2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
49 int migrate_prep(void)
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
74 void putback_lru_pages(struct list_head
*l
)
79 list_for_each_entry_safe(page
, page2
, l
, lru
) {
81 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
82 page_is_file_cache(page
));
83 putback_lru_page(page
);
88 * Restore a potential migration pte to a working pte entry
90 static int remove_migration_pte(struct page
*new, struct vm_area_struct
*vma
,
91 unsigned long addr
, void *old
)
93 struct mm_struct
*mm
= vma
->vm_mm
;
101 if (unlikely(PageHuge(new))) {
102 ptep
= huge_pte_offset(mm
, addr
);
105 ptl
= &mm
->page_table_lock
;
107 pgd
= pgd_offset(mm
, addr
);
108 if (!pgd_present(*pgd
))
111 pud
= pud_offset(pgd
, addr
);
112 if (!pud_present(*pud
))
115 pmd
= pmd_offset(pud
, addr
);
116 if (pmd_trans_huge(*pmd
))
118 if (!pmd_present(*pmd
))
121 ptep
= pte_offset_map(pmd
, addr
);
124 * Peek to check is_swap_pte() before taking ptlock? No, we
125 * can race mremap's move_ptes(), which skips anon_vma lock.
128 ptl
= pte_lockptr(mm
, pmd
);
133 if (!is_swap_pte(pte
))
136 entry
= pte_to_swp_entry(pte
);
138 if (!is_migration_entry(entry
) ||
139 migration_entry_to_page(entry
) != old
)
143 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
145 /* Recheck VMA as permissions can change since migration started */
146 if (is_write_migration_entry(entry
))
147 pte
= maybe_mkwrite(pte
, vma
);
149 #ifdef CONFIG_HUGETLB_PAGE
151 pte
= pte_mkhuge(pte
);
153 flush_dcache_page(new);
154 set_pte_at(mm
, addr
, ptep
, pte
);
158 hugepage_add_anon_rmap(new, vma
, addr
);
161 } else if (PageAnon(new))
162 page_add_anon_rmap(new, vma
, addr
);
164 page_add_file_rmap(new);
166 /* No need to invalidate - it was non-present before */
167 update_mmu_cache(vma
, addr
, ptep
);
169 pte_unmap_unlock(ptep
, ptl
);
175 * Get rid of all migration entries and replace them by
176 * references to the indicated page.
178 static void remove_migration_ptes(struct page
*old
, struct page
*new)
180 rmap_walk(new, remove_migration_pte
, old
);
184 * Something used the pte of a page under migration. We need to
185 * get to the page and wait until migration is finished.
186 * When we return from this function the fault will be retried.
188 * This function is called from do_swap_page().
190 static void __migration_entry_wait(struct mm_struct
*mm
, pte_t
*ptep
,
199 if (!is_swap_pte(pte
))
202 entry
= pte_to_swp_entry(pte
);
203 if (!is_migration_entry(entry
))
206 page
= migration_entry_to_page(entry
);
209 * Once radix-tree replacement of page migration started, page_count
210 * *must* be zero. And, we don't want to call wait_on_page_locked()
211 * against a page without get_page().
