2 * Copyright (C) 2015 Broadcom
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
10 * DOC: VC4 plane module
12 * Each DRM plane is a layer of pixels being scanned out by the HVS.
14 * At atomic modeset check time, we compute the HVS display element
15 * state that would be necessary for displaying the plane (giving us a
16 * chance to figure out if a plane configuration is invalid), then at
17 * atomic flush time the CRTC will ask us to write our element state
18 * into the region of the HVS that it has allocated for us.
23 #include "drm_atomic_helper.h"
24 #include "drm_fb_cma_helper.h"
25 #include "drm_plane_helper.h"
27 enum vc4_scaling_mode
{
33 struct vc4_plane_state
{
34 struct drm_plane_state base
;
35 /* System memory copy of the display list for this element, computed
36 * at atomic_check time.
39 u32 dlist_size
; /* Number of dwords allocated for the display list */
40 u32 dlist_count
; /* Number of used dwords in the display list. */
42 /* Offset in the dlist to various words, for pageflip or
49 /* Offset where the plane's dlist was last stored in the
50 * hardware at vc4_crtc_atomic_flush() time.
52 u32 __iomem
*hw_dlist
;
54 /* Clipped coordinates of the plane on the display. */
55 int crtc_x
, crtc_y
, crtc_w
, crtc_h
;
56 /* Clipped area being scanned from in the FB. */
59 u32 src_w
[2], src_h
[2];
61 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
62 enum vc4_scaling_mode x_scaling
[2], y_scaling
[2];
66 /* Offset to start scanning out from the start of the plane's
71 /* Our allocation in LBM for temporary storage during scaling. */
72 struct drm_mm_node lbm
;
75 static inline struct vc4_plane_state
*
76 to_vc4_plane_state(struct drm_plane_state
*state
)
78 return (struct vc4_plane_state
*)state
;
81 static const struct hvs_format
{
82 u32 drm
; /* DRM_FORMAT_* */
83 u32 hvs
; /* HVS_FORMAT_* */
89 .drm
= DRM_FORMAT_XRGB8888
, .hvs
= HVS_PIXEL_FORMAT_RGBA8888
,
90 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= false,
93 .drm
= DRM_FORMAT_ARGB8888
, .hvs
= HVS_PIXEL_FORMAT_RGBA8888
,
94 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= true,
97 .drm
= DRM_FORMAT_RGB565
, .hvs
= HVS_PIXEL_FORMAT_RGB565
,
98 .pixel_order
= HVS_PIXEL_ORDER_XRGB
, .has_alpha
= false,
101 .drm
= DRM_FORMAT_BGR565
, .hvs
= HVS_PIXEL_FORMAT_RGB565
,
102 .pixel_order
= HVS_PIXEL_ORDER_XBGR
, .has_alpha
= false,
105 .drm
= DRM_FORMAT_ARGB1555
, .hvs
= HVS_PIXEL_FORMAT_RGBA5551
,
106 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= true,
109 .drm
= DRM_FORMAT_XRGB1555
, .hvs
= HVS_PIXEL_FORMAT_RGBA5551
,
110 .pixel_order
= HVS_PIXEL_ORDER_ABGR
, .has_alpha
= false,
113 .drm
= DRM_FORMAT_YUV422
,
114 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE
,
117 .drm
= DRM_FORMAT_YVU422
,
118 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE
,
122 .drm
= DRM_FORMAT_YUV420
,
123 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE
,
126 .drm
= DRM_FORMAT_YVU420
,
127 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE
,
131 .drm
= DRM_FORMAT_NV12
,
132 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE
,
135 .drm
= DRM_FORMAT_NV16
,
136 .hvs
= HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE
,
140 static const struct hvs_format
*vc4_get_hvs_format(u32 drm_format
)
144 for (i
= 0; i
< ARRAY_SIZE(hvs_formats
); i
++) {
145 if (hvs_formats
[i
].drm
== drm_format
)
146 return &hvs_formats
[i
];
152 static enum vc4_scaling_mode
vc4_get_scaling_mode(u32 src
, u32 dst
)
155 return VC4_SCALING_PPF
;
157 return VC4_SCALING_TPZ
;
159 return VC4_SCALING_NONE
;
162 static bool plane_enabled(struct drm_plane_state
*state
)
164 return state
->fb
&& state
->crtc
;
167 static struct drm_plane_state
*vc4_plane_duplicate_state(struct drm_plane
*plane
)
169 struct vc4_plane_state
*vc4_state
;
171 if (WARN_ON(!plane
->state
))
174 vc4_state
= kmemdup(plane
->state
, sizeof(*vc4_state
), GFP_KERNEL
);
178 memset(&vc4_state
->lbm
, 0, sizeof(vc4_state
->lbm
));
180 __drm_atomic_helper_plane_duplicate_state(plane
, &vc4_state
->base
);
182 if (vc4_state
->dlist
) {
183 vc4_state
->dlist
= kmemdup(vc4_state
->dlist
,
184 vc4_state
->dlist_count
* 4,
186 if (!vc4_state
->dlist
) {
190 vc4_state
->dlist_size
= vc4_state
->dlist_count
;
193 return &vc4_state
->base
;
196 static void vc4_plane_destroy_state(struct drm_plane
*plane
,
197 struct drm_plane_state
*state
)
199 struct vc4_dev
*vc4
= to_vc4_dev(plane
->dev
);
200 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
202 if (vc4_state
->lbm
.allocated
) {
203 unsigned long irqflags
;
205 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, irqflags
);
206 drm_mm_remove_node(&vc4_state
->lbm
);
207 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, irqflags
);
210 kfree(vc4_state
->dlist
);
211 __drm_atomic_helper_plane_destroy_state(plane
, &vc4_state
->base
);
215 /* Called during init to allocate the plane's atomic state. */
216 static void vc4_plane_reset(struct drm_plane
*plane
)
218 struct vc4_plane_state
*vc4_state
;
220 WARN_ON(plane
->state
);
222 vc4_state
= kzalloc(sizeof(*vc4_state
), GFP_KERNEL
);
226 plane
->state
= &vc4_state
->base
;
227 vc4_state
->base
.plane
= plane
;
230 static void vc4_dlist_write(struct vc4_plane_state
*vc4_state
, u32 val
)
232 if (vc4_state
->dlist_count
== vc4_state
->dlist_size
) {
233 u32 new_size
= max(4u, vc4_state
->dlist_count
* 2);
234 u32
*new_dlist
= kmalloc(new_size
* 4, GFP_KERNEL
);
238 memcpy(new_dlist
, vc4_state
->dlist
, vc4_state
->dlist_count
* 4);
240 kfree(vc4_state
->dlist
);
241 vc4_state
->dlist
= new_dlist
;
242 vc4_state
->dlist_size
= new_size
;
245 vc4_state
->dlist
[vc4_state
->dlist_count
++] = val
;
248 /* Returns the scl0/scl1 field based on whether the dimensions need to
249 * be up/down/non-scaled.
251 * This is a replication of a table from the spec.
253 static u32
vc4_get_scl_field(struct drm_plane_state
*state
, int plane
)
255 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
257 switch (vc4_state
->x_scaling
[plane
] << 2 | vc4_state
->y_scaling
[plane
]) {
258 case VC4_SCALING_PPF
<< 2 | VC4_SCALING_PPF
:
259 return SCALER_CTL0_SCL_H_PPF_V_PPF
;
260 case VC4_SCALING_TPZ
<< 2 | VC4_SCALING_PPF
:
261 return SCALER_CTL0_SCL_H_TPZ_V_PPF
;
262 case VC4_SCALING_PPF
<< 2 | VC4_SCALING_TPZ
:
263 return SCALER_CTL0_SCL_H_PPF_V_TPZ
;
264 case VC4_SCALING_TPZ
<< 2 | VC4_SCALING_TPZ
:
