netfilter: nf_conntrack: Support expectations in different zones
[linux/fpc-iii.git] / mm / migrate.c
blob7d26ea5806621cf77f22d974094ff1ff22429948
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
40 #include "internal.h"
42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
49 int migrate_prep(void)
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
57 lru_add_drain_all();
59 return 0;
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
65 lru_add_drain();
67 return 0;
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
74 void putback_lru_pages(struct list_head *l)
76 struct page *page;
77 struct page *page2;
79 list_for_each_entry_safe(page, page2, l, lru) {
80 list_del(&page->lru);
81 dec_zone_page_state(page, NR_ISOLATED_ANON +
82 page_is_file_cache(page));
83 putback_lru_page(page);
88 * Restore a potential migration pte to a working pte entry
90 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 unsigned long addr, void *old)
93 struct mm_struct *mm = vma->vm_mm;
94 swp_entry_t entry;
95 pgd_t *pgd;
96 pud_t *pud;
97 pmd_t *pmd;
98 pte_t *ptep, pte;
99 spinlock_t *ptl;
101 if (unlikely(PageHuge(new))) {
102 ptep = huge_pte_offset(mm, addr);
103 if (!ptep)
104 goto out;
105 ptl = &mm->page_table_lock;
106 } else {
107 pgd = pgd_offset(mm, addr);
108 if (!pgd_present(*pgd))
109 goto out;
111 pud = pud_offset(pgd, addr);
112 if (!pud_present(*pud))
113 goto out;
115 pmd = pmd_offset(pud, addr);
116 if (pmd_trans_huge(*pmd))
117 goto out;
118 if (!pmd_present(*pmd))
119 goto out;
121 ptep = pte_offset_map(pmd, addr);
124 * Peek to check is_swap_pte() before taking ptlock? No, we
125 * can race mremap's move_ptes(), which skips anon_vma lock.
128 ptl = pte_lockptr(mm, pmd);
131 spin_lock(ptl);
132 pte = *ptep;
133 if (!is_swap_pte(pte))
134 goto unlock;
136 entry = pte_to_swp_entry(pte);
138 if (!is_migration_entry(entry) ||
139 migration_entry_to_page(entry) != old)
140 goto unlock;
142 get_page(new);
143 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
145 /* Recheck VMA as permissions can change since migration started */
146 if (is_write_migration_entry(entry))
147 pte = maybe_mkwrite(pte, vma);
149 #ifdef CONFIG_HUGETLB_PAGE
150 if (PageHuge(new))
151 pte = pte_mkhuge(pte);
152 #endif
153 flush_dcache_page(new);
154 set_pte_at(mm, addr, ptep, pte);
156 if (PageHuge(new)) {
157 if (PageAnon(new))
158 hugepage_add_anon_rmap(new, vma, addr);
159 else
160 page_dup_rmap(new);
161 } else if (PageAnon(new))
162 page_add_anon_rmap(new, vma, addr);
163 else
164 page_add_file_rmap(new);
166 /* No need to invalidate - it was non-present before */
167 update_mmu_cache(vma, addr, ptep);
168 unlock:
169 pte_unmap_unlock(ptep, ptl);
170 out:
171 return SWAP_AGAIN;
175 * Get rid of all migration entries and replace them by
176 * references to the indicated page.
178 static void remove_migration_ptes(struct page *old, struct page *new)
180 rmap_walk(new, remove_migration_pte, old);
184 * Something used the pte of a page under migration. We need to
185 * get to the page and wait until migration is finished.
186 * When we return from this function the fault will be retried.
188 * This function is called from do_swap_page().
190 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
191 spinlock_t *ptl)
193 pte_t pte;
194 swp_entry_t entry;
195 struct page *page;
197 spin_lock(ptl);
198 pte = *ptep;
199 if (!is_swap_pte(pte))
200 goto out;
202 entry = pte_to_swp_entry(pte);
203 if (!is_migration_entry(entry))
204 goto out;
206 page = migration_entry_to_page(entry);
209 * Once radix-tree replacement of page migration started, page_count
210 * *must* be zero. And, we don't want to call wait_on_page_locked()
211 * against a page without get_page().
212 * So, we use get_page_unless_zero(), here. Even failed, page fault
213 * will occur again.