212 * So, we use get_page_unless_zero(), here. Even failed, page fault
215 if (!get_page_unless_zero(page
))
217 pte_unmap_unlock(ptep
, ptl
);
218 wait_on_page_locked(page
);
222 pte_unmap_unlock(ptep
, ptl
);
225 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
226 unsigned long address
)
228 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
229 pte_t
*ptep
= pte_offset_map(pmd
, address
);
230 __migration_entry_wait(mm
, ptep
, ptl
);
233 void migration_entry_wait_huge(struct mm_struct
*mm
, pte_t
*pte
)
235 spinlock_t
*ptl
= &(mm
)->page_table_lock
;
236 __migration_entry_wait(mm
, pte
, ptl
);
240 /* Returns true if all buffers are successfully locked */
241 static bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
242 enum migrate_mode mode
)
244 struct buffer_head
*bh
= head
;
246 /* Simple case, sync compaction */
247 if (mode
!= MIGRATE_ASYNC
) {
251 bh
= bh
->b_this_page
;
253 } while (bh
!= head
);
258 /* async case, we cannot block on lock_buffer so use trylock_buffer */
261 if (!trylock_buffer(bh
)) {
263 * We failed to lock the buffer and cannot stall in
264 * async migration. Release the taken locks
266 struct buffer_head
*failed_bh
= bh
;
269 while (bh
!= failed_bh
) {
272 bh
= bh
->b_this_page
;
277 bh
= bh
->b_this_page
;
278 } while (bh
!= head
);
282 static inline bool buffer_migrate_lock_buffers(struct buffer_head
*head
,
283 enum migrate_mode mode
)
287 #endif /* CONFIG_BLOCK */
290 * Replace the page in the mapping.
292 * The number of remaining references must be:
293 * 1 for anonymous pages without a mapping
294 * 2 for pages with a mapping
295 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
297 static int migrate_page_move_mapping(struct address_space
*mapping
,
298 struct page
*newpage
, struct page
*page
,
299 struct buffer_head
*head
, enum migrate_mode mode
)
305 /* Anonymous page without mapping */
306 if (page_count(page
) != 1)
311 spin_lock_irq(&mapping
->tree_lock
);
313 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
316 expected_count
= 2 + page_has_private(page
);
317 if (page_count(page
) != expected_count
||
318 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
319 spin_unlock_irq(&mapping
->tree_lock
);
323 if (!page_freeze_refs(page
, expected_count
)) {
324 spin_unlock_irq(&mapping
->tree_lock
);
329 * In the async migration case of moving a page with buffers, lock the
330 * buffers using trylock before the mapping is moved. If the mapping
331 * was moved, we later failed to lock the buffers and could not move
332 * the mapping back due to an elevated page count, we would have to
333 * block waiting on other references to be dropped.
335 if (mode
== MIGRATE_ASYNC
&& head
&&
336 !buffer_migrate_lock_buffers(head
, mode
)) {
337 page_unfreeze_refs(page
, expected_count
);
338 spin_unlock_irq(&mapping
->tree_lock
);
343 * Now we know that no one else is looking at the page.
345 get_page(newpage
); /* add cache reference */
346 if (PageSwapCache(page
)) {
347 SetPageSwapCache(newpage
);
348 set_page_private(newpage
, page_private(page
));
351 radix_tree_replace_slot(pslot
, newpage
);
353 page_unfreeze_refs(page
, expected_count
);
355 * Drop cache reference from old page.
356 * We know this isn't the last reference.
361 * If moved to a different zone then also account
362 * the page for that zone. Other VM counters will be
363 * taken care of when we establish references to the
364 * new page and drop references to the old page.
366 * Note that anonymous pages are accounted for
367 * via NR_FILE_PAGES and NR_ANON_PAGES if they
368 * are mapped to swap space.
370 __dec_zone_page_state(page
, NR_FILE_PAGES
);
371 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
372 if (!PageSwapCache(page
) && PageSwapBacked(page
)) {
373 __dec_zone_page_state(page
, NR_SHMEM
);
374 __inc_zone_page_state(newpage
, NR_SHMEM
);
376 spin_unlock_irq(&mapping
->tree_lock
);
382 * The expected number of remaining references is the same as that
383 * of migrate_page_move_mapping().
