x86/amd-iommu: Add per IOMMU reference counting
[linux/fpc-iii.git] / drivers / scsi / aic94xx / aic94xx_hwi.c
blobeb9dc3195fdfdbe7918b7d3ce0a3547e53e55ce4
1 /*
2 * Aic94xx SAS/SATA driver hardware interface.
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 * This file is licensed under GPLv2.
9 * This file is part of the aic94xx driver.
11 * The aic94xx driver is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; version 2 of the
14 * License.
16 * The aic94xx driver is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with the aic94xx driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <linux/pci.h>
28 #include <linux/delay.h>
29 #include <linux/module.h>
30 #include <linux/firmware.h>
32 #include "aic94xx.h"
33 #include "aic94xx_reg.h"
34 #include "aic94xx_hwi.h"
35 #include "aic94xx_seq.h"
36 #include "aic94xx_dump.h"
38 u32 MBAR0_SWB_SIZE;
40 /* ---------- Initialization ---------- */
42 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
44 /* adapter came with a sas address */
45 if (asd_ha->hw_prof.sas_addr[0])
46 return 0;
48 return sas_request_addr(asd_ha->sas_ha.core.shost,
49 asd_ha->hw_prof.sas_addr);
52 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
54 int i;
56 for (i = 0; i < ASD_MAX_PHYS; i++) {
57 if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
58 continue;
59 /* Set a phy's address only if it has none.
61 ASD_DPRINTK("setting phy%d addr to %llx\n", i,
62 SAS_ADDR(asd_ha->hw_prof.sas_addr));
63 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
64 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
68 /* ---------- PHY initialization ---------- */
70 static void asd_init_phy_identify(struct asd_phy *phy)
72 phy->identify_frame = phy->id_frm_tok->vaddr;
74 memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
76 phy->identify_frame->dev_type = SAS_END_DEV;
77 if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
78 phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
79 if (phy->sas_phy.role & PHY_ROLE_TARGET)
80 phy->identify_frame->target_bits = phy->sas_phy.tproto;
81 memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
82 SAS_ADDR_SIZE);
83 phy->identify_frame->phy_id = phy->sas_phy.id;
86 static int asd_init_phy(struct asd_phy *phy)
88 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
89 struct asd_sas_phy *sas_phy = &phy->sas_phy;
91 sas_phy->enabled = 1;
92 sas_phy->class = SAS;
93 sas_phy->iproto = SAS_PROTOCOL_ALL;
94 sas_phy->tproto = 0;
95 sas_phy->type = PHY_TYPE_PHYSICAL;
96 sas_phy->role = PHY_ROLE_INITIATOR;
97 sas_phy->oob_mode = OOB_NOT_CONNECTED;
98 sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
100 phy->id_frm_tok = asd_alloc_coherent(asd_ha,
101 sizeof(*phy->identify_frame),
102 GFP_KERNEL);
103 if (!phy->id_frm_tok) {
104 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
105 return -ENOMEM;
106 } else
107 asd_init_phy_identify(phy);
109 memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
111 return 0;
114 static void asd_init_ports(struct asd_ha_struct *asd_ha)
116 int i;
118 spin_lock_init(&asd_ha->asd_ports_lock);
119 for (i = 0; i < ASD_MAX_PHYS; i++) {
120 struct asd_port *asd_port = &asd_ha->asd_ports[i];
122 memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
123 memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
124 asd_port->phy_mask = 0;
125 asd_port->num_phys = 0;
129 static int asd_init_phys(struct asd_ha_struct *asd_ha)
131 u8 i;
132 u8 phy_mask = asd_ha->hw_prof.enabled_phys;
134 for (i = 0; i < ASD_MAX_PHYS; i++) {
135 struct asd_phy *phy = &asd_ha->phys[i];
137 phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
138 phy->asd_port = NULL;
140 phy->sas_phy.enabled = 0;
141 phy->sas_phy.id = i;
142 phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
143 phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
144 phy->sas_phy.ha = &asd_ha->sas_ha;
145 phy->sas_phy.lldd_phy = phy;
148 /* Now enable and initialize only the enabled phys. */
149 for_each_phy(phy_mask, phy_mask, i) {
150 int err = asd_init_phy(&asd_ha->phys[i]);
151 if (err)
152 return err;
155 return 0;
158 /* ---------- Sliding windows ---------- */
160 static int asd_init_sw(struct asd_ha_struct *asd_ha)
162 struct pci_dev *pcidev = asd_ha->pcidev;
163 int err;
164 u32 v;
166 /* Unlock MBARs */
167 err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
168 if (err) {
169 asd_printk("couldn't access conf. space of %s\n",
170 pci_name(pcidev));
171 goto Err;
173 if (v)
174 err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
175 if (err) {
176 asd_printk("couldn't write to MBAR_KEY of %s\n",
177 pci_name(pcidev));
178 goto Err;
181 /* Set sliding windows A, B and C to point to proper internal
182 * memory regions.