215 if (!get_page_unless_zero(page))
216 goto out;
217 pte_unmap_unlock(ptep, ptl);
218 wait_on_page_locked(page);
219 put_page(page);
220 return;
221 out:
222 pte_unmap_unlock(ptep, ptl);
225 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
226 unsigned long address)
228 spinlock_t *ptl = pte_lockptr(mm, pmd);
229 pte_t *ptep = pte_offset_map(pmd, address);
230 __migration_entry_wait(mm, ptep, ptl);
233 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
235 spinlock_t *ptl = &(mm)->page_table_lock;
236 __migration_entry_wait(mm, pte, ptl);
239 #ifdef CONFIG_BLOCK
240 /* Returns true if all buffers are successfully locked */
241 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
242 enum migrate_mode mode)
244 struct buffer_head *bh = head;
246 /* Simple case, sync compaction */
247 if (mode != MIGRATE_ASYNC) {
248 do {
249 get_bh(bh);
250 lock_buffer(bh);
251 bh = bh->b_this_page;
253 } while (bh != head);
255 return true;
258 /* async case, we cannot block on lock_buffer so use trylock_buffer */
259 do {
260 get_bh(bh);
261 if (!trylock_buffer(bh)) {
263 * We failed to lock the buffer and cannot stall in
264 * async migration. Release the taken locks
266 struct buffer_head *failed_bh = bh;
267 put_bh(failed_bh);
268 bh = head;
269 while (bh != failed_bh) {
270 unlock_buffer(bh);
271 put_bh(bh);
272 bh = bh->b_this_page;
274 return false;
277 bh = bh->b_this_page;
278 } while (bh != head);
279 return true;
281 #else
282 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
283 enum migrate_mode mode)
285 return true;
287 #endif /* CONFIG_BLOCK */
290 * Replace the page in the mapping.
292 * The number of remaining references must be:
293 * 1 for anonymous pages without a mapping
294 * 2 for pages with a mapping
295 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
297 static int migrate_page_move_mapping(struct address_space *mapping,
298 struct page *newpage, struct page *page,
299 struct buffer_head *head, enum migrate_mode mode)
301 int expected_count;
302 void **pslot;
304 if (!mapping) {
305 /* Anonymous page without mapping */
306 if (page_count(page) != 1)
307 return -EAGAIN;
308 return 0;
311 spin_lock_irq(&mapping->tree_lock);
313 pslot = radix_tree_lookup_slot(&mapping->page_tree,
314 page_index(page));
316 expected_count = 2 + page_has_private(page);
317 if (page_count(page) != expected_count ||
318 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
319 spin_unlock_irq(&mapping->tree_lock);
320 return -EAGAIN;
323 if (!page_freeze_refs(page, expected_count)) {
324 spin_unlock_irq(&mapping->tree_lock);
325 return -EAGAIN;
329 * In the async migration case of moving a page with buffers, lock the
330 * buffers using trylock before the mapping is moved. If the mapping
331 * was moved, we later failed to lock the buffers and could not move
332 * the mapping back due to an elevated page count, we would have to
333 * block waiting on other references to be dropped.
335 if (mode == MIGRATE_ASYNC && head &&
336 !buffer_migrate_lock_buffers(head, mode)) {
337 page_unfreeze_refs(page, expected_count);
338 spin_unlock_irq(&mapping->tree_lock);
339 return -EAGAIN;
343 * Now we know that no one else is looking at the page.
345 get_page(newpage); /* add cache reference */
346 if (PageSwapCache(page)) {
347 SetPageSwapCache(newpage);
348 set_page_private(newpage, page_private(page));
351 radix_tree_replace_slot(pslot, newpage);
353 page_unfreeze_refs(page, expected_count);
355 * Drop cache reference from old page.
356 * We know this isn't the last reference.
358 __put_page(page);
361 * If moved to a different zone then also account
362 * the page for that zone. Other VM counters will be
363 * taken care of when we establish references to the
364 * new page and drop references to the old page.
366 * Note that anonymous pages are accounted for
367 * via NR_FILE_PAGES and NR_ANON_PAGES if they
368 * are mapped to swap space.
370 __dec_zone_page_state(page, NR_FILE_PAGES);
371 __inc_zone_page_state(newpage, NR_FILE_PAGES);
372 if (!PageSwapCache(page) && PageSwapBacked(page)) {
373 __dec_zone_page_state(page, NR_SHMEM);
374 __inc_zone_page_state(newpage, NR_SHMEM);
376 spin_unlock_irq(&mapping->tree_lock);
378 return 0;
382 * The expected number of remaining references is the same as that
383 * of migrate_page_move_mapping().