385 int migrate_huge_page_move_mapping(struct address_space
*mapping
,
386 struct page
*newpage
, struct page
*page
)
392 if (page_count(page
) != 1)
397 spin_lock_irq(&mapping
->tree_lock
);
399 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
402 expected_count
= 2 + page_has_private(page
);
403 if (page_count(page
) != expected_count
||
404 radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
) != page
) {
405 spin_unlock_irq(&mapping
->tree_lock
);
409 if (!page_freeze_refs(page
, expected_count
)) {
410 spin_unlock_irq(&mapping
->tree_lock
);
416 radix_tree_replace_slot(pslot
, newpage
);
418 page_unfreeze_refs(page
, expected_count
);
422 spin_unlock_irq(&mapping
->tree_lock
);
427 * Copy the page to its new location
429 void migrate_page_copy(struct page
*newpage
, struct page
*page
)
432 copy_huge_page(newpage
, page
);
434 copy_highpage(newpage
, page
);
437 SetPageError(newpage
);
438 if (PageReferenced(page
))
439 SetPageReferenced(newpage
);
440 if (PageUptodate(page
))
441 SetPageUptodate(newpage
);
442 if (TestClearPageActive(page
)) {
443 VM_BUG_ON(PageUnevictable(page
));
444 SetPageActive(newpage
);
445 } else if (TestClearPageUnevictable(page
))
446 SetPageUnevictable(newpage
);
447 if (PageChecked(page
))
448 SetPageChecked(newpage
);
449 if (PageMappedToDisk(page
))
450 SetPageMappedToDisk(newpage
);
452 if (PageDirty(page
)) {
453 clear_page_dirty_for_io(page
);
455 * Want to mark the page and the radix tree as dirty, and
456 * redo the accounting that clear_page_dirty_for_io undid,
457 * but we can't use set_page_dirty because that function
458 * is actually a signal that all of the page has become dirty.
459 * Whereas only part of our page may be dirty.
461 __set_page_dirty_nobuffers(newpage
);
464 mlock_migrate_page(newpage
, page
);
465 ksm_migrate_page(newpage
, page
);
467 ClearPageSwapCache(page
);
468 ClearPagePrivate(page
);
469 set_page_private(page
, 0);
470 page
->mapping
= NULL
;
473 * If any waiters have accumulated on the new page then
476 if (PageWriteback(newpage
))
477 end_page_writeback(newpage
);
480 /************************************************************
481 * Migration functions
482 ***********************************************************/
484 /* Always fail migration. Used for mappings that are not movable */
485 int fail_migrate_page(struct address_space
*mapping
,
486 struct page
*newpage
, struct page
*page
)
490 EXPORT_SYMBOL(fail_migrate_page
);
493 * Common logic to directly migrate a single page suitable for
494 * pages that do not use PagePrivate/PagePrivate2.
496 * Pages are locked upon entry and exit.
498 int migrate_page(struct address_space
*mapping
,
499 struct page
*newpage
, struct page
*page
,
500 enum migrate_mode mode
)
504 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
506 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
);
511 migrate_page_copy(newpage
, page
);
514 EXPORT_SYMBOL(migrate_page
);
518 * Migration function for pages with buffers. This function can only be used
519 * if the underlying filesystem guarantees that no other references to "page"
522 int buffer_migrate_page(struct address_space
*mapping
,
523 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
525 struct buffer_head
*bh
, *head
;
528 if (!page_has_buffers(page
))
529 return migrate_page(mapping
, newpage
, page
, mode
);
531 head
= page_buffers(page
);
533 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, head
, mode
);
539 * In the async case, migrate_page_move_mapping locked the buffers
540 * with an IRQ-safe spinlock held. In the sync case, the buffers
541 * need to be locked now
543 if (mode
!= MIGRATE_ASYNC
)
544 BUG_ON(!buffer_migrate_lock_buffers(head
, mode
));
546 ClearPagePrivate(page
);
547 set_page_private(newpage
, page_private(page
));
548 set_page_private(page
, 0);
554 set_bh_page(bh
, newpage
, bh_offset(bh
));
555 bh
= bh
->b_this_page
;
557 } while (bh
!= head
);
559 SetPagePrivate(newpage
);
561 migrate_page_copy(newpage
, page
);
567 bh
= bh
->b_this_page
;
569 } while (bh
!= head
);
573 EXPORT_SYMBOL(buffer_migrate_page
);
577 * Writeback a page to clean the dirty state
579 static int writeout(struct address_space
*mapping
, struct page
*page
)
581 struct writeback_control wbc
= {
582 .sync_mode
= WB_SYNC_NONE
,
585 .range_end
= LLONG_MAX
,
590 if (!mapping
->a_ops
->writepage
)
591 /* No write method for the address space */
594 if (!clear_page_dirty_for_io(page
))
595 /* Someone else already triggered a write */
599 * A dirty page may imply that the underlying filesystem has
600 * the page on some queue. So the page must be clean for
601 * migration. Writeout may mean we loose the lock and the
602 * page state is no longer what we checked for earlier.