184 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
185 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
186 REG_BASE_ADDR_CSEQCIO);
187 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
188 asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
189 asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
190 asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
191 MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
192 if (!asd_ha->iospace) {
193 /* MBAR1 will point to OCM (On Chip Memory) */
194 pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
195 asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
197 spin_lock_init(&asd_ha->iolock);
198 Err:
199 return err;
202 /* ---------- SCB initialization ---------- */
205 * asd_init_scbs - manually allocate the first SCB.
206 * @asd_ha: pointer to host adapter structure
208 * This allocates the very first SCB which would be sent to the
209 * sequencer for execution. Its bus address is written to
210 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of
211 * the _next_ scb to be DMA-ed to the host adapter is read from the last
212 * SCB DMA-ed to the host adapter, we have to always stay one step
213 * ahead of the sequencer and keep one SCB already allocated.
215 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
217 struct asd_seq_data *seq = &asd_ha->seq;
218 int bitmap_bytes;
220 /* allocate the index array and bitmap */
221 asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
222 asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
223 sizeof(void *), GFP_KERNEL);
224 if (!asd_ha->seq.tc_index_array)
225 return -ENOMEM;
227 bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
228 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
229 asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
230 if (!asd_ha->seq.tc_index_bitmap)
231 return -ENOMEM;
233 spin_lock_init(&seq->tc_index_lock);
235 seq->next_scb.size = sizeof(struct scb);
236 seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
237 &seq->next_scb.dma_handle);
238 if (!seq->next_scb.vaddr) {
239 kfree(asd_ha->seq.tc_index_bitmap);
240 kfree(asd_ha->seq.tc_index_array);
241 asd_ha->seq.tc_index_bitmap = NULL;
242 asd_ha->seq.tc_index_array = NULL;
243 return -ENOMEM;
246 seq->pending = 0;
247 spin_lock_init(&seq->pend_q_lock);
248 INIT_LIST_HEAD(&seq->pend_q);
250 return 0;
253 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
255 asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
256 asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
257 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
258 asd_ha->hw_prof.max_scbs,
259 asd_ha->hw_prof.max_ddbs);
262 /* ---------- Done List initialization ---------- */
264 static void asd_dl_tasklet_handler(unsigned long);
266 static int asd_init_dl(struct asd_ha_struct *asd_ha)
268 asd_ha->seq.actual_dl
269 = asd_alloc_coherent(asd_ha,
270 ASD_DL_SIZE * sizeof(struct done_list_struct),
271 GFP_KERNEL);
272 if (!asd_ha->seq.actual_dl)
273 return -ENOMEM;
274 asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
275 asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
276 asd_ha->seq.dl_next = 0;
277 tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
278 (unsigned long) asd_ha);
280 return 0;
283 /* ---------- EDB and ESCB init ---------- */
285 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
287 struct asd_seq_data *seq = &asd_ha->seq;
288 int i;
290 seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
291 if (!seq->edb_arr)
292 return -ENOMEM;
294 for (i = 0; i < seq->num_edbs; i++) {
295 seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
296 gfp_flags);
297 if (!seq->edb_arr[i])
298 goto Err_unroll;
299 memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
302 ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
304 return 0;
306 Err_unroll:
307 for (i-- ; i >= 0; i--)
308 asd_free_coherent(asd_ha, seq->edb_arr[i]);
309 kfree(seq->edb_arr);
310 seq->edb_arr = NULL;
312 return -ENOMEM;
315 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
316 gfp_t gfp_flags)
318 struct asd_seq_data *seq = &asd_ha->seq;
319 struct asd_ascb *escb;
320 int i, escbs;
322 seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
323 gfp_flags);
324 if (!seq->escb_arr)
325 return -ENOMEM;
327 escbs = seq->num_escbs;
328 escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
329 if (!escb) {
330 asd_printk("couldn't allocate list of escbs\n");
331 goto Err;
333 seq->num_escbs -= escbs; /* subtract what was not allocated */
334 ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
336 for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
337 struct asd_ascb,
338 list)) {
339 seq->escb_arr[i] = escb;
340 escb->scb->header.opcode = EMPTY_SCB;
343 return 0;
344 Err:
345 kfree(seq->escb_arr);
346 seq->escb_arr = NULL;
347 return -ENOMEM;
351 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
353 struct asd_seq_data *seq = &asd_ha->seq;
354 int i, k, z = 0;
356 for (i = 0; i < seq->num_escbs; i++) {
357 struct asd_ascb *ascb = seq->escb_arr[i];
358 struct empty_scb *escb = &ascb->scb->escb;
360 ascb->edb_index = z;
362 escb->num_valid = ASD_EDBS_PER_SCB;
364 for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
365 struct sg_el *eb = &escb->eb[k];
366 struct asd_dma_tok *edb = seq->edb_arr[z++];
368 memset(eb, 0, sizeof(*eb));
369 eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
370 eb->size = cpu_to_le32(((u32) edb->size));
376 * asd_init_escbs -- allocate and initialize empty scbs
377 * @asd_ha: pointer to host adapter structure
379 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
380 * They transport sense data, etc.