265 return SCALER_CTL0_SCL_H_TPZ_V_TPZ
;
266 case VC4_SCALING_PPF
<< 2 | VC4_SCALING_NONE
:
267 return SCALER_CTL0_SCL_H_PPF_V_NONE
;
268 case VC4_SCALING_NONE
<< 2 | VC4_SCALING_PPF
:
269 return SCALER_CTL0_SCL_H_NONE_V_PPF
;
270 case VC4_SCALING_NONE
<< 2 | VC4_SCALING_TPZ
:
271 return SCALER_CTL0_SCL_H_NONE_V_TPZ
;
272 case VC4_SCALING_TPZ
<< 2 | VC4_SCALING_NONE
:
273 return SCALER_CTL0_SCL_H_TPZ_V_NONE
;
275 case VC4_SCALING_NONE
<< 2 | VC4_SCALING_NONE
:
276 /* The unity case is independently handled by
283 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state
*state
)
285 struct drm_plane
*plane
= state
->plane
;
286 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
287 struct drm_framebuffer
*fb
= state
->fb
;
288 struct drm_gem_cma_object
*bo
= drm_fb_cma_get_gem_obj(fb
, 0);
289 u32 subpixel_src_mask
= (1 << 16) - 1;
290 u32 format
= fb
->pixel_format
;
291 int num_planes
= drm_format_num_planes(format
);
296 for (i
= 0; i
< num_planes
; i
++)
297 vc4_state
->offsets
[i
] = bo
->paddr
+ fb
->offsets
[i
];
299 /* We don't support subpixel source positioning for scaling. */
300 if ((state
->src_x
& subpixel_src_mask
) ||
301 (state
->src_y
& subpixel_src_mask
) ||
302 (state
->src_w
& subpixel_src_mask
) ||
303 (state
->src_h
& subpixel_src_mask
)) {
307 vc4_state
->src_x
= state
->src_x
>> 16;
308 vc4_state
->src_y
= state
->src_y
>> 16;
309 vc4_state
->src_w
[0] = state
->src_w
>> 16;
310 vc4_state
->src_h
[0] = state
->src_h
>> 16;
312 vc4_state
->crtc_x
= state
->crtc_x
;
313 vc4_state
->crtc_y
= state
->crtc_y
;
314 vc4_state
->crtc_w
= state
->crtc_w
;
315 vc4_state
->crtc_h
= state
->crtc_h
;
317 vc4_state
->x_scaling
[0] = vc4_get_scaling_mode(vc4_state
->src_w
[0],
319 vc4_state
->y_scaling
[0] = vc4_get_scaling_mode(vc4_state
->src_h
[0],
322 if (num_planes
> 1) {
323 vc4_state
->is_yuv
= true;
325 h_subsample
= drm_format_horz_chroma_subsampling(format
);
326 v_subsample
= drm_format_vert_chroma_subsampling(format
);
327 vc4_state
->src_w
[1] = vc4_state
->src_w
[0] / h_subsample
;
328 vc4_state
->src_h
[1] = vc4_state
->src_h
[0] / v_subsample
;
330 vc4_state
->x_scaling
[1] =
331 vc4_get_scaling_mode(vc4_state
->src_w
[1],
333 vc4_state
->y_scaling
[1] =
334 vc4_get_scaling_mode(vc4_state
->src_h
[1],
337 /* YUV conversion requires that scaling be enabled,
338 * even on a plane that's otherwise 1:1. Choose TPZ
341 if (vc4_state
->x_scaling
[0] == VC4_SCALING_NONE
)
342 vc4_state
->x_scaling
[0] = VC4_SCALING_TPZ
;
343 if (vc4_state
->y_scaling
[0] == VC4_SCALING_NONE
)
344 vc4_state
->y_scaling
[0] = VC4_SCALING_TPZ
;
347 vc4_state
->is_unity
= (vc4_state
->x_scaling
[0] == VC4_SCALING_NONE
&&
348 vc4_state
->y_scaling
[0] == VC4_SCALING_NONE
&&
349 vc4_state
->x_scaling
[1] == VC4_SCALING_NONE
&&
350 vc4_state
->y_scaling
[1] == VC4_SCALING_NONE
);
352 /* No configuring scaling on the cursor plane, since it gets
353 non-vblank-synced updates, and scaling requires requires
354 LBM changes which have to be vblank-synced.
356 if (plane
->type
== DRM_PLANE_TYPE_CURSOR
&& !vc4_state
->is_unity
)
359 /* Clamp the on-screen start x/y to 0. The hardware doesn't
360 * support negative y, and negative x wastes bandwidth.