603 * At this point we know that the migration attempt cannot
606 remove_migration_ptes(page
, page
);
608 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
610 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
611 /* unlocked. Relock */
614 return (rc
< 0) ? -EIO
: -EAGAIN
;
618 * Default handling if a filesystem does not provide a migration function.
620 static int fallback_migrate_page(struct address_space
*mapping
,
621 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
623 if (PageDirty(page
)) {
624 /* Only writeback pages in full synchronous migration */
625 if (mode
!= MIGRATE_SYNC
)
627 return writeout(mapping
, page
);
631 * Buffers may be managed in a filesystem specific way.
632 * We must have no buffers or drop them.
634 if (page_has_private(page
) &&
635 !try_to_release_page(page
, GFP_KERNEL
))
638 return migrate_page(mapping
, newpage
, page
, mode
);
642 * Move a page to a newly allocated page
643 * The page is locked and all ptes have been successfully removed.
645 * The new page will have replaced the old page if this function
652 static int move_to_new_page(struct page
*newpage
, struct page
*page
,
653 int remap_swapcache
, enum migrate_mode mode
)
655 struct address_space
*mapping
;
659 * Block others from accessing the page when we get around to
660 * establishing additional references. We are the only one
661 * holding a reference to the new page at this point.
663 if (!trylock_page(newpage
))
666 /* Prepare mapping for the new page.*/
667 newpage
->index
= page
->index
;
668 newpage
->mapping
= page
->mapping
;
669 if (PageSwapBacked(page
))
670 SetPageSwapBacked(newpage
);
672 mapping
= page_mapping(page
);
674 rc
= migrate_page(mapping
, newpage
, page
, mode
);
675 else if (mapping
->a_ops
->migratepage
)
677 * Most pages have a mapping and most filesystems provide a
678 * migratepage callback. Anonymous pages are part of swap
679 * space which also has its own migratepage callback. This
680 * is the most common path for page migration.
682 rc
= mapping
->a_ops
->migratepage(mapping
,
683 newpage
, page
, mode
);
685 rc
= fallback_migrate_page(mapping
, newpage
, page
, mode
);
688 newpage
->mapping
= NULL
;
691 remove_migration_ptes(page
, newpage
);
694 unlock_page(newpage
);
699 static int __unmap_and_move(struct page
*page
, struct page
*newpage
,
700 int force
, bool offlining
, enum migrate_mode mode
)
703 int remap_swapcache
= 1;
705 struct mem_cgroup
*mem
;
706 struct anon_vma
*anon_vma
= NULL
;
708 if (!trylock_page(page
)) {
709 if (!force
|| mode
== MIGRATE_ASYNC
)
713 * It's not safe for direct compaction to call lock_page.
714 * For example, during page readahead pages are added locked
715 * to the LRU. Later, when the IO completes the pages are
716 * marked uptodate and unlocked. However, the queueing
717 * could be merging multiple pages for one bio (e.g.