382 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
384 struct asd_seq_data *seq = &asd_ha->seq;
385 int err = 0;
387 /* Allocate two empty data buffers (edb) per sequencer. */
388 int edbs = 2*(1+asd_ha->hw_prof.num_phys);
390 seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
391 seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
393 err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
394 if (err) {
395 asd_printk("couldn't allocate edbs\n");
396 return err;
399 err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
400 if (err) {
401 asd_printk("couldn't allocate escbs\n");
402 return err;
405 asd_assign_edbs2escbs(asd_ha);
406 /* In order to insure that normal SCBs do not overfill sequencer
407 * memory and leave no space for escbs (halting condition),
408 * we increment pending here by the number of escbs. However,
409 * escbs are never pending.
411 seq->pending = seq->num_escbs;
412 seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
414 return 0;
417 /* ---------- HW initialization ---------- */
420 * asd_chip_hardrst -- hard reset the chip
421 * @asd_ha: pointer to host adapter structure
423 * This takes 16 cycles and is synchronous to CFCLK, which runs
424 * at 200 MHz, so this should take at most 80 nanoseconds.
426 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
428 int i;
429 int count = 100;
430 u32 reg;
432 for (i = 0 ; i < 4 ; i++) {
433 asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
436 do {
437 udelay(1);
438 reg = asd_read_reg_dword(asd_ha, CHIMINT);
439 if (reg & HARDRSTDET) {
440 asd_write_reg_dword(asd_ha, CHIMINT,
441 HARDRSTDET|PORRSTDET);
442 return 0;
444 } while (--count > 0);
446 return -ENODEV;
450 * asd_init_chip -- initialize the chip
451 * @asd_ha: pointer to host adapter structure
453 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
454 * microcode and starts the sequencers. The caller has to explicitly
455 * enable HA interrupts with asd_enable_ints(asd_ha).
457 static int asd_init_chip(struct asd_ha_struct *asd_ha)
459 int err;
461 err = asd_chip_hardrst(asd_ha);
462 if (err) {
463 asd_printk("couldn't hard reset %s\n",
464 pci_name(asd_ha->pcidev));
465 goto out;
468 asd_disable_ints(asd_ha);
470 err = asd_init_seqs(asd_ha);
471 if (err) {
472 asd_printk("couldn't init seqs for %s\n",
473 pci_name(asd_ha->pcidev));
474 goto out;
477 err = asd_start_seqs(asd_ha);
478 if (err) {
479 asd_printk("coudln't start seqs for %s\n",
480 pci_name(asd_ha->pcidev));
481 goto out;
483 out:
484 return err;
487 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
489 static int max_devs = 0;
490 module_param_named(max_devs, max_devs, int, S_IRUGO);
491 MODULE_PARM_DESC(max_devs, "\n"
492 "\tMaximum number of SAS devices to support (not LUs).\n"
493 "\tDefault: 2176, Maximum: 65663.\n");
495 static int max_cmnds = 0;
496 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
497 MODULE_PARM_DESC(max_cmnds, "\n"
498 "\tMaximum number of commands queuable.\n"
499 "\tDefault: 512, Maximum: 66047.\n");
501 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
503 unsigned long dma_addr = OCM_BASE_ADDR;
504 u32 d;
506 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
507 asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
508 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
509 d |= 4;
510 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
511 asd_ha->hw_prof.max_ddbs += MAX_DEVS;
514 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
516 dma_addr_t dma_handle;
517 unsigned long dma_addr;
518 u32 d;
519 int size;
521 asd_extend_devctx_ocm(asd_ha);
523 asd_ha->hw_prof.ddb_ext = NULL;
524 if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
525 max_devs = asd_ha->hw_prof.max_ddbs;
526 return 0;
529 size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
531 asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
532 if (!asd_ha->hw_prof.ddb_ext) {
533 asd_printk("couldn't allocate memory for %d devices\n",
534 max_devs);
535 max_devs = asd_ha->hw_prof.max_ddbs;
536 return -ENOMEM;
538 dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
539 dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
540 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
541 dma_handle = (dma_addr_t) dma_addr;
542 asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
543 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
544 d &= ~4;
545 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
547 asd_ha->hw_prof.max_ddbs = max_devs;
549 return 0;
552 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
554 dma_addr_t dma_handle;
555 unsigned long dma_addr;
556 u32 d;
557 int size;
559 asd_ha->hw_prof.scb_ext = NULL;
560 if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
561 max_cmnds = asd_ha->hw_prof.max_scbs;
562 return 0;
565 size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
567 asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
568 if (!asd_ha->hw_prof.scb_ext) {
569 asd_printk("couldn't allocate memory for %d commands\n",
570 max_cmnds);
571 max_cmnds = asd_ha->hw_prof.max_scbs;
572 return -ENOMEM;
574 dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
575 dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
576 dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
577 dma_handle = (dma_addr_t) dma_addr;
578 asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
579 d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
580 d &= ~1;
581 asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
583 asd_ha->hw_prof.max_scbs = max_cmnds;
585 return 0;
589 * asd_init_ctxmem -- initialize context memory
590 * asd_ha: pointer to host adapter structure
592 * This function sets the maximum number of SCBs and
593 * DDBs which can be used by the sequencer. This is normally
594 * 512 and 128 respectively. If support for more SCBs or more DDBs
595 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
596 * initialized here to extend context memory to point to host memory,
597 * thus allowing unlimited support for SCBs and DDBs -- only limited
598 * by host memory.
