the nodes have enough
4178 * memory. When they don't, some nodes will have more kernelcore than
4181 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4184 unsigned long usable_startpfn
;
4185 unsigned long kernelcore_node
, kernelcore_remaining
;
4186 /* save the state before borrow the nodemask */
4187 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4188 unsigned long totalpages
= early_calculate_totalpages();
4189 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4192 * If movablecore was specified, calculate what size of
4193 * kernelcore that corresponds so that memory usable for
4194 * any allocation type is evenly spread. If both kernelcore
4195 * and movablecore are specified, then the value of kernelcore
4196 * will be used for required_kernelcore if it's greater than
4197 * what movablecore would have allowed.
4199 if (required_movablecore
) {
4200 unsigned long corepages
;
4203 * Round-up so that ZONE_MOVABLE is at least as large as what
4204 * was requested by the user
4206 required_movablecore
=
4207 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4208 corepages
= totalpages
- required_movablecore
;
4210 required_kernelcore
= max(required_kernelcore
, corepages
);
4213 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4214 if (!required_kernelcore
)
4217 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4218 find_usable_zone_for_movable();
4219 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4222 /* Spread kernelcore memory as evenly as possible throughout nodes */
4223 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4224 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4226 * Recalculate kernelcore_node if the division per node
4227 * now exceeds what is necessary to satisfy the requested
4228 * amount of memory for the kernel
4230 if (required_kernelcore
< kernelcore_node
)
4231 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4234 * As the map is walked, we track how much memory is usable
4235 * by the kernel using kernelcore_remaining. When it is
4236 * 0, the rest of the node is usable by ZONE_MOVABLE
4238 kernelcore_remaining
= kernelcore_node
;
4240 /* Go through each range of PFNs within this node */
4241 for_each_active_range_index_in_nid(i
, nid
) {
4242 unsigned long start_pfn
, end_pfn
;
4243 unsigned long size_pages
;
4245 start_pfn
= max(early_node_map
[i
].start_pfn
,
4246 zone_movable_pfn
[nid
]);
4247 end_pfn
= early_node_map
[i
].end_pfn
;
4248 if (start_pfn
>= end_pfn
)
4251 /* Account for what is only usable for kernelcore */
4252 if (start_pfn
< usable_startpfn
) {
4253 unsigned long kernel_pages
;
4254 kernel_pages
= min(end_pfn
, usable_startpfn
)
4257 kernelcore_remaining
-= min(kernel_pages
,
4258 kernelcore_remaining
);
4259 required_kernelcore
-= min(kernel_pages
,
4260 required_kernelcore
);
4262 /* Continue if range is now fully accounted */
4263 if (end_pfn
<= usable_startpfn
) {
4266 * Push zone_movable_pfn to the end so
4267 * that if we have to rebalance
4268 * kernelcore across nodes, we will
4269 * not double account here
4271 zone_movable_pfn
[nid
] = end_pfn
;
4274 start_pfn
= usable_startpfn
;
4278 * The usable PFN range for ZONE_MOVABLE is from
4279 * start_pfn->end_pfn. Calculate size_pages as the
4280 * number of pages used as kernelcore
4282 size_pages
= end_pfn
- start_pfn
;
4283 if (size_pages
> kernelcore_remaining
)
4284 size_pages
= kernelcore_remaining
;
4285 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4288 * Some kernelcore has been met, update counts and
4289 * break if the kernelcore for this node has been
4292 required_kernelcore
-= min(required_kernelcore
,
4294 kernelcore_remaining
-= size_pages
;
4295 if (!kernelcore_remaining
)
4301 * If there is still required_kernelcore, we do another pass with one
4302 * less node in the count. This will push zone_movable_pfn[nid] further
4303 * along on the nodes that still have memory until kernelcore is
4307 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4310 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4311 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4312 zone_movable_pfn
[nid
] =
4313 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4316 /* restore the node_state */
4317 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4320 /* Any regular memory on that node ? */
4321 static void check_for_regular_memory(pg_data_t
*pgdat
)
4323 #ifdef CONFIG_HIGHMEM
4324 enum zone_type zone_type
;
4326 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4327 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4328 if (zone
->present_pages
)
4329 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4335 * free_area_init_nodes - Initialise all pg_data_t and zone data
4336 * @max_zone_pfn: an array of max PFNs for each zone
4338 * This will call free_area_init_node() for each active node in the system.