718 * mpage_readpages). If an allocation happens for the
719 * second or third page, the process can end up locking
720 * the same page twice and deadlocking. Rather than
721 * trying to be clever about what pages can be locked,
722 * avoid the use of lock_page for direct compaction
725 if (current
->flags
& PF_MEMALLOC
)
732 * Only memory hotplug's offline_pages() caller has locked out KSM,
733 * and can safely migrate a KSM page. The other cases have skipped
734 * PageKsm along with PageReserved - but it is only now when we have
735 * the page lock that we can be certain it will not go KSM beneath us
736 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
737 * its pagecount raised, but only here do we take the page lock which
740 if (PageKsm(page
) && !offlining
) {
745 /* charge against new page */
746 charge
= mem_cgroup_prepare_migration(page
, newpage
, &mem
, GFP_KERNEL
);
747 if (charge
== -ENOMEM
) {
753 if (PageWriteback(page
)) {
755 * Only in the case of a full syncronous migration is it
756 * necessary to wait for PageWriteback. In the async case,
757 * the retry loop is too short and in the sync-light case,
758 * the overhead of stalling is too much
760 if (mode
!= MIGRATE_SYNC
) {
766 wait_on_page_writeback(page
);
769 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
770 * we cannot notice that anon_vma is freed while we migrates a page.
771 * This get_anon_vma() delays freeing anon_vma pointer until the end
772 * of migration. File cache pages are no problem because of page_lock()
773 * File Caches may use write_page() or lock_page() in migration, then,
774 * just care Anon page here.
776 if (PageAnon(page
)) {
778 * Only page_lock_anon_vma() understands the subtleties of
779 * getting a hold on an anon_vma from outside one of its mms.
781 anon_vma
= page_get_anon_vma(page
);
786 } else if (PageSwapCache(page
)) {
788 * We cannot be sure that the anon_vma of an unmapped
789 * swapcache page is safe to use because we don't
790 * know in advance if the VMA that this page belonged
791 * to still exists. If the VMA and others sharing the
792 * data have been freed, then the anon_vma could
793 * already be invalid.
795 * To avoid this possibility, swapcache pages get
796 * migrated but are not remapped when migration
806 * Corner case handling:
807 * 1. When a new swap-cache page is read into, it is added to the LRU
808 * and treated as swapcache but it has no rmap yet.
809 * Calling try_to_unmap() against a page->mapping==NULL page will
810 * trigger a BUG. So handle it here.
811 * 2. An orphaned page (see truncate_complete_page) might have
812 * fs-private metadata. The page can be picked up due to memory
813 * offlining. Everywhere else except page reclaim, the page is
814 * invisible to the vm, so the page can not be migrated. So try to
815 * free the metadata, so the page can be freed.
817 if (!page
->mapping
) {
818 VM_BUG_ON(PageAnon(page
));
819 if (page_has_private(page
)) {
820 try_to_free_buffers(page
);
826 /* Establish migration ptes or remove ptes */
827 try_to_unmap(page
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
830 if (!page_mapped(page
))
831 rc
= move_to_new_page(newpage
, page
, remap_swapcache
, mode
);
833 if (rc
&& remap_swapcache
)
834 remove_migration_ptes(page
, page
);
836 /* Drop an anon_vma reference if we took one */
838 put_anon_vma(anon_vma
);
842 mem_cgroup_end_migration(mem
, page
, newpage
, rc
== 0);
850 * Obtain the lock on page, remove all ptes and migrate the page
851 * to the newly allocated page in newpage.
853 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
854 struct page
*page
, int force
, bool offlining
,
855 enum migrate_mode mode
)
859 struct page
*newpage
= get_new_page(page
, private, &result
);
864 if (page_count(page
) == 1) {
865 /* page was freed from under us. So we are done. */
869 if (unlikely(PageTransHuge(page
)))
870 if (unlikely(split_huge_page(page
)))
873 rc
= __unmap_and_move(page
, newpage
, force
, offlining
, mode
);
877 * A page that has been migrated has all references
878 * removed and will be freed. A page that has not been
879 * migrated will have kepts its references and be
882 list_del(&page
->lru
);
883 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
884 page_is_file_cache(page
));
885 putback_lru_page(page
);
888 * Move the new page to the LRU. If migration was not successful
889 * then this will free the page.