600 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
602 int bitmap_bytes;
604 asd_get_max_scb_ddb(asd_ha);
605 asd_extend_devctx(asd_ha);
606 asd_extend_cmdctx(asd_ha);
608 /* The kernel wants bitmaps to be unsigned long sized. */
609 bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
610 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
611 asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
612 if (!asd_ha->hw_prof.ddb_bitmap)
613 return -ENOMEM;
614 spin_lock_init(&asd_ha->hw_prof.ddb_lock);
616 return 0;
619 int asd_init_hw(struct asd_ha_struct *asd_ha)
621 int err;
622 u32 v;
624 err = asd_init_sw(asd_ha);
625 if (err)
626 return err;
628 err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
629 if (err) {
630 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
631 pci_name(asd_ha->pcidev));
632 return err;
634 pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
635 v | SC_TMR_DIS);
636 if (err) {
637 asd_printk("couldn't disable split completion timer of %s\n",
638 pci_name(asd_ha->pcidev));
639 return err;
642 err = asd_read_ocm(asd_ha);
643 if (err) {
644 asd_printk("couldn't read ocm(%d)\n", err);
645 /* While suspicios, it is not an error that we
646 * couldn't read the OCM. */
649 err = asd_read_flash(asd_ha);
650 if (err) {
651 asd_printk("couldn't read flash(%d)\n", err);
652 /* While suspicios, it is not an error that we
653 * couldn't read FLASH memory.
657 asd_init_ctxmem(asd_ha);
659 if (asd_get_user_sas_addr(asd_ha)) {
660 asd_printk("No SAS Address provided for %s\n",
661 pci_name(asd_ha->pcidev));
662 err = -ENODEV;
663 goto Out;
666 asd_propagate_sas_addr(asd_ha);
668 err = asd_init_phys(asd_ha);
669 if (err) {
670 asd_printk("couldn't initialize phys for %s\n",
671 pci_name(asd_ha->pcidev));
672 goto Out;
675 asd_init_ports(asd_ha);
677 err = asd_init_scbs(asd_ha);
678 if (err) {
679 asd_printk("couldn't initialize scbs for %s\n",
680 pci_name(asd_ha->pcidev));
681 goto Out;
684 err = asd_init_dl(asd_ha);
685 if (err) {
686 asd_printk("couldn't initialize the done list:%d\n",
687 err);
688 goto Out;
691 err = asd_init_escbs(asd_ha);
692 if (err) {
693 asd_printk("couldn't initialize escbs\n");
694 goto Out;
697 err = asd_init_chip(asd_ha);
698 if (err) {
699 asd_printk("couldn't init the chip\n");
700 goto Out;
702 Out:
703 return err;
706 /* ---------- Chip reset ---------- */
709 * asd_chip_reset -- reset the host adapter, etc
710 * @asd_ha: pointer to host adapter structure of interest
712 * Called from the ISR. Hard reset the chip. Let everything
713 * timeout. This should be no different than hot-unplugging the
714 * host adapter. Once everything times out we'll init the chip with
715 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
716 * XXX finish.