4339 * Using the page ranges provided by add_active_range(), the size of each
4340 * zone in each node and their holes is calculated. If the maximum PFN
4341 * between two adjacent zones match, it is assumed that the zone is empty.
4342 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4343 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4344 * starts where the previous one ended. For example, ZONE_DMA32 starts
4345 * at arch_max_dma_pfn.
4347 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4352 /* Sort early_node_map as initialisation assumes it is sorted */
4355 /* Record where the zone boundaries are */
4356 memset(arch_zone_lowest_possible_pfn
, 0,
4357 sizeof(arch_zone_lowest_possible_pfn
));
4358 memset(arch_zone_highest_possible_pfn
, 0,
4359 sizeof(arch_zone_highest_possible_pfn
));
4360 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4361 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4362 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4363 if (i
== ZONE_MOVABLE
)
4365 arch_zone_lowest_possible_pfn
[i
] =
4366 arch_zone_highest_possible_pfn
[i
-1];
4367 arch_zone_highest_possible_pfn
[i
] =
4368 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4370 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4371 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4373 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4374 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4375 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4377 /* Print out the zone ranges */
4378 printk("Zone PFN ranges:\n");
4379 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4380 if (i
== ZONE_MOVABLE
)
4382 printk(" %-8s %0#10lx -> %0#10lx\n",
4384 arch_zone_lowest_possible_pfn
[i
],
4385 arch_zone_highest_possible_pfn
[i
]);
4388 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4389 printk("Movable zone start PFN for each node\n");
4390 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4391 if (zone_movable_pfn
[i
])
4392 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4395 /* Print out the early_node_map[] */
4396 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4397 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4398 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4399 early_node_map
[i
].start_pfn
,
4400 early_node_map
[i
].end_pfn
);
4402 /* Initialise every node */
4403 mminit_verify_pageflags_layout();
4404 setup_nr_node_ids();
4405 for_each_online_node(nid
) {
4406 pg_data_t
*pgdat
= NODE_DATA(nid
);
4407 free_area_init_node(nid
, NULL
,
4408 find_min_pfn_for_node(nid
), NULL
);
4410 /* Any memory on that node */
4411 if (pgdat
->node_present_pages
)
4412 node_set_state(nid
, N_HIGH_MEMORY
);
4413 check_for_regular_memory(pgdat
);
4417 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4419 unsigned long long coremem
;
4423 coremem
= memparse(p
, &p
);
4424 *core
= coremem
>> PAGE_SHIFT
;
4426 /* Paranoid check that UL is enough for the coremem value */
4427 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4433 * kernelcore=size sets the amount of memory for use for allocations that
4434 * cannot be reclaimed or migrated.
4436 static int __init
cmdline_parse_kernelcore(char *p
)
4438 return cmdline_parse_core(p
, &required_kernelcore
);
4442 * movablecore=size sets the amount of memory for use for allocations that
4443 * can be reclaimed or migrated.
4445 static int __init
cmdline_parse_movablecore(char *p
)
4447 return cmdline_parse_core(p
, &required_movablecore
);
4450 early_param("kernelcore", cmdline_parse_kernelcore
);
4451 early_param("movablecore", cmdline_parse_movablecore
);
4453 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4456 * set_dma_reserve - set the specified number of pages reserved in the first zone
4457 * @new_dma_reserve: The number of pages to mark reserved
4459 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4460 * In the DMA zone, a significant percentage may be consumed by kernel image
4461 * and other unfreeable allocations which can skew the watermarks badly. This
4462 * function may optionally be used to account for unfreeable pages in the
4463 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4464 * smaller per-cpu batchsize.
4466 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4468 dma_reserve
= new_dma_reserve
;
4471 #ifndef CONFIG_NEED_MULTIPLE_NODES
4472 struct pglist_data __refdata contig_page_data
= { .bdata
= &bootmem_node_data
[0] };
4473 EXPORT_SYMBOL(contig_page_data
);
4476 void __init
free_area_init(unsigned long *zones_size
)
4478 free_area_init_node(0, zones_size
,
4479 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4482 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4483 unsigned long action
, void *hcpu
)
4485 int cpu
= (unsigned long)hcpu
;
4487 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4491 * Spill the event counters of the dead processor
4492 * into the current processors event counters.
4493 * This artificially elevates the count of the current
4496 vm_events_fold_cpu(cpu
);
4499 * Zero the differential counters of the dead processor
4500 * so that the vm statistics are consistent.
