2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.14-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION
);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any
;
86 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
87 MODULE_PARM_DESC(hpsa_allow_any
,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode
;
90 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
91 MODULE_PARM_DESC(hpsa_simple_mode
,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id
[] = {
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
148 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
152 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products
[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access
},
160 {0x3243103C, "Smart Array P410", &SA5_access
},
161 {0x3245103C, "Smart Array P410i", &SA5_access
},
162 {0x3247103C, "Smart Array P411", &SA5_access
},
163 {0x3249103C, "Smart Array P812", &SA5_access
},
164 {0x324A103C, "Smart Array P712m", &SA5_access
},
165 {0x324B103C, "Smart Array P711m", &SA5_access
},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access
},
168 {0x3351103C, "Smart Array P420", &SA5_access
},
169 {0x3352103C, "Smart Array P421", &SA5_access
},
170 {0x3353103C, "Smart Array P822", &SA5_access
},
171 {0x3354103C, "Smart Array P420i", &SA5_access
},
172 {0x3355103C, "Smart Array P220i", &SA5_access
},
173 {0x3356103C, "Smart Array P721m", &SA5_access
},
174 {0x1921103C, "Smart Array P830i", &SA5_access
},
175 {0x1922103C, "Smart Array P430", &SA5_access
},
176 {0x1923103C, "Smart Array P431", &SA5_access
},
177 {0x1924103C, "Smart Array P830", &SA5_access
},
178 {0x1926103C, "Smart Array P731m", &SA5_access
},
179 {0x1928103C, "Smart Array P230i", &SA5_access
},
180 {0x1929103C, "Smart Array P530", &SA5_access
},
181 {0x21BD103C, "Smart Array P244br", &SA5_access
},
182 {0x21BE103C, "Smart Array P741m", &SA5_access
},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
186 {0x21C2103C, "Smart Array P440", &SA5_access
},
187 {0x21C3103C, "Smart Array P441", &SA5_access
},
188 {0x21C4103C, "Smart Array", &SA5_access
},
189 {0x21C5103C, "Smart Array P841", &SA5_access
},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
191 {0x21C7103C, "Smart HBA H240", &SA5_access
},
192 {0x21C8103C, "Smart HBA H241", &SA5_access
},
193 {0x21C9103C, "Smart Array", &SA5_access
},
194 {0x21CA103C, "Smart Array P246br", &SA5_access
},
195 {0x21CB103C, "Smart Array P840", &SA5_access
},
196 {0x21CC103C, "Smart Array", &SA5_access
},
197 {0x21CD103C, "Smart Array", &SA5_access
},
198 {0x21CE103C, "Smart HBA", &SA5_access
},
199 {0x05809005, "SmartHBA-SA", &SA5_access
},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
213 static struct scsi_transport_template
*hpsa_sas_transport_template
;
214 static int hpsa_add_sas_host(struct ctlr_info
*h
);
215 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
216 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
217 struct hpsa_scsi_dev_t
*device
);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
221 struct sas_rphy
*rphy
);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy
;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle
;
227 static int number_of_controllers
;
229 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
230 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
231 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
234 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
238 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
239 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
240 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
241 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
242 struct scsi_cmnd
*scmd
);
243 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
244 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
246 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
251 static void hpsa_scan_start(struct Scsi_Host
*);
252 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
253 unsigned long elapsed_time
);
254 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
258 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
259 static int hpsa_slave_configure(struct scsi_device
*sdev
);
260 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
262 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
263 static int check_for_unit_attention(struct ctlr_info
*h
,
264 struct CommandList
*c
);
265 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
266 struct CommandList
*c
);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket
, int num_buckets
,
269 int nsgs
, int min_blocks
, u32
*bucket_map
);
270 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
272 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
273 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
274 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
276 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
277 unsigned long *memory_bar
);
278 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
279 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
281 static inline void finish_cmd(struct CommandList
*c
);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
286 static void hpsa_flush_cache(struct ctlr_info
*h
);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
288 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
289 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
290 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
291 static u32
lockup_detected(struct ctlr_info
*h
);
292 static int detect_controller_lockup(struct ctlr_info
*h
);
293 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
295 struct ReportExtendedLUNdata
*buf
, int bufsize
);
296 static int hpsa_luns_changed(struct ctlr_info
*h
);
298 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
300 unsigned long *priv
= shost_priv(sdev
->host
);
301 return (struct ctlr_info
*) *priv
;
304 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
306 unsigned long *priv
= shost_priv(sh
);
307 return (struct ctlr_info
*) *priv
;
310 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
312 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
315 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
317 return c
->abort_pending
|| c
->reset_pending
;
320 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
321 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
322 u8
*sense_key
, u8
*asc
, u8
*ascq
)
324 struct scsi_sense_hdr sshdr
;
331 if (sense_data_len
< 1)
334 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
336 *sense_key
= sshdr
.sense_key
;
342 static int check_for_unit_attention(struct ctlr_info
*h
,
343 struct CommandList
*c
)
345 u8 sense_key
, asc
, ascq
;
348 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
349 sense_len
= sizeof(c
->err_info
->SenseInfo
);
351 sense_len
= c
->err_info
->SenseLen
;
353 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
354 &sense_key
, &asc
, &ascq
);
355 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
360 dev_warn(&h
->pdev
->dev
,
361 "%s: a state change detected, command retried\n",
365 dev_warn(&h
->pdev
->dev
,
366 "%s: LUN failure detected\n", h
->devname
);
368 case REPORT_LUNS_CHANGED
:
369 dev_warn(&h
->pdev
->dev
,
370 "%s: report LUN data changed\n", h
->devname
);
372 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
373 * target (array) devices.
377 dev_warn(&h
->pdev
->dev
,
378 "%s: a power on or device reset detected\n",
381 case UNIT_ATTENTION_CLEARED
:
382 dev_warn(&h
->pdev
->dev
,
383 "%s: unit attention cleared by another initiator\n",
387 dev_warn(&h
->pdev
->dev
,
388 "%s: unknown unit attention detected\n",
395 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
397 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
398 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
399 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
401 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
405 static u32
lockup_detected(struct ctlr_info
*h
);
406 static ssize_t
host_show_lockup_detected(struct device
*dev
,
407 struct device_attribute
*attr
, char *buf
)
411 struct Scsi_Host
*shost
= class_to_shost(dev
);
413 h
= shost_to_hba(shost
);
414 ld
= lockup_detected(h
);
416 return sprintf(buf
, "ld=%d\n", ld
);
419 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
420 struct device_attribute
*attr
,
421 const char *buf
, size_t count
)
425 struct Scsi_Host
*shost
= class_to_shost(dev
);
428 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
430 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
431 strncpy(tmpbuf
, buf
, len
);
433 if (sscanf(tmpbuf
, "%d", &status
) != 1)
435 h
= shost_to_hba(shost
);
436 h
->acciopath_status
= !!status
;
437 dev_warn(&h
->pdev
->dev
,
438 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
439 h
->acciopath_status
? "enabled" : "disabled");
443 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
444 struct device_attribute
*attr
,
445 const char *buf
, size_t count
)
447 int debug_level
, len
;
449 struct Scsi_Host
*shost
= class_to_shost(dev
);
452 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
454 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
455 strncpy(tmpbuf
, buf
, len
);
457 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
461 h
= shost_to_hba(shost
);
462 h
->raid_offload_debug
= debug_level
;
463 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
464 h
->raid_offload_debug
);
468 static ssize_t
host_store_rescan(struct device
*dev
,
469 struct device_attribute
*attr
,
470 const char *buf
, size_t count
)
473 struct Scsi_Host
*shost
= class_to_shost(dev
);
474 h
= shost_to_hba(shost
);
475 hpsa_scan_start(h
->scsi_host
);
479 static ssize_t
host_show_firmware_revision(struct device
*dev
,
480 struct device_attribute
*attr
, char *buf
)
483 struct Scsi_Host
*shost
= class_to_shost(dev
);
484 unsigned char *fwrev
;
486 h
= shost_to_hba(shost
);
487 if (!h
->hba_inquiry_data
)
489 fwrev
= &h
->hba_inquiry_data
[32];
490 return snprintf(buf
, 20, "%c%c%c%c\n",
491 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
494 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
495 struct device_attribute
*attr
, char *buf
)
497 struct Scsi_Host
*shost
= class_to_shost(dev
);
498 struct ctlr_info
*h
= shost_to_hba(shost
);
500 return snprintf(buf
, 20, "%d\n",
501 atomic_read(&h
->commands_outstanding
));
504 static ssize_t
host_show_transport_mode(struct device
*dev
,
505 struct device_attribute
*attr
, char *buf
)
508 struct Scsi_Host
*shost
= class_to_shost(dev
);
510 h
= shost_to_hba(shost
);
511 return snprintf(buf
, 20, "%s\n",
512 h
->transMethod
& CFGTBL_Trans_Performant
?
513 "performant" : "simple");
516 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
517 struct device_attribute
*attr
, char *buf
)
520 struct Scsi_Host
*shost
= class_to_shost(dev
);
522 h
= shost_to_hba(shost
);
523 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
524 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
527 /* List of controllers which cannot be hard reset on kexec with reset_devices */
528 static u32 unresettable_controller
[] = {
529 0x324a103C, /* Smart Array P712m */
530 0x324b103C, /* Smart Array P711m */
531 0x3223103C, /* Smart Array P800 */
532 0x3234103C, /* Smart Array P400 */
533 0x3235103C, /* Smart Array P400i */
534 0x3211103C, /* Smart Array E200i */
535 0x3212103C, /* Smart Array E200 */
536 0x3213103C, /* Smart Array E200i */
537 0x3214103C, /* Smart Array E200i */
538 0x3215103C, /* Smart Array E200i */
539 0x3237103C, /* Smart Array E500 */
540 0x323D103C, /* Smart Array P700m */
541 0x40800E11, /* Smart Array 5i */
542 0x409C0E11, /* Smart Array 6400 */
543 0x409D0E11, /* Smart Array 6400 EM */
544 0x40700E11, /* Smart Array 5300 */
545 0x40820E11, /* Smart Array 532 */
546 0x40830E11, /* Smart Array 5312 */
547 0x409A0E11, /* Smart Array 641 */
548 0x409B0E11, /* Smart Array 642 */
549 0x40910E11, /* Smart Array 6i */
552 /* List of controllers which cannot even be soft reset */
553 static u32 soft_unresettable_controller
[] = {
554 0x40800E11, /* Smart Array 5i */
555 0x40700E11, /* Smart Array 5300 */
556 0x40820E11, /* Smart Array 532 */
557 0x40830E11, /* Smart Array 5312 */
558 0x409A0E11, /* Smart Array 641 */
559 0x409B0E11, /* Smart Array 642 */
560 0x40910E11, /* Smart Array 6i */
561 /* Exclude 640x boards. These are two pci devices in one slot
562 * which share a battery backed cache module. One controls the
563 * cache, the other accesses the cache through the one that controls
564 * it. If we reset the one controlling the cache, the other will
565 * likely not be happy. Just forbid resetting this conjoined mess.
566 * The 640x isn't really supported by hpsa anyway.
568 0x409C0E11, /* Smart Array 6400 */
569 0x409D0E11, /* Smart Array 6400 EM */
572 static u32 needs_abort_tags_swizzled
[] = {
573 0x323D103C, /* Smart Array P700m */
574 0x324a103C, /* Smart Array P712m */
575 0x324b103C, /* SmartArray P711m */
578 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
582 for (i
= 0; i
< nelems
; i
++)
583 if (a
[i
] == board_id
)
588 static int ctlr_is_hard_resettable(u32 board_id
)
590 return !board_id_in_array(unresettable_controller
,
591 ARRAY_SIZE(unresettable_controller
), board_id
);
594 static int ctlr_is_soft_resettable(u32 board_id
)
596 return !board_id_in_array(soft_unresettable_controller
,
597 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
600 static int ctlr_is_resettable(u32 board_id
)
602 return ctlr_is_hard_resettable(board_id
) ||
603 ctlr_is_soft_resettable(board_id
);
606 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
608 return board_id_in_array(needs_abort_tags_swizzled
,
609 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
612 static ssize_t
host_show_resettable(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
616 struct Scsi_Host
*shost
= class_to_shost(dev
);
618 h
= shost_to_hba(shost
);
619 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
622 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
624 return (scsi3addr
[3] & 0xC0) == 0x40;
627 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
628 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
630 #define HPSA_RAID_0 0
631 #define HPSA_RAID_4 1
632 #define HPSA_RAID_1 2 /* also used for RAID 10 */
633 #define HPSA_RAID_5 3 /* also used for RAID 50 */
634 #define HPSA_RAID_51 4
635 #define HPSA_RAID_6 5 /* also used for RAID 60 */
636 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
637 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
638 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
640 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
642 return !device
->physical_device
;
645 static ssize_t
raid_level_show(struct device
*dev
,
646 struct device_attribute
*attr
, char *buf
)
649 unsigned char rlevel
;
651 struct scsi_device
*sdev
;
652 struct hpsa_scsi_dev_t
*hdev
;
655 sdev
= to_scsi_device(dev
);
656 h
= sdev_to_hba(sdev
);
657 spin_lock_irqsave(&h
->lock
, flags
);
658 hdev
= sdev
->hostdata
;
660 spin_unlock_irqrestore(&h
->lock
, flags
);
664 /* Is this even a logical drive? */
665 if (!is_logical_device(hdev
)) {
666 spin_unlock_irqrestore(&h
->lock
, flags
);
667 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
671 rlevel
= hdev
->raid_level
;
672 spin_unlock_irqrestore(&h
->lock
, flags
);
673 if (rlevel
> RAID_UNKNOWN
)
674 rlevel
= RAID_UNKNOWN
;
675 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
679 static ssize_t
lunid_show(struct device
*dev
,
680 struct device_attribute
*attr
, char *buf
)
683 struct scsi_device
*sdev
;
684 struct hpsa_scsi_dev_t
*hdev
;
686 unsigned char lunid
[8];
688 sdev
= to_scsi_device(dev
);
689 h
= sdev_to_hba(sdev
);
690 spin_lock_irqsave(&h
->lock
, flags
);
691 hdev
= sdev
->hostdata
;
693 spin_unlock_irqrestore(&h
->lock
, flags
);
696 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
697 spin_unlock_irqrestore(&h
->lock
, flags
);
698 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
699 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
700 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
703 static ssize_t
unique_id_show(struct device
*dev
,
704 struct device_attribute
*attr
, char *buf
)
707 struct scsi_device
*sdev
;
708 struct hpsa_scsi_dev_t
*hdev
;
710 unsigned char sn
[16];
712 sdev
= to_scsi_device(dev
);
713 h
= sdev_to_hba(sdev
);
714 spin_lock_irqsave(&h
->lock
, flags
);
715 hdev
= sdev
->hostdata
;
717 spin_unlock_irqrestore(&h
->lock
, flags
);
720 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
721 spin_unlock_irqrestore(&h
->lock
, flags
);
722 return snprintf(buf
, 16 * 2 + 2,
723 "%02X%02X%02X%02X%02X%02X%02X%02X"
724 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
725 sn
[0], sn
[1], sn
[2], sn
[3],
726 sn
[4], sn
[5], sn
[6], sn
[7],
727 sn
[8], sn
[9], sn
[10], sn
[11],
728 sn
[12], sn
[13], sn
[14], sn
[15]);
731 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
732 struct device_attribute
*attr
, char *buf
)
735 struct scsi_device
*sdev
;
736 struct hpsa_scsi_dev_t
*hdev
;
740 sdev
= to_scsi_device(dev
);
741 h
= sdev_to_hba(sdev
);
742 spin_lock_irqsave(&h
->lock
, flags
);
743 hdev
= sdev
->hostdata
;
745 spin_unlock_irqrestore(&h
->lock
, flags
);
748 offload_enabled
= hdev
->offload_enabled
;
749 spin_unlock_irqrestore(&h
->lock
, flags
);
750 return snprintf(buf
, 20, "%d\n", offload_enabled
);
754 static ssize_t
path_info_show(struct device
*dev
,
755 struct device_attribute
*attr
, char *buf
)
758 struct scsi_device
*sdev
;
759 struct hpsa_scsi_dev_t
*hdev
;
765 u8 path_map_index
= 0;
767 unsigned char phys_connector
[2];
769 sdev
= to_scsi_device(dev
);
770 h
= sdev_to_hba(sdev
);
771 spin_lock_irqsave(&h
->devlock
, flags
);
772 hdev
= sdev
->hostdata
;
774 spin_unlock_irqrestore(&h
->devlock
, flags
);
779 for (i
= 0; i
< MAX_PATHS
; i
++) {
780 path_map_index
= 1<<i
;
781 if (i
== hdev
->active_path_index
)
783 else if (hdev
->path_map
& path_map_index
)
788 output_len
+= scnprintf(buf
+ output_len
,
789 PAGE_SIZE
- output_len
,
790 "[%d:%d:%d:%d] %20.20s ",
791 h
->scsi_host
->host_no
,
792 hdev
->bus
, hdev
->target
, hdev
->lun
,
793 scsi_device_type(hdev
->devtype
));
795 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
796 output_len
+= scnprintf(buf
+ output_len
,
797 PAGE_SIZE
- output_len
,
803 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
804 sizeof(phys_connector
));
805 if (phys_connector
[0] < '0')
806 phys_connector
[0] = '0';
807 if (phys_connector
[1] < '0')
808 phys_connector
[1] = '0';
809 output_len
+= scnprintf(buf
+ output_len
,
810 PAGE_SIZE
- output_len
,
813 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
814 hdev
->expose_device
) {
815 if (box
== 0 || box
== 0xFF) {
816 output_len
+= scnprintf(buf
+ output_len
,
817 PAGE_SIZE
- output_len
,
821 output_len
+= scnprintf(buf
+ output_len
,
822 PAGE_SIZE
- output_len
,
823 "BOX: %hhu BAY: %hhu %s\n",
826 } else if (box
!= 0 && box
!= 0xFF) {
827 output_len
+= scnprintf(buf
+ output_len
,
828 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
831 output_len
+= scnprintf(buf
+ output_len
,
832 PAGE_SIZE
- output_len
, "%s\n", active
);
835 spin_unlock_irqrestore(&h
->devlock
, flags
);
839 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
840 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
841 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
842 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
843 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
844 host_show_hp_ssd_smart_path_enabled
, NULL
);
845 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
846 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
847 host_show_hp_ssd_smart_path_status
,
848 host_store_hp_ssd_smart_path_status
);
849 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
850 host_store_raid_offload_debug
);
851 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
852 host_show_firmware_revision
, NULL
);
853 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
854 host_show_commands_outstanding
, NULL
);
855 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
856 host_show_transport_mode
, NULL
);
857 static DEVICE_ATTR(resettable
, S_IRUGO
,
858 host_show_resettable
, NULL
);
859 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
860 host_show_lockup_detected
, NULL
);
862 static struct device_attribute
*hpsa_sdev_attrs
[] = {
863 &dev_attr_raid_level
,
866 &dev_attr_hp_ssd_smart_path_enabled
,
871 static struct device_attribute
*hpsa_shost_attrs
[] = {
873 &dev_attr_firmware_revision
,
874 &dev_attr_commands_outstanding
,
875 &dev_attr_transport_mode
,
876 &dev_attr_resettable
,
877 &dev_attr_hp_ssd_smart_path_status
,
878 &dev_attr_raid_offload_debug
,
879 &dev_attr_lockup_detected
,
883 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
884 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
886 static struct scsi_host_template hpsa_driver_template
= {
887 .module
= THIS_MODULE
,
890 .queuecommand
= hpsa_scsi_queue_command
,
891 .scan_start
= hpsa_scan_start
,
892 .scan_finished
= hpsa_scan_finished
,
893 .change_queue_depth
= hpsa_change_queue_depth
,
895 .use_clustering
= ENABLE_CLUSTERING
,
896 .eh_abort_handler
= hpsa_eh_abort_handler
,
897 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
899 .slave_alloc
= hpsa_slave_alloc
,
900 .slave_configure
= hpsa_slave_configure
,
901 .slave_destroy
= hpsa_slave_destroy
,
903 .compat_ioctl
= hpsa_compat_ioctl
,
905 .sdev_attrs
= hpsa_sdev_attrs
,
906 .shost_attrs
= hpsa_shost_attrs
,
911 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
914 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
916 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
917 return h
->access
.command_completed(h
, q
);
919 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
920 return h
->access
.command_completed(h
, q
);
922 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
923 a
= rq
->head
[rq
->current_entry
];
925 atomic_dec(&h
->commands_outstanding
);
929 /* Check for wraparound */
930 if (rq
->current_entry
== h
->max_commands
) {
931 rq
->current_entry
= 0;
938 * There are some special bits in the bus address of the
939 * command that we have to set for the controller to know
940 * how to process the command:
942 * Normal performant mode:
943 * bit 0: 1 means performant mode, 0 means simple mode.