385 int migrate_huge_page_move_mapping(struct address_space *mapping,
386 struct page *newpage, struct page *page)
388 int expected_count;
389 void **pslot;
391 if (!mapping) {
392 if (page_count(page) != 1)
393 return -EAGAIN;
394 return 0;
397 spin_lock_irq(&mapping->tree_lock);
399 pslot = radix_tree_lookup_slot(&mapping->page_tree,
400 page_index(page));
402 expected_count = 2 + page_has_private(page);
403 if (page_count(page) != expected_count ||
404 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
405 spin_unlock_irq(&mapping->tree_lock);
406 return -EAGAIN;
409 if (!page_freeze_refs(page, expected_count)) {
410 spin_unlock_irq(&mapping->tree_lock);
411 return -EAGAIN;
414 get_page(newpage);
416 radix_tree_replace_slot(pslot, newpage);
418 page_unfreeze_refs(page, expected_count);
420 __put_page(page);
422 spin_unlock_irq(&mapping->tree_lock);
423 return 0;
427 * Copy the page to its new location
429 void migrate_page_copy(struct page *newpage, struct page *page)
431 if (PageHuge(page))
432 copy_huge_page(newpage, page);
433 else
434 copy_highpage(newpage, page);
436 if (PageError(page))
437 SetPageError(newpage);
438 if (PageReferenced(page))
439 SetPageReferenced(newpage);
440 if (PageUptodate(page))
441 SetPageUptodate(newpage);
442 if (TestClearPageActive(page)) {
443 VM_BUG_ON(PageUnevictable(page));
444 SetPageActive(newpage);
445 } else if (TestClearPageUnevictable(page))
446 SetPageUnevictable(newpage);
447 if (PageChecked(page))
448 SetPageChecked(newpage);
449 if (PageMappedToDisk(page))
450 SetPageMappedToDisk(newpage);
452 if (PageDirty(page)) {
453 clear_page_dirty_for_io(page);
455 * Want to mark the page and the radix tree as dirty, and
456 * redo the accounting that clear_page_dirty_for_io undid,
457 * but we can't use set_page_dirty because that function
458 * is actually a signal that all of the page has become dirty.
459 * Whereas only part of our page may be dirty.
461 __set_page_dirty_nobuffers(newpage);
464 mlock_migrate_page(newpage, page);
465 ksm_migrate_page(newpage, page);
467 ClearPageSwapCache(page);
468 ClearPagePrivate(page);
469 set_page_private(page, 0);
470 page->mapping = NULL;
473 * If any waiters have accumulated on the new page then
474 * wake them up.
476 if (PageWriteback(newpage))
477 end_page_writeback(newpage);
480 /************************************************************
481 * Migration functions
482 ***********************************************************/
484 /* Always fail migration. Used for mappings that are not movable */
485 int fail_migrate_page(struct address_space *mapping,
486 struct page *newpage, struct page *page)
488 return -EIO;
490 EXPORT_SYMBOL(fail_migrate_page);
493 * Common logic to directly migrate a single page suitable for
494 * pages that do not use PagePrivate/PagePrivate2.
496 * Pages are locked upon entry and exit.
498 int migrate_page(struct address_space *mapping,
499 struct page *newpage, struct page *page,
500 enum migrate_mode mode)
502 int rc;
504 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
506 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
508 if (rc)
509 return rc;
511 migrate_page_copy(newpage, page);
512 return 0;
514 EXPORT_SYMBOL(migrate_page);
516 #ifdef CONFIG_BLOCK
518 * Migration function for pages with buffers. This function can only be used
519 * if the underlying filesystem guarantees that no other references to "page"
520 * exist.
522 int buffer_migrate_page(struct address_space *mapping,
523 struct page *newpage, struct page *page, enum migrate_mode mode)
525 struct buffer_head *bh, *head;
526 int rc;
528 if (!page_has_buffers(page))
529 return migrate_page(mapping, newpage, page, mode);
531 head = page_buffers(page);
533 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
535 if (rc)
536 return rc;
539 * In the async case, migrate_page_move_mapping locked the buffers
540 * with an IRQ-safe spinlock held. In the sync case, the buffers
541 * need to be locked now
543 if (mode != MIGRATE_ASYNC)
544 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
546 ClearPagePrivate(page);
547 set_page_private(newpage, page_private(page));
548 set_page_private(page, 0);
549 put_page(page);
550 get_page(newpage);
552 bh = head;
553 do {
554 set_bh_page(bh, newpage, bh_offset(bh));
555 bh = bh->b_this_page;
557 } while (bh != head);
559 SetPagePrivate(newpage);
561 migrate_page_copy(newpage, page);
563 bh = head;
564 do {
565 unlock_buffer(bh);
566 put_bh(bh);
567 bh = bh->b_this_page;
569 } while (bh != head);
571 return 0;
573 EXPORT_SYMBOL(buffer_migrate_page);
574 #endif
577 * Writeback a page to clean the dirty state
579 static int writeout(struct address_space *mapping, struct page *page)
581 struct writeback_control wbc = {
582 .sync_mode = WB_SYNC_NONE,
583 .nr_to_write = 1,
584 .range_start = 0,
585 .range_end = LLONG_MAX,
586 .for_reclaim = 1
588 int rc;
590 if (!mapping->a_ops->writepage)
591 /* No write method for the address space */
592 return -EINVAL;
594 if (!clear_page_dirty_for_io(page))
595 /* Someone else already triggered a write */
596 return -EAGAIN;
599 * A dirty page may imply that the underlying filesystem has
600 * the page on some queue. So the page must be clean for
601 * migration. Writeout may mean we loose the lock and the
602 * page state is no longer what we checked for earlier.