718 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
720 struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
722 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
723 asd_chip_hardrst(asd_ha);
724 sas_ha->notify_ha_event(sas_ha, HAE_RESET);
727 /* ---------- Done List Routines ---------- */
729 static void asd_dl_tasklet_handler(unsigned long data)
731 struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
732 struct asd_seq_data *seq = &asd_ha->seq;
733 unsigned long flags;
735 while (1) {
736 struct done_list_struct *dl = &seq->dl[seq->dl_next];
737 struct asd_ascb *ascb;
739 if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
740 break;
742 /* find the aSCB */
743 spin_lock_irqsave(&seq->tc_index_lock, flags);
744 ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
745 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
746 if (unlikely(!ascb)) {
747 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
748 goto next_1;
749 } else if (ascb->scb->header.opcode == EMPTY_SCB) {
750 goto out;
751 } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
752 goto next_1;
754 spin_lock_irqsave(&seq->pend_q_lock, flags);
755 list_del_init(&ascb->list);
756 seq->pending--;
757 spin_unlock_irqrestore(&seq->pend_q_lock, flags);
758 out:
759 ascb->tasklet_complete(ascb, dl);
761 next_1:
762 seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
763 if (!seq->dl_next)
764 seq->dl_toggle ^= DL_TOGGLE_MASK;
768 /* ---------- Interrupt Service Routines ---------- */
771 * asd_process_donelist_isr -- schedule processing of done list entries
772 * @asd_ha: pointer to host adapter structure
774 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
776 tasklet_schedule(&asd_ha->seq.dl_tasklet);
780 * asd_com_sas_isr -- process device communication interrupt (COMINT)
781 * @asd_ha: pointer to host adapter structure
783 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
785 u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
787 /* clear COMSTAT int */
788 asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
790 if (comstat & CSBUFPERR) {
791 asd_printk("%s: command/status buffer dma parity error\n",
792 pci_name(asd_ha->pcidev));
793 } else if (comstat & CSERR) {
794 int i;
795 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
796 dmaerr &= 0xFF;
797 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
798 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
799 pci_name(asd_ha->pcidev),
800 dmaerr,
801 asd_read_reg_dword(asd_ha, CSDMAADR),
802 asd_read_reg_dword(asd_ha, CSDMAADR+4));
803 asd_printk("CSBUFFER:\n");
804 for (i = 0; i < 8; i++) {
805 asd_printk("%08x %08x %08x %08x\n",
806 asd_read_reg_dword(asd_ha, CSBUFFER),
807 asd_read_reg_dword(asd_ha, CSBUFFER+4),
808 asd_read_reg_dword(asd_ha, CSBUFFER+8),
809 asd_read_reg_dword(asd_ha, CSBUFFER+12));
811 asd_dump_seq_state(asd_ha, 0);
812 } else if (comstat & OVLYERR) {
813 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
814 dmaerr = (dmaerr >> 8) & 0xFF;
815 asd_printk("%s: overlay dma error:0x%x\n",
816 pci_name(asd_ha->pcidev),
817 dmaerr);
819 asd_chip_reset(asd_ha);
822 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
824 static const char *halt_code[256] = {
825 "UNEXPECTED_INTERRUPT0",
826 "UNEXPECTED_INTERRUPT1",
827 "UNEXPECTED_INTERRUPT2",
828 "UNEXPECTED_INTERRUPT3",
829 "UNEXPECTED_INTERRUPT4",
830 "UNEXPECTED_INTERRUPT5",
831 "UNEXPECTED_INTERRUPT6",
832 "UNEXPECTED_INTERRUPT7",
833 "UNEXPECTED_INTERRUPT8",
834 "UNEXPECTED_INTERRUPT9",
835 "UNEXPECTED_INTERRUPT10",
836 [11 ... 19] = "unknown[11,19]",
837 "NO_FREE_SCB_AVAILABLE",
838 "INVALID_SCB_OPCODE",
839 "INVALID_MBX_OPCODE",
840 "INVALID_ATA_STATE",
841 "ATA_QUEUE_FULL",
842 "ATA_TAG_TABLE_FAULT",
843 "ATA_TAG_MASK_FAULT",
844 "BAD_LINK_QUEUE_STATE",
845 "DMA2CHIM_QUEUE_ERROR",
846 "EMPTY_SCB_LIST_FULL",
847 "unknown[30]",
848 "IN_USE_SCB_ON_FREE_LIST",
849 "BAD_OPEN_WAIT_STATE",
850 "INVALID_STP_AFFILIATION",
851 "unknown[34]",
852 "EXEC_QUEUE_ERROR",
853 "TOO_MANY_EMPTIES_NEEDED",
854 "EMPTY_REQ_QUEUE_ERROR",
855 "Q_MONIRTT_MGMT_ERROR",
856 "TARGET_MODE_FLOW_ERROR",
857 "DEVICE_QUEUE_NOT_FOUND",
858 "START_IRTT_TIMER_ERROR",
859 "ABORT_TASK_ILLEGAL_REQ",
860 [43 ... 255] = "unknown[43,255]"
863 if (dchstatus & CSEQINT) {
864 u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
866 if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
867 asd_printk("%s: CSEQ arp2int:0x%x\n",
868 pci_name(asd_ha->pcidev),
869 arp2int);
870 } else if (arp2int & ARP2HALTC)
871 asd_printk("%s: CSEQ halted: %s\n",
872 pci_name(asd_ha->pcidev),
873 halt_code[(arp2int>>16)&0xFF]);
874 else
875 asd_printk("%s: CARP2INT:0x%x\n",
876 pci_name(asd_ha->pcidev),
877 arp2int);
879 if (dchstatus & LSEQINT_MASK) {
880 int lseq;
881 u8 lseq_mask = dchstatus & LSEQINT_MASK;
883 for_each_sequencer(lseq_mask, lseq_mask, lseq) {
884 u32 arp2int = asd_read_reg_dword(asd_ha,
885 LmARP2INT(lseq));
886 if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
887 | ARP2CIOPERR)) {
888 asd_printk("%s: LSEQ%d arp2int:0x%x\n",
889 pci_name(asd_ha->pcidev),
890 lseq, arp2int);
891 /* XXX we should only do lseq reset */
892 } else if (arp2int & ARP2HALTC)
893 asd_printk("%s: LSEQ%d halted: %s\n",
894 pci_name(asd_ha->pcidev),
895 lseq,halt_code[(arp2int>>16)&0xFF]);
896 else
897 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
898 pci_name(asd_ha->pcidev), lseq,
899 arp2int);
902 asd_chip_reset(asd_ha);
906 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