944 * bits 1-3 = block fetch table entry
945 * bits 4-6 = command type (== 0)
948 * bit 0 = "performant mode" bit.
949 * bits 1-3 = block fetch table entry
950 * bits 4-6 = command type (== 110)
951 * (command type is needed because ioaccel1 mode
952 * commands are submitted through the same register as normal
953 * mode commands, so this is how the controller knows whether
954 * the command is normal mode or ioaccel1 mode.)
957 * bit 0 = "performant mode" bit.
958 * bits 1-4 = block fetch table entry (note extra bit)
959 * bits 4-6 = not needed, because ioaccel2 mode has
960 * a separate special register for submitting commands.
964 * set_performant_mode: Modify the tag for cciss performant
965 * set bit 0 for pull model, bits 3-1 for block fetch
968 #define DEFAULT_REPLY_QUEUE (-1)
969 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
972 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
973 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
974 if (unlikely(!h
->msix_vector
))
976 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
977 c
->Header
.ReplyQueue
=
978 raw_smp_processor_id() % h
->nreply_queues
;
980 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
984 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
985 struct CommandList
*c
,
988 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
991 * Tell the controller to post the reply to the queue for this
992 * processor. This seems to give the best I/O throughput.
994 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
995 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
997 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
999 * Set the bits in the address sent down to include:
1000 * - performant mode bit (bit 0)
1001 * - pull count (bits 1-3)
1002 * - command type (bits 4-6)
1004 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1005 IOACCEL1_BUSADDR_CMDTYPE
;
1008 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1009 struct CommandList
*c
,
1012 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1013 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1015 /* Tell the controller to post the reply to the queue for this
1016 * processor. This seems to give the best I/O throughput.
1018 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1019 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1021 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1022 /* Set the bits in the address sent down to include:
1023 * - performant mode bit not used in ioaccel mode 2
1024 * - pull count (bits 0-3)
1025 * - command type isn't needed for ioaccel2
1027 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1030 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1031 struct CommandList
*c
,
1034 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1037 * Tell the controller to post the reply to the queue for this
1038 * processor. This seems to give the best I/O throughput.
1040 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1041 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1043 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1045 * Set the bits in the address sent down to include:
1046 * - performant mode bit not used in ioaccel mode 2
1047 * - pull count (bits 0-3)
1048 * - command type isn't needed for ioaccel2
1050 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1053 static int is_firmware_flash_cmd(u8
*cdb
)
1055 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1059 * During firmware flash, the heartbeat register may not update as frequently
1060 * as it should. So we dial down lockup detection during firmware flash. and
1061 * dial it back up when firmware flash completes.
1063 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1064 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1065 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1066 struct CommandList
*c
)
1068 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1070 atomic_inc(&h
->firmware_flash_in_progress
);
1071 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1074 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1075 struct CommandList
*c
)
1077 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1078 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1079 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1082 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1083 struct CommandList
*c
, int reply_queue
)
1085 dial_down_lockup_detection_during_fw_flash(h
, c
);
1086 atomic_inc(&h
->commands_outstanding
);
1087 switch (c
->cmd_type
) {
1089 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1090 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1093 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1094 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1097 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1098 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1101 set_performant_mode(h
, c
, reply_queue
);
1102 h
->access
.submit_command(h
, c
);
1106 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1108 if (unlikely(hpsa_is_pending_event(c
)))
1109 return finish_cmd(c
);
1111 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1114 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1116 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1119 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1121 if (!h
->hba_inquiry_data
)
1123 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1128 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1129 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1131 /* finds an unused bus, target, lun for a new physical device
1132 * assumes h->devlock is held
1135 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1137 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1139 for (i
= 0; i
< h
->ndevices
; i
++) {
1140 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1141 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1144 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1145 if (i
< HPSA_MAX_DEVICES
) {
1154 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1155 struct hpsa_scsi_dev_t
*dev
, char *description
)
1157 #define LABEL_SIZE 25
1158 char label
[LABEL_SIZE
];
1160 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1163 switch (dev
->devtype
) {
1165 snprintf(label
, LABEL_SIZE
, "controller");
1167 case TYPE_ENCLOSURE
:
1168 snprintf(label
, LABEL_SIZE
, "enclosure");
1173 snprintf(label
, LABEL_SIZE
, "external");
1174 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1175 snprintf(label
, LABEL_SIZE
, "%s",
1176 raid_label
[PHYSICAL_DRIVE
]);
1178 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1179 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1180 raid_label
[dev
->raid_level
]);
1183 snprintf(label
, LABEL_SIZE
, "rom");
1186 snprintf(label
, LABEL_SIZE
, "tape");
1188 case TYPE_MEDIUM_CHANGER
:
1189 snprintf(label
, LABEL_SIZE
, "changer");
1192 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1196 dev_printk(level
, &h
->pdev
->dev
,
1197 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1198 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1200 scsi_device_type(dev
->devtype
),
1204 dev
->offload_config
? '+' : '-',
1205 dev
->offload_enabled
? '+' : '-',
1206 dev
->expose_device
);
1209 /* Add an entry into h->dev[] array. */
1210 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1211 struct hpsa_scsi_dev_t
*device
,
1212 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1214 /* assumes h->devlock is held */
1215 int n
= h
->ndevices
;
1217 unsigned char addr1
[8], addr2
[8];
1218 struct hpsa_scsi_dev_t
*sd
;
1220 if (n
>= HPSA_MAX_DEVICES
) {
1221 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1226 /* physical devices do not have lun or target assigned until now. */
1227 if (device
->lun
!= -1)
1228 /* Logical device, lun is already assigned. */
1231 /* If this device a non-zero lun of a multi-lun device
1232 * byte 4 of the 8-byte LUN addr will contain the logical
1233 * unit no, zero otherwise.
1235 if (device
->scsi3addr
[4] == 0) {
1236 /* This is not a non-zero lun of a multi-lun device */
1237 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1238 device
->bus
, &device
->target
, &device
->lun
) != 0)
1243 /* This is a non-zero lun of a multi-lun device.
1244 * Search through our list and find the device which
1245 * has the same 8 byte LUN address, excepting byte 4 and 5.
1246 * Assign the same bus and target for this new LUN.
1247 * Use the logical unit number from the firmware.
1249 memcpy(addr1
, device
->scsi3addr
, 8);
1252 for (i
= 0; i
< n
; i
++) {
1254 memcpy(addr2
, sd
->scsi3addr
, 8);
1257 /* differ only in byte 4 and 5? */
1258 if (memcmp(addr1
, addr2
, 8) == 0) {
1259 device
->bus
= sd
->bus
;
1260 device
->target
= sd
->target
;
1261 device
->lun
= device
->scsi3addr
[4];
1265 if (device
->lun
== -1) {
1266 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1267 " suspect firmware bug or unsupported hardware "
1268 "configuration.\n");
1276 added
[*nadded
] = device
;
1278 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1279 device
->expose_device
? "added" : "masked");
1280 device
->offload_to_be_enabled
= device
->offload_enabled
;
1281 device
->offload_enabled
= 0;
1285 /* Update an entry in h->dev[] array. */
1286 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1287 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1289 int offload_enabled
;
1290 /* assumes h->devlock is held */
1291 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1293 /* Raid level changed. */
1294 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1296 /* Raid offload parameters changed. Careful about the ordering. */
1297 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1299 * if drive is newly offload_enabled, we want to copy the
1300 * raid map data first. If previously offload_enabled and
1301 * offload_config were set, raid map data had better be
1302 * the same as it was before. if raid map data is changed
1303 * then it had better be the case that
1304 * h->dev[entry]->offload_enabled is currently 0.
1306 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1307 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1309 if (new_entry
->hba_ioaccel_enabled
) {
1310 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1311 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1314 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1315 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1316 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1319 * We can turn off ioaccel offload now, but need to delay turning
1320 * it on until we can update h->dev[entry]->phys_disk[], but we
1321 * can't do that until all the devices are updated.
1323 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1324 if (!new_entry
->offload_enabled
)
1325 h
->dev
[entry
]->offload_enabled
= 0;
1327 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1328 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1329 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1330 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1333 /* Replace an entry from h->dev[] array. */
1334 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1335 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1336 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1337 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1339 /* assumes h->devlock is held */
1340 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1341 removed
[*nremoved
] = h
->dev
[entry
];
1345 * New physical devices won't have target/lun assigned yet
1346 * so we need to preserve the values in the slot we are replacing.
1348 if (new_entry
->target
== -1) {
1349 new_entry
->target
= h
->dev
[entry
]->target
;
1350 new_entry
->lun
= h
->dev
[entry
]->lun
;
1353 h
->dev
[entry
] = new_entry
;
1354 added
[*nadded
] = new_entry
;
1356 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1357 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1358 new_entry
->offload_enabled
= 0;
1361 /* Remove an entry from h->dev[] array. */
1362 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1363 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1365 /* assumes h->devlock is held */
1367 struct hpsa_scsi_dev_t
*sd
;
1369 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1372 removed
[*nremoved
] = h
->dev
[entry
];
1375 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1376 h
->dev
[i
] = h
->dev
[i
+1];
1378 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1381 #define SCSI3ADDR_EQ(a, b) ( \
1382 (a)[7] == (b)[7] && \
1383 (a)[6] == (b)[6] && \
1384 (a)[5] == (b)[5] && \
1385 (a)[4] == (b)[4] && \
1386 (a)[3] == (b)[3] && \
1387 (a)[2] == (b)[2] && \
1388 (a)[1] == (b)[1] && \
1391 static void fixup_botched_add(struct ctlr_info
*h
,
1392 struct hpsa_scsi_dev_t
*added
)
1394 /* called when scsi_add_device fails in order to re-adjust
1395 * h->dev[] to match the mid layer's view.
1397 unsigned long flags
;
1400 spin_lock_irqsave(&h
->lock
, flags
);
1401 for (i
= 0; i
< h
->ndevices
; i
++) {
1402 if (h
->dev
[i
] == added
) {
1403 for (j
= i
; j
< h
->ndevices
-1; j
++)
1404 h
->dev
[j
] = h
->dev
[j
+1];
1409 spin_unlock_irqrestore(&h
->lock
, flags
);
1413 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1414 struct hpsa_scsi_dev_t
*dev2
)
1416 /* we compare everything except lun and target as these
1417 * are not yet assigned. Compare parts likely
1420 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1421 sizeof(dev1
->scsi3addr
)) != 0)
1423 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1424 sizeof(dev1
->device_id
)) != 0)
1426 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1428 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1430 if (dev1
->devtype
!= dev2
->devtype
)
1432 if (dev1
->bus
!= dev2
->bus
)
1437 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1438 struct hpsa_scsi_dev_t
*dev2
)
1440 /* Device attributes that can change, but don't mean
1441 * that the device is a different device, nor that the OS
1442 * needs to be told anything about the change.
1444 if (dev1
->raid_level
!= dev2
->raid_level
)
1446 if (dev1
->offload_config
!= dev2
->offload_config
)
1448 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1450 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1451 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1456 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1457 * and return needle location in *index. If scsi3addr matches, but not
1458 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1459 * location in *index.
1460 * In the case of a minor device attribute change, such as RAID level, just
1461 * return DEVICE_UPDATED, along with the updated device's location in index.
1462 * If needle not found, return DEVICE_NOT_FOUND.
1464 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1465 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1469 #define DEVICE_NOT_FOUND 0
1470 #define DEVICE_CHANGED 1
1471 #define DEVICE_SAME 2
1472 #define DEVICE_UPDATED 3
1474 return DEVICE_NOT_FOUND
;
1476 for (i
= 0; i
< haystack_size
; i
++) {
1477 if (haystack
[i
] == NULL
) /* previously removed. */
1479 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1481 if (device_is_the_same(needle
, haystack
[i
])) {
1482 if (device_updated(needle
, haystack
[i
]))
1483 return DEVICE_UPDATED
;
1486 /* Keep offline devices offline */
1487 if (needle
->volume_offline
)
1488 return DEVICE_NOT_FOUND
;
1489 return DEVICE_CHANGED
;
1494 return DEVICE_NOT_FOUND
;
1497 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1498 unsigned char scsi3addr
[])
1500 struct offline_device_entry
*device
;
1501 unsigned long flags
;
1503 /* Check to see if device is already on the list */
1504 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1505 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1506 if (memcmp(device
->scsi3addr
, scsi3addr
,
1507 sizeof(device
->scsi3addr
)) == 0) {
1508 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1512 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1514 /* Device is not on the list, add it. */
1515 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1517 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1520 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1521 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1522 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1523 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1526 /* Print a message explaining various offline volume states */
1527 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1528 struct hpsa_scsi_dev_t
*sd
)
1530 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1531 dev_info(&h
->pdev
->dev
,
1532 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1533 h
->scsi_host
->host_no
,
1534 sd
->bus
, sd
->target
, sd
->lun
);
1535 switch (sd
->volume_offline
) {
1538 case HPSA_LV_UNDERGOING_ERASE
:
1539 dev_info(&h
->pdev
->dev
,
1540 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1541 h
->scsi_host
->host_no
,
1542 sd
->bus
, sd
->target
, sd
->lun
);
1544 case HPSA_LV_NOT_AVAILABLE
:
1545 dev_info(&h
->pdev
->dev
,
1546 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1547 h
->scsi_host
->host_no
,
1548 sd
->bus
, sd
->target
, sd
->lun
);
1550 case HPSA_LV_UNDERGOING_RPI
:
1551 dev_info(&h
->pdev
->dev
,
1552 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1553 h
->scsi_host
->host_no
,
1554 sd
->bus
, sd
->target
, sd
->lun
);
1556 case HPSA_LV_PENDING_RPI
:
1557 dev_info(&h
->pdev
->dev
,
1558 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1559 h
->scsi_host
->host_no
,
1560 sd
->bus
, sd
->target
, sd
->lun
);
1562 case HPSA_LV_ENCRYPTED_NO_KEY
:
1563 dev_info(&h
->pdev
->dev
,
1564 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1565 h
->scsi_host
->host_no
,
1566 sd
->bus
, sd
->target
, sd
->lun
);
1568 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1569 dev_info(&h
->pdev
->dev
,
1570 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1571 h
->scsi_host
->host_no
,
1572 sd
->bus
, sd
->target
, sd
->lun
);
1574 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1575 dev_info(&h
->pdev
->dev
,
1576 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1577 h
->scsi_host
->host_no
,
1578 sd
->bus
, sd
->target
, sd
->lun
);
1580 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1581 dev_info(&h
->pdev
->dev
,
1582 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1583 h
->scsi_host
->host_no
,
1584 sd
->bus
, sd
->target
, sd
->lun
);
1586 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1587 dev_info(&h
->pdev
->dev
,
1588 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1589 h
->scsi_host
->host_no
,
1590 sd
->bus
, sd
->target
, sd
->lun
);
1592 case HPSA_LV_PENDING_ENCRYPTION
:
1593 dev_info(&h
->pdev
->dev
,
1594 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1595 h
->scsi_host
->host_no
,
1596 sd
->bus
, sd
->target
, sd
->lun
);
1598 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1599 dev_info(&h
->pdev
->dev
,
1600 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1601 h
->scsi_host
->host_no
,
1602 sd
->bus
, sd
->target
, sd
->lun
);
1608 * Figure the list of physical drive pointers for a logical drive with
1609 * raid offload configured.
1611 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1612 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1613 struct hpsa_scsi_dev_t
*logical_drive
)
1615 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1616 struct raid_map_disk_data
*dd
= &map
->data
[0];
1618 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1619 le16_to_cpu(map
->metadata_disks_per_row
);
1620 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1621 le16_to_cpu(map
->layout_map_count
) *
1622 total_disks_per_row
;
1623 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1624 total_disks_per_row
;
1627 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1628 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1630 logical_drive
->nphysical_disks
= nraid_map_entries
;
1633 for (i
= 0; i
< nraid_map_entries
; i
++) {
1634 logical_drive
->phys_disk
[i
] = NULL
;
1635 if (!logical_drive
->offload_config
)
1637 for (j
= 0; j
< ndevices
; j
++) {
1640 if (dev
[j
]->devtype
!= TYPE_DISK
)
1642 if (dev
[j
]->devtype
!= TYPE_ZBC
)
1644 if (is_logical_device(dev
[j
]))
1646 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1649 logical_drive
->phys_disk
[i
] = dev
[j
];
1651 qdepth
= min(h
->nr_cmds
, qdepth
+
1652 logical_drive
->phys_disk
[i
]->queue_depth
);
1657 * This can happen if a physical drive is removed and
1658 * the logical drive is degraded. In that case, the RAID
1659 * map data will refer to a physical disk which isn't actually
1660 * present. And in that case offload_enabled should already
1661 * be 0, but we'll turn it off here just in case
1663 if (!logical_drive
->phys_disk
[i
]) {
1664 logical_drive
->offload_enabled
= 0;
1665 logical_drive
->offload_to_be_enabled
= 0;
1666 logical_drive
->queue_depth
= 8;
1669 if (nraid_map_entries
)
1671 * This is correct for reads, too high for full stripe writes,
1672 * way too high for partial stripe writes
1674 logical_drive
->queue_depth
= qdepth
;
1676 logical_drive
->queue_depth
= h
->nr_cmds
;
1679 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1680 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1684 for (i
= 0; i
< ndevices
; i
++) {
1687 if (dev
[i
]->devtype
!= TYPE_DISK
)
1689 if (dev
[i
]->devtype
!= TYPE_ZBC
)
1691 if (!is_logical_device(dev
[i
]))
1695 * If offload is currently enabled, the RAID map and
1696 * phys_disk[] assignment *better* not be changing
1697 * and since it isn't changing, we do not need to
1700 if (dev
[i
]->offload_enabled
)
1703 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1707 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1714 if (is_logical_device(device
)) /* RAID */
1715 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1716 device
->target
, device
->lun
);
1718 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1723 static void hpsa_remove_device(struct ctlr_info
*h
,
1724 struct hpsa_scsi_dev_t
*device
)
1726 struct scsi_device
*sdev
= NULL
;
1731 if (is_logical_device(device
)) { /* RAID */
1732 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1733 device
->target
, device
->lun
);
1735 scsi_remove_device(sdev
);
1736 scsi_device_put(sdev
);
1739 * We don't expect to get here. Future commands
1740 * to this device will get a selection timeout as
1741 * if the device were gone.
1743 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1744 "didn't find device for removal.");
1747 hpsa_remove_sas_device(device
);
1750 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1751 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1753 /* sd contains scsi3 addresses and devtypes, and inquiry
1754 * data. This function takes what's in sd to be the current
1755 * reality and updates h->dev[] to reflect that reality.
1757 int i
, entry
, device_change
, changes
= 0;
1758 struct hpsa_scsi_dev_t
*csd
;
1759 unsigned long flags
;
1760 struct hpsa_scsi_dev_t
**added
, **removed
;
1761 int nadded
, nremoved
;
1764 * A reset can cause a device status to change
1765 * re-schedule the scan to see what happened.
1767 if (h
->reset_in_progress
) {
1768 h
->drv_req_rescan
= 1;
1772 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1773 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1775 if (!added
|| !removed
) {
1776 dev_warn(&h
->pdev
->dev
, "out of memory in "
1777 "adjust_hpsa_scsi_table\n");
1781 spin_lock_irqsave(&h
->devlock
, flags
);
1783 /* find any devices in h->dev[] that are not in
1784 * sd[] and remove them from h->dev[], and for any
1785 * devices which have changed, remove the old device
1786 * info and add the new device info.
1787 * If minor device attributes change, just update
1788 * the existing device structure.
1793 while (i
< h
->ndevices
) {
1795 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1796 if (device_change
== DEVICE_NOT_FOUND
) {
1798 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1799 continue; /* remove ^^^, hence i not incremented */
1800 } else if (device_change
== DEVICE_CHANGED
) {
1802 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1803 added
, &nadded
, removed
, &nremoved
);
1804 /* Set it to NULL to prevent it from being freed
1805 * at the bottom of hpsa_update_scsi_devices()
1808 } else if (device_change
== DEVICE_UPDATED
) {
1809 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1814 /* Now, make sure every device listed in sd[] is also
1815 * listed in h->dev[], adding them if they aren't found
1818 for (i
= 0; i
< nsds
; i
++) {
1819 if (!sd
[i
]) /* if already added above. */
1822 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1823 * as the SCSI mid-layer does not handle such devices well.