362 if (vc4_state
->crtc_x
< 0) {
363 for (i
= 0; i
< num_planes
; i
++) {
364 u32 cpp
= drm_format_plane_cpp(fb
->pixel_format
, i
);
365 u32 subs
= ((i
== 0) ? 1 : h_subsample
);
367 vc4_state
->offsets
[i
] += (cpp
*
368 (-vc4_state
->crtc_x
) / subs
);
370 vc4_state
->src_w
[0] += vc4_state
->crtc_x
;
371 vc4_state
->src_w
[1] += vc4_state
->crtc_x
/ h_subsample
;
372 vc4_state
->crtc_x
= 0;
375 if (vc4_state
->crtc_y
< 0) {
376 for (i
= 0; i
< num_planes
; i
++) {
377 u32 subs
= ((i
== 0) ? 1 : v_subsample
);
379 vc4_state
->offsets
[i
] += (fb
->pitches
[i
] *
380 (-vc4_state
->crtc_y
) / subs
);
382 vc4_state
->src_h
[0] += vc4_state
->crtc_y
;
383 vc4_state
->src_h
[1] += vc4_state
->crtc_y
/ v_subsample
;
384 vc4_state
->crtc_y
= 0;
390 static void vc4_write_tpz(struct vc4_plane_state
*vc4_state
, u32 src
, u32 dst
)
394 scale
= (1 << 16) * src
/ dst
;
396 /* The specs note that while the reciprocal would be defined
397 * as (1<<32)/scale, ~0 is close enough.
401 vc4_dlist_write(vc4_state
,
402 VC4_SET_FIELD(scale
, SCALER_TPZ0_SCALE
) |
403 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE
));
404 vc4_dlist_write(vc4_state
,
405 VC4_SET_FIELD(recip
, SCALER_TPZ1_RECIP
));
408 static void vc4_write_ppf(struct vc4_plane_state
*vc4_state
, u32 src
, u32 dst
)
410 u32 scale
= (1 << 16) * src
/ dst
;
412 vc4_dlist_write(vc4_state
,
414 VC4_SET_FIELD(scale
, SCALER_PPF_SCALE
) |
415 VC4_SET_FIELD(0, SCALER_PPF_IPHASE
));
418 static u32
vc4_lbm_size(struct drm_plane_state
*state
)
420 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
421 /* This is the worst case number. One of the two sizes will
422 * be used depending on the scaling configuration.
424 u32 pix_per_line
= max(vc4_state
->src_w
[0], (u32
)vc4_state
->crtc_w
);
427 if (!vc4_state
->is_yuv
) {
428 if (vc4_state
->is_unity
)
430 else if (vc4_state
->y_scaling
[0] == VC4_SCALING_TPZ
)
431 lbm
= pix_per_line
* 8;
433 /* In special cases, this multiplier might be 12. */
434 lbm
= pix_per_line
* 16;
437 /* There are cases for this going down to a multiplier
438 * of 2, but according to the firmware source, the
439 * table in the docs is somewhat wrong.
441 lbm
= pix_per_line
* 16;
444 lbm
= roundup(lbm
, 32);
449 static void vc4_write_scaling_parameters(struct drm_plane_state
*state
,
452 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
454 /* Ch0 H-PPF Word 0: Scaling Parameters */
455 if (vc4_state
->x_scaling
[channel
] == VC4_SCALING_PPF
) {
456 vc4_write_ppf(vc4_state
,
457 vc4_state
->src_w
[channel
], vc4_state
->crtc_w
);
460 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
461 if (vc4_state
->y_scaling
[channel
] == VC4_SCALING_PPF
) {
462 vc4_write_ppf(vc4_state
,
463 vc4_state
->src_h
[channel
], vc4_state
->crtc_h
);
464 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
467 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
468 if (vc4_state
->x_scaling
[channel
] == VC4_SCALING_TPZ
) {
469 vc4_write_tpz(vc4_state
,
470 vc4_state
->src_w
[channel
], vc4_state
->crtc_w
);
473 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
474 if (vc4_state
->y_scaling
[channel
] == VC4_SCALING_TPZ
) {
475 vc4_write_tpz(vc4_state
,
476 vc4_state
->src_h
[channel
], vc4_state
->crtc_h
);
477 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
481 /* Writes out a full display list for an active plane to the plane's
482 * private dlist state.
484 static int vc4_plane_mode_set(struct drm_plane
*plane
,
485 struct drm_plane_state
*state
)
487 struct vc4_dev
*vc4
= to_vc4_dev(plane
->dev
);
488 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
489 struct drm_framebuffer
*fb
= state
->fb
;
490 u32 ctl0_offset
= vc4_state
->dlist_count
;
491 const struct hvs_format
*format
= vc4_get_hvs_format(fb
->pixel_format
);
492 int num_planes
= drm_format_num_planes(format
->drm
);
495 unsigned long irqflags
;
498 ret
= vc4_plane_setup_clipping_and_scaling(state
);
502 /* Allocate the LBM memory that the HVS will use for temporary
503 * storage due to our scaling/format conversion.