907 * @asd_ha: pointer to host adapter structure
909 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
911 u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
913 if (dchstatus & CFIFTOERR) {
914 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
915 asd_chip_reset(asd_ha);
916 } else
917 asd_arp2_err(asd_ha, dchstatus);
921 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
922 * @asd_ha: pointer to host adapter structure
924 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
926 u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
928 if (!(stat0r & ASIERR)) {
929 asd_printk("hmm, EXSI interrupted but no error?\n");
930 return;
933 if (stat0r & ASIFMTERR) {
934 asd_printk("ASI SEEPROM format error for %s\n",
935 pci_name(asd_ha->pcidev));
936 } else if (stat0r & ASISEECHKERR) {
937 u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
938 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
939 stat1r & CHECKSUM_MASK,
940 pci_name(asd_ha->pcidev));
941 } else {
942 u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
944 if (!(statr & CPI2ASIMSTERR_MASK)) {
945 ASD_DPRINTK("hmm, ASIERR?\n");
946 return;
947 } else {
948 u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
949 u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
951 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
952 "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
953 "master id: 0x%x, master err: 0x%x\n",
954 pci_name(asd_ha->pcidev),
955 addr, data,
956 (statr & CPI2ASIBYTECNT_MASK) >> 16,
957 (statr & CPI2ASIBYTEEN_MASK) >> 12,
958 (statr & CPI2ASITARGERR_MASK) >> 8,
959 (statr & CPI2ASITARGMID_MASK) >> 4,
960 (statr & CPI2ASIMSTERR_MASK));
963 asd_chip_reset(asd_ha);
967 * asd_hst_pcix_isr -- process host interface interrupts
968 * @asd_ha: pointer to host adapter structure
970 * Asserted on PCIX errors: target abort, etc.
972 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
974 u16 status;
975 u32 pcix_status;
976 u32 ecc_status;
978 pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
979 pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
980 pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
982 if (status & PCI_STATUS_DETECTED_PARITY)
983 asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
984 else if (status & PCI_STATUS_REC_MASTER_ABORT)
985 asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
986 else if (status & PCI_STATUS_REC_TARGET_ABORT)
987 asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
988 else if (status & PCI_STATUS_PARITY)
989 asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
990 else if (pcix_status & RCV_SCE) {
991 asd_printk("received split completion error for %s\n",
992 pci_name(asd_ha->pcidev));
993 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
994 /* XXX: Abort task? */
995 return;
996 } else if (pcix_status & UNEXP_SC) {
997 asd_printk("unexpected split completion for %s\n",
998 pci_name(asd_ha->pcidev));
999 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
1000 /* ignore */
1001 return;
1002 } else if (pcix_status & SC_DISCARD)
1003 asd_printk("split completion discarded for %s\n",
1004 pci_name(asd_ha->pcidev));
1005 else if (ecc_status & UNCOR_ECCERR)
1006 asd_printk("uncorrectable ECC error for %s\n",
1007 pci_name(asd_ha->pcidev));
1008 asd_chip_reset(asd_ha);
1012 * asd_hw_isr -- host adapter interrupt service routine
1013 * @irq: ignored
1014 * @dev_id: pointer to host adapter structure
1016 * The ISR processes done list entries and level 3 error handling.
1018 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1020 struct asd_ha_struct *asd_ha = dev_id;
1021 u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1023 if (!chimint)
1024 return IRQ_NONE;
1026 asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1027 (void) asd_read_reg_dword(asd_ha, CHIMINT);
1029 if (chimint & DLAVAIL)
1030 asd_process_donelist_isr(asd_ha);
1031 if (chimint & COMINT)
1032 asd_com_sas_isr(asd_ha);
1033 if (chimint & DEVINT)
1034 asd_dch_sas_isr(asd_ha);
1035 if (chimint & INITERR)
1036 asd_rbi_exsi_isr(asd_ha);
1037 if (chimint & HOSTERR)
1038 asd_hst_pcix_isr(asd_ha);
1040 return IRQ_HANDLED;
1043 /* ---------- SCB handling ---------- */
1045 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1046 gfp_t gfp_flags)
1048 extern struct kmem_cache *asd_ascb_cache;
1049 struct asd_seq_data *seq = &asd_ha->seq;
1050 struct asd_ascb *ascb;
1051 unsigned long flags;
1053 ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1055 if (ascb) {
1056 ascb->dma_scb.size = sizeof(struct scb);
1057 ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1058 gfp_flags,
1059 &ascb->dma_scb.dma_handle);
1060 if (!ascb->dma_scb.vaddr) {
1061 kmem_cache_free(asd_ascb_cache, ascb);
1062 return NULL;
1064 memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1065 asd_init_ascb(asd_ha, ascb);
1067 spin_lock_irqsave(&seq->tc_index_lock, flags);
1068 ascb->tc_index = asd_tc_index_get(seq, ascb);
1069 spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1070 if (ascb->tc_index == -1)
1071 goto undo;
1073 ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1076 return ascb;
1077 undo:
1078 dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1079 ascb->dma_scb.dma_handle);
1080 kmem_cache_free(asd_ascb_cache, ascb);
1081 ASD_DPRINTK("no index for ascb\n");
1082 return NULL;
1086 * asd_ascb_alloc_list -- allocate a list of aSCBs
1087 * @asd_ha: pointer to host adapter structure
1088 * @num: pointer to integer number of aSCBs
1089 * @gfp_flags: GFP_ flags.