1824 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1825 * at 160Hz, and prevents the system from coming up.
1827 if (sd
[i
]->volume_offline
) {
1828 hpsa_show_volume_status(h
, sd
[i
]);
1829 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1833 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1834 h
->ndevices
, &entry
);
1835 if (device_change
== DEVICE_NOT_FOUND
) {
1837 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1839 sd
[i
] = NULL
; /* prevent from being freed later. */
1840 } else if (device_change
== DEVICE_CHANGED
) {
1841 /* should never happen... */
1843 dev_warn(&h
->pdev
->dev
,
1844 "device unexpectedly changed.\n");
1845 /* but if it does happen, we just ignore that device */
1848 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1850 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1851 * any logical drives that need it enabled.
1853 for (i
= 0; i
< h
->ndevices
; i
++) {
1854 if (h
->dev
[i
] == NULL
)
1856 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1859 spin_unlock_irqrestore(&h
->devlock
, flags
);
1861 /* Monitor devices which are in one of several NOT READY states to be
1862 * brought online later. This must be done without holding h->devlock,
1863 * so don't touch h->dev[]
1865 for (i
= 0; i
< nsds
; i
++) {
1866 if (!sd
[i
]) /* if already added above. */
1868 if (sd
[i
]->volume_offline
)
1869 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1872 /* Don't notify scsi mid layer of any changes the first time through
1873 * (or if there are no changes) scsi_scan_host will do it later the
1874 * first time through.
1879 /* Notify scsi mid layer of any removed devices */
1880 for (i
= 0; i
< nremoved
; i
++) {
1881 if (removed
[i
] == NULL
)
1883 if (removed
[i
]->expose_device
)
1884 hpsa_remove_device(h
, removed
[i
]);
1889 /* Notify scsi mid layer of any added devices */
1890 for (i
= 0; i
< nadded
; i
++) {
1893 if (added
[i
] == NULL
)
1895 if (!(added
[i
]->expose_device
))
1897 rc
= hpsa_add_device(h
, added
[i
]);
1900 dev_warn(&h
->pdev
->dev
,
1901 "addition failed %d, device not added.", rc
);
1902 /* now we have to remove it from h->dev,
1903 * since it didn't get added to scsi mid layer
1905 fixup_botched_add(h
, added
[i
]);
1906 h
->drv_req_rescan
= 1;
1915 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1916 * Assume's h->devlock is held.
1918 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1919 int bus
, int target
, int lun
)
1922 struct hpsa_scsi_dev_t
*sd
;
1924 for (i
= 0; i
< h
->ndevices
; i
++) {
1926 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1932 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1934 struct hpsa_scsi_dev_t
*sd
;
1935 unsigned long flags
;
1936 struct ctlr_info
*h
;
1938 h
= sdev_to_hba(sdev
);
1939 spin_lock_irqsave(&h
->devlock
, flags
);
1940 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
1941 struct scsi_target
*starget
;
1942 struct sas_rphy
*rphy
;
1944 starget
= scsi_target(sdev
);
1945 rphy
= target_to_rphy(starget
);
1946 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
1948 sd
->target
= sdev_id(sdev
);
1949 sd
->lun
= sdev
->lun
;
1952 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1953 sdev_id(sdev
), sdev
->lun
);
1955 if (sd
&& sd
->expose_device
) {
1956 atomic_set(&sd
->ioaccel_cmds_out
, 0);
1957 sdev
->hostdata
= sd
;
1959 sdev
->hostdata
= NULL
;
1960 spin_unlock_irqrestore(&h
->devlock
, flags
);
1964 /* configure scsi device based on internal per-device structure */
1965 static int hpsa_slave_configure(struct scsi_device
*sdev
)
1967 struct hpsa_scsi_dev_t
*sd
;
1970 sd
= sdev
->hostdata
;
1971 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
1974 queue_depth
= sd
->queue_depth
!= 0 ?
1975 sd
->queue_depth
: sdev
->host
->can_queue
;
1977 queue_depth
= sdev
->host
->can_queue
;
1979 scsi_change_queue_depth(sdev
, queue_depth
);
1984 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1986 /* nothing to do. */
1989 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1993 if (!h
->ioaccel2_cmd_sg_list
)
1995 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1996 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
1997 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
1999 kfree(h
->ioaccel2_cmd_sg_list
);
2000 h
->ioaccel2_cmd_sg_list
= NULL
;
2003 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2007 if (h
->chainsize
<= 0)
2010 h
->ioaccel2_cmd_sg_list
=
2011 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
2013 if (!h
->ioaccel2_cmd_sg_list
)
2015 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2016 h
->ioaccel2_cmd_sg_list
[i
] =
2017 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
2018 h
->maxsgentries
, GFP_KERNEL
);
2019 if (!h
->ioaccel2_cmd_sg_list
[i
])
2025 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2029 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2033 if (!h
->cmd_sg_list
)
2035 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2036 kfree(h
->cmd_sg_list
[i
]);
2037 h
->cmd_sg_list
[i
] = NULL
;
2039 kfree(h
->cmd_sg_list
);
2040 h
->cmd_sg_list
= NULL
;
2043 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2047 if (h
->chainsize
<= 0)
2050 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
2052 if (!h
->cmd_sg_list
) {
2053 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
2056 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2057 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
2058 h
->chainsize
, GFP_KERNEL
);
2059 if (!h
->cmd_sg_list
[i
]) {
2060 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
2067 hpsa_free_sg_chain_blocks(h
);
2071 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2072 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2074 struct ioaccel2_sg_element
*chain_block
;
2078 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2079 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2080 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
2082 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2083 /* prevent subsequent unmapping */
2084 cp
->sg
->address
= 0;
2087 cp
->sg
->address
= cpu_to_le64(temp64
);
2091 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2092 struct io_accel2_cmd
*cp
)
2094 struct ioaccel2_sg_element
*chain_sg
;
2099 temp64
= le64_to_cpu(chain_sg
->address
);
2100 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2101 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2104 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2105 struct CommandList
*c
)
2107 struct SGDescriptor
*chain_sg
, *chain_block
;
2111 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2112 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2113 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2114 chain_len
= sizeof(*chain_sg
) *
2115 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2116 chain_sg
->Len
= cpu_to_le32(chain_len
);
2117 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2119 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2120 /* prevent subsequent unmapping */
2121 chain_sg
->Addr
= cpu_to_le64(0);
2124 chain_sg
->Addr
= cpu_to_le64(temp64
);
2128 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2129 struct CommandList
*c
)
2131 struct SGDescriptor
*chain_sg
;
2133 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2136 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2137 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2138 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2142 /* Decode the various types of errors on ioaccel2 path.
2143 * Return 1 for any error that should generate a RAID path retry.
2144 * Return 0 for errors that don't require a RAID path retry.
2146 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2147 struct CommandList
*c
,
2148 struct scsi_cmnd
*cmd
,
2149 struct io_accel2_cmd
*c2
)
2153 u32 ioaccel2_resid
= 0;
2155 switch (c2
->error_data
.serv_response
) {
2156 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2157 switch (c2
->error_data
.status
) {
2158 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2160 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2161 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2162 if (c2
->error_data
.data_present
!=
2163 IOACCEL2_SENSE_DATA_PRESENT
) {
2164 memset(cmd
->sense_buffer
, 0,
2165 SCSI_SENSE_BUFFERSIZE
);
2168 /* copy the sense data */
2169 data_len
= c2
->error_data
.sense_data_len
;
2170 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2171 data_len
= SCSI_SENSE_BUFFERSIZE
;
2172 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2174 sizeof(c2
->error_data
.sense_data_buff
);
2175 memcpy(cmd
->sense_buffer
,
2176 c2
->error_data
.sense_data_buff
, data_len
);
2179 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2182 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2185 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2188 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2196 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2197 switch (c2
->error_data
.status
) {
2198 case IOACCEL2_STATUS_SR_IO_ERROR
:
2199 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2200 case IOACCEL2_STATUS_SR_OVERRUN
:
2203 case IOACCEL2_STATUS_SR_UNDERRUN
:
2204 cmd
->result
= (DID_OK
<< 16); /* host byte */
2205 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2206 ioaccel2_resid
= get_unaligned_le32(
2207 &c2
->error_data
.resid_cnt
[0]);
2208 scsi_set_resid(cmd
, ioaccel2_resid
);
2210 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2211 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2212 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2213 /* We will get an event from ctlr to trigger rescan */
2220 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2222 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2224 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2227 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2234 return retry
; /* retry on raid path? */
2237 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2238 struct CommandList
*c
)
2240 bool do_wake
= false;
2243 * Prevent the following race in the abort handler:
2245 * 1. LLD is requested to abort a SCSI command
2246 * 2. The SCSI command completes
2247 * 3. The struct CommandList associated with step 2 is made available
2248 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2249 * 5. Abort handler follows scsi_cmnd->host_scribble and
2250 * finds struct CommandList and tries to aborts it
2251 * Now we have aborted the wrong command.
2253 * Reset c->scsi_cmd here so that the abort or reset handler will know
2254 * this command has completed. Then, check to see if the handler is
2255 * waiting for this command, and, if so, wake it.
2257 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2258 mb(); /* Declare command idle before checking for pending events. */
2259 if (c
->abort_pending
) {
2261 c
->abort_pending
= false;
2263 if (c
->reset_pending
) {
2264 unsigned long flags
;
2265 struct hpsa_scsi_dev_t
*dev
;
2268 * There appears to be a reset pending; lock the lock and
2269 * reconfirm. If so, then decrement the count of outstanding
2270 * commands and wake the reset command if this is the last one.
2272 spin_lock_irqsave(&h
->lock
, flags
);
2273 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2274 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2276 c
->reset_pending
= NULL
;
2277 spin_unlock_irqrestore(&h
->lock
, flags
);
2281 wake_up_all(&h
->event_sync_wait_queue
);
2284 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2285 struct CommandList
*c
)
2287 hpsa_cmd_resolve_events(h
, c
);
2288 cmd_tagged_free(h
, c
);
2291 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2292 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2294 hpsa_cmd_resolve_and_free(h
, c
);
2295 cmd
->scsi_done(cmd
);
2298 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2300 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2301 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2304 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2306 cmd
->result
= DID_ABORT
<< 16;
2309 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2310 struct scsi_cmnd
*cmd
)
2312 hpsa_set_scsi_cmd_aborted(cmd
);
2313 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2314 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2315 hpsa_cmd_resolve_and_free(h
, c
);
2318 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2319 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2320 struct hpsa_scsi_dev_t
*dev
)
2322 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2324 /* check for good status */
2325 if (likely(c2
->error_data
.serv_response
== 0 &&
2326 c2
->error_data
.status
== 0))
2327 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2330 * Any RAID offload error results in retry which will use
2331 * the normal I/O path so the controller can handle whatever's
2334 if (is_logical_device(dev
) &&
2335 c2
->error_data
.serv_response
==
2336 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2337 if (c2
->error_data
.status
==
2338 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
)
2339 dev
->offload_enabled
= 0;
2341 return hpsa_retry_cmd(h
, c
);
2344 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
))
2345 return hpsa_retry_cmd(h
, c
);
2347 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2350 /* Returns 0 on success, < 0 otherwise. */
2351 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2352 struct CommandList
*cp
)
2354 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2356 switch (tmf_status
) {
2357 case CISS_TMF_COMPLETE
:
2359 * CISS_TMF_COMPLETE never happens, instead,
2360 * ei->CommandStatus == 0 for this case.
2362 case CISS_TMF_SUCCESS
:
2364 case CISS_TMF_INVALID_FRAME
:
2365 case CISS_TMF_NOT_SUPPORTED
:
2366 case CISS_TMF_FAILED
:
2367 case CISS_TMF_WRONG_LUN
:
2368 case CISS_TMF_OVERLAPPED_TAG
:
2371 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2378 static void complete_scsi_command(struct CommandList
*cp
)
2380 struct scsi_cmnd
*cmd
;
2381 struct ctlr_info
*h
;
2382 struct ErrorInfo
*ei
;
2383 struct hpsa_scsi_dev_t
*dev
;
2384 struct io_accel2_cmd
*c2
;
2387 u8 asc
; /* additional sense code */
2388 u8 ascq
; /* additional sense code qualifier */
2389 unsigned long sense_data_size
;
2394 dev
= cmd
->device
->hostdata
;
2395 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2397 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2398 if ((cp
->cmd_type
== CMD_SCSI
) &&
2399 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2400 hpsa_unmap_sg_chain_block(h
, cp
);
2402 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2403 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2404 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2406 cmd
->result
= (DID_OK
<< 16); /* host byte */
2407 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2409 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2410 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2413 * We check for lockup status here as it may be set for
2414 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2415 * fail_all_oustanding_cmds()
2417 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2418 /* DID_NO_CONNECT will prevent a retry */
2419 cmd
->result
= DID_NO_CONNECT
<< 16;
2420 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2423 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2424 if (cp
->reset_pending
)
2425 return hpsa_cmd_resolve_and_free(h
, cp
);
2426 if (cp
->abort_pending
)
2427 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2430 if (cp
->cmd_type
== CMD_IOACCEL2
)
2431 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2433 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2434 if (ei
->CommandStatus
== 0)
2435 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2437 /* For I/O accelerator commands, copy over some fields to the normal
2438 * CISS header used below for error handling.
2440 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2441 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2442 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2443 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2444 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2445 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2446 cp
->Header
.tag
= c
->tag
;
2447 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2448 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2450 /* Any RAID offload error results in retry which will use
2451 * the normal I/O path so the controller can handle whatever's
2454 if (is_logical_device(dev
)) {
2455 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2456 dev
->offload_enabled
= 0;
2457 return hpsa_retry_cmd(h
, cp
);
2461 /* an error has occurred */
2462 switch (ei
->CommandStatus
) {
2464 case CMD_TARGET_STATUS
:
2465 cmd
->result
|= ei
->ScsiStatus
;
2466 /* copy the sense data */
2467 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2468 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2470 sense_data_size
= sizeof(ei
->SenseInfo
);
2471 if (ei
->SenseLen
< sense_data_size
)
2472 sense_data_size
= ei
->SenseLen
;
2473 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2475 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2476 &sense_key
, &asc
, &ascq
);
2477 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2478 if (sense_key
== ABORTED_COMMAND
) {
2479 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2484 /* Problem was not a check condition
2485 * Pass it up to the upper layers...
2487 if (ei
->ScsiStatus
) {
2488 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2489 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2490 "Returning result: 0x%x\n",
2492 sense_key
, asc
, ascq
,
2494 } else { /* scsi status is zero??? How??? */
2495 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2496 "Returning no connection.\n", cp
),
2498 /* Ordinarily, this case should never happen,
2499 * but there is a bug in some released firmware
2500 * revisions that allows it to happen if, for
2501 * example, a 4100 backplane loses power and
2502 * the tape drive is in it. We assume that
2503 * it's a fatal error of some kind because we
2504 * can't show that it wasn't. We will make it
2505 * look like selection timeout since that is
2506 * the most common reason for this to occur,
2507 * and it's severe enough.
2510 cmd
->result
= DID_NO_CONNECT
<< 16;
2514 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2516 case CMD_DATA_OVERRUN
:
2517 dev_warn(&h
->pdev
->dev
,
2518 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2521 /* print_bytes(cp, sizeof(*cp), 1, 0);
2523 /* We get CMD_INVALID if you address a non-existent device
2524 * instead of a selection timeout (no response). You will
2525 * see this if you yank out a drive, then try to access it.
2526 * This is kind of a shame because it means that any other
2527 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2528 * missing target. */
2529 cmd
->result
= DID_NO_CONNECT
<< 16;
2532 case CMD_PROTOCOL_ERR
:
2533 cmd
->result
= DID_ERROR
<< 16;
2534 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2537 case CMD_HARDWARE_ERR
:
2538 cmd
->result
= DID_ERROR
<< 16;
2539 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2542 case CMD_CONNECTION_LOST
:
2543 cmd
->result
= DID_ERROR
<< 16;
2544 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2548 /* Return now to avoid calling scsi_done(). */
2549 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2550 case CMD_ABORT_FAILED
:
2551 cmd
->result
= DID_ERROR
<< 16;
2552 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2555 case CMD_UNSOLICITED_ABORT
:
2556 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2557 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2561 cmd
->result
= DID_TIME_OUT
<< 16;
2562 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2565 case CMD_UNABORTABLE
:
2566 cmd
->result
= DID_ERROR
<< 16;
2567 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2569 case CMD_TMF_STATUS
:
2570 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2571 cmd
->result
= DID_ERROR
<< 16;
2573 case CMD_IOACCEL_DISABLED
:
2574 /* This only handles the direct pass-through case since RAID
2575 * offload is handled above. Just attempt a retry.
2577 cmd
->result
= DID_SOFT_ERROR
<< 16;
2578 dev_warn(&h
->pdev
->dev
,
2579 "cp %p had HP SSD Smart Path error\n", cp
);
2582 cmd
->result
= DID_ERROR
<< 16;
2583 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2584 cp
, ei
->CommandStatus
);
2587 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2590 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2591 struct CommandList
*c
, int sg_used
, int data_direction
)
2595 for (i
= 0; i
< sg_used
; i
++)
2596 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2597 le32_to_cpu(c
->SG
[i
].Len
),
2601 static int hpsa_map_one(struct pci_dev
*pdev
,
2602 struct CommandList
*cp
,
2609 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2610 cp
->Header
.SGList
= 0;
2611 cp
->Header
.SGTotal
= cpu_to_le16(0);
2615 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2616 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2617 /* Prevent subsequent unmap of something never mapped */
2618 cp
->Header
.SGList
= 0;
2619 cp
->Header
.SGTotal
= cpu_to_le16(0);
2622 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2623 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2624 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2625 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2626 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2630 #define NO_TIMEOUT ((unsigned long) -1)
2631 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2632 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2633 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2635 DECLARE_COMPLETION_ONSTACK(wait
);
2638 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2639 if (timeout_msecs
== NO_TIMEOUT
) {
2640 /* TODO: get rid of this no-timeout thing */
2641 wait_for_completion_io(&wait
);
2644 if (!wait_for_completion_io_timeout(&wait
,
2645 msecs_to_jiffies(timeout_msecs
))) {
2646 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2652 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2653 int reply_queue
, unsigned long timeout_msecs
)
2655 if (unlikely(lockup_detected(h
))) {
2656 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2659 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2662 static u32
lockup_detected(struct ctlr_info
*h
)
2665 u32 rc
, *lockup_detected
;
2668 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2669 rc
= *lockup_detected
;
2674 #define MAX_DRIVER_CMD_RETRIES 25
2675 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2676 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2678 int backoff_time
= 10, retry_count
= 0;
2682 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2683 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2688 if (retry_count
> 3) {
2689 msleep(backoff_time
);
2690 if (backoff_time
< 1000)
2693 } while ((check_for_unit_attention(h
, c
) ||
2694 check_for_busy(h
, c
)) &&
2695 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2696 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2697 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2702 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2703 struct CommandList
*c
)
2705 const u8
*cdb
= c
->Request
.CDB
;
2706 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2708 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2709 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2710 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2711 lun
[4], lun
[5], lun
[6], lun
[7],
2712 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2713 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2714 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2715 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2718 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2719 struct CommandList
*cp
)
2721 const struct ErrorInfo
*ei
= cp
->err_info
;
2722 struct device
*d
= &cp
->h
->pdev
->dev
;
2723 u8 sense_key
, asc
, ascq
;
2726 switch (ei
->CommandStatus
) {
2727 case CMD_TARGET_STATUS
:
2728 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2729 sense_len
= sizeof(ei
->SenseInfo
);
2731 sense_len
= ei
->SenseLen
;
2732 decode_sense_data(ei
->SenseInfo
, sense_len
,
2733 &sense_key
, &asc
, &ascq
);
2734 hpsa_print_cmd(h
, "SCSI status", cp
);
2735 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2736 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2737 sense_key
, asc
, ascq
);
2739 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2740 if (ei
->ScsiStatus
== 0)
2741 dev_warn(d
, "SCSI status is abnormally zero. "
2742 "(probably indicates selection timeout "
2743 "reported incorrectly due to a known "
2744 "firmware bug, circa July, 2001.)\n");
2746 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2748 case CMD_DATA_OVERRUN
:
2749 hpsa_print_cmd(h
, "overrun condition", cp
);
2752 /* controller unfortunately reports SCSI passthru's
2753 * to non-existent targets as invalid commands.