4502 * This is only okay since the processor is dead and cannot
4503 * race with what we are doing.
4505 refresh_cpu_vm_stats(cpu
);
4510 void __init
page_alloc_init(void)
4512 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4516 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4517 * or min_free_kbytes changes.
4519 static void calculate_totalreserve_pages(void)
4521 struct pglist_data
*pgdat
;
4522 unsigned long reserve_pages
= 0;
4523 enum zone_type i
, j
;
4525 for_each_online_pgdat(pgdat
) {
4526 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4527 struct zone
*zone
= pgdat
->node_zones
+ i
;
4528 unsigned long max
= 0;
4530 /* Find valid and maximum lowmem_reserve in the zone */
4531 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4532 if (zone
->lowmem_reserve
[j
] > max
)
4533 max
= zone
->lowmem_reserve
[j
];
4536 /* we treat the high watermark as reserved pages. */
4537 max
+= high_wmark_pages(zone
);
4539 if (max
> zone
->present_pages
)
4540 max
= zone
->present_pages
;
4541 reserve_pages
+= max
;
4544 totalreserve_pages
= reserve_pages
;
4548 * setup_per_zone_lowmem_reserve - called whenever
4549 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4550 * has a correct pages reserved value, so an adequate number of
4551 * pages are left in the zone after a successful __alloc_pages().
4553 static void setup_per_zone_lowmem_reserve(void)
4555 struct pglist_data
*pgdat
;
4556 enum zone_type j
, idx
;
4558 for_each_online_pgdat(pgdat
) {
4559 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4560 struct zone
*zone
= pgdat
->node_zones
+ j
;
4561 unsigned long present_pages
= zone
->present_pages
;
4563 zone
->lowmem_reserve
[j
] = 0;
4567 struct zone
*lower_zone
;
4571 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4572 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4574 lower_zone
= pgdat
->node_zones
+ idx
;
4575 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4576 sysctl_lowmem_reserve_ratio
[idx
];
4577 present_pages
+= lower_zone
->present_pages
;
4582 /* update totalreserve_pages */
4583 calculate_totalreserve_pages();
4587 * setup_per_zone_wmarks - called when min_free_kbytes changes
4588 * or when memory is hot-{added|removed}
4590 * Ensures that the watermark[min,low,high] values for each zone are set
4591 * correctly with respect to min_free_kbytes.
4593 void setup_per_zone_wmarks(void)
4595 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4596 unsigned long lowmem_pages
= 0;
4598 unsigned long flags
;
4600 /* Calculate total number of !ZONE_HIGHMEM pages */
4601 for_each_zone(zone
) {
4602 if (!is_highmem(zone
))
4603 lowmem_pages
+= zone
->present_pages
;
4606 for_each_zone(zone
) {
4609 spin_lock_irqsave(&zone
->lock
, flags
);
4610 tmp
= (u64
)pages_min
* zone
->present_pages
;
4611 do_div(tmp
, lowmem_pages
);
4612 if (is_highmem(zone
)) {
4614 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4615 * need highmem pages, so cap pages_min to a small
4618 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4619 * deltas controls asynch page reclaim, and so should
4620 * not be capped for highmem.
4624 min_pages
= zone
->present_pages
/ 1024;
4625 if (min_pages
< SWAP_CLUSTER_MAX
)
4626 min_pages
= SWAP_CLUSTER_MAX
;
4627 if (min_pages
> 128)
4629 zone
->watermark
[WMARK_MIN
] = min_pages
;
4632 * If it's a lowmem zone, reserve a number of pages
4633 * proportionate to the zone's size.
4635 zone
->watermark
[WMARK_MIN
] = tmp
;
4638 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4639 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4640 setup_zone_migrate_reserve(zone
);
4641 spin_unlock_irqrestore(&zone
->lock
, flags
);
4644 /* update totalreserve_pages */
4645 calculate_totalreserve_pages();
4649 * The inactive anon list should be small enough that the VM never has to
4650 * do too much work, but large enough that each inactive page has a chance
4651 * to be referenced again before it is swapped out.
4653 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4654 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4655 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4656 * the anonymous pages are kept on the inactive list.
4659 * memory ratio inactive anon
4660 * -------------------------------------
4669 void calculate_zone_inactive_ratio(struct zone
*zone
)
4671 unsigned int gb
, ratio
;
4673 /* Zone size in gigabytes */
4674 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4676 ratio
= int_sqrt(10 * gb
);
4680 zone
->inactive_ratio
= ratio
;
4683 static void __init
setup_per_zone_inactive_ratio(void)
4688 calculate_zone_inactive_ratio(zone
);
4692 * Initialise min_free_kbytes.