505 lbm_size
= vc4_lbm_size(state
);
507 if (!vc4_state
->lbm
.allocated
) {
508 spin_lock_irqsave(&vc4
->hvs
->mm_lock
, irqflags
);
509 ret
= drm_mm_insert_node(&vc4
->hvs
->lbm_mm
,
512 spin_unlock_irqrestore(&vc4
->hvs
->mm_lock
, irqflags
);
514 WARN_ON_ONCE(lbm_size
!= vc4_state
->lbm
.size
);
521 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
522 * and 4:4:4, scl1 should be set to scl0 so both channels of
523 * the scaler do the same thing. For YUV, the Y plane needs
524 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
525 * the scl fields here.
527 if (num_planes
== 1) {
528 scl0
= vc4_get_scl_field(state
, 1);
531 scl0
= vc4_get_scl_field(state
, 1);
532 scl1
= vc4_get_scl_field(state
, 0);
536 vc4_dlist_write(vc4_state
,
538 (format
->pixel_order
<< SCALER_CTL0_ORDER_SHIFT
) |
539 (format
->hvs
<< SCALER_CTL0_PIXEL_FORMAT_SHIFT
) |
540 (vc4_state
->is_unity
? SCALER_CTL0_UNITY
: 0) |
541 VC4_SET_FIELD(scl0
, SCALER_CTL0_SCL0
) |
542 VC4_SET_FIELD(scl1
, SCALER_CTL0_SCL1
));
544 /* Position Word 0: Image Positions and Alpha Value */
545 vc4_state
->pos0_offset
= vc4_state
->dlist_count
;
546 vc4_dlist_write(vc4_state
,
547 VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA
) |
548 VC4_SET_FIELD(vc4_state
->crtc_x
, SCALER_POS0_START_X
) |
549 VC4_SET_FIELD(vc4_state
->crtc_y
, SCALER_POS0_START_Y
));
551 /* Position Word 1: Scaled Image Dimensions. */
552 if (!vc4_state
->is_unity
) {
553 vc4_dlist_write(vc4_state
,
554 VC4_SET_FIELD(vc4_state
->crtc_w
,
555 SCALER_POS1_SCL_WIDTH
) |
556 VC4_SET_FIELD(vc4_state
->crtc_h
,
557 SCALER_POS1_SCL_HEIGHT
));
560 /* Position Word 2: Source Image Size, Alpha Mode */
561 vc4_state
->pos2_offset
= vc4_state
->dlist_count
;
562 vc4_dlist_write(vc4_state
,
563 VC4_SET_FIELD(format
->has_alpha
?
564 SCALER_POS2_ALPHA_MODE_PIPELINE
:
565 SCALER_POS2_ALPHA_MODE_FIXED
,
566 SCALER_POS2_ALPHA_MODE
) |
567 VC4_SET_FIELD(vc4_state
->src_w
[0], SCALER_POS2_WIDTH
) |
568 VC4_SET_FIELD(vc4_state
->src_h
[0], SCALER_POS2_HEIGHT
));
570 /* Position Word 3: Context. Written by the HVS. */
571 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
574 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
576 * The pointers may be any byte address.
578 vc4_state
->ptr0_offset
= vc4_state
->dlist_count
;
579 if (!format
->flip_cbcr
) {
580 for (i
= 0; i
< num_planes
; i
++)
581 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[i
]);
583 WARN_ON_ONCE(num_planes
!= 3);
584 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[0]);
585 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[2]);
586 vc4_dlist_write(vc4_state
, vc4_state
->offsets
[1]);
589 /* Pointer Context Word 0/1/2: Written by the HVS */
590 for (i
= 0; i
< num_planes
; i
++)
591 vc4_dlist_write(vc4_state
, 0xc0c0c0c0);
593 /* Pitch word 0/1/2 */
594 for (i
= 0; i
< num_planes
; i
++) {
595 vc4_dlist_write(vc4_state
,
596 VC4_SET_FIELD(fb
->pitches
[i
], SCALER_SRC_PITCH
));
599 /* Colorspace conversion words */
600 if (vc4_state
->is_yuv
) {
601 vc4_dlist_write(vc4_state
, SCALER_CSC0_ITR_R_601_5
);
602 vc4_dlist_write(vc4_state
, SCALER_CSC1_ITR_R_601_5
);
603 vc4_dlist_write(vc4_state
, SCALER_CSC2_ITR_R_601_5
);
606 if (!vc4_state
->is_unity
) {
607 /* LBM Base Address. */
608 if (vc4_state
->y_scaling
[0] != VC4_SCALING_NONE
||
609 vc4_state
->y_scaling
[1] != VC4_SCALING_NONE
) {
610 vc4_dlist_write(vc4_state
, vc4_state
->lbm
.start
);
613 if (num_planes
> 1) {
614 /* Emit Cb/Cr as channel 0 and Y as channel
615 * 1. This matches how we set up scl0/scl1
618 vc4_write_scaling_parameters(state
, 1);
620 vc4_write_scaling_parameters(state
, 0);
622 /* If any PPF setup was done, then all the kernel
623 * pointers get uploaded.