2755 hpsa_print_cmd(h
, "invalid command", cp
);
2756 dev_warn(d
, "probably means device no longer present\n");
2759 case CMD_PROTOCOL_ERR
:
2760 hpsa_print_cmd(h
, "protocol error", cp
);
2762 case CMD_HARDWARE_ERR
:
2763 hpsa_print_cmd(h
, "hardware error", cp
);
2765 case CMD_CONNECTION_LOST
:
2766 hpsa_print_cmd(h
, "connection lost", cp
);
2769 hpsa_print_cmd(h
, "aborted", cp
);
2771 case CMD_ABORT_FAILED
:
2772 hpsa_print_cmd(h
, "abort failed", cp
);
2774 case CMD_UNSOLICITED_ABORT
:
2775 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2778 hpsa_print_cmd(h
, "timed out", cp
);
2780 case CMD_UNABORTABLE
:
2781 hpsa_print_cmd(h
, "unabortable", cp
);
2783 case CMD_CTLR_LOCKUP
:
2784 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2787 hpsa_print_cmd(h
, "unknown status", cp
);
2788 dev_warn(d
, "Unknown command status %x\n",
2793 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2794 u16 page
, unsigned char *buf
,
2795 unsigned char bufsize
)
2798 struct CommandList
*c
;
2799 struct ErrorInfo
*ei
;
2803 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2804 page
, scsi3addr
, TYPE_CMD
)) {
2808 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2809 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2813 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2814 hpsa_scsi_interpret_error(h
, c
);
2822 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2823 u8 reset_type
, int reply_queue
)
2826 struct CommandList
*c
;
2827 struct ErrorInfo
*ei
;
2832 /* fill_cmd can't fail here, no data buffer to map. */
2833 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0,
2834 scsi3addr
, TYPE_MSG
);
2835 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2837 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2840 /* no unmap needed here because no data xfer. */
2843 if (ei
->CommandStatus
!= 0) {
2844 hpsa_scsi_interpret_error(h
, c
);
2852 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2853 struct hpsa_scsi_dev_t
*dev
,
2854 unsigned char *scsi3addr
)
2858 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2859 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2861 if (hpsa_is_cmd_idle(c
))
2864 switch (c
->cmd_type
) {
2866 case CMD_IOCTL_PEND
:
2867 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2868 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2873 if (c
->phys_disk
== dev
) {
2874 /* HBA mode match */
2877 /* Possible RAID mode -- check each phys dev. */
2878 /* FIXME: Do we need to take out a lock here? If
2879 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2881 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2882 /* FIXME: an alternate test might be
2884 * match = dev->phys_disk[i]->ioaccel_handle
2885 * == c2->scsi_nexus; */
2886 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2892 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2893 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2894 le32_to_cpu(ac
->it_nexus
);
2898 case 0: /* The command is in the middle of being initialized. */
2903 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
2911 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
2912 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
2917 /* We can really only handle one reset at a time */
2918 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
2919 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
2923 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
2925 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2926 struct CommandList
*c
= h
->cmd_pool
+ i
;
2927 int refcount
= atomic_inc_return(&c
->refcount
);
2929 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
2930 unsigned long flags
;
2933 * Mark the target command as having a reset pending,
2934 * then lock a lock so that the command cannot complete
2935 * while we're considering it. If the command is not
2936 * idle then count it; otherwise revoke the event.
2938 c
->reset_pending
= dev
;
2939 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
2940 if (!hpsa_is_cmd_idle(c
))
2941 atomic_inc(&dev
->reset_cmds_out
);
2943 c
->reset_pending
= NULL
;
2944 spin_unlock_irqrestore(&h
->lock
, flags
);
2950 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
2952 wait_event(h
->event_sync_wait_queue
,
2953 atomic_read(&dev
->reset_cmds_out
) == 0 ||
2954 lockup_detected(h
));
2956 if (unlikely(lockup_detected(h
))) {
2957 dev_warn(&h
->pdev
->dev
,
2958 "Controller lockup detected during reset wait\n");
2963 atomic_set(&dev
->reset_cmds_out
, 0);
2965 mutex_unlock(&h
->reset_mutex
);
2969 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2970 unsigned char *scsi3addr
, unsigned char *raid_level
)
2975 *raid_level
= RAID_UNKNOWN
;
2976 buf
= kzalloc(64, GFP_KERNEL
);
2979 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2981 *raid_level
= buf
[8];
2982 if (*raid_level
> RAID_UNKNOWN
)
2983 *raid_level
= RAID_UNKNOWN
;
2988 #define HPSA_MAP_DEBUG
2989 #ifdef HPSA_MAP_DEBUG
2990 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2991 struct raid_map_data
*map_buff
)
2993 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2995 u16 map_cnt
, row_cnt
, disks_per_row
;
3000 /* Show details only if debugging has been activated. */
3001 if (h
->raid_offload_debug
< 2)
3004 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3005 le32_to_cpu(map_buff
->structure_size
));
3006 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3007 le32_to_cpu(map_buff
->volume_blk_size
));
3008 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3009 le64_to_cpu(map_buff
->volume_blk_cnt
));
3010 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3011 map_buff
->phys_blk_shift
);
3012 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3013 map_buff
->parity_rotation_shift
);
3014 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3015 le16_to_cpu(map_buff
->strip_size
));
3016 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3017 le64_to_cpu(map_buff
->disk_starting_blk
));
3018 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3019 le64_to_cpu(map_buff
->disk_blk_cnt
));
3020 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3021 le16_to_cpu(map_buff
->data_disks_per_row
));
3022 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3023 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3024 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3025 le16_to_cpu(map_buff
->row_cnt
));
3026 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3027 le16_to_cpu(map_buff
->layout_map_count
));
3028 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3029 le16_to_cpu(map_buff
->flags
));
3030 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
3031 le16_to_cpu(map_buff
->flags
) &
3032 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3033 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3034 le16_to_cpu(map_buff
->dekindex
));
3035 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3036 for (map
= 0; map
< map_cnt
; map
++) {
3037 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3038 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3039 for (row
= 0; row
< row_cnt
; row
++) {
3040 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3042 le16_to_cpu(map_buff
->data_disks_per_row
);
3043 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3044 dev_info(&h
->pdev
->dev
,
3045 " D%02u: h=0x%04x xor=%u,%u\n",
3046 col
, dd
->ioaccel_handle
,
3047 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3049 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3050 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3051 dev_info(&h
->pdev
->dev
,
3052 " M%02u: h=0x%04x xor=%u,%u\n",
3053 col
, dd
->ioaccel_handle
,
3054 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3059 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3060 __attribute__((unused
)) int rc
,
3061 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3066 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3067 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3070 struct CommandList
*c
;
3071 struct ErrorInfo
*ei
;
3075 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3076 sizeof(this_device
->raid_map
), 0,
3077 scsi3addr
, TYPE_CMD
)) {
3078 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3082 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3083 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3087 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3088 hpsa_scsi_interpret_error(h
, c
);
3094 /* @todo in the future, dynamically allocate RAID map memory */
3095 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3096 sizeof(this_device
->raid_map
)) {
3097 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3100 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3107 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3108 unsigned char scsi3addr
[], u16 bmic_device_index
,
3109 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3112 struct CommandList
*c
;
3113 struct ErrorInfo
*ei
;
3117 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3118 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3122 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3123 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3125 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3126 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3130 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3131 hpsa_scsi_interpret_error(h
, c
);
3139 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3140 struct bmic_identify_controller
*buf
, size_t bufsize
)
3143 struct CommandList
*c
;
3144 struct ErrorInfo
*ei
;
3148 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3149 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3153 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3154 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3158 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3159 hpsa_scsi_interpret_error(h
, c
);
3167 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3168 unsigned char scsi3addr
[], u16 bmic_device_index
,
3169 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3172 struct CommandList
*c
;
3173 struct ErrorInfo
*ei
;
3176 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3177 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3181 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3182 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3184 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3187 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3188 hpsa_scsi_interpret_error(h
, c
);
3198 * get enclosure information
3199 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3200 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3201 * Uses id_physical_device to determine the box_index.
3203 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3204 unsigned char *scsi3addr
,
3205 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3206 struct hpsa_scsi_dev_t
*encl_dev
)
3209 struct CommandList
*c
= NULL
;
3210 struct ErrorInfo
*ei
= NULL
;
3211 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3212 struct bmic_identify_physical_device
*id_phys
= NULL
;
3213 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3214 u16 bmic_device_index
= 0;
3216 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3218 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3223 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3227 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3231 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3232 id_phys
, sizeof(*id_phys
));
3234 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3235 __func__
, encl_dev
->external
, bmic_device_index
);
3241 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3242 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3247 if (id_phys
->phys_connector
[1] == 'E')
3248 c
->Request
.CDB
[5] = id_phys
->box_index
;
3250 c
->Request
.CDB
[5] = 0;
3252 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3258 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3263 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3264 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3265 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3276 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3277 "Error, could not get enclosure information\n");
3280 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3281 unsigned char *scsi3addr
)
3283 struct ReportExtendedLUNdata
*physdev
;
3288 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3292 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3293 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3297 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3299 for (i
= 0; i
< nphysicals
; i
++)
3300 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3301 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3310 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3311 struct hpsa_scsi_dev_t
*dev
)
3316 if (is_hba_lunid(scsi3addr
)) {
3317 struct bmic_sense_subsystem_info
*ssi
;
3319 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3321 dev_warn(&h
->pdev
->dev
,
3322 "%s: out of memory\n", __func__
);
3326 rc
= hpsa_bmic_sense_subsystem_information(h
,
3327 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3329 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3330 h
->sas_address
= sa
;
3335 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3337 dev
->sas_address
= sa
;
3340 /* Get a device id from inquiry page 0x83 */
3341 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
3342 unsigned char scsi3addr
[], u8 page
)
3347 unsigned char *buf
, bufsize
;
3349 buf
= kzalloc(256, GFP_KERNEL
);
3353 /* Get the size of the page list first */
3354 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3355 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3356 buf
, HPSA_VPD_HEADER_SZ
);
3358 goto exit_unsupported
;
3360 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3361 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3365 /* Get the whole VPD page list */
3366 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3367 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3370 goto exit_unsupported
;
3373 for (i
= 1; i
<= pages
; i
++)
3374 if (buf
[3 + i
] == page
)
3375 goto exit_supported
;
3384 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3385 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3391 this_device
->offload_config
= 0;
3392 this_device
->offload_enabled
= 0;
3393 this_device
->offload_to_be_enabled
= 0;
3395 buf
= kzalloc(64, GFP_KERNEL
);
3398 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3400 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3401 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3405 #define IOACCEL_STATUS_BYTE 4
3406 #define OFFLOAD_CONFIGURED_BIT 0x01
3407 #define OFFLOAD_ENABLED_BIT 0x02
3408 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3409 this_device
->offload_config
=
3410 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3411 if (this_device
->offload_config
) {
3412 this_device
->offload_enabled
=
3413 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3414 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3415 this_device
->offload_enabled
= 0;
3417 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3423 /* Get the device id from inquiry page 0x83 */
3424 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3425 unsigned char *device_id
, int index
, int buflen
)
3432 buf
= kzalloc(64, GFP_KERNEL
);
3435 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3437 memcpy(device_id
, &buf
[index
], buflen
);
3444 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3445 void *buf
, int bufsize
,
3446 int extended_response
)
3449 struct CommandList
*c
;
3450 unsigned char scsi3addr
[8];
3451 struct ErrorInfo
*ei
;
3455 /* address the controller */
3456 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3457 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3458 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3462 if (extended_response
)
3463 c
->Request
.CDB
[1] = extended_response
;
3464 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3465 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3469 if (ei
->CommandStatus
!= 0 &&
3470 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3471 hpsa_scsi_interpret_error(h
, c
);
3474 struct ReportLUNdata
*rld
= buf
;
3476 if (rld
->extended_response_flag
!= extended_response
) {
3477 dev_err(&h
->pdev
->dev
,
3478 "report luns requested format %u, got %u\n",
3480 rld
->extended_response_flag
);
3489 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3490 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3492 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3493 HPSA_REPORT_PHYS_EXTENDED
);
3496 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3497 struct ReportLUNdata
*buf
, int bufsize
)
3499 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3502 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3503 int bus
, int target
, int lun
)
3506 device
->target
= target
;
3510 /* Use VPD inquiry to get details of volume status */
3511 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3512 unsigned char scsi3addr
[])
3519 buf
= kzalloc(64, GFP_KERNEL
);
3521 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3523 /* Does controller have VPD for logical volume status? */
3524 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3527 /* Get the size of the VPD return buffer */
3528 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3529 buf
, HPSA_VPD_HEADER_SZ
);
3534 /* Now get the whole VPD buffer */
3535 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3536 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3539 status
= buf
[4]; /* status byte */
3545 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3548 /* Determine offline status of a volume.
3551 * 0xff (offline for unknown reasons)
3552 * # (integer code indicating one of several NOT READY states
3553 * describing why a volume is to be kept offline)
3555 static int hpsa_volume_offline(struct ctlr_info
*h
,
3556 unsigned char scsi3addr
[])
3558 struct CommandList
*c
;
3559 unsigned char *sense
;
3560 u8 sense_key
, asc
, ascq
;
3565 #define ASC_LUN_NOT_READY 0x04
3566 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3567 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3571 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3572 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3577 sense
= c
->err_info
->SenseInfo
;
3578 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3579 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3581 sense_len
= c
->err_info
->SenseLen
;
3582 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3583 cmd_status
= c
->err_info
->CommandStatus
;
3584 scsi_status
= c
->err_info
->ScsiStatus
;
3586 /* Is the volume 'not ready'? */
3587 if (cmd_status
!= CMD_TARGET_STATUS
||
3588 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
3589 sense_key
!= NOT_READY
||
3590 asc
!= ASC_LUN_NOT_READY
) {
3594 /* Determine the reason for not ready state */
3595 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3597 /* Keep volume offline in certain cases: */
3599 case HPSA_LV_UNDERGOING_ERASE
:
3600 case HPSA_LV_NOT_AVAILABLE
:
3601 case HPSA_LV_UNDERGOING_RPI
:
3602 case HPSA_LV_PENDING_RPI
:
3603 case HPSA_LV_ENCRYPTED_NO_KEY
:
3604 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3605 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3606 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3607 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3609 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3610 /* If VPD status page isn't available,
3611 * use ASC/ASCQ to determine state
3613 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3614 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3624 * Find out if a logical device supports aborts by simply trying one.
3625 * Smart Array may claim not to support aborts on logical drives, but
3626 * if a MSA2000 * is connected, the drives on that will be presented
3627 * by the Smart Array as logical drives, and aborts may be sent to
3628 * those devices successfully. So the simplest way to find out is
3629 * to simply try an abort and see how the device responds.
3631 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3632 unsigned char *scsi3addr
)
3634 struct CommandList
*c
;
3635 struct ErrorInfo
*ei
;
3638 u64 tag
= (u64
) -1; /* bogus tag */
3640 /* Assume that physical devices support aborts */
3641 if (!is_logical_dev_addr_mode(scsi3addr
))
3646 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3647 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3648 /* no unmap needed here because no data xfer. */
3650 switch (ei
->CommandStatus
) {
3654 case CMD_UNABORTABLE
:
3655 case CMD_ABORT_FAILED
:
3658 case CMD_TMF_STATUS
:
3659 rc
= hpsa_evaluate_tmf_status(h
, c
);
3669 static int hpsa_update_device_info(struct ctlr_info
*h
,
3670 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3671 unsigned char *is_OBDR_device
)
3674 #define OBDR_SIG_OFFSET 43
3675 #define OBDR_TAPE_SIG "$DR-10"
3676 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3677 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3679 unsigned char *inq_buff
;
3680 unsigned char *obdr_sig
;
3683 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3689 /* Do an inquiry to the device to see what it is. */
3690 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3691 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3692 /* Inquiry failed (msg printed already) */
3693 dev_err(&h
->pdev
->dev
,
3694 "hpsa_update_device_info: inquiry failed\n");
3699 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3700 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3702 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3703 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3704 memcpy(this_device
->vendor
, &inq_buff
[8],
3705 sizeof(this_device
->vendor
));
3706 memcpy(this_device
->model
, &inq_buff
[16],
3707 sizeof(this_device
->model
));
3708 memset(this_device
->device_id
, 0,
3709 sizeof(this_device
->device_id
));
3710 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3711 sizeof(this_device
->device_id
));
3713 if ((this_device
->devtype
== TYPE_DISK
||
3714 this_device
->devtype
== TYPE_ZBC
) &&
3715 is_logical_dev_addr_mode(scsi3addr
)) {
3718 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3719 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3720 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3721 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3722 if (volume_offline
< 0 || volume_offline
> 0xff)
3723 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3724 this_device
->volume_offline
= volume_offline
& 0xff;
3726 this_device
->raid_level
= RAID_UNKNOWN
;
3727 this_device
->offload_config
= 0;
3728 this_device
->offload_enabled
= 0;
3729 this_device
->offload_to_be_enabled
= 0;
3730 this_device
->hba_ioaccel_enabled
= 0;
3731 this_device
->volume_offline
= 0;
3732 this_device
->queue_depth
= h
->nr_cmds
;
3735 if (is_OBDR_device
) {
3736 /* See if this is a One-Button-Disaster-Recovery device
3737 * by looking for "$DR-10" at offset 43 in inquiry data.
3739 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3740 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3741 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3742 OBDR_SIG_LEN
) == 0);
3752 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3753 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3755 unsigned long flags
;
3758 * See if this device supports aborts. If we already know
3759 * the device, we already know if it supports aborts, otherwise
3760 * we have to find out if it supports aborts by trying one.
3762 spin_lock_irqsave(&h
->devlock
, flags
);
3763 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3764 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3765 entry
>= 0 && entry
< h
->ndevices
) {
3766 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3767 spin_unlock_irqrestore(&h
->devlock
, flags
);
3769 spin_unlock_irqrestore(&h
->devlock
, flags
);
3770 dev
->supports_aborts
=
3771 hpsa_device_supports_aborts(h
, scsi3addr
);
3772 if (dev
->supports_aborts
< 0)
3773 dev
->supports_aborts
= 0;
3778 * Helper function to assign bus, target, lun mapping of devices.
3779 * Logical drive target and lun are assigned at this time, but
3780 * physical device lun and target assignment are deferred (assigned
3781 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3783 static void figure_bus_target_lun(struct ctlr_info
*h
,
3784 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3786 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
3788 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3789 /* physical device, target and lun filled in later */
3790 if (is_hba_lunid(lunaddrbytes
))
3791 hpsa_set_bus_target_lun(device
,
3792 HPSA_HBA_BUS
, 0, lunid
& 0x3fff);
3794 /* defer target, lun assignment for physical devices */
3795 hpsa_set_bus_target_lun(device
,
3796 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
3799 /* It's a logical device */
3800 if (device
->external
) {
3801 hpsa_set_bus_target_lun(device
,
3802 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
3806 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
3812 * Get address of physical disk used for an ioaccel2 mode command:
3813 * 1. Extract ioaccel2 handle from the command.
3814 * 2. Find a matching ioaccel2 handle from list of physical disks.
3816 * 1 and set scsi3addr to address of matching physical
3817 * 0 if no matching physical disk was found.
3819 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3820 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3822 struct io_accel2_cmd
*c2
=
3823 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3824 unsigned long flags
;
3827 spin_lock_irqsave(&h
->devlock
, flags
);
3828 for (i
= 0; i
< h
->ndevices
; i
++)
3829 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3830 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3831 sizeof(h
->dev
[i
]->scsi3addr
));
3832 spin_unlock_irqrestore(&h
->devlock
, flags
);
3835 spin_unlock_irqrestore(&h
->devlock
, flags
);
3839 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
3840 int i
, int nphysicals
, int nlocal_logicals
)
3842 /* In report logicals, local logicals are listed first,
3843 * then any externals.
3845 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3847 if (i
== raid_ctlr_position
)
3850 if (i
< logicals_start
)
3853 /* i is in logicals range, but still within local logicals */
3854 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
3857 return 1; /* it's an external lun */
3861 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3862 * logdev. The number of luns in physdev and logdev are returned in
3863 * *nphysicals and *nlogicals, respectively.
3864 * Returns 0 on success, -1 otherwise.