891 putback_lru_page(newpage
);
896 *result
= page_to_nid(newpage
);
902 * Counterpart of unmap_and_move_page() for hugepage migration.
904 * This function doesn't wait the completion of hugepage I/O
905 * because there is no race between I/O and migration for hugepage.
906 * Note that currently hugepage I/O occurs only in direct I/O
907 * where no lock is held and PG_writeback is irrelevant,
908 * and writeback status of all subpages are counted in the reference
909 * count of the head page (i.e. if all subpages of a 2MB hugepage are
910 * under direct I/O, the reference of the head page is 512 and a bit more.)
911 * This means that when we try to migrate hugepage whose subpages are
912 * doing direct I/O, some references remain after try_to_unmap() and
913 * hugepage migration fails without data corruption.
915 * There is also no race when direct I/O is issued on the page under migration,
916 * because then pte is replaced with migration swap entry and direct I/O code
917 * will wait in the page fault for migration to complete.
919 static int unmap_and_move_huge_page(new_page_t get_new_page
,
920 unsigned long private, struct page
*hpage
,
921 int force
, bool offlining
,
922 enum migrate_mode mode
)
926 struct page
*new_hpage
= get_new_page(hpage
, private, &result
);
927 struct anon_vma
*anon_vma
= NULL
;
934 if (!trylock_page(hpage
)) {
935 if (!force
|| mode
!= MIGRATE_SYNC
)
941 anon_vma
= page_get_anon_vma(hpage
);
943 try_to_unmap(hpage
, TTU_MIGRATION
|TTU_IGNORE_MLOCK
|TTU_IGNORE_ACCESS
);
945 if (!page_mapped(hpage
))
946 rc
= move_to_new_page(new_hpage
, hpage
, 1, mode
);
949 remove_migration_ptes(hpage
, hpage
);
952 put_anon_vma(anon_vma
);
957 list_del(&hpage
->lru
);
967 *result
= page_to_nid(new_hpage
);
975 * The function takes one list of pages to migrate and a function
976 * that determines from the page to be migrated and the private data
977 * the target of the move and allocates the page.
979 * The function returns after 10 attempts or if no pages
980 * are movable anymore because to has become empty
981 * or no retryable pages exist anymore.
982 * Caller should call putback_lru_pages to return pages to the LRU
983 * or free list only if ret != 0.
985 * Return: Number of pages not migrated or error code.
987 int migrate_pages(struct list_head
*from
,
988 new_page_t get_new_page
, unsigned long private, bool offlining
,
989 enum migrate_mode mode
)
996 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
1000 current
->flags
|= PF_SWAPWRITE
;
1002 for(pass
= 0; pass
< 10 && retry
; pass
++) {
1005 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1008 rc
= unmap_and_move(get_new_page
, private,
1009 page
, pass
> 2, offlining
,
1021 /* Permanent failure */
1030 current
->flags
&= ~PF_SWAPWRITE
;
1035 return nr_failed
+ retry
;
1038 int migrate_huge_pages(struct list_head
*from
,
1039 new_page_t get_new_page
, unsigned long private, bool offlining
,
1040 enum migrate_mode mode
)
1049 for (pass
= 0; pass
< 10 && retry
; pass
++) {
1052 list_for_each_entry_safe(page
, page2
, from
, lru
) {
1055 rc
= unmap_and_move_huge_page(get_new_page
,
1056 private, page
, pass
> 2, offlining
,
1068 /* Permanent failure */
1079 return nr_failed
+ retry
;
1084 * Move a list of individual pages
1086 struct page_to_node
{
1093 static struct page
*new_page_node(struct page
*p
, unsigned long private,
1096 struct page_to_node
*pm
= (struct page_to_node
*)private;
1098 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
1101 if (pm
->node
== MAX_NUMNODES
)
1104 *result
= &pm
->status
;
1106 return alloc_pages_exact_node(pm
->node
,
1107 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
1111 * Move a set of pages as indicated in the pm array. The addr
1112 * field must be set to the virtual address of the page to be moved
1113 * and the node number must contain a valid target node.