603 * At this point we know that the migration attempt cannot
604 * be successful.
606 remove_migration_ptes(page, page);
608 rc = mapping->a_ops->writepage(page, &wbc);
610 if (rc != AOP_WRITEPAGE_ACTIVATE)
611 /* unlocked. Relock */
612 lock_page(page);
614 return (rc < 0) ? -EIO : -EAGAIN;
618 * Default handling if a filesystem does not provide a migration function.
620 static int fallback_migrate_page(struct address_space *mapping,
621 struct page *newpage, struct page *page, enum migrate_mode mode)
623 if (PageDirty(page)) {
624 /* Only writeback pages in full synchronous migration */
625 if (mode != MIGRATE_SYNC)
626 return -EBUSY;
627 return writeout(mapping, page);
631 * Buffers may be managed in a filesystem specific way.
632 * We must have no buffers or drop them.
634 if (page_has_private(page) &&
635 !try_to_release_page(page, GFP_KERNEL))
636 return -EAGAIN;
638 return migrate_page(mapping, newpage, page, mode);
642 * Move a page to a newly allocated page
643 * The page is locked and all ptes have been successfully removed.
645 * The new page will have replaced the old page if this function
646 * is successful.
648 * Return value:
649 * < 0 - error code
650 * == 0 - success
652 static int move_to_new_page(struct page *newpage, struct page *page,
653 int remap_swapcache, enum migrate_mode mode)
655 struct address_space *mapping;
656 int rc;
659 * Block others from accessing the page when we get around to
660 * establishing additional references. We are the only one
661 * holding a reference to the new page at this point.
663 if (!trylock_page(newpage))
664 BUG();
666 /* Prepare mapping for the new page.*/
667 newpage->index = page->index;
668 newpage->mapping = page->mapping;
669 if (PageSwapBacked(page))
670 SetPageSwapBacked(newpage);
672 mapping = page_mapping(page);
673 if (!mapping)
674 rc = migrate_page(mapping, newpage, page, mode);
675 else if (mapping->a_ops->migratepage)
677 * Most pages have a mapping and most filesystems provide a
678 * migratepage callback. Anonymous pages are part of swap
679 * space which also has its own migratepage callback. This
680 * is the most common path for page migration.
682 rc = mapping->a_ops->migratepage(mapping,
683 newpage, page, mode);
684 else
685 rc = fallback_migrate_page(mapping, newpage, page, mode);
687 if (rc) {
688 newpage->mapping = NULL;
689 } else {
690 if (remap_swapcache)
691 remove_migration_ptes(page, newpage);
694 unlock_page(newpage);
696 return rc;
699 static int __unmap_and_move(struct page *page, struct page *newpage,
700 int force, bool offlining, enum migrate_mode mode)
702 int rc = -EAGAIN;
703 int remap_swapcache = 1;
704 int charge = 0;
705 struct mem_cgroup *mem;
706 struct anon_vma *anon_vma = NULL;
708 if (!trylock_page(page)) {
709 if (!force || mode == MIGRATE_ASYNC)
710 goto out;
713 * It's not safe for direct compaction to call lock_page.
714 * For example, during page readahead pages are added locked
715 * to the LRU. Later, when the IO completes the pages are
716 * marked uptodate and unlocked. However, the queueing
717 * could be merging multiple pages for one bio (e.g.
718 * mpage_readpages). If an allocation happens for the
719 * second or third page, the process can end up locking
720 * the same page twice and deadlocking. Rather than
721 * trying to be clever about what pages can be locked,
722 * avoid the use of lock_page for direct compaction
723 * altogether.
725 if (current->flags & PF_MEMALLOC)
726 goto out;
728 lock_page(page);
732 * Only memory hotplug's offline_pages() caller has locked out KSM,
733 * and can safely migrate a KSM page. The other cases have skipped
734 * PageKsm along with PageReserved - but it is only now when we have
735 * the page lock that we can be certain it will not go KSM beneath us
736 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
737 * its pagecount raised, but only here do we take the page lock which
738 * serializes that).