1091 * This is the only function which is used to allocate aSCBs.
1092 * It can allocate one or many. If more than one, then they form
1093 * a linked list in two ways: by their list field of the ascb struct
1094 * and by the next_scb field of the scb_header.
1096 * Returns NULL if no memory was available, else pointer to a list
1097 * of ascbs. When this function returns, @num would be the number
1098 * of SCBs which were not able to be allocated, 0 if all requested
1099 * were able to be allocated.
1101 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1102 *asd_ha, int *num,
1103 gfp_t gfp_flags)
1105 struct asd_ascb *first = NULL;
1107 for ( ; *num > 0; --*num) {
1108 struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1110 if (!ascb)
1111 break;
1112 else if (!first)
1113 first = ascb;
1114 else {
1115 struct asd_ascb *last = list_entry(first->list.prev,
1116 struct asd_ascb,
1117 list);
1118 list_add_tail(&ascb->list, &first->list);
1119 last->scb->header.next_scb =
1120 cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1124 return first;
1128 * asd_swap_head_scb -- swap the head scb
1129 * @asd_ha: pointer to host adapter structure
1130 * @ascb: pointer to the head of an ascb list
1132 * The sequencer knows the DMA address of the next SCB to be DMAed to
1133 * the host adapter, from initialization or from the last list DMAed.
1134 * seq->next_scb keeps the address of this SCB. The sequencer will
1135 * DMA to the host adapter this list of SCBs. But the head (first
1136 * element) of this list is not known to the sequencer. Here we swap
1137 * the head of the list with the known SCB (memcpy()).
1138 * Only one memcpy() is required per list so it is in our interest
1139 * to keep the list of SCB as long as possible so that the ratio
1140 * of number of memcpy calls to the number of SCB DMA-ed is as small
1141 * as possible.
1143 * LOCKING: called with the pending list lock held.
1145 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1146 struct asd_ascb *ascb)
1148 struct asd_seq_data *seq = &asd_ha->seq;
1149 struct asd_ascb *last = list_entry(ascb->list.prev,
1150 struct asd_ascb,
1151 list);
1152 struct asd_dma_tok t = ascb->dma_scb;
1154 memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1155 ascb->dma_scb = seq->next_scb;
1156 ascb->scb = ascb->dma_scb.vaddr;
1157 seq->next_scb = t;
1158 last->scb->header.next_scb =
1159 cpu_to_le64(((u64)seq->next_scb.dma_handle));
1163 * asd_start_timers -- (add and) start timers of SCBs
1164 * @list: pointer to struct list_head of the scbs
1165 * @to: timeout in jiffies
1167 * If an SCB in the @list has no timer function, assign the default
1168 * one, then start the timer of the SCB. This function is
1169 * intended to be called from asd_post_ascb_list(), just prior to
1170 * posting the SCBs to the sequencer.
1172 static void asd_start_scb_timers(struct list_head *list)
1174 struct asd_ascb *ascb;
1175 list_for_each_entry(ascb, list, list) {
1176 if (!ascb->uldd_timer) {
1177 ascb->timer.data = (unsigned long) ascb;
1178 ascb->timer.function = asd_ascb_timedout;
1179 ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1180 add_timer(&ascb->timer);
1186 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1187 * @asd_ha: pointer to a host adapter structure
1188 * @ascb: pointer to the first aSCB in the list
1189 * @num: number of aSCBs in the list (to be posted)
1191 * See queueing comment in asd_post_escb_list().
1193 * Additional note on queuing: In order to minimize the ratio of memcpy()
1194 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1195 * in one go.
1196 * Two cases are possible:
1197 * A) can_queue >= num,
1198 * B) can_queue < num.
1199 * Case A: we can send the whole batch at once. Increment "pending"
1200 * in the beginning of this function, when it is checked, in order to
1201 * eliminate races when this function is called by multiple processes.
1202 * Case B: should never happen if the managing layer considers
1203 * lldd_queue_size.