625 if (vc4_state
->x_scaling
[0] == VC4_SCALING_PPF
||
626 vc4_state
->y_scaling
[0] == VC4_SCALING_PPF
||
627 vc4_state
->x_scaling
[1] == VC4_SCALING_PPF
||
628 vc4_state
->y_scaling
[1] == VC4_SCALING_PPF
) {
629 u32 kernel
= VC4_SET_FIELD(vc4
->hvs
->mitchell_netravali_filter
.start
,
630 SCALER_PPF_KERNEL_OFFSET
);
633 vc4_dlist_write(vc4_state
, kernel
);
635 vc4_dlist_write(vc4_state
, kernel
);
637 vc4_dlist_write(vc4_state
, kernel
);
639 vc4_dlist_write(vc4_state
, kernel
);
643 vc4_state
->dlist
[ctl0_offset
] |=
644 VC4_SET_FIELD(vc4_state
->dlist_count
, SCALER_CTL0_SIZE
);
649 /* If a modeset involves changing the setup of a plane, the atomic
650 * infrastructure will call this to validate a proposed plane setup.
651 * However, if a plane isn't getting updated, this (and the
652 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
653 * compute the dlist here and have all active plane dlists get updated
654 * in the CRTC's flush.
656 static int vc4_plane_atomic_check(struct drm_plane
*plane
,
657 struct drm_plane_state
*state
)
659 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
661 vc4_state
->dlist_count
= 0;
663 if (plane_enabled(state
))
664 return vc4_plane_mode_set(plane
, state
);
669 static void vc4_plane_atomic_update(struct drm_plane
*plane
,
670 struct drm_plane_state
*old_state
)
672 /* No contents here. Since we don't know where in the CRTC's
673 * dlist we should be stored, our dlist is uploaded to the
674 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
679 u32
vc4_plane_write_dlist(struct drm_plane
*plane
, u32 __iomem
*dlist
)
681 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(plane
->state
);
684 vc4_state
->hw_dlist
= dlist
;
686 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
687 for (i
= 0; i
< vc4_state
->dlist_count
; i
++)
688 writel(vc4_state
->dlist
[i
], &dlist
[i
]);
690 return vc4_state
->dlist_count
;
693 u32
vc4_plane_dlist_size(struct drm_plane_state
*state
)
695 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(state
);
697 return vc4_state
->dlist_count
;
700 /* Updates the plane to immediately (well, once the FIFO needs
701 * refilling) scan out from at a new framebuffer.
703 void vc4_plane_async_set_fb(struct drm_plane
*plane
, struct drm_framebuffer
*fb
)
705 struct vc4_plane_state
*vc4_state
= to_vc4_plane_state(plane
->state
);
706 struct drm_gem_cma_object
*bo
= drm_fb_cma_get_gem_obj(fb
, 0);
709 /* We're skipping the address adjustment for negative origin,
710 * because this is only called on the primary plane.
712 WARN_ON_ONCE(plane
->state
->crtc_x
< 0 || plane
->state
->crtc_y
< 0);
713 addr
= bo
->paddr
+ fb
->offsets
[0];
715 /* Write the new address into the hardware immediately. The
716 * scanout will start from this address as soon as the FIFO
717 * needs to refill with pixels.
719 writel(addr
, &vc4_state
->hw_dlist
[vc4_state
->ptr0_offset
]);
721 /* Also update the CPU-side dlist copy, so that any later
722 * atomic updates that don't do a new modeset on our plane
723 * also use our updated address.