3866 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3867 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3868 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3870 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3871 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3874 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3875 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3876 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3877 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3878 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3880 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3881 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3884 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3885 /* Reject Logicals in excess of our max capability. */
3886 if (*nlogicals
> HPSA_MAX_LUN
) {
3887 dev_warn(&h
->pdev
->dev
,
3888 "maximum logical LUNs (%d) exceeded. "
3889 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3890 *nlogicals
- HPSA_MAX_LUN
);
3891 *nlogicals
= HPSA_MAX_LUN
;
3893 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3894 dev_warn(&h
->pdev
->dev
,
3895 "maximum logical + physical LUNs (%d) exceeded. "
3896 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3897 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3898 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3903 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3904 int i
, int nphysicals
, int nlogicals
,
3905 struct ReportExtendedLUNdata
*physdev_list
,
3906 struct ReportLUNdata
*logdev_list
)
3908 /* Helper function, figure out where the LUN ID info is coming from
3909 * given index i, lists of physical and logical devices, where in
3910 * the list the raid controller is supposed to appear (first or last)
3913 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3914 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
3916 if (i
== raid_ctlr_position
)
3917 return RAID_CTLR_LUNID
;
3919 if (i
< logicals_start
)
3920 return &physdev_list
->LUN
[i
-
3921 (raid_ctlr_position
== 0)].lunid
[0];
3923 if (i
< last_device
)
3924 return &logdev_list
->LUN
[i
- nphysicals
-
3925 (raid_ctlr_position
== 0)][0];
3930 /* get physical drive ioaccel handle and queue depth */
3931 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3932 struct hpsa_scsi_dev_t
*dev
,
3933 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3934 struct bmic_identify_physical_device
*id_phys
)
3937 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3939 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3940 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
3941 dev
->hba_ioaccel_enabled
= 1;
3942 memset(id_phys
, 0, sizeof(*id_phys
));
3943 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
3944 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
3947 /* Reserve space for FW operations */
3948 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3949 #define DRIVE_QUEUE_DEPTH 7
3951 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
3952 DRIVE_CMDS_RESERVED_FOR_FW
;
3954 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
3957 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
3958 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3959 struct bmic_identify_physical_device
*id_phys
)
3961 struct ext_report_lun_entry
*rle
= &rlep
->LUN
[rle_index
];
3963 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
3964 this_device
->hba_ioaccel_enabled
= 1;
3966 memcpy(&this_device
->active_path_index
,
3967 &id_phys
->active_path_number
,
3968 sizeof(this_device
->active_path_index
));
3969 memcpy(&this_device
->path_map
,
3970 &id_phys
->redundant_path_present_map
,
3971 sizeof(this_device
->path_map
));
3972 memcpy(&this_device
->box
,
3973 &id_phys
->alternate_paths_phys_box_on_port
,
3974 sizeof(this_device
->box
));
3975 memcpy(&this_device
->phys_connector
,
3976 &id_phys
->alternate_paths_phys_connector
,
3977 sizeof(this_device
->phys_connector
));
3978 memcpy(&this_device
->bay
,
3979 &id_phys
->phys_bay_in_box
,
3980 sizeof(this_device
->bay
));
3983 /* get number of local logical disks. */
3984 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
3985 struct bmic_identify_controller
*id_ctlr
,
3991 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
3995 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
3996 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
3998 if (id_ctlr
->configured_logical_drive_count
< 256)
3999 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4001 *nlocals
= le16_to_cpu(
4002 id_ctlr
->extended_logical_unit_count
);
4009 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4011 /* the idea here is we could get notified
4012 * that some devices have changed, so we do a report
4013 * physical luns and report logical luns cmd, and adjust
4014 * our list of devices accordingly.
4016 * The scsi3addr's of devices won't change so long as the
4017 * adapter is not reset. That means we can rescan and
4018 * tell which devices we already know about, vs. new
4019 * devices, vs. disappearing devices.
4021 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4022 struct ReportLUNdata
*logdev_list
= NULL
;
4023 struct bmic_identify_physical_device
*id_phys
= NULL
;
4024 struct bmic_identify_controller
*id_ctlr
= NULL
;
4027 u32 nlocal_logicals
= 0;
4028 u32 ndev_allocated
= 0;
4029 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4031 int i
, n_ext_target_devs
, ndevs_to_allocate
;
4032 int raid_ctlr_position
;
4033 bool physical_device
;
4034 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
4036 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
4037 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4038 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4039 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4040 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4041 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4043 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4044 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4045 dev_err(&h
->pdev
->dev
, "out of memory\n");
4048 memset(lunzerobits
, 0, sizeof(lunzerobits
));
4050 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4052 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4053 logdev_list
, &nlogicals
)) {
4054 h
->drv_req_rescan
= 1;
4058 /* Set number of local logicals (non PTRAID) */
4059 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4060 dev_warn(&h
->pdev
->dev
,
4061 "%s: Can't determine number of local logical devices.\n",
4065 /* We might see up to the maximum number of logical and physical disks
4066 * plus external target devices, and a device for the local RAID
4069 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4071 /* Allocate the per device structures */
4072 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4073 if (i
>= HPSA_MAX_DEVICES
) {
4074 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4075 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4076 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4080 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4081 if (!currentsd
[i
]) {
4082 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
4083 __FILE__
, __LINE__
);
4084 h
->drv_req_rescan
= 1;
4090 if (is_scsi_rev_5(h
))
4091 raid_ctlr_position
= 0;
4093 raid_ctlr_position
= nphysicals
+ nlogicals
;
4095 /* adjust our table of devices */
4096 n_ext_target_devs
= 0;
4097 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4098 u8
*lunaddrbytes
, is_OBDR
= 0;
4100 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4102 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4104 /* Figure out where the LUN ID info is coming from */
4105 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4106 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4108 /* skip masked non-disk devices */
4109 if (MASKED_DEVICE(lunaddrbytes
) && physical_device
&&
4110 (physdev_list
->LUN
[phys_dev_index
].device_type
!= 0x06) &&
4111 (physdev_list
->LUN
[phys_dev_index
].device_flags
& 0x01))
4114 /* Get device type, vendor, model, device id */
4115 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4117 if (rc
== -ENOMEM
) {
4118 dev_warn(&h
->pdev
->dev
,
4119 "Out of memory, rescan deferred.\n");
4120 h
->drv_req_rescan
= 1;
4124 dev_warn(&h
->pdev
->dev
,
4125 "Inquiry failed, skipping device.\n");
4129 /* Determine if this is a lun from an external target array */
4130 tmpdevice
->external
=
4131 figure_external_status(h
, raid_ctlr_position
, i
,
4132 nphysicals
, nlocal_logicals
);
4134 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4135 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
4136 this_device
= currentsd
[ncurrent
];
4138 /* Turn on discovery_polling if there are ext target devices.
4139 * Event-based change notification is unreliable for those.
4141 if (!h
->discovery_polling
) {
4142 if (tmpdevice
->external
) {
4143 h
->discovery_polling
= 1;
4144 dev_info(&h
->pdev
->dev
,
4145 "External target, activate discovery polling.\n");
4150 *this_device
= *tmpdevice
;
4151 this_device
->physical_device
= physical_device
;
4154 * Expose all devices except for physical devices that
4157 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4158 this_device
->expose_device
= 0;
4160 this_device
->expose_device
= 1;
4164 * Get the SAS address for physical devices that are exposed.
4166 if (this_device
->physical_device
&& this_device
->expose_device
)
4167 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4169 switch (this_device
->devtype
) {
4171 /* We don't *really* support actual CD-ROM devices,
4172 * just "One Button Disaster Recovery" tape drive
4173 * which temporarily pretends to be a CD-ROM drive.
4174 * So we check that the device is really an OBDR tape
4175 * device by checking for "$DR-10" in bytes 43-48 of
4183 if (this_device
->physical_device
) {
4184 /* The disk is in HBA mode. */
4185 /* Never use RAID mapper in HBA mode. */
4186 this_device
->offload_enabled
= 0;
4187 hpsa_get_ioaccel_drive_info(h
, this_device
,
4188 physdev_list
, phys_dev_index
, id_phys
);
4189 hpsa_get_path_info(this_device
,
4190 physdev_list
, phys_dev_index
, id_phys
);
4195 case TYPE_MEDIUM_CHANGER
:
4198 case TYPE_ENCLOSURE
:
4199 if (!this_device
->external
)
4200 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4201 physdev_list
, phys_dev_index
,
4206 /* Only present the Smartarray HBA as a RAID controller.
4207 * If it's a RAID controller other than the HBA itself
4208 * (an external RAID controller, MSA500 or similar)
4211 if (!is_hba_lunid(lunaddrbytes
))
4218 if (ncurrent
>= HPSA_MAX_DEVICES
)
4222 if (h
->sas_host
== NULL
) {
4225 rc
= hpsa_add_sas_host(h
);
4227 dev_warn(&h
->pdev
->dev
,
4228 "Could not add sas host %d\n", rc
);
4233 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4236 for (i
= 0; i
< ndev_allocated
; i
++)
4237 kfree(currentsd
[i
]);
4239 kfree(physdev_list
);
4245 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4246 struct scatterlist
*sg
)
4248 u64 addr64
= (u64
) sg_dma_address(sg
);
4249 unsigned int len
= sg_dma_len(sg
);
4251 desc
->Addr
= cpu_to_le64(addr64
);
4252 desc
->Len
= cpu_to_le32(len
);
4257 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4258 * dma mapping and fills in the scatter gather entries of the
4261 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4262 struct CommandList
*cp
,
4263 struct scsi_cmnd
*cmd
)
4265 struct scatterlist
*sg
;
4266 int use_sg
, i
, sg_limit
, chained
, last_sg
;
4267 struct SGDescriptor
*curr_sg
;
4269 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4271 use_sg
= scsi_dma_map(cmd
);
4276 goto sglist_finished
;
4279 * If the number of entries is greater than the max for a single list,
4280 * then we have a chained list; we will set up all but one entry in the
4281 * first list (the last entry is saved for link information);
4282 * otherwise, we don't have a chained list and we'll set up at each of
4283 * the entries in the one list.
4286 chained
= use_sg
> h
->max_cmd_sg_entries
;
4287 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4288 last_sg
= scsi_sg_count(cmd
) - 1;
4289 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4290 hpsa_set_sg_descriptor(curr_sg
, sg
);
4296 * Continue with the chained list. Set curr_sg to the chained
4297 * list. Modify the limit to the total count less the entries
4298 * we've already set up. Resume the scan at the list entry
4299 * where the previous loop left off.
4301 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4302 sg_limit
= use_sg
- sg_limit
;
4303 for_each_sg(sg
, sg
, sg_limit
, i
) {
4304 hpsa_set_sg_descriptor(curr_sg
, sg
);
4309 /* Back the pointer up to the last entry and mark it as "last". */
4310 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4312 if (use_sg
+ chained
> h
->maxSG
)
4313 h
->maxSG
= use_sg
+ chained
;
4316 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4317 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4318 if (hpsa_map_sg_chain_block(h
, cp
)) {
4319 scsi_dma_unmap(cmd
);
4327 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4328 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4332 #define IO_ACCEL_INELIGIBLE (1)
4333 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4339 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4346 if (*cdb_len
== 6) {
4347 block
= get_unaligned_be16(&cdb
[2]);
4352 BUG_ON(*cdb_len
!= 12);
4353 block
= get_unaligned_be32(&cdb
[2]);
4354 block_cnt
= get_unaligned_be32(&cdb
[6]);
4356 if (block_cnt
> 0xffff)
4357 return IO_ACCEL_INELIGIBLE
;
4359 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4361 cdb
[2] = (u8
) (block
>> 24);
4362 cdb
[3] = (u8
) (block
>> 16);
4363 cdb
[4] = (u8
) (block
>> 8);
4364 cdb
[5] = (u8
) (block
);
4366 cdb
[7] = (u8
) (block_cnt
>> 8);
4367 cdb
[8] = (u8
) (block_cnt
);
4375 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4376 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4377 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4379 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4380 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4382 unsigned int total_len
= 0;
4383 struct scatterlist
*sg
;
4386 struct SGDescriptor
*curr_sg
;
4387 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4389 /* TODO: implement chaining support */
4390 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4391 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4392 return IO_ACCEL_INELIGIBLE
;
4395 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4397 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4398 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4399 return IO_ACCEL_INELIGIBLE
;
4402 c
->cmd_type
= CMD_IOACCEL1
;
4404 /* Adjust the DMA address to point to the accelerated command buffer */
4405 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4406 (c
->cmdindex
* sizeof(*cp
));
4407 BUG_ON(c
->busaddr
& 0x0000007F);
4409 use_sg
= scsi_dma_map(cmd
);
4411 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4417 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4418 addr64
= (u64
) sg_dma_address(sg
);
4419 len
= sg_dma_len(sg
);
4421 curr_sg
->Addr
= cpu_to_le64(addr64
);
4422 curr_sg
->Len
= cpu_to_le32(len
);
4423 curr_sg
->Ext
= cpu_to_le32(0);
4426 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4428 switch (cmd
->sc_data_direction
) {
4430 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4432 case DMA_FROM_DEVICE
:
4433 control
|= IOACCEL1_CONTROL_DATA_IN
;
4436 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4439 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4440 cmd
->sc_data_direction
);
4445 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4448 c
->Header
.SGList
= use_sg
;
4449 /* Fill out the command structure to submit */
4450 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4451 cp
->transfer_len
= cpu_to_le32(total_len
);
4452 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4453 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4454 cp
->control
= cpu_to_le32(control
);
4455 memcpy(cp
->CDB
, cdb
, cdb_len
);
4456 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4457 /* Tag was already set at init time. */
4458 enqueue_cmd_and_start_io(h
, c
);
4463 * Queue a command directly to a device behind the controller using the
4464 * I/O accelerator path.
4466 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4467 struct CommandList
*c
)
4469 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4470 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4474 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4475 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4479 * Set encryption parameters for the ioaccel2 request
4481 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4482 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4484 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4485 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4486 struct raid_map_data
*map
= &dev
->raid_map
;
4489 /* Are we doing encryption on this device */
4490 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4492 /* Set the data encryption key index. */
4493 cp
->dekindex
= map
->dekindex
;
4495 /* Set the encryption enable flag, encoded into direction field. */
4496 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4498 /* Set encryption tweak values based on logical block address
4499 * If block size is 512, tweak value is LBA.
4500 * For other block sizes, tweak is (LBA * block size)/ 512)
4502 switch (cmd
->cmnd
[0]) {
4503 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4506 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4510 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4513 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4517 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4520 dev_err(&h
->pdev
->dev
,
4521 "ERROR: %s: size (0x%x) not supported for encryption\n",
4522 __func__
, cmd
->cmnd
[0]);
4527 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4528 first_block
= first_block
*
4529 le32_to_cpu(map
->volume_blk_size
)/512;
4531 cp
->tweak_lower
= cpu_to_le32(first_block
);
4532 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4535 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4536 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4537 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4539 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4540 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4541 struct ioaccel2_sg_element
*curr_sg
;
4543 struct scatterlist
*sg
;
4548 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4550 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4551 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4552 return IO_ACCEL_INELIGIBLE
;
4555 c
->cmd_type
= CMD_IOACCEL2
;
4556 /* Adjust the DMA address to point to the accelerated command buffer */
4557 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4558 (c
->cmdindex
* sizeof(*cp
));
4559 BUG_ON(c
->busaddr
& 0x0000007F);
4561 memset(cp
, 0, sizeof(*cp
));
4562 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4564 use_sg
= scsi_dma_map(cmd
);
4566 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4572 if (use_sg
> h
->ioaccel_maxsg
) {
4573 addr64
= le64_to_cpu(
4574 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4575 curr_sg
->address
= cpu_to_le64(addr64
);
4576 curr_sg
->length
= 0;
4577 curr_sg
->reserved
[0] = 0;
4578 curr_sg
->reserved
[1] = 0;
4579 curr_sg
->reserved
[2] = 0;
4580 curr_sg
->chain_indicator
= 0x80;
4582 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4584 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4585 addr64
= (u64
) sg_dma_address(sg
);
4586 len
= sg_dma_len(sg
);
4588 curr_sg
->address
= cpu_to_le64(addr64
);
4589 curr_sg
->length
= cpu_to_le32(len
);
4590 curr_sg
->reserved
[0] = 0;
4591 curr_sg
->reserved
[1] = 0;
4592 curr_sg
->reserved
[2] = 0;
4593 curr_sg
->chain_indicator
= 0;
4597 switch (cmd
->sc_data_direction
) {
4599 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4600 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4602 case DMA_FROM_DEVICE
:
4603 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4604 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4607 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4608 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4611 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4612 cmd
->sc_data_direction
);
4617 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4618 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4621 /* Set encryption parameters, if necessary */
4622 set_encrypt_ioaccel2(h
, c
, cp
);
4624 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4625 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4626 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4628 cp
->data_len
= cpu_to_le32(total_len
);
4629 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4630 offsetof(struct io_accel2_cmd
, error_data
));
4631 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4633 /* fill in sg elements */
4634 if (use_sg
> h
->ioaccel_maxsg
) {
4636 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
4637 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4638 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4639 scsi_dma_unmap(cmd
);
4643 cp
->sg_count
= (u8
) use_sg
;
4645 enqueue_cmd_and_start_io(h
, c
);
4650 * Queue a command to the correct I/O accelerator path.
4652 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4653 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4654 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4656 /* Try to honor the device's queue depth */
4657 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4658 phys_disk
->queue_depth
) {
4659 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4660 return IO_ACCEL_INELIGIBLE
;
4662 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4663 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4664 cdb
, cdb_len
, scsi3addr
,
4667 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4668 cdb
, cdb_len
, scsi3addr
,
4672 static void raid_map_helper(struct raid_map_data
*map
,
4673 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4675 if (offload_to_mirror
== 0) {
4676 /* use physical disk in the first mirrored group. */
4677 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4681 /* determine mirror group that *map_index indicates */
4682 *current_group
= *map_index
/
4683 le16_to_cpu(map
->data_disks_per_row
);
4684 if (offload_to_mirror
== *current_group
)
4686 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4687 /* select map index from next group */
4688 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4691 /* select map index from first group */
4692 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4695 } while (offload_to_mirror
!= *current_group
);
4699 * Attempt to perform offload RAID mapping for a logical volume I/O.
4701 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4702 struct CommandList
*c
)
4704 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4705 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4706 struct raid_map_data
*map
= &dev
->raid_map
;
4707 struct raid_map_disk_data
*dd
= &map
->data
[0];
4710 u64 first_block
, last_block
;
4713 u64 first_row
, last_row
;
4714 u32 first_row_offset
, last_row_offset
;
4715 u32 first_column
, last_column
;
4716 u64 r0_first_row
, r0_last_row
;
4717 u32 r5or6_blocks_per_row
;
4718 u64 r5or6_first_row
, r5or6_last_row
;
4719 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4720 u32 r5or6_first_column
, r5or6_last_column
;
4721 u32 total_disks_per_row
;
4723 u32 first_group
, last_group
, current_group
;
4731 #if BITS_PER_LONG == 32
4734 int offload_to_mirror
;
4736 /* check for valid opcode, get LBA and block count */
4737 switch (cmd
->cmnd
[0]) {
4741 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4742 block_cnt
= cmd
->cmnd
[4];
4750 (((u64
) cmd
->cmnd
[2]) << 24) |
4751 (((u64
) cmd
->cmnd
[3]) << 16) |
4752 (((u64
) cmd
->cmnd
[4]) << 8) |
4755 (((u32
) cmd
->cmnd
[7]) << 8) |
4762 (((u64
) cmd
->cmnd
[2]) << 24) |
4763 (((u64
) cmd
->cmnd
[3]) << 16) |
4764 (((u64
) cmd
->cmnd
[4]) << 8) |
4767 (((u32
) cmd
->cmnd
[6]) << 24) |
4768 (((u32
) cmd
->cmnd
[7]) << 16) |
4769 (((u32
) cmd
->cmnd
[8]) << 8) |
4776 (((u64
) cmd
->cmnd
[2]) << 56) |
4777 (((u64
) cmd
->cmnd
[3]) << 48) |
4778 (((u64
) cmd
->cmnd
[4]) << 40) |
4779 (((u64
) cmd
->cmnd
[5]) << 32) |
4780 (((u64
) cmd
->cmnd
[6]) << 24) |
4781 (((u64
) cmd
->cmnd
[7]) << 16) |
4782 (((u64
) cmd
->cmnd
[8]) << 8) |
4785 (((u32
) cmd
->cmnd
[10]) << 24) |
4786 (((u32
) cmd
->cmnd
[11]) << 16) |
4787 (((u32
) cmd
->cmnd
[12]) << 8) |
4791 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4793 last_block
= first_block
+ block_cnt
- 1;
4795 /* check for write to non-RAID-0 */
4796 if (is_write
&& dev
->raid_level
!= 0)
4797 return IO_ACCEL_INELIGIBLE
;
4799 /* check for invalid block or wraparound */
4800 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4801 last_block
< first_block
)
4802 return IO_ACCEL_INELIGIBLE
;
4804 /* calculate stripe information for the request */
4805 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4806 le16_to_cpu(map
->strip_size
);
4807 strip_size
= le16_to_cpu(map
->strip_size
);
4808 #if BITS_PER_LONG == 32
4809 tmpdiv
= first_block
;
4810 (void) do_div(tmpdiv
, blocks_per_row
);
4812 tmpdiv
= last_block
;
4813 (void) do_div(tmpdiv
, blocks_per_row
);
4815 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4816 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4817 tmpdiv
= first_row_offset
;
4818 (void) do_div(tmpdiv
, strip_size
);
4819 first_column
= tmpdiv
;
4820 tmpdiv
= last_row_offset
;
4821 (void) do_div(tmpdiv
, strip_size
);
4822 last_column
= tmpdiv
;
4824 first_row
= first_block
/ blocks_per_row
;
4825 last_row
= last_block
/ blocks_per_row
;
4826 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4827 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4828 first_column
= first_row_offset
/ strip_size
;
4829 last_column
= last_row_offset
/ strip_size
;
4832 /* if this isn't a single row/column then give to the controller */
4833 if ((first_row
!= last_row
) || (first_column
!= last_column
))
4834 return IO_ACCEL_INELIGIBLE
;
4836 /* proceeding with driver mapping */
4837 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
4838 le16_to_cpu(map
->metadata_disks_per_row
);
4839 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4840 le16_to_cpu(map
->row_cnt
);
4841 map_index
= (map_row
* total_disks_per_row
) + first_column
;
4843 switch (dev
->raid_level
) {
4845 break; /* nothing special to do */
4847 /* Handles load balance across RAID 1 members.