740 if (PageKsm(page) && !offlining) {
741 rc = -EBUSY;
742 goto unlock;
745 /* charge against new page */
746 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
747 if (charge == -ENOMEM) {
748 rc = -ENOMEM;
749 goto unlock;
751 BUG_ON(charge);
753 if (PageWriteback(page)) {
755 * Only in the case of a full syncronous migration is it
756 * necessary to wait for PageWriteback. In the async case,
757 * the retry loop is too short and in the sync-light case,
758 * the overhead of stalling is too much
760 if (mode != MIGRATE_SYNC) {
761 rc = -EBUSY;
762 goto uncharge;
764 if (!force)
765 goto uncharge;
766 wait_on_page_writeback(page);
769 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
770 * we cannot notice that anon_vma is freed while we migrates a page.
771 * This get_anon_vma() delays freeing anon_vma pointer until the end
772 * of migration. File cache pages are no problem because of page_lock()
773 * File Caches may use write_page() or lock_page() in migration, then,
774 * just care Anon page here.
776 if (PageAnon(page)) {
778 * Only page_lock_anon_vma() understands the subtleties of
779 * getting a hold on an anon_vma from outside one of its mms.
781 anon_vma = page_get_anon_vma(page);
782 if (anon_vma) {
784 * Anon page
786 } else if (PageSwapCache(page)) {
788 * We cannot be sure that the anon_vma of an unmapped
789 * swapcache page is safe to use because we don't
790 * know in advance if the VMA that this page belonged
791 * to still exists. If the VMA and others sharing the
792 * data have been freed, then the anon_vma could
793 * already be invalid.
795 * To avoid this possibility, swapcache pages get
796 * migrated but are not remapped when migration
797 * completes
799 remap_swapcache = 0;
800 } else {
801 goto uncharge;
806 * Corner case handling:
807 * 1. When a new swap-cache page is read into, it is added to the LRU
808 * and treated as swapcache but it has no rmap yet.
809 * Calling try_to_unmap() against a page->mapping==NULL page will
810 * trigger a BUG. So handle it here.
811 * 2. An orphaned page (see truncate_complete_page) might have
812 * fs-private metadata. The page can be picked up due to memory
813 * offlining. Everywhere else except page reclaim, the page is
814 * invisible to the vm, so the page can not be migrated. So try to
815 * free the metadata, so the page can be freed.
817 if (!page->mapping) {
818 VM_BUG_ON(PageAnon(page));
819 if (page_has_private(page)) {
820 try_to_free_buffers(page);
821 goto uncharge;
823 goto skip_unmap;
826 /* Establish migration ptes or remove ptes */
827 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
829 skip_unmap:
830 if (!page_mapped(page))
831 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
833 if (rc && remap_swapcache)
834 remove_migration_ptes(page, page);
836 /* Drop an anon_vma reference if we took one */
837 if (anon_vma)
838 put_anon_vma(anon_vma);
840 uncharge:
841 if (!charge)
842 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
843 unlock:
844 unlock_page(page);
845 out:
846 return rc;
850 * Obtain the lock on page, remove all ptes and migrate the page
851 * to the newly allocated page in newpage.
853 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
854 struct page *page, int force, bool offlining,
855 enum migrate_mode mode)
857 int rc = 0;
858 int *result = NULL;
859 struct page *newpage = get_new_page(page, private, &result);
861 if (!newpage)
862 return -ENOMEM;
864 if (page_count(page) == 1) {
865 /* page was freed from under us. So we are done. */
866 goto out;
869 if (unlikely(PageTransHuge(page)))
870 if (unlikely(split_huge_page(page)))
871 goto out;
873 rc = __unmap_and_move(page, newpage, force, offlining, mode);
874 out:
875 if (rc != -EAGAIN) {
877 * A page that has been migrated has all references
878 * removed and will be freed. A page that has not been
879 * migrated will have kepts its references and be
880 * restored.
882 list_del(&page->lru);
883 dec_zone_page_state(page, NR_ISOLATED_ANON +
884 page_is_file_cache(page));
885 putback_lru_page(page);
888 * Move the new page to the LRU. If migration was not successful
889 * then this will free the page.
891 putback_lru_page(newpage);
892 if (result) {
893 if (rc)
894 *result = rc;
895 else
896 *result = page_to_nid(newpage);
898 return rc;
902 * Counterpart of unmap_and_move_page() for hugepage migration.