4694 * For small machines we want it small (128k min). For large machines
4695 * we want it large (64MB max). But it is not linear, because network
4696 * bandwidth does not increase linearly with machine size. We use
4698 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4699 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4715 static int __init
init_per_zone_wmark_min(void)
4717 unsigned long lowmem_kbytes
;
4719 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4721 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4722 if (min_free_kbytes
< 128)
4723 min_free_kbytes
= 128;
4724 if (min_free_kbytes
> 65536)
4725 min_free_kbytes
= 65536;
4726 setup_per_zone_wmarks();
4727 setup_per_zone_lowmem_reserve();
4728 setup_per_zone_inactive_ratio();
4731 module_init(init_per_zone_wmark_min
)
4734 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4735 * that we can call two helper functions whenever min_free_kbytes
4738 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4739 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4741 proc_dointvec(table
, write
, buffer
, length
, ppos
);
4743 setup_per_zone_wmarks();
4748 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4749 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4754 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4759 zone
->min_unmapped_pages
= (zone
->present_pages
*
4760 sysctl_min_unmapped_ratio
) / 100;
4764 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4765 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4770 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4775 zone
->min_slab_pages
= (zone
->present_pages
*
4776 sysctl_min_slab_ratio
) / 100;
4782 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4783 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4784 * whenever sysctl_lowmem_reserve_ratio changes.
4786 * The reserve ratio obviously has absolutely no relation with the
4787 * minimum watermarks. The lowmem reserve ratio can only make sense
4788 * if in function of the boot time zone sizes.
4790 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4791 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4793 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4794 setup_per_zone_lowmem_reserve();
4799 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4800 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4801 * can have before it gets flushed back to buddy allocator.
4804 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4805 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4811 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4812 if (!write
|| (ret
== -EINVAL
))
4814 for_each_populated_zone(zone
) {
4815 for_each_online_cpu(cpu
) {
4817 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4818 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4824 int hashdist
= HASHDIST_DEFAULT
;
4827 static int __init
set_hashdist(char *str
)
4831 hashdist
= simple_strtoul(str
, &str
, 0);
4834 __setup("hashdist=", set_hashdist
);
4838 * allocate a large system hash table from bootmem
4839 * - it is assumed that the hash table must contain an exact power-of-2
4840 * quantity of entries
4841 * - limit is the number of hash buckets, not the total allocation size
4843 void *__init
alloc_large_system_hash(const char *tablename
,
4844 unsigned long bucketsize
,
4845 unsigned long numentries
,
4848 unsigned int *_hash_shift
,
4849 unsigned int *_hash_mask
,
4850 unsigned long limit
)
4852 unsigned long long max
= limit
;
4853 unsigned long log2qty
, size
;
4856 /* allow the kernel cmdline to have a say */
4858 /* round applicable memory size up to nearest megabyte */
4859 numentries
= nr_kernel_pages
;
4860 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4861 numentries
>>= 20 - PAGE_SHIFT
;
4862 numentries
<<= 20 - PAGE_SHIFT
;
4864 /* limit to 1 bucket per 2^scale bytes of low memory */
4865 if (scale
> PAGE_SHIFT
)
4866 numentries
>>= (scale
- PAGE_SHIFT
);
4868 numentries
<<= (PAGE_SHIFT
- scale
);
4870 /* Make sure we've got at least a 0-order allocation.. */
4871 if (unlikely(flags
& HASH_SMALL
)) {
4872 /* Makes no sense without HASH_EARLY */
4873 WARN_ON(!(flags
& HASH_EARLY
));
4874 if (!(numentries
>> *_hash_shift
)) {
4875 numentries
= 1UL << *_hash_shift
;
4876 BUG_ON(!numentries
);
4878 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4879 numentries
= PAGE_SIZE
/ bucketsize
;
4881 numentries
= roundup_pow_of_two(numentries
);
4883 /* limit allocation size to 1/16 total memory by default */
4885 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4886 do_div(max
, bucketsize
);
4889 if (numentries
> max
)
4892 log2qty
= ilog2(numentries
);
4895 size
= bucketsize
<< log2qty
;
4896 if (flags
& HASH_EARLY
)
4897 table
= alloc_bootmem_nopanic(size
);
4899 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4902 * If bucketsize is not a power-of-two, we may free