4848 * (2-drive R1 and R10 with even # of drives.)
4849 * Appropriate for SSDs, not optimal for HDDs
4851 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
4852 if (dev
->offload_to_mirror
)
4853 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4854 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
4857 /* Handles N-way mirrors (R1-ADM)
4858 * and R10 with # of drives divisible by 3.)
4860 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
4862 offload_to_mirror
= dev
->offload_to_mirror
;
4863 raid_map_helper(map
, offload_to_mirror
,
4864 &map_index
, ¤t_group
);
4865 /* set mirror group to use next time */
4867 (offload_to_mirror
>=
4868 le16_to_cpu(map
->layout_map_count
) - 1)
4869 ? 0 : offload_to_mirror
+ 1;
4870 dev
->offload_to_mirror
= offload_to_mirror
;
4871 /* Avoid direct use of dev->offload_to_mirror within this
4872 * function since multiple threads might simultaneously
4873 * increment it beyond the range of dev->layout_map_count -1.
4878 if (le16_to_cpu(map
->layout_map_count
) <= 1)
4881 /* Verify first and last block are in same RAID group */
4882 r5or6_blocks_per_row
=
4883 le16_to_cpu(map
->strip_size
) *
4884 le16_to_cpu(map
->data_disks_per_row
);
4885 BUG_ON(r5or6_blocks_per_row
== 0);
4886 stripesize
= r5or6_blocks_per_row
*
4887 le16_to_cpu(map
->layout_map_count
);
4888 #if BITS_PER_LONG == 32
4889 tmpdiv
= first_block
;
4890 first_group
= do_div(tmpdiv
, stripesize
);
4891 tmpdiv
= first_group
;
4892 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4893 first_group
= tmpdiv
;
4894 tmpdiv
= last_block
;
4895 last_group
= do_div(tmpdiv
, stripesize
);
4896 tmpdiv
= last_group
;
4897 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4898 last_group
= tmpdiv
;
4900 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
4901 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
4903 if (first_group
!= last_group
)
4904 return IO_ACCEL_INELIGIBLE
;
4906 /* Verify request is in a single row of RAID 5/6 */
4907 #if BITS_PER_LONG == 32
4908 tmpdiv
= first_block
;
4909 (void) do_div(tmpdiv
, stripesize
);
4910 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
4911 tmpdiv
= last_block
;
4912 (void) do_div(tmpdiv
, stripesize
);
4913 r5or6_last_row
= r0_last_row
= tmpdiv
;
4915 first_row
= r5or6_first_row
= r0_first_row
=
4916 first_block
/ stripesize
;
4917 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
4919 if (r5or6_first_row
!= r5or6_last_row
)
4920 return IO_ACCEL_INELIGIBLE
;
4923 /* Verify request is in a single column */
4924 #if BITS_PER_LONG == 32
4925 tmpdiv
= first_block
;
4926 first_row_offset
= do_div(tmpdiv
, stripesize
);
4927 tmpdiv
= first_row_offset
;
4928 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
4929 r5or6_first_row_offset
= first_row_offset
;
4930 tmpdiv
= last_block
;
4931 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
4932 tmpdiv
= r5or6_last_row_offset
;
4933 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
4934 tmpdiv
= r5or6_first_row_offset
;
4935 (void) do_div(tmpdiv
, map
->strip_size
);
4936 first_column
= r5or6_first_column
= tmpdiv
;
4937 tmpdiv
= r5or6_last_row_offset
;
4938 (void) do_div(tmpdiv
, map
->strip_size
);
4939 r5or6_last_column
= tmpdiv
;
4941 first_row_offset
= r5or6_first_row_offset
=
4942 (u32
)((first_block
% stripesize
) %
4943 r5or6_blocks_per_row
);
4945 r5or6_last_row_offset
=
4946 (u32
)((last_block
% stripesize
) %
4947 r5or6_blocks_per_row
);
4949 first_column
= r5or6_first_column
=
4950 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
4952 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
4954 if (r5or6_first_column
!= r5or6_last_column
)
4955 return IO_ACCEL_INELIGIBLE
;
4957 /* Request is eligible */
4958 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4959 le16_to_cpu(map
->row_cnt
);
4961 map_index
= (first_group
*
4962 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
4963 (map_row
* total_disks_per_row
) + first_column
;
4966 return IO_ACCEL_INELIGIBLE
;
4969 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
4970 return IO_ACCEL_INELIGIBLE
;
4972 c
->phys_disk
= dev
->phys_disk
[map_index
];
4974 return IO_ACCEL_INELIGIBLE
;
4976 disk_handle
= dd
[map_index
].ioaccel_handle
;
4977 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
4978 first_row
* le16_to_cpu(map
->strip_size
) +
4979 (first_row_offset
- first_column
*
4980 le16_to_cpu(map
->strip_size
));
4981 disk_block_cnt
= block_cnt
;
4983 /* handle differing logical/physical block sizes */
4984 if (map
->phys_blk_shift
) {
4985 disk_block
<<= map
->phys_blk_shift
;
4986 disk_block_cnt
<<= map
->phys_blk_shift
;
4988 BUG_ON(disk_block_cnt
> 0xffff);
4990 /* build the new CDB for the physical disk I/O */
4991 if (disk_block
> 0xffffffff) {
4992 cdb
[0] = is_write
? WRITE_16
: READ_16
;
4994 cdb
[2] = (u8
) (disk_block
>> 56);
4995 cdb
[3] = (u8
) (disk_block
>> 48);
4996 cdb
[4] = (u8
) (disk_block
>> 40);
4997 cdb
[5] = (u8
) (disk_block
>> 32);
4998 cdb
[6] = (u8
) (disk_block
>> 24);
4999 cdb
[7] = (u8
) (disk_block
>> 16);
5000 cdb
[8] = (u8
) (disk_block
>> 8);
5001 cdb
[9] = (u8
) (disk_block
);
5002 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5003 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5004 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5005 cdb
[13] = (u8
) (disk_block_cnt
);
5010 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5012 cdb
[2] = (u8
) (disk_block
>> 24);
5013 cdb
[3] = (u8
) (disk_block
>> 16);
5014 cdb
[4] = (u8
) (disk_block
>> 8);
5015 cdb
[5] = (u8
) (disk_block
);
5017 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5018 cdb
[8] = (u8
) (disk_block_cnt
);
5022 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5024 dev
->phys_disk
[map_index
]);
5028 * Submit commands down the "normal" RAID stack path
5029 * All callers to hpsa_ciss_submit must check lockup_detected
5030 * beforehand, before (opt.) and after calling cmd_alloc
5032 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5033 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5034 unsigned char scsi3addr
[])
5036 cmd
->host_scribble
= (unsigned char *) c
;
5037 c
->cmd_type
= CMD_SCSI
;
5039 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5040 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
5041 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5043 /* Fill in the request block... */
5045 c
->Request
.Timeout
= 0;
5046 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5047 c
->Request
.CDBLen
= cmd
->cmd_len
;
5048 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5049 switch (cmd
->sc_data_direction
) {
5051 c
->Request
.type_attr_dir
=
5052 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5054 case DMA_FROM_DEVICE
:
5055 c
->Request
.type_attr_dir
=
5056 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5059 c
->Request
.type_attr_dir
=
5060 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5062 case DMA_BIDIRECTIONAL
:
5063 /* This can happen if a buggy application does a scsi passthru
5064 * and sets both inlen and outlen to non-zero. ( see
5065 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5068 c
->Request
.type_attr_dir
=
5069 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5070 /* This is technically wrong, and hpsa controllers should
5071 * reject it with CMD_INVALID, which is the most correct
5072 * response, but non-fibre backends appear to let it
5073 * slide by, and give the same results as if this field
5074 * were set correctly. Either way is acceptable for
5075 * our purposes here.
5081 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5082 cmd
->sc_data_direction
);
5087 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5088 hpsa_cmd_resolve_and_free(h
, c
);
5089 return SCSI_MLQUEUE_HOST_BUSY
;
5091 enqueue_cmd_and_start_io(h
, c
);
5092 /* the cmd'll come back via intr handler in complete_scsi_command() */
5096 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5097 struct CommandList
*c
)
5099 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5101 /* Zero out all of commandlist except the last field, refcount */
5102 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5103 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5104 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5105 c
->err_info
= h
->errinfo_pool
+ index
;
5106 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5107 err_dma_handle
= h
->errinfo_pool_dhandle
5108 + index
* sizeof(*c
->err_info
);
5109 c
->cmdindex
= index
;
5110 c
->busaddr
= (u32
) cmd_dma_handle
;
5111 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5112 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5114 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5117 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5121 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5122 struct CommandList
*c
= h
->cmd_pool
+ i
;
5124 hpsa_cmd_init(h
, i
, c
);
5125 atomic_set(&c
->refcount
, 0);
5129 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5130 struct CommandList
*c
)
5132 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5134 BUG_ON(c
->cmdindex
!= index
);
5136 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5137 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5138 c
->busaddr
= (u32
) cmd_dma_handle
;
5141 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5142 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5143 unsigned char *scsi3addr
)
5145 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5146 int rc
= IO_ACCEL_INELIGIBLE
;
5148 cmd
->host_scribble
= (unsigned char *) c
;
5150 if (dev
->offload_enabled
) {
5151 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5152 c
->cmd_type
= CMD_SCSI
;
5154 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5155 if (rc
< 0) /* scsi_dma_map failed. */
5156 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5157 } else if (dev
->hba_ioaccel_enabled
) {
5158 hpsa_cmd_init(h
, c
->cmdindex
, c
);
5159 c
->cmd_type
= CMD_SCSI
;
5161 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5162 if (rc
< 0) /* scsi_dma_map failed. */
5163 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5168 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5170 struct scsi_cmnd
*cmd
;
5171 struct hpsa_scsi_dev_t
*dev
;
5172 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5175 dev
= cmd
->device
->hostdata
;
5177 cmd
->result
= DID_NO_CONNECT
<< 16;
5178 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5180 if (c
->reset_pending
)
5181 return hpsa_cmd_resolve_and_free(c
->h
, c
);
5182 if (c
->abort_pending
)
5183 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
5184 if (c
->cmd_type
== CMD_IOACCEL2
) {
5185 struct ctlr_info
*h
= c
->h
;
5186 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5189 if (c2
->error_data
.serv_response
==
5190 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5191 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
5194 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5196 * If we get here, it means dma mapping failed.
5197 * Try again via scsi mid layer, which will
5198 * then get SCSI_MLQUEUE_HOST_BUSY.
5200 cmd
->result
= DID_IMM_RETRY
<< 16;
5201 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5203 /* else, fall thru and resubmit down CISS path */
5206 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5207 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
5209 * If we get here, it means dma mapping failed. Try
5210 * again via scsi mid layer, which will then get
5211 * SCSI_MLQUEUE_HOST_BUSY.
5213 * hpsa_ciss_submit will have already freed c
5214 * if it encountered a dma mapping failure.
5216 cmd
->result
= DID_IMM_RETRY
<< 16;
5217 cmd
->scsi_done(cmd
);
5221 /* Running in struct Scsi_Host->host_lock less mode */
5222 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5224 struct ctlr_info
*h
;
5225 struct hpsa_scsi_dev_t
*dev
;
5226 unsigned char scsi3addr
[8];
5227 struct CommandList
*c
;
5230 /* Get the ptr to our adapter structure out of cmd->host. */
5231 h
= sdev_to_hba(cmd
->device
);
5233 BUG_ON(cmd
->request
->tag
< 0);
5235 dev
= cmd
->device
->hostdata
;
5237 cmd
->result
= DID_NO_CONNECT
<< 16;
5238 cmd
->scsi_done(cmd
);
5242 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
5244 if (unlikely(lockup_detected(h
))) {
5245 cmd
->result
= DID_NO_CONNECT
<< 16;
5246 cmd
->scsi_done(cmd
);
5249 c
= cmd_tagged_alloc(h
, cmd
);
5252 * Call alternate submit routine for I/O accelerated commands.
5253 * Retries always go down the normal I/O path.
5255 if (likely(cmd
->retries
== 0 &&
5256 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
5257 h
->acciopath_status
)) {
5258 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
5261 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5262 hpsa_cmd_resolve_and_free(h
, c
);
5263 return SCSI_MLQUEUE_HOST_BUSY
;
5266 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
5269 static void hpsa_scan_complete(struct ctlr_info
*h
)
5271 unsigned long flags
;
5273 spin_lock_irqsave(&h
->scan_lock
, flags
);
5274 h
->scan_finished
= 1;
5275 wake_up_all(&h
->scan_wait_queue
);
5276 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5279 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5281 struct ctlr_info
*h
= shost_to_hba(sh
);
5282 unsigned long flags
;
5285 * Don't let rescans be initiated on a controller known to be locked
5286 * up. If the controller locks up *during* a rescan, that thread is
5287 * probably hosed, but at least we can prevent new rescan threads from
5288 * piling up on a locked up controller.
5290 if (unlikely(lockup_detected(h
)))
5291 return hpsa_scan_complete(h
);
5293 /* wait until any scan already in progress is finished. */
5295 spin_lock_irqsave(&h
->scan_lock
, flags
);
5296 if (h
->scan_finished
)
5298 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5299 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5300 /* Note: We don't need to worry about a race between this
5301 * thread and driver unload because the midlayer will
5302 * have incremented the reference count, so unload won't
5303 * happen if we're in here.
5306 h
->scan_finished
= 0; /* mark scan as in progress */
5307 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5309 if (unlikely(lockup_detected(h
)))
5310 return hpsa_scan_complete(h
);
5312 hpsa_update_scsi_devices(h
);
5314 hpsa_scan_complete(h
);
5317 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5319 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5326 else if (qdepth
> logical_drive
->queue_depth
)
5327 qdepth
= logical_drive
->queue_depth
;
5329 return scsi_change_queue_depth(sdev
, qdepth
);
5332 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5333 unsigned long elapsed_time
)
5335 struct ctlr_info
*h
= shost_to_hba(sh
);
5336 unsigned long flags
;
5339 spin_lock_irqsave(&h
->scan_lock
, flags
);
5340 finished
= h
->scan_finished
;
5341 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5345 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5347 struct Scsi_Host
*sh
;
5349 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5351 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5358 sh
->max_channel
= 3;
5359 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5360 sh
->max_lun
= HPSA_MAX_LUN
;
5361 sh
->max_id
= HPSA_MAX_LUN
;
5362 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5363 sh
->cmd_per_lun
= sh
->can_queue
;
5364 sh
->sg_tablesize
= h
->maxsgentries
;
5365 sh
->transportt
= hpsa_sas_transport_template
;
5366 sh
->hostdata
[0] = (unsigned long) h
;
5367 sh
->irq
= h
->intr
[h
->intr_mode
];
5368 sh
->unique_id
= sh
->irq
;
5374 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5378 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5380 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5383 scsi_scan_host(h
->scsi_host
);
5388 * The block layer has already gone to the trouble of picking out a unique,
5389 * small-integer tag for this request. We use an offset from that value as
5390 * an index to select our command block. (The offset allows us to reserve the
5391 * low-numbered entries for our own uses.)
5393 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5395 int idx
= scmd
->request
->tag
;
5400 /* Offset to leave space for internal cmds. */
5401 return idx
+= HPSA_NRESERVED_CMDS
;
5405 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5406 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5408 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5409 struct CommandList
*c
, unsigned char lunaddr
[],
5414 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5415 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5416 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5417 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5420 /* no unmap needed here because no data xfer. */
5422 /* Check if the unit is already ready. */
5423 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5427 * The first command sent after reset will receive "unit attention" to
5428 * indicate that the LUN has been reset...this is actually what we're
5429 * looking for (but, success is good too).
5431 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5432 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5433 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5434 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5441 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5442 * returns zero when the unit is ready, and non-zero when giving up.
5444 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5445 struct CommandList
*c
,
5446 unsigned char lunaddr
[], int reply_queue
)
5450 int waittime
= 1; /* seconds */
5452 /* Send test unit ready until device ready, or give up. */
5453 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5456 * Wait for a bit. do this first, because if we send
5457 * the TUR right away, the reset will just abort it.
5459 msleep(1000 * waittime
);
5461 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5465 /* Increase wait time with each try, up to a point. */
5466 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5469 dev_warn(&h
->pdev
->dev
,
5470 "waiting %d secs for device to become ready.\n",
5477 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5478 unsigned char lunaddr
[],
5485 struct CommandList
*c
;
5490 * If no specific reply queue was requested, then send the TUR
5491 * repeatedly, requesting a reply on each reply queue; otherwise execute
5492 * the loop exactly once using only the specified queue.
5494 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5496 last_queue
= h
->nreply_queues
- 1;
5498 first_queue
= reply_queue
;
5499 last_queue
= reply_queue
;
5502 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5503 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5509 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5511 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5517 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5518 * complaining. Doing a host- or bus-reset can't do anything good here.