904 * This function doesn't wait the completion of hugepage I/O
905 * because there is no race between I/O and migration for hugepage.
906 * Note that currently hugepage I/O occurs only in direct I/O
907 * where no lock is held and PG_writeback is irrelevant,
908 * and writeback status of all subpages are counted in the reference
909 * count of the head page (i.e. if all subpages of a 2MB hugepage are
910 * under direct I/O, the reference of the head page is 512 and a bit more.)
911 * This means that when we try to migrate hugepage whose subpages are
912 * doing direct I/O, some references remain after try_to_unmap() and
913 * hugepage migration fails without data corruption.
915 * There is also no race when direct I/O is issued on the page under migration,
916 * because then pte is replaced with migration swap entry and direct I/O code
917 * will wait in the page fault for migration to complete.
919 static int unmap_and_move_huge_page(new_page_t get_new_page,
920 unsigned long private, struct page *hpage,
921 int force, bool offlining,
922 enum migrate_mode mode)
924 int rc = 0;
925 int *result = NULL;
926 struct page *new_hpage = get_new_page(hpage, private, &result);
927 struct anon_vma *anon_vma = NULL;
929 if (!new_hpage)
930 return -ENOMEM;
932 rc = -EAGAIN;
934 if (!trylock_page(hpage)) {
935 if (!force || mode != MIGRATE_SYNC)
936 goto out;
937 lock_page(hpage);
940 if (PageAnon(hpage))
941 anon_vma = page_get_anon_vma(hpage);
943 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
945 if (!page_mapped(hpage))
946 rc = move_to_new_page(new_hpage, hpage, 1, mode);
948 if (rc)
949 remove_migration_ptes(hpage, hpage);
951 if (anon_vma)
952 put_anon_vma(anon_vma);
953 unlock_page(hpage);
955 out:
956 if (rc != -EAGAIN) {
957 list_del(&hpage->lru);
958 put_page(hpage);
961 put_page(new_hpage);
963 if (result) {
964 if (rc)
965 *result = rc;
966 else
967 *result = page_to_nid(new_hpage);
969 return rc;
973 * migrate_pages
975 * The function takes one list of pages to migrate and a function
976 * that determines from the page to be migrated and the private data
977 * the target of the move and allocates the page.
979 * The function returns after 10 attempts or if no pages
980 * are movable anymore because to has become empty
981 * or no retryable pages exist anymore.
982 * Caller should call putback_lru_pages to return pages to the LRU
983 * or free list only if ret != 0.
985 * Return: Number of pages not migrated or error code.
987 int migrate_pages(struct list_head *from,
988 new_page_t get_new_page, unsigned long private, bool offlining,
989 enum migrate_mode mode)
991 int retry = 1;
992 int nr_failed = 0;
993 int pass = 0;
994 struct page *page;
995 struct page *page2;
996 int swapwrite = current->flags & PF_SWAPWRITE;
997 int rc;
999 if (!swapwrite)
1000 current->flags |= PF_SWAPWRITE;
1002 for(pass = 0; pass < 10 && retry; pass++) {
1003 retry = 0;
1005 list_for_each_entry_safe(page, page2, from, lru) {
1006 cond_resched();
1008 rc = unmap_and_move(get_new_page, private,
1009 page, pass > 2, offlining,
1010 mode);
1012 switch(rc) {
1013 case -ENOMEM:
1014 goto out;
1015 case -EAGAIN:
1016 retry++;
1017 break;
1018 case 0:
1019 break;
1020 default:
1021 /* Permanent failure */
1022 nr_failed++;
1023 break;
1027 rc = 0;
1028 out:
1029 if (!swapwrite)
1030 current->flags &= ~PF_SWAPWRITE;
1032 if (rc)
1033 return rc;
1035 return nr_failed + retry;
1038 int migrate_huge_pages(struct list_head *from,
1039 new_page_t get_new_page, unsigned long private, bool offlining,
1040 enum migrate_mode mode)
1042 int retry = 1;
1043 int nr_failed = 0;
1044 int pass = 0;
1045 struct page *page;
1046 struct page *page2;
1047 int rc;
1049 for (pass = 0; pass < 10 && retry; pass++) {
1050 retry = 0;
1052 list_for_each_entry_safe(page, page2, from, lru) {
1053 cond_resched();
1055 rc = unmap_and_move_huge_page(get_new_page,
1056 private, page, pass > 2, offlining,
1057 mode);
1059 switch(rc) {
1060 case -ENOMEM:
1061 goto out;
1062 case -EAGAIN:
1063 retry++;
1064 break;
1065 case 0:
1066 break;
1067 default:
1068 /* Permanent failure */
1069 nr_failed++;
1070 break;
1074 rc = 0;
1075 out:
1076 if (rc)
1077 return rc;
1079 return nr_failed + retry;
1082 #ifdef CONFIG_NUMA
1084 * Move a list of individual pages
1086 struct page_to_node {
1087 unsigned long addr;
1088 struct page *page;
1089 int node;
1090 int status;
1093 static struct page *new_page_node(struct page *p, unsigned long private,
1094 int **result)
1096 struct page_to_node *pm = (struct page_to_node *)private;
1098 while (pm->node != MAX_NUMNODES && pm->page != p)
1099 pm++;
1101 if (pm->node == MAX_NUMNODES)
1102 return NULL;
1104 *result = &pm->status;
1106 return alloc_pages_exact_node(pm->node,
1107 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1111 * Move a set of pages as indicated in the pm array. The addr
1112 * field must be set to the virtual address of the page to be moved
1113 * and the node number must contain a valid target node.