725 vc4_state
->dlist
[vc4_state
->ptr0_offset
] = addr
;
728 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs
= {
731 .atomic_check
= vc4_plane_atomic_check
,
732 .atomic_update
= vc4_plane_atomic_update
,
735 static void vc4_plane_destroy(struct drm_plane
*plane
)
737 drm_plane_helper_disable(plane
);
738 drm_plane_cleanup(plane
);
741 /* Implements immediate (non-vblank-synced) updates of the cursor
742 * position, or falls back to the atomic helper otherwise.
745 vc4_update_plane(struct drm_plane
*plane
,
746 struct drm_crtc
*crtc
,
747 struct drm_framebuffer
*fb
,
748 int crtc_x
, int crtc_y
,
749 unsigned int crtc_w
, unsigned int crtc_h
,
750 uint32_t src_x
, uint32_t src_y
,
751 uint32_t src_w
, uint32_t src_h
)
753 struct drm_plane_state
*plane_state
;
754 struct vc4_plane_state
*vc4_state
;
756 if (plane
!= crtc
->cursor
)
759 plane_state
= plane
->state
;
760 vc4_state
= to_vc4_plane_state(plane_state
);
765 /* If we're changing the cursor contents, do that in the
766 * normal vblank-synced atomic path.
768 if (fb
!= plane_state
->fb
)
771 /* No configuring new scaling in the fast path. */
772 if (crtc_w
!= plane_state
->crtc_w
||
773 crtc_h
!= plane_state
->crtc_h
||
774 src_w
!= plane_state
->src_w
||
775 src_h
!= plane_state
->src_h
) {
779 /* Set the cursor's position on the screen. This is the
780 * expected change from the drm_mode_cursor_universal()
783 plane_state
->crtc_x
= crtc_x
;
784 plane_state
->crtc_y
= crtc_y
;
786 /* Allow changing the start position within the cursor BO, if
789 plane_state
->src_x
= src_x
;
790 plane_state
->src_y
= src_y
;
792 /* Update the display list based on the new crtc_x/y. */
793 vc4_plane_atomic_check(plane
, plane_state
);
795 /* Note that we can't just call vc4_plane_write_dlist()
796 * because that would smash the context data that the HVS is
799 writel(vc4_state
->dlist
[vc4_state
->pos0_offset
],
800 &vc4_state
->hw_dlist
[vc4_state
->pos0_offset
]);
801 writel(vc4_state
->dlist
[vc4_state
->pos2_offset
],
802 &vc4_state
->hw_dlist
[vc4_state
->pos2_offset
]);
803 writel(vc4_state
->dlist
[vc4_state
->ptr0_offset
],
804 &vc4_state
->hw_dlist
[vc4_state
->ptr0_offset
]);
809 return drm_atomic_helper_update_plane(plane
, crtc
, fb
,
816 static const struct drm_plane_funcs vc4_plane_funcs
= {
817 .update_plane
= vc4_update_plane
,
818 .disable_plane
= drm_atomic_helper_disable_plane
,
819 .destroy
= vc4_plane_destroy
,
820 .set_property
= NULL
,
821 .reset
= vc4_plane_reset
,
822 .atomic_duplicate_state
= vc4_plane_duplicate_state
,
823 .atomic_destroy_state
= vc4_plane_destroy_state
,
826 struct drm_plane
*vc4_plane_init(struct drm_device
*dev
,
827 enum drm_plane_type type
)
829 struct drm_plane
*plane
= NULL
;
830 struct vc4_plane
*vc4_plane
;
831 u32 formats
[ARRAY_SIZE(hvs_formats
)];
836 vc4_plane
= devm_kzalloc(dev
->dev
, sizeof(*vc4_plane
),
843 for (i
= 0; i
< ARRAY_SIZE(hvs_formats
); i
++) {
844 /* Don't allow YUV in cursor planes, since that means
845 * tuning on the scaler, which we don't allow for the
848 if (type
!= DRM_PLANE_TYPE_CURSOR
||
849 hvs_formats
[i
].hvs
< HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE
) {
850 formats
[num_formats
++] = hvs_formats
[i
].drm
;
853 plane
= &vc4_plane
->base
;
854 ret
= drm_universal_plane_init(dev
, plane
, 0xff,
856 formats
, num_formats
,
859 drm_plane_helper_add(plane
, &vc4_plane_helper_funcs
);
864 vc4_plane_destroy(plane
);