1205 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1206 int num)
1208 unsigned long flags;
1209 LIST_HEAD(list);
1210 int can_queue;
1212 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1213 can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1214 if (can_queue >= num)
1215 asd_ha->seq.pending += num;
1216 else
1217 can_queue = 0;
1219 if (!can_queue) {
1220 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1221 asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1222 return -SAS_QUEUE_FULL;
1225 asd_swap_head_scb(asd_ha, ascb);
1227 __list_add(&list, ascb->list.prev, &ascb->list);
1229 asd_start_scb_timers(&list);
1231 asd_ha->seq.scbpro += num;
1232 list_splice_init(&list, asd_ha->seq.pend_q.prev);
1233 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1234 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1236 return 0;
1240 * asd_post_escb_list -- post a list of 1 or more empty scb
1241 * @asd_ha: pointer to a host adapter structure
1242 * @ascb: pointer to the first empty SCB in the list
1243 * @num: number of aSCBs in the list (to be posted)
1245 * This is essentially the same as asd_post_ascb_list, but we do not
1246 * increment pending, add those to the pending list or get indexes.
1247 * See asd_init_escbs() and asd_init_post_escbs().
1249 * Since sending a list of ascbs is a superset of sending a single
1250 * ascb, this function exists to generalize this. More specifically,
1251 * when sending a list of those, we want to do only a _single_
1252 * memcpy() at swap head, as opposed to for each ascb sent (in the
1253 * case of sending them one by one). That is, we want to minimize the
1254 * ratio of memcpy() operations to the number of ascbs sent. The same
1255 * logic applies to asd_post_ascb_list().
1257 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1258 int num)
1260 unsigned long flags;
1262 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1263 asd_swap_head_scb(asd_ha, ascb);
1264 asd_ha->seq.scbpro += num;
1265 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1266 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1268 return 0;
1271 /* ---------- LED ---------- */
1274 * asd_turn_led -- turn on/off an LED
1275 * @asd_ha: pointer to host adapter structure
1276 * @phy_id: the PHY id whose LED we want to manupulate
1277 * @op: 1 to turn on, 0 to turn off
1279 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1281 if (phy_id < ASD_MAX_PHYS) {
1282 u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1283 if (op)
1284 v |= LEDPOL;
1285 else
1286 v &= ~LEDPOL;
1287 asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1292 * asd_control_led -- enable/disable an LED on the board
1293 * @asd_ha: pointer to host adapter structure
1294 * @phy_id: integer, the phy id
1295 * @op: integer, 1 to enable, 0 to disable the LED
1297 * First we output enable the LED, then we set the source
1298 * to be an external module.
1300 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1302 if (phy_id < ASD_MAX_PHYS) {
1303 u32 v;
1305 v = asd_read_reg_dword(asd_ha, GPIOOER);
1306 if (op)
1307 v |= (1 << phy_id);
1308 else
1309 v &= ~(1 << phy_id);
1310 asd_write_reg_dword(asd_ha, GPIOOER, v);
1312 v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1313 if (op)
1314 v |= (1 << phy_id);
1315 else
1316 v &= ~(1 << phy_id);
1317 asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1321 /* ---------- PHY enable ---------- */
1323 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1325 struct asd_phy *phy = &asd_ha->phys[phy_id];
1327 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1328 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1329 HOTPLUG_DELAY_TIMEOUT);
1331 /* Get defaults from manuf. sector */
1332 /* XXX we need defaults for those in case MS is broken. */
1333 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1334 phy->phy_desc->phy_control_0);
1335 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1336 phy->phy_desc->phy_control_1);
1337 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1338 phy->phy_desc->phy_control_2);
1339 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1340 phy->phy_desc->phy_control_3);
1342 asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1343 ASD_COMINIT_TIMEOUT);
1345 asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1346 phy->id_frm_tok->dma_handle);
1348 asd_control_led(asd_ha, phy_id, 1);
1350 return 0;
1353 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1355 u8 phy_m;
1356 u8 i;
1357 int num = 0, k;
1358 struct asd_ascb *ascb;
1359 struct asd_ascb *ascb_list;
1361 if (!phy_mask) {
1362 asd_printk("%s called with phy_mask of 0!?\n", __func__);
1363 return 0;
1366 for_each_phy(phy_mask, phy_m, i) {
1367 num++;
1368 asd_enable_phy(asd_ha, i);
1371 k = num;
1372 ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1373 if (!ascb_list) {
1374 asd_printk("no memory for control phy ascb list\n");
1375 return -ENOMEM;
1377 num -= k;
1379 ascb = ascb_list;
1380 for_each_phy(phy_mask, phy_m, i) {
1381 asd_build_control_phy(ascb, i, ENABLE_PHY);
1382 ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1384 ASD_DPRINTK("posting %d control phy scbs\n", num);
1385 k = asd_post_ascb_list(asd_ha, ascb_list, num);
1386 if (k)
1387 asd_ascb_free_list(ascb_list);
1389 return k;