1114 * The pm array ends with node = MAX_NUMNODES.
1116 static int do_move_page_to_node_array(struct mm_struct *mm,
1117 struct page_to_node *pm,
1118 int migrate_all)
1120 int err;
1121 struct page_to_node *pp;
1122 LIST_HEAD(pagelist);
1124 down_read(&mm->mmap_sem);
1127 * Build a list of pages to migrate
1129 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1130 struct vm_area_struct *vma;
1131 struct page *page;
1133 err = -EFAULT;
1134 vma = find_vma(mm, pp->addr);
1135 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1136 goto set_status;
1138 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1140 err = PTR_ERR(page);
1141 if (IS_ERR(page))
1142 goto set_status;
1144 err = -ENOENT;
1145 if (!page)
1146 goto set_status;
1148 /* Use PageReserved to check for zero page */
1149 if (PageReserved(page) || PageKsm(page))
1150 goto put_and_set;
1152 pp->page = page;
1153 err = page_to_nid(page);
1155 if (err == pp->node)
1157 * Node already in the right place
1159 goto put_and_set;
1161 err = -EACCES;
1162 if (page_mapcount(page) > 1 &&
1163 !migrate_all)
1164 goto put_and_set;
1166 err = isolate_lru_page(page);
1167 if (!err) {
1168 list_add_tail(&page->lru, &pagelist);
1169 inc_zone_page_state(page, NR_ISOLATED_ANON +
1170 page_is_file_cache(page));
1172 put_and_set:
1174 * Either remove the duplicate refcount from
1175 * isolate_lru_page() or drop the page ref if it was
1176 * not isolated.
1178 put_page(page);
1179 set_status:
1180 pp->status = err;
1183 err = 0;
1184 if (!list_empty(&pagelist)) {
1185 err = migrate_pages(&pagelist, new_page_node,
1186 (unsigned long)pm, 0, MIGRATE_SYNC);
1187 if (err)
1188 putback_lru_pages(&pagelist);
1191 up_read(&mm->mmap_sem);
1192 return err;
1196 * Migrate an array of page address onto an array of nodes and fill
1197 * the corresponding array of status.
1199 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1200 unsigned long nr_pages,
1201 const void __user * __user *pages,
1202 const int __user *nodes,
1203 int __user *status, int flags)
1205 struct page_to_node *pm;
1206 nodemask_t task_nodes;
1207 unsigned long chunk_nr_pages;
1208 unsigned long chunk_start;
1209 int err;
1211 task_nodes = cpuset_mems_allowed(task);
1213 err = -ENOMEM;
1214 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1215 if (!pm)
1216 goto out;
1218 migrate_prep();
1221 * Store a chunk of page_to_node array in a page,
1222 * but keep the last one as a marker
1224 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1226 for (chunk_start = 0;
1227 chunk_start < nr_pages;
1228 chunk_start += chunk_nr_pages) {
1229 int j;
1231 if (chunk_start + chunk_nr_pages > nr_pages)
1232 chunk_nr_pages = nr_pages - chunk_start;
1234 /* fill the chunk pm with addrs and nodes from user-space */
1235 for (j = 0; j < chunk_nr_pages; j++) {
1236 const void __user *p;
1237 int node;
1239 err = -EFAULT;
1240 if (get_user(p, pages + j + chunk_start))
1241 goto out_pm;
1242 pm[j].addr = (unsigned long) p;
1244 if (get_user(node, nodes + j + chunk_start))
1245 goto out_pm;
1247 err = -ENODEV;
1248 if (node < 0 || node >= MAX_NUMNODES)
1249 goto out_pm;
1251 if (!node_state(node, N_HIGH_MEMORY))
1252 goto out_pm;
1254 err = -EACCES;
1255 if (!node_isset(node, task_nodes))
1256 goto out_pm;
1258 pm[j].node = node;
1261 /* End marker for this chunk */
1262 pm[chunk_nr_pages].node = MAX_NUMNODES;
1264 /* Migrate this chunk */
1265 err = do_move_page_to_node_array(mm, pm,
1266 flags & MPOL_MF_MOVE_ALL);
1267 if (err < 0)
1268 goto out_pm;
1270 /* Return status information */
1271 for (j = 0; j < chunk_nr_pages; j++)
1272 if (put_user(pm[j].status, status + j + chunk_start)) {
1273 err = -EFAULT;
1274 goto out_pm;
1277 err = 0;
1279 out_pm:
1280 free_page((unsigned long)pm);
1281 out:
1282 return err;
1286 * Determine the nodes of an array of pages and store it in an array of status.