1114 * The pm array ends with node = MAX_NUMNODES.
1116 static int do_move_page_to_node_array(struct mm_struct
*mm
,
1117 struct page_to_node
*pm
,
1121 struct page_to_node
*pp
;
1122 LIST_HEAD(pagelist
);
1124 down_read(&mm
->mmap_sem
);
1127 * Build a list of pages to migrate
1129 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
1130 struct vm_area_struct
*vma
;
1134 vma
= find_vma(mm
, pp
->addr
);
1135 if (!vma
|| pp
->addr
< vma
->vm_start
|| !vma_migratable(vma
))
1138 page
= follow_page(vma
, pp
->addr
, FOLL_GET
|FOLL_SPLIT
);
1140 err
= PTR_ERR(page
);
1148 /* Use PageReserved to check for zero page */
1149 if (PageReserved(page
) || PageKsm(page
))
1153 err
= page_to_nid(page
);
1155 if (err
== pp
->node
)
1157 * Node already in the right place
1162 if (page_mapcount(page
) > 1 &&
1166 err
= isolate_lru_page(page
);
1168 list_add_tail(&page
->lru
, &pagelist
);
1169 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1170 page_is_file_cache(page
));
1174 * Either remove the duplicate refcount from
1175 * isolate_lru_page() or drop the page ref if it was
1184 if (!list_empty(&pagelist
)) {
1185 err
= migrate_pages(&pagelist
, new_page_node
,
1186 (unsigned long)pm
, 0, MIGRATE_SYNC
);
1188 putback_lru_pages(&pagelist
);
1191 up_read(&mm
->mmap_sem
);
1196 * Migrate an array of page address onto an array of nodes and fill
1197 * the corresponding array of status.
1199 static int do_pages_move(struct mm_struct
*mm
, struct task_struct
*task
,
1200 unsigned long nr_pages
,
1201 const void __user
* __user
*pages
,
1202 const int __user
*nodes
,
1203 int __user
*status
, int flags
)
1205 struct page_to_node
*pm
;
1206 nodemask_t task_nodes
;
1207 unsigned long chunk_nr_pages
;
1208 unsigned long chunk_start
;
1211 task_nodes
= cpuset_mems_allowed(task
);
1214 pm
= (struct page_to_node
*)__get_free_page(GFP_KERNEL
);
1221 * Store a chunk of page_to_node array in a page,
1222 * but keep the last one as a marker
1224 chunk_nr_pages
= (PAGE_SIZE
/ sizeof(struct page_to_node
)) - 1;
1226 for (chunk_start
= 0;
1227 chunk_start
< nr_pages
;
1228 chunk_start
+= chunk_nr_pages
) {
1231 if (chunk_start
+ chunk_nr_pages
> nr_pages
)
1232 chunk_nr_pages
= nr_pages
- chunk_start
;
1234 /* fill the chunk pm with addrs and nodes from user-space */
1235 for (j
= 0; j
< chunk_nr_pages
; j
++) {
1236 const void __user
*p
;
1240 if (get_user(p
, pages
+ j
+ chunk_start
))
1242 pm
[j
].addr
= (unsigned long) p
;
1244 if (get_user(node
, nodes
+ j
+ chunk_start
))
1248 if (node
< 0 || node
>= MAX_NUMNODES
)
1251 if (!node_state(node
, N_HIGH_MEMORY
))
1255 if (!node_isset(node
, task_nodes
))
1261 /* End marker for this chunk */
1262 pm
[chunk_nr_pages
].node
= MAX_NUMNODES
;
1264 /* Migrate this chunk */
1265 err
= do_move_page_to_node_array(mm
, pm
,
1266 flags
& MPOL_MF_MOVE_ALL
);
1270 /* Return status information */
1271 for (j
= 0; j
< chunk_nr_pages
; j
++)
1272 if (put_user(pm
[j
].status
, status
+ j
+ chunk_start
)) {
1280 free_page((unsigned long)pm
);
1286 * Determine the nodes of an array of pages and store it in an array of status.