4903 * some pages at the end of hash table which
4904 * alloc_pages_exact() automatically does
4906 if (get_order(size
) < MAX_ORDER
) {
4907 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
4908 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4911 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4914 panic("Failed to allocate %s hash table\n", tablename
);
4916 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4919 ilog2(size
) - PAGE_SHIFT
,
4923 *_hash_shift
= log2qty
;
4925 *_hash_mask
= (1 << log2qty
) - 1;
4930 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4931 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4934 #ifdef CONFIG_SPARSEMEM
4935 return __pfn_to_section(pfn
)->pageblock_flags
;
4937 return zone
->pageblock_flags
;
4938 #endif /* CONFIG_SPARSEMEM */
4941 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4943 #ifdef CONFIG_SPARSEMEM
4944 pfn
&= (PAGES_PER_SECTION
-1);
4945 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4947 pfn
= pfn
- zone
->zone_start_pfn
;
4948 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4949 #endif /* CONFIG_SPARSEMEM */
4953 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4954 * @page: The page within the block of interest
4955 * @start_bitidx: The first bit of interest to retrieve
4956 * @end_bitidx: The last bit of interest
4957 * returns pageblock_bits flags
4959 unsigned long get_pageblock_flags_group(struct page
*page
,
4960 int start_bitidx
, int end_bitidx
)
4963 unsigned long *bitmap
;
4964 unsigned long pfn
, bitidx
;
4965 unsigned long flags
= 0;
4966 unsigned long value
= 1;
4968 zone
= page_zone(page
);
4969 pfn
= page_to_pfn(page
);
4970 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4971 bitidx
= pfn_to_bitidx(zone
, pfn
);
4973 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4974 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4981 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4982 * @page: The page within the block of interest
4983 * @start_bitidx: The first bit of interest
4984 * @end_bitidx: The last bit of interest
4985 * @flags: The flags to set
4987 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4988 int start_bitidx
, int end_bitidx
)
4991 unsigned long *bitmap
;
4992 unsigned long pfn
, bitidx
;
4993 unsigned long value
= 1;
4995 zone
= page_zone(page
);
4996 pfn
= page_to_pfn(page
);
4997 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4998 bitidx
= pfn_to_bitidx(zone
, pfn
);
4999 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5000 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5002 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5004 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5006 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5010 * This is designed as sub function...plz see page_isolation.c also.
5011 * set/clear page block's type to be ISOLATE.
5012 * page allocater never alloc memory from ISOLATE block.
5015 int set_migratetype_isolate(struct page
*page
)
5018 unsigned long flags
;
5022 zone
= page_zone(page
);
5023 zone_idx
= zone_idx(zone
);
5024 spin_lock_irqsave(&zone
->lock
, flags
);
5026 * In future, more migrate types will be able to be isolation target.
5028 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
&&
5029 zone_idx
!= ZONE_MOVABLE
)
5031 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5032 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5035 spin_unlock_irqrestore(&zone
->lock
, flags
);
5041 void unset_migratetype_isolate(struct page
*page
)
5044 unsigned long flags
;
5045 zone
= page_zone(page
);
5046 spin_lock_irqsave(&zone
->lock
, flags
);
5047 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5049 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5050 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5052 spin_unlock_irqrestore(&zone
->lock
, flags
);
5055 #ifdef CONFIG_MEMORY_HOTREMOVE
5057 * All pages in the range must be isolated before calling this.
5060 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5066 unsigned long flags
;
5067 /* find the first valid pfn */
5068 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5073 zone
= page_zone(pfn_to_page(pfn
));
5074 spin_lock_irqsave(&zone
->lock
, flags
);
5076 while (pfn
< end_pfn
) {
5077 if (!pfn_valid(pfn
)) {
5081 page
= pfn_to_page(pfn
);
5082 BUG_ON(page_count(page
));
5083 BUG_ON(!PageBuddy(page
));
5084 order
= page_order(page
);
5085 #ifdef CONFIG_DEBUG_VM
5086 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5087 pfn
, 1 << order
, end_pfn
);
5089 list_del(&page
->lru
);
5090 rmv_page_order(page
);
5091 zone
->free_area
[order
].nr_free
--;
5092 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5094 for (i
= 0; i
< (1 << order
); i
++)
5095 SetPageReserved((page
+i
));
5096 pfn
+= (1 << order
);
5098 spin_unlock_irqrestore(&zone
->lock
, flags
);