5520 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5523 struct ctlr_info
*h
;
5524 struct hpsa_scsi_dev_t
*dev
;
5528 /* find the controller to which the command to be aborted was sent */
5529 h
= sdev_to_hba(scsicmd
->device
);
5530 if (h
== NULL
) /* paranoia */
5533 if (lockup_detected(h
))
5536 dev
= scsicmd
->device
->hostdata
;
5538 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5542 /* if controller locked up, we can guarantee command won't complete */
5543 if (lockup_detected(h
)) {
5544 snprintf(msg
, sizeof(msg
),
5545 "cmd %d RESET FAILED, lockup detected",
5546 hpsa_get_cmd_index(scsicmd
));
5547 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5551 /* this reset request might be the result of a lockup; check */
5552 if (detect_controller_lockup(h
)) {
5553 snprintf(msg
, sizeof(msg
),
5554 "cmd %d RESET FAILED, new lockup detected",
5555 hpsa_get_cmd_index(scsicmd
));
5556 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5560 /* Do not attempt on controller */
5561 if (is_hba_lunid(dev
->scsi3addr
))
5564 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
5565 reset_type
= HPSA_DEVICE_RESET_MSG
;
5567 reset_type
= HPSA_PHYS_TARGET_RESET
;
5569 sprintf(msg
, "resetting %s",
5570 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
5571 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5573 h
->reset_in_progress
= 1;
5575 /* send a reset to the SCSI LUN which the command was sent to */
5576 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, reset_type
,
5577 DEFAULT_REPLY_QUEUE
);
5578 sprintf(msg
, "reset %s %s",
5579 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
5580 rc
== 0 ? "completed successfully" : "failed");
5581 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5582 h
->reset_in_progress
= 0;
5583 return rc
== 0 ? SUCCESS
: FAILED
;
5586 static void swizzle_abort_tag(u8
*tag
)
5590 memcpy(original_tag
, tag
, 8);
5591 tag
[0] = original_tag
[3];
5592 tag
[1] = original_tag
[2];
5593 tag
[2] = original_tag
[1];
5594 tag
[3] = original_tag
[0];
5595 tag
[4] = original_tag
[7];
5596 tag
[5] = original_tag
[6];
5597 tag
[6] = original_tag
[5];
5598 tag
[7] = original_tag
[4];
5601 static void hpsa_get_tag(struct ctlr_info
*h
,
5602 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5605 if (c
->cmd_type
== CMD_IOACCEL1
) {
5606 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5607 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5608 tag
= le64_to_cpu(cm1
->tag
);
5609 *tagupper
= cpu_to_le32(tag
>> 32);
5610 *taglower
= cpu_to_le32(tag
);
5613 if (c
->cmd_type
== CMD_IOACCEL2
) {
5614 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5615 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5616 /* upper tag not used in ioaccel2 mode */
5617 memset(tagupper
, 0, sizeof(*tagupper
));
5618 *taglower
= cm2
->Tag
;
5621 tag
= le64_to_cpu(c
->Header
.tag
);
5622 *tagupper
= cpu_to_le32(tag
>> 32);
5623 *taglower
= cpu_to_le32(tag
);
5626 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5627 struct CommandList
*abort
, int reply_queue
)
5630 struct CommandList
*c
;
5631 struct ErrorInfo
*ei
;
5632 __le32 tagupper
, taglower
;
5636 /* fill_cmd can't fail here, no buffer to map */
5637 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5638 0, 0, scsi3addr
, TYPE_MSG
);
5639 if (h
->needs_abort_tags_swizzled
)
5640 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5641 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5642 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5643 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5644 __func__
, tagupper
, taglower
);
5645 /* no unmap needed here because no data xfer. */
5648 switch (ei
->CommandStatus
) {
5651 case CMD_TMF_STATUS
:
5652 rc
= hpsa_evaluate_tmf_status(h
, c
);
5654 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5658 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5659 __func__
, tagupper
, taglower
);
5660 hpsa_scsi_interpret_error(h
, c
);
5665 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5666 __func__
, tagupper
, taglower
);
5670 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5671 struct CommandList
*command_to_abort
, int reply_queue
)
5673 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5674 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5675 struct io_accel2_cmd
*c2a
=
5676 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5677 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5678 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5681 * We're overlaying struct hpsa_tmf_struct on top of something which
5682 * was allocated as a struct io_accel2_cmd, so we better be sure it
5683 * actually fits, and doesn't overrun the error info space.
5685 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5686 sizeof(struct io_accel2_cmd
));
5687 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5688 offsetof(struct hpsa_tmf_struct
, error_len
) +
5689 sizeof(ac
->error_len
));
5691 c
->cmd_type
= IOACCEL2_TMF
;
5692 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5694 /* Adjust the DMA address to point to the accelerated command buffer */
5695 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5696 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5697 BUG_ON(c
->busaddr
& 0x0000007F);
5699 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5700 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5701 ac
->reply_queue
= reply_queue
;
5702 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5703 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5704 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5705 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5706 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5707 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5708 offsetof(struct io_accel2_cmd
, error_data
));
5709 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5712 /* ioaccel2 path firmware cannot handle abort task requests.
5713 * Change abort requests to physical target reset, and send to the
5714 * address of the physical disk used for the ioaccel 2 command.
5715 * Return 0 on success (IO_OK)
5719 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5720 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5723 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5724 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5725 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5726 unsigned char *psa
= &phys_scsi3addr
[0];
5728 /* Get a pointer to the hpsa logical device. */
5729 scmd
= abort
->scsi_cmd
;
5730 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5732 dev_warn(&h
->pdev
->dev
,
5733 "Cannot abort: no device pointer for command.\n");
5734 return -1; /* not abortable */
5737 if (h
->raid_offload_debug
> 0)
5738 dev_info(&h
->pdev
->dev
,
5739 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5740 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5742 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5743 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5745 if (!dev
->offload_enabled
) {
5746 dev_warn(&h
->pdev
->dev
,
5747 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5748 return -1; /* not abortable */
5751 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5752 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5753 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5754 return -1; /* not abortable */
5757 /* send the reset */
5758 if (h
->raid_offload_debug
> 0)
5759 dev_info(&h
->pdev
->dev
,
5760 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5761 psa
[0], psa
[1], psa
[2], psa
[3],
5762 psa
[4], psa
[5], psa
[6], psa
[7]);
5763 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5765 dev_warn(&h
->pdev
->dev
,
5766 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5767 psa
[0], psa
[1], psa
[2], psa
[3],
5768 psa
[4], psa
[5], psa
[6], psa
[7]);
5769 return rc
; /* failed to reset */
5772 /* wait for device to recover */
5773 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5774 dev_warn(&h
->pdev
->dev
,
5775 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5776 psa
[0], psa
[1], psa
[2], psa
[3],
5777 psa
[4], psa
[5], psa
[6], psa
[7]);
5778 return -1; /* failed to recover */
5781 /* device recovered */
5782 dev_info(&h
->pdev
->dev
,
5783 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5784 psa
[0], psa
[1], psa
[2], psa
[3],
5785 psa
[4], psa
[5], psa
[6], psa
[7]);
5787 return rc
; /* success */
5790 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5791 struct CommandList
*abort
, int reply_queue
)
5794 struct CommandList
*c
;
5795 __le32 taglower
, tagupper
;
5796 struct hpsa_scsi_dev_t
*dev
;
5797 struct io_accel2_cmd
*c2
;
5799 dev
= abort
->scsi_cmd
->device
->hostdata
;
5800 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5804 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5805 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5806 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5807 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5808 dev_dbg(&h
->pdev
->dev
,
5809 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5810 __func__
, tagupper
, taglower
);
5811 /* no unmap needed here because no data xfer. */
5813 dev_dbg(&h
->pdev
->dev
,
5814 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5815 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5816 switch (c2
->error_data
.serv_response
) {
5817 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5818 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5821 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5822 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5823 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
5827 dev_warn(&h
->pdev
->dev
,
5828 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5829 __func__
, tagupper
, taglower
,
5830 c2
->error_data
.serv_response
);
5834 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
5835 tagupper
, taglower
);
5839 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
5840 struct hpsa_scsi_dev_t
*dev
, struct CommandList
*abort
, int reply_queue
)
5843 * ioccelerator mode 2 commands should be aborted via the
5844 * accelerated path, since RAID path is unaware of these commands,
5845 * but not all underlying firmware can handle abort TMF.
5846 * Change abort to physical device reset when abort TMF is unsupported.
5848 if (abort
->cmd_type
== CMD_IOACCEL2
) {
5849 if ((HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
) ||
5850 dev
->physical_device
)
5851 return hpsa_send_abort_ioaccel2(h
, abort
,
5854 return hpsa_send_reset_as_abort_ioaccel2(h
,
5856 abort
, reply_queue
);
5858 return hpsa_send_abort(h
, dev
->scsi3addr
, abort
, reply_queue
);
5861 /* Find out which reply queue a command was meant to return on */
5862 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
5863 struct CommandList
*c
)
5865 if (c
->cmd_type
== CMD_IOACCEL2
)
5866 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
5867 return c
->Header
.ReplyQueue
;
5871 * Limit concurrency of abort commands to prevent
5872 * over-subscription of commands
5874 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
5876 #define ABORT_CMD_WAIT_MSECS 5000
5877 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
5878 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
5879 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
5882 /* Send an abort for the specified command.
5883 * If the device and controller support it,
5884 * send a task abort request.
5886 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
5890 struct ctlr_info
*h
;
5891 struct hpsa_scsi_dev_t
*dev
;
5892 struct CommandList
*abort
; /* pointer to command to be aborted */
5893 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
5894 char msg
[256]; /* For debug messaging. */
5896 __le32 tagupper
, taglower
;
5897 int refcount
, reply_queue
;
5902 if (sc
->device
== NULL
)
5905 /* Find the controller of the command to be aborted */
5906 h
= sdev_to_hba(sc
->device
);
5910 /* Find the device of the command to be aborted */
5911 dev
= sc
->device
->hostdata
;
5913 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
5918 /* If controller locked up, we can guarantee command won't complete */
5919 if (lockup_detected(h
)) {
5920 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5921 "ABORT FAILED, lockup detected");
5925 /* This is a good time to check if controller lockup has occurred */
5926 if (detect_controller_lockup(h
)) {
5927 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5928 "ABORT FAILED, new lockup detected");
5932 /* Check that controller supports some kind of task abort */
5933 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
5934 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
5937 memset(msg
, 0, sizeof(msg
));
5938 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
5939 h
->scsi_host
->host_no
, sc
->device
->channel
,
5940 sc
->device
->id
, sc
->device
->lun
,
5941 "Aborting command", sc
);
5943 /* Get SCSI command to be aborted */
5944 abort
= (struct CommandList
*) sc
->host_scribble
;
5945 if (abort
== NULL
) {
5946 /* This can happen if the command already completed. */
5949 refcount
= atomic_inc_return(&abort
->refcount
);
5950 if (refcount
== 1) { /* Command is done already. */
5955 /* Don't bother trying the abort if we know it won't work. */
5956 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
5957 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
5963 * Check that we're aborting the right command.
5964 * It's possible the CommandList already completed and got re-used.
5966 if (abort
->scsi_cmd
!= sc
) {
5971 abort
->abort_pending
= true;
5972 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5973 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
5974 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
5975 as
= abort
->scsi_cmd
;
5977 ml
+= sprintf(msg
+ml
,
5978 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5979 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
5981 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
5982 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
5985 * Command is in flight, or possibly already completed
5986 * by the firmware (but not to the scsi mid layer) but we can't
5987 * distinguish which. Send the abort down.
5989 if (wait_for_available_abort_cmd(h
)) {
5990 dev_warn(&h
->pdev
->dev
,
5991 "%s FAILED, timeout waiting for an abort command to become available.\n",
5996 rc
= hpsa_send_abort_both_ways(h
, dev
, abort
, reply_queue
);
5997 atomic_inc(&h
->abort_cmds_available
);
5998 wake_up_all(&h
->abort_cmd_wait_queue
);
6000 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
6001 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
6002 "FAILED to abort command");
6006 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
6007 wait_event(h
->event_sync_wait_queue
,
6008 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
6010 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
6014 * For operations with an associated SCSI command, a command block is allocated
6015 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6016 * block request tag as an index into a table of entries. cmd_tagged_free() is
6017 * the complement, although cmd_free() may be called instead.
6019 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6020 struct scsi_cmnd
*scmd
)
6022 int idx
= hpsa_get_cmd_index(scmd
);
6023 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6025 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6026 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6027 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6028 /* The index value comes from the block layer, so if it's out of
6029 * bounds, it's probably not our bug.
6034 atomic_inc(&c
->refcount
);
6035 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6037 * We expect that the SCSI layer will hand us a unique tag
6038 * value. Thus, there should never be a collision here between
6039 * two requests...because if the selected command isn't idle
6040 * then someone is going to be very disappointed.
6042 dev_err(&h
->pdev
->dev
,
6043 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6045 if (c
->scsi_cmd
!= NULL
)
6046 scsi_print_command(c
->scsi_cmd
);
6047 scsi_print_command(scmd
);
6050 hpsa_cmd_partial_init(h
, idx
, c
);
6054 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6057 * Release our reference to the block. We don't need to do anything
6058 * else to free it, because it is accessed by index. (There's no point
6059 * in checking the result of the decrement, since we cannot guarantee
6060 * that there isn't a concurrent abort which is also accessing it.)
6062 (void)atomic_dec(&c
->refcount
);
6066 * For operations that cannot sleep, a command block is allocated at init,
6067 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6068 * which ones are free or in use. Lock must be held when calling this.
6069 * cmd_free() is the complement.
6070 * This function never gives up and returns NULL. If it hangs,
6071 * another thread must call cmd_free() to free some tags.
6074 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6076 struct CommandList
*c
;
6081 * There is some *extremely* small but non-zero chance that that
6082 * multiple threads could get in here, and one thread could
6083 * be scanning through the list of bits looking for a free
6084 * one, but the free ones are always behind him, and other
6085 * threads sneak in behind him and eat them before he can
6086 * get to them, so that while there is always a free one, a
6087 * very unlucky thread might be starved anyway, never able to
6088 * beat the other threads. In reality, this happens so
6089 * infrequently as to be indistinguishable from never.
6091 * Note that we start allocating commands before the SCSI host structure
6092 * is initialized. Since the search starts at bit zero, this
6093 * all works, since we have at least one command structure available;
6094 * however, it means that the structures with the low indexes have to be
6095 * reserved for driver-initiated requests, while requests from the block
6096 * layer will use the higher indexes.
6100 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6101 HPSA_NRESERVED_CMDS
,
6103 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6107 c
= h
->cmd_pool
+ i
;
6108 refcount
= atomic_inc_return(&c
->refcount
);
6109 if (unlikely(refcount
> 1)) {
6110 cmd_free(h
, c
); /* already in use */
6111 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6114 set_bit(i
& (BITS_PER_LONG
- 1),
6115 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6116 break; /* it's ours now. */
6118 hpsa_cmd_partial_init(h
, i
, c
);
6123 * This is the complementary operation to cmd_alloc(). Note, however, in some
6124 * corner cases it may also be used to free blocks allocated by
6125 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6126 * the clear-bit is harmless.
6128 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6130 if (atomic_dec_and_test(&c
->refcount
)) {
6133 i
= c
- h
->cmd_pool
;
6134 clear_bit(i
& (BITS_PER_LONG
- 1),
6135 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
6139 #ifdef CONFIG_COMPAT
6141 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
6144 IOCTL32_Command_struct __user
*arg32
=
6145 (IOCTL32_Command_struct __user
*) arg
;
6146 IOCTL_Command_struct arg64
;
6147 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
6151 memset(&arg64
, 0, sizeof(arg64
));
6153 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6154 sizeof(arg64
.LUN_info
));
6155 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6156 sizeof(arg64
.Request
));
6157 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6158 sizeof(arg64
.error_info
));
6159 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6160 err
|= get_user(cp
, &arg32
->buf
);
6161 arg64
.buf
= compat_ptr(cp
);
6162 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6167 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
6170 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6171 sizeof(arg32
->error_info
));
6177 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6178 int cmd
, void __user
*arg
)
6180 BIG_IOCTL32_Command_struct __user
*arg32
=
6181 (BIG_IOCTL32_Command_struct __user
*) arg
;
6182 BIG_IOCTL_Command_struct arg64
;
6183 BIG_IOCTL_Command_struct __user
*p
=
6184 compat_alloc_user_space(sizeof(arg64
));
6188 memset(&arg64
, 0, sizeof(arg64
));
6190 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
6191 sizeof(arg64
.LUN_info
));
6192 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
6193 sizeof(arg64
.Request
));
6194 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
6195 sizeof(arg64
.error_info
));
6196 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
6197 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
6198 err
|= get_user(cp
, &arg32
->buf
);
6199 arg64
.buf
= compat_ptr(cp
);
6200 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
6205 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
6208 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
6209 sizeof(arg32
->error_info
));
6215 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6218 case CCISS_GETPCIINFO
:
6219 case CCISS_GETINTINFO
:
6220 case CCISS_SETINTINFO
:
6221 case CCISS_GETNODENAME
:
6222 case CCISS_SETNODENAME
:
6223 case CCISS_GETHEARTBEAT
:
6224 case CCISS_GETBUSTYPES
:
6225 case CCISS_GETFIRMVER
:
6226 case CCISS_GETDRIVVER
:
6227 case CCISS_REVALIDVOLS
:
6228 case CCISS_DEREGDISK
:
6229 case CCISS_REGNEWDISK
:
6231 case CCISS_RESCANDISK
:
6232 case CCISS_GETLUNINFO
:
6233 return hpsa_ioctl(dev
, cmd
, arg
);
6235 case CCISS_PASSTHRU32
:
6236 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6237 case CCISS_BIG_PASSTHRU32
:
6238 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6241 return -ENOIOCTLCMD
;
6246 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6248 struct hpsa_pci_info pciinfo
;
6252 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6253 pciinfo
.bus
= h
->pdev
->bus
->number
;
6254 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6255 pciinfo
.board_id
= h
->board_id
;
6256 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6261 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6263 DriverVer_type DriverVer
;
6264 unsigned char vmaj
, vmin
, vsubmin
;
6267 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6268 &vmaj
, &vmin
, &vsubmin
);
6270 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6271 "unrecognized.", HPSA_DRIVER_VERSION
);
6276 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6279 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6284 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6286 IOCTL_Command_struct iocommand
;
6287 struct CommandList
*c
;
6294 if (!capable(CAP_SYS_RAWIO
))
6296 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6298 if ((iocommand
.buf_size
< 1) &&
6299 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
6302 if (iocommand
.buf_size
> 0) {
6303 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
6306 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
6307 /* Copy the data into the buffer we created */
6308 if (copy_from_user(buff
, iocommand
.buf
,
6309 iocommand
.buf_size
)) {
6314 memset(buff
, 0, iocommand
.buf_size
);
6319 /* Fill in the command type */
6320 c
->cmd_type
= CMD_IOCTL_PEND
;
6321 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6322 /* Fill in Command Header */
6323 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6324 if (iocommand
.buf_size
> 0) { /* buffer to fill */
6325 c
->Header
.SGList
= 1;
6326 c
->Header
.SGTotal
= cpu_to_le16(1);
6327 } else { /* no buffers to fill */
6328 c
->Header
.SGList
= 0;
6329 c
->Header
.SGTotal
= cpu_to_le16(0);
6331 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6333 /* Fill in Request block */
6334 memcpy(&c
->Request
, &iocommand
.Request
,
6335 sizeof(c
->Request
));
6337 /* Fill in the scatter gather information */
6338 if (iocommand
.buf_size
> 0) {
6339 temp64
= pci_map_single(h
->pdev
, buff
,
6340 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6341 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6342 c
->SG
[0].Addr
= cpu_to_le64(0);
6343 c
->SG
[0].Len
= cpu_to_le32(0);
6347 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6348 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6349 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6351 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6352 if (iocommand
.buf_size
> 0)
6353 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6354 check_ioctl_unit_attention(h
, c
);
6360 /* Copy the error information out */
6361 memcpy(&iocommand
.error_info
, c
->err_info
,
6362 sizeof(iocommand
.error_info
));
6363 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6367 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6368 iocommand
.buf_size
> 0) {
6369 /* Copy the data out of the buffer we created */
6370 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6382 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6384 BIG_IOCTL_Command_struct
*ioc
;
6385 struct CommandList
*c
;
6386 unsigned char **buff
= NULL
;
6387 int *buff_size
= NULL
;
6393 BYTE __user
*data_ptr
;
6397 if (!capable(CAP_SYS_RAWIO
))
6399 ioc
= (BIG_IOCTL_Command_struct
*)
6400 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6405 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6409 if ((ioc
->buf_size
< 1) &&
6410 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6414 /* Check kmalloc limits using all SGs */
6415 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6419 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6423 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6428 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6433 left
= ioc
->buf_size
;
6434 data_ptr
= ioc
->buf
;
6436 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6437 buff_size
[sg_used
] = sz
;
6438 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6439 if (buff
[sg_used
] == NULL
) {
6443 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6444 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6449 memset(buff
[sg_used
], 0, sz
);
6456 c
->cmd_type
= CMD_IOCTL_PEND
;
6457 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6458 c
->Header
.ReplyQueue
= 0;
6459 c
->Header
.SGList
= (u8
) sg_used
;
6460 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6461 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6462 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6463 if (ioc
->buf_size
> 0) {
6465 for (i
= 0; i
< sg_used
; i
++) {
6466 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6467 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6468 if (dma_mapping_error(&h
->pdev
->dev
,
6469 (dma_addr_t
) temp64
)) {
6470 c
->SG
[i
].Addr
= cpu_to_le64(0);
6471 c
->SG
[i
].Len
= cpu_to_le32(0);
6472 hpsa_pci_unmap(h
->pdev
, c
, i
,
6473 PCI_DMA_BIDIRECTIONAL
);
6477 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6478 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6479 c
->SG
[i
].Ext
= cpu_to_le32(0);
6481 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6483 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6485 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6486 check_ioctl_unit_attention(h
, c
);
6492 /* Copy the error information out */
6493 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6494 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6498 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6501 /* Copy the data out of the buffer we created */
6502 BYTE __user
*ptr
= ioc
->buf
;
6503 for (i
= 0; i
< sg_used
; i
++) {
6504 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6508 ptr
+= buff_size
[i
];
6518 for (i
= 0; i
< sg_used
; i
++)
6527 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6528 struct CommandList
*c
)
6530 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6531 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6532 (void) check_for_unit_attention(h
, c
);
6538 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6540 struct ctlr_info
*h
;
6541 void __user
*argp
= (void __user
*)arg
;
6544 h
= sdev_to_hba(dev
);
6547 case CCISS_DEREGDISK
:
6548 case CCISS_REGNEWDISK
:
6550 hpsa_scan_start(h
->scsi_host
);
6552 case CCISS_GETPCIINFO
:
6553 return hpsa_getpciinfo_ioctl(h
, argp
);
6554 case CCISS_GETDRIVVER
:
6555 return hpsa_getdrivver_ioctl(h
, argp
);
6556 case CCISS_PASSTHRU
:
6557 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6559 rc
= hpsa_passthru_ioctl(h
, argp
);
6560 atomic_inc(&h
->passthru_cmds_avail
);
6562 case CCISS_BIG_PASSTHRU
:
6563 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6565 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6566 atomic_inc(&h
->passthru_cmds_avail
);
6573 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6576 struct CommandList
*c
;
6580 /* fill_cmd can't fail here, no data buffer to map */
6581 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6582 RAID_CTLR_LUNID
, TYPE_MSG
);
6583 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6585 enqueue_cmd_and_start_io(h
, c
);
6586 /* Don't wait for completion, the reset won't complete. Don't free
6587 * the command either. This is the last command we will send before
6588 * re-initializing everything, so it doesn't matter and won't leak.