1288 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1289 const void __user **pages, int *status)
1291 unsigned long i;
1293 down_read(&mm->mmap_sem);
1295 for (i = 0; i < nr_pages; i++) {
1296 unsigned long addr = (unsigned long)(*pages);
1297 struct vm_area_struct *vma;
1298 struct page *page;
1299 int err = -EFAULT;
1301 vma = find_vma(mm, addr);
1302 if (!vma || addr < vma->vm_start)
1303 goto set_status;
1305 page = follow_page(vma, addr, 0);
1307 err = PTR_ERR(page);
1308 if (IS_ERR(page))
1309 goto set_status;
1311 err = -ENOENT;
1312 /* Use PageReserved to check for zero page */
1313 if (!page || PageReserved(page) || PageKsm(page))
1314 goto set_status;
1316 err = page_to_nid(page);
1317 set_status:
1318 *status = err;
1320 pages++;
1321 status++;
1324 up_read(&mm->mmap_sem);
1328 * Determine the nodes of a user array of pages and store it in
1329 * a user array of status.
1331 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1332 const void __user * __user *pages,
1333 int __user *status)
1335 #define DO_PAGES_STAT_CHUNK_NR 16
1336 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1337 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1339 while (nr_pages) {
1340 unsigned long chunk_nr;
1342 chunk_nr = nr_pages;
1343 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1344 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1346 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1347 break;
1349 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1351 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1352 break;
1354 pages += chunk_nr;
1355 status += chunk_nr;
1356 nr_pages -= chunk_nr;
1358 return nr_pages ? -EFAULT : 0;
1362 * Move a list of pages in the address space of the currently executing
1363 * process.
1365 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1366 const void __user * __user *, pages,
1367 const int __user *, nodes,
1368 int __user *, status, int, flags)
1370 const struct cred *cred = current_cred(), *tcred;
1371 struct task_struct *task;
1372 struct mm_struct *mm;
1373 int err;
1375 /* Check flags */
1376 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1377 return -EINVAL;
1379 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1380 return -EPERM;
1382 /* Find the mm_struct */
1383 rcu_read_lock();
1384 task = pid ? find_task_by_vpid(pid) : current;
1385 if (!task) {
1386 rcu_read_unlock();
1387 return -ESRCH;
1389 mm = get_task_mm(task);
1390 rcu_read_unlock();
1392 if (!mm)
1393 return -EINVAL;
1396 * Check if this process has the right to modify the specified
1397 * process. The right exists if the process has administrative
1398 * capabilities, superuser privileges or the same
1399 * userid as the target process.
1401 rcu_read_lock();
1402 tcred = __task_cred(task);
1403 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1404 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1405 !capable(CAP_SYS_NICE)) {
1406 rcu_read_unlock();
1407 err = -EPERM;
1408 goto out;
1410 rcu_read_unlock();
1412 err = security_task_movememory(task);
1413 if (err)
1414 goto out;
1416 if (nodes) {
1417 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1418 flags);
1419 } else {
1420 err = do_pages_stat(mm, nr_pages, pages, status);
1423 out:
1424 mmput(mm);
1425 return err;
1429 * Call migration functions in the vma_ops that may prepare
1430 * memory in a vm for migration. migration functions may perform
1431 * the migration for vmas that do not have an underlying page struct.
1433 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1434 const nodemask_t *from, unsigned long flags)
1436 struct vm_area_struct *vma;
1437 int err = 0;
1439 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1440 if (vma->vm_ops && vma->vm_ops->migrate) {
1441 err = vma->vm_ops->migrate(vma, to, from, flags);
1442 if (err)
1443 break;
1446 return err;
1448 #endif