1288 static void do_pages_stat_array(struct mm_struct
*mm
, unsigned long nr_pages
,
1289 const void __user
**pages
, int *status
)
1293 down_read(&mm
->mmap_sem
);
1295 for (i
= 0; i
< nr_pages
; i
++) {
1296 unsigned long addr
= (unsigned long)(*pages
);
1297 struct vm_area_struct
*vma
;
1301 vma
= find_vma(mm
, addr
);
1302 if (!vma
|| addr
< vma
->vm_start
)
1305 page
= follow_page(vma
, addr
, 0);
1307 err
= PTR_ERR(page
);
1312 /* Use PageReserved to check for zero page */
1313 if (!page
|| PageReserved(page
) || PageKsm(page
))
1316 err
= page_to_nid(page
);
1324 up_read(&mm
->mmap_sem
);
1328 * Determine the nodes of a user array of pages and store it in
1329 * a user array of status.
1331 static int do_pages_stat(struct mm_struct
*mm
, unsigned long nr_pages
,
1332 const void __user
* __user
*pages
,
1335 #define DO_PAGES_STAT_CHUNK_NR 16
1336 const void __user
*chunk_pages
[DO_PAGES_STAT_CHUNK_NR
];
1337 int chunk_status
[DO_PAGES_STAT_CHUNK_NR
];
1340 unsigned long chunk_nr
;
1342 chunk_nr
= nr_pages
;
1343 if (chunk_nr
> DO_PAGES_STAT_CHUNK_NR
)
1344 chunk_nr
= DO_PAGES_STAT_CHUNK_NR
;
1346 if (copy_from_user(chunk_pages
, pages
, chunk_nr
* sizeof(*chunk_pages
)))
1349 do_pages_stat_array(mm
, chunk_nr
, chunk_pages
, chunk_status
);
1351 if (copy_to_user(status
, chunk_status
, chunk_nr
* sizeof(*status
)))
1356 nr_pages
-= chunk_nr
;
1358 return nr_pages
? -EFAULT
: 0;
1362 * Move a list of pages in the address space of the currently executing
1365 SYSCALL_DEFINE6(move_pages
, pid_t
, pid
, unsigned long, nr_pages
,
1366 const void __user
* __user
*, pages
,
1367 const int __user
*, nodes
,
1368 int __user
*, status
, int, flags
)
1370 const struct cred
*cred
= current_cred(), *tcred
;
1371 struct task_struct
*task
;
1372 struct mm_struct
*mm
;
1376 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
1379 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1382 /* Find the mm_struct */
1384 task
= pid
? find_task_by_vpid(pid
) : current
;
1389 mm
= get_task_mm(task
);
1396 * Check if this process has the right to modify the specified
1397 * process. The right exists if the process has administrative
1398 * capabilities, superuser privileges or the same
1399 * userid as the target process.
1402 tcred
= __task_cred(task
);
1403 if (cred
->euid
!= tcred
->suid
&& cred
->euid
!= tcred
->uid
&&
1404 cred
->uid
!= tcred
->suid
&& cred
->uid
!= tcred
->uid
&&
1405 !capable(CAP_SYS_NICE
)) {
1412 err
= security_task_movememory(task
);
1417 err
= do_pages_move(mm
, task
, nr_pages
, pages
, nodes
, status
,
1420 err
= do_pages_stat(mm
, nr_pages
, pages
, status
);
1429 * Call migration functions in the vma_ops that may prepare
1430 * memory in a vm for migration. migration functions may perform
1431 * the migration for vmas that do not have an underlying page struct.
1433 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1434 const nodemask_t
*from
, unsigned long flags
)
1436 struct vm_area_struct
*vma
;
1439 for (vma
= mm
->mmap
; vma
&& !err
; vma
= vma
->vm_next
) {
1440 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1441 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);