6593 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6594 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6597 int pci_dir
= XFER_NONE
;
6598 u64 tag
; /* for commands to be aborted */
6600 c
->cmd_type
= CMD_IOCTL_PEND
;
6601 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6602 c
->Header
.ReplyQueue
= 0;
6603 if (buff
!= NULL
&& size
> 0) {
6604 c
->Header
.SGList
= 1;
6605 c
->Header
.SGTotal
= cpu_to_le16(1);
6607 c
->Header
.SGList
= 0;
6608 c
->Header
.SGTotal
= cpu_to_le16(0);
6610 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6612 if (cmd_type
== TYPE_CMD
) {
6615 /* are we trying to read a vital product page */
6616 if (page_code
& VPD_PAGE
) {
6617 c
->Request
.CDB
[1] = 0x01;
6618 c
->Request
.CDB
[2] = (page_code
& 0xff);
6620 c
->Request
.CDBLen
= 6;
6621 c
->Request
.type_attr_dir
=
6622 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6623 c
->Request
.Timeout
= 0;
6624 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6625 c
->Request
.CDB
[4] = size
& 0xFF;
6627 case HPSA_REPORT_LOG
:
6628 case HPSA_REPORT_PHYS
:
6629 /* Talking to controller so It's a physical command
6630 mode = 00 target = 0. Nothing to write.
6632 c
->Request
.CDBLen
= 12;
6633 c
->Request
.type_attr_dir
=
6634 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6635 c
->Request
.Timeout
= 0;
6636 c
->Request
.CDB
[0] = cmd
;
6637 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6638 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6639 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6640 c
->Request
.CDB
[9] = size
& 0xFF;
6642 case BMIC_SENSE_DIAG_OPTIONS
:
6643 c
->Request
.CDBLen
= 16;
6644 c
->Request
.type_attr_dir
=
6645 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6646 c
->Request
.Timeout
= 0;
6647 /* Spec says this should be BMIC_WRITE */
6648 c
->Request
.CDB
[0] = BMIC_READ
;
6649 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6651 case BMIC_SET_DIAG_OPTIONS
:
6652 c
->Request
.CDBLen
= 16;
6653 c
->Request
.type_attr_dir
=
6654 TYPE_ATTR_DIR(cmd_type
,
6655 ATTR_SIMPLE
, XFER_WRITE
);
6656 c
->Request
.Timeout
= 0;
6657 c
->Request
.CDB
[0] = BMIC_WRITE
;
6658 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6660 case HPSA_CACHE_FLUSH
:
6661 c
->Request
.CDBLen
= 12;
6662 c
->Request
.type_attr_dir
=
6663 TYPE_ATTR_DIR(cmd_type
,
6664 ATTR_SIMPLE
, XFER_WRITE
);
6665 c
->Request
.Timeout
= 0;
6666 c
->Request
.CDB
[0] = BMIC_WRITE
;
6667 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6668 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6669 c
->Request
.CDB
[8] = size
& 0xFF;
6671 case TEST_UNIT_READY
:
6672 c
->Request
.CDBLen
= 6;
6673 c
->Request
.type_attr_dir
=
6674 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6675 c
->Request
.Timeout
= 0;
6677 case HPSA_GET_RAID_MAP
:
6678 c
->Request
.CDBLen
= 12;
6679 c
->Request
.type_attr_dir
=
6680 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6681 c
->Request
.Timeout
= 0;
6682 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6683 c
->Request
.CDB
[1] = cmd
;
6684 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6685 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6686 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6687 c
->Request
.CDB
[9] = size
& 0xFF;
6689 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6690 c
->Request
.CDBLen
= 10;
6691 c
->Request
.type_attr_dir
=
6692 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6693 c
->Request
.Timeout
= 0;
6694 c
->Request
.CDB
[0] = BMIC_READ
;
6695 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6696 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6697 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6699 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6700 c
->Request
.CDBLen
= 10;
6701 c
->Request
.type_attr_dir
=
6702 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6703 c
->Request
.Timeout
= 0;
6704 c
->Request
.CDB
[0] = BMIC_READ
;
6705 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6706 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6707 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6709 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6710 c
->Request
.CDBLen
= 10;
6711 c
->Request
.type_attr_dir
=
6712 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6713 c
->Request
.Timeout
= 0;
6714 c
->Request
.CDB
[0] = BMIC_READ
;
6715 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6716 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6717 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6719 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6720 c
->Request
.CDBLen
= 10;
6721 c
->Request
.type_attr_dir
=
6722 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6723 c
->Request
.Timeout
= 0;
6724 c
->Request
.CDB
[0] = BMIC_READ
;
6725 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6726 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6727 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6729 case BMIC_IDENTIFY_CONTROLLER
:
6730 c
->Request
.CDBLen
= 10;
6731 c
->Request
.type_attr_dir
=
6732 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6733 c
->Request
.Timeout
= 0;
6734 c
->Request
.CDB
[0] = BMIC_READ
;
6735 c
->Request
.CDB
[1] = 0;
6736 c
->Request
.CDB
[2] = 0;
6737 c
->Request
.CDB
[3] = 0;
6738 c
->Request
.CDB
[4] = 0;
6739 c
->Request
.CDB
[5] = 0;
6740 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6741 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6742 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6743 c
->Request
.CDB
[9] = 0;
6746 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6750 } else if (cmd_type
== TYPE_MSG
) {
6753 case HPSA_PHYS_TARGET_RESET
:
6754 c
->Request
.CDBLen
= 16;
6755 c
->Request
.type_attr_dir
=
6756 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6757 c
->Request
.Timeout
= 0; /* Don't time out */
6758 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6759 c
->Request
.CDB
[0] = HPSA_RESET
;
6760 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6761 /* Physical target reset needs no control bytes 4-7*/
6762 c
->Request
.CDB
[4] = 0x00;
6763 c
->Request
.CDB
[5] = 0x00;
6764 c
->Request
.CDB
[6] = 0x00;
6765 c
->Request
.CDB
[7] = 0x00;
6767 case HPSA_DEVICE_RESET_MSG
:
6768 c
->Request
.CDBLen
= 16;
6769 c
->Request
.type_attr_dir
=
6770 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6771 c
->Request
.Timeout
= 0; /* Don't time out */
6772 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6773 c
->Request
.CDB
[0] = cmd
;
6774 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6775 /* If bytes 4-7 are zero, it means reset the */
6777 c
->Request
.CDB
[4] = 0x00;
6778 c
->Request
.CDB
[5] = 0x00;
6779 c
->Request
.CDB
[6] = 0x00;
6780 c
->Request
.CDB
[7] = 0x00;
6782 case HPSA_ABORT_MSG
:
6783 memcpy(&tag
, buff
, sizeof(tag
));
6784 dev_dbg(&h
->pdev
->dev
,
6785 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6786 tag
, c
->Header
.tag
);
6787 c
->Request
.CDBLen
= 16;
6788 c
->Request
.type_attr_dir
=
6789 TYPE_ATTR_DIR(cmd_type
,
6790 ATTR_SIMPLE
, XFER_WRITE
);
6791 c
->Request
.Timeout
= 0; /* Don't time out */
6792 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6793 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6794 c
->Request
.CDB
[2] = 0x00; /* reserved */
6795 c
->Request
.CDB
[3] = 0x00; /* reserved */
6796 /* Tag to abort goes in CDB[4]-CDB[11] */
6797 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6798 c
->Request
.CDB
[12] = 0x00; /* reserved */
6799 c
->Request
.CDB
[13] = 0x00; /* reserved */
6800 c
->Request
.CDB
[14] = 0x00; /* reserved */
6801 c
->Request
.CDB
[15] = 0x00; /* reserved */
6804 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6809 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6813 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6815 pci_dir
= PCI_DMA_FROMDEVICE
;
6818 pci_dir
= PCI_DMA_TODEVICE
;
6821 pci_dir
= PCI_DMA_NONE
;
6824 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6826 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6832 * Map (physical) PCI mem into (virtual) kernel space
6834 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6836 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6837 ulong page_offs
= ((ulong
) base
) - page_base
;
6838 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6841 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6844 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6846 return h
->access
.command_completed(h
, q
);
6849 static inline bool interrupt_pending(struct ctlr_info
*h
)
6851 return h
->access
.intr_pending(h
);
6854 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6856 return (h
->access
.intr_pending(h
) == 0) ||
6857 (h
->interrupts_enabled
== 0);
6860 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6863 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6864 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6870 static inline void finish_cmd(struct CommandList
*c
)
6872 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6873 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6874 || c
->cmd_type
== CMD_IOACCEL2
))
6875 complete_scsi_command(c
);
6876 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6877 complete(c
->waiting
);
6880 /* process completion of an indexed ("direct lookup") command */
6881 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6885 struct CommandList
*c
;
6887 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6888 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6889 c
= h
->cmd_pool
+ tag_index
;
6894 /* Some controllers, like p400, will give us one interrupt
6895 * after a soft reset, even if we turned interrupts off.
6896 * Only need to check for this in the hpsa_xxx_discard_completions
6899 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6901 if (likely(!reset_devices
))
6904 if (likely(h
->interrupts_enabled
))
6907 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6908 "(known firmware bug.) Ignoring.\n");
6914 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6915 * Relies on (h-q[x] == x) being true for x such that
6916 * 0 <= x < MAX_REPLY_QUEUES.
6918 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6920 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6923 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6925 struct ctlr_info
*h
= queue_to_hba(queue
);
6926 u8 q
= *(u8
*) queue
;
6929 if (ignore_bogus_interrupt(h
))
6932 if (interrupt_not_for_us(h
))
6934 h
->last_intr_timestamp
= get_jiffies_64();
6935 while (interrupt_pending(h
)) {
6936 raw_tag
= get_next_completion(h
, q
);
6937 while (raw_tag
!= FIFO_EMPTY
)
6938 raw_tag
= next_command(h
, q
);
6943 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6945 struct ctlr_info
*h
= queue_to_hba(queue
);
6947 u8 q
= *(u8
*) queue
;
6949 if (ignore_bogus_interrupt(h
))
6952 h
->last_intr_timestamp
= get_jiffies_64();
6953 raw_tag
= get_next_completion(h
, q
);
6954 while (raw_tag
!= FIFO_EMPTY
)
6955 raw_tag
= next_command(h
, q
);
6959 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6961 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6963 u8 q
= *(u8
*) queue
;
6965 if (interrupt_not_for_us(h
))
6967 h
->last_intr_timestamp
= get_jiffies_64();
6968 while (interrupt_pending(h
)) {
6969 raw_tag
= get_next_completion(h
, q
);
6970 while (raw_tag
!= FIFO_EMPTY
) {
6971 process_indexed_cmd(h
, raw_tag
);
6972 raw_tag
= next_command(h
, q
);
6978 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6980 struct ctlr_info
*h
= queue_to_hba(queue
);
6982 u8 q
= *(u8
*) queue
;
6984 h
->last_intr_timestamp
= get_jiffies_64();
6985 raw_tag
= get_next_completion(h
, q
);
6986 while (raw_tag
!= FIFO_EMPTY
) {
6987 process_indexed_cmd(h
, raw_tag
);
6988 raw_tag
= next_command(h
, q
);
6993 /* Send a message CDB to the firmware. Careful, this only works
6994 * in simple mode, not performant mode due to the tag lookup.
6995 * We only ever use this immediately after a controller reset.
6997 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7001 struct CommandListHeader CommandHeader
;
7002 struct RequestBlock Request
;
7003 struct ErrDescriptor ErrorDescriptor
;
7005 struct Command
*cmd
;
7006 static const size_t cmd_sz
= sizeof(*cmd
) +
7007 sizeof(cmd
->ErrorDescriptor
);
7011 void __iomem
*vaddr
;
7014 vaddr
= pci_ioremap_bar(pdev
, 0);
7018 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7019 * CCISS commands, so they must be allocated from the lower 4GiB of
7022 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
7028 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
7034 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7035 * although there's no guarantee, we assume that the address is at
7036 * least 4-byte aligned (most likely, it's page-aligned).
7038 paddr32
= cpu_to_le32(paddr64
);
7040 cmd
->CommandHeader
.ReplyQueue
= 0;
7041 cmd
->CommandHeader
.SGList
= 0;
7042 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7043 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7044 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7046 cmd
->Request
.CDBLen
= 16;
7047 cmd
->Request
.type_attr_dir
=
7048 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7049 cmd
->Request
.Timeout
= 0; /* Don't time out */
7050 cmd
->Request
.CDB
[0] = opcode
;
7051 cmd
->Request
.CDB
[1] = type
;
7052 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7053 cmd
->ErrorDescriptor
.Addr
=
7054 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7055 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7057 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7059 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7060 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7061 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7063 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7068 /* we leak the DMA buffer here ... no choice since the controller could
7069 * still complete the command.
7071 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7072 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7077 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
7079 if (tag
& HPSA_ERROR_BIT
) {
7080 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7085 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7090 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7092 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7093 void __iomem
*vaddr
, u32 use_doorbell
)
7097 /* For everything after the P600, the PCI power state method
7098 * of resetting the controller doesn't work, so we have this
7099 * other way using the doorbell register.
7101 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7102 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7104 /* PMC hardware guys tell us we need a 10 second delay after
7105 * doorbell reset and before any attempt to talk to the board
7106 * at all to ensure that this actually works and doesn't fall
7107 * over in some weird corner cases.
7110 } else { /* Try to do it the PCI power state way */
7112 /* Quoting from the Open CISS Specification: "The Power
7113 * Management Control/Status Register (CSR) controls the power
7114 * state of the device. The normal operating state is D0,
7115 * CSR=00h. The software off state is D3, CSR=03h. To reset
7116 * the controller, place the interface device in D3 then to D0,
7117 * this causes a secondary PCI reset which will reset the
7122 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7124 /* enter the D3hot power management state */
7125 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7131 /* enter the D0 power management state */
7132 rc
= pci_set_power_state(pdev
, PCI_D0
);
7137 * The P600 requires a small delay when changing states.
7138 * Otherwise we may think the board did not reset and we bail.
7139 * This for kdump only and is particular to the P600.
7146 static void init_driver_version(char *driver_version
, int len
)
7148 memset(driver_version
, 0, len
);
7149 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7152 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7154 char *driver_version
;
7155 int i
, size
= sizeof(cfgtable
->driver_version
);
7157 driver_version
= kmalloc(size
, GFP_KERNEL
);
7158 if (!driver_version
)
7161 init_driver_version(driver_version
, size
);
7162 for (i
= 0; i
< size
; i
++)
7163 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7164 kfree(driver_version
);
7168 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7169 unsigned char *driver_ver
)
7173 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7174 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7177 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7180 char *driver_ver
, *old_driver_ver
;
7181 int rc
, size
= sizeof(cfgtable
->driver_version
);
7183 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
7184 if (!old_driver_ver
)
7186 driver_ver
= old_driver_ver
+ size
;
7188 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7189 * should have been changed, otherwise we know the reset failed.
7191 init_driver_version(old_driver_ver
, size
);
7192 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7193 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7194 kfree(old_driver_ver
);
7197 /* This does a hard reset of the controller using PCI power management
7198 * states or the using the doorbell register.
7200 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7204 u64 cfg_base_addr_index
;
7205 void __iomem
*vaddr
;
7206 unsigned long paddr
;
7207 u32 misc_fw_support
;
7209 struct CfgTable __iomem
*cfgtable
;
7211 u16 command_register
;
7213 /* For controllers as old as the P600, this is very nearly
7216 * pci_save_state(pci_dev);
7217 * pci_set_power_state(pci_dev, PCI_D3hot);
7218 * pci_set_power_state(pci_dev, PCI_D0);
7219 * pci_restore_state(pci_dev);
7221 * For controllers newer than the P600, the pci power state
7222 * method of resetting doesn't work so we have another way
7223 * using the doorbell register.
7226 if (!ctlr_is_resettable(board_id
)) {
7227 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7231 /* if controller is soft- but not hard resettable... */
7232 if (!ctlr_is_hard_resettable(board_id
))
7233 return -ENOTSUPP
; /* try soft reset later. */
7235 /* Save the PCI command register */
7236 pci_read_config_word(pdev
, 4, &command_register
);
7237 pci_save_state(pdev
);
7239 /* find the first memory BAR, so we can find the cfg table */
7240 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7243 vaddr
= remap_pci_mem(paddr
, 0x250);
7247 /* find cfgtable in order to check if reset via doorbell is supported */
7248 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7249 &cfg_base_addr_index
, &cfg_offset
);
7252 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7253 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7258 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7260 goto unmap_cfgtable
;
7262 /* If reset via doorbell register is supported, use that.
7263 * There are two such methods. Favor the newest method.
7265 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7266 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7268 use_doorbell
= DOORBELL_CTLR_RESET2
;
7270 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7272 dev_warn(&pdev
->dev
,
7273 "Soft reset not supported. Firmware update is required.\n");
7274 rc
= -ENOTSUPP
; /* try soft reset */
7275 goto unmap_cfgtable
;
7279 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7281 goto unmap_cfgtable
;
7283 pci_restore_state(pdev
);
7284 pci_write_config_word(pdev
, 4, command_register
);
7286 /* Some devices (notably the HP Smart Array 5i Controller)
7287 need a little pause here */
7288 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7290 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7292 dev_warn(&pdev
->dev
,
7293 "Failed waiting for board to become ready after hard reset\n");
7294 goto unmap_cfgtable
;
7297 rc
= controller_reset_failed(vaddr
);
7299 goto unmap_cfgtable
;
7301 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7302 "controller. Will try soft reset.\n");
7305 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7317 * We cannot read the structure directly, for portability we must use
7319 * This is for debug only.
7321 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7327 dev_info(dev
, "Controller Configuration information\n");
7328 dev_info(dev
, "------------------------------------\n");
7329 for (i
= 0; i
< 4; i
++)
7330 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7331 temp_name
[4] = '\0';
7332 dev_info(dev
, " Signature = %s\n", temp_name
);
7333 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7334 dev_info(dev
, " Transport methods supported = 0x%x\n",
7335 readl(&(tb
->TransportSupport
)));
7336 dev_info(dev
, " Transport methods active = 0x%x\n",
7337 readl(&(tb
->TransportActive
)));
7338 dev_info(dev
, " Requested transport Method = 0x%x\n",
7339 readl(&(tb
->HostWrite
.TransportRequest
)));
7340 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7341 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7342 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7343 readl(&(tb
->HostWrite
.CoalIntCount
)));
7344 dev_info(dev
, " Max outstanding commands = %d\n",
7345 readl(&(tb
->CmdsOutMax
)));
7346 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7347 for (i
= 0; i
< 16; i
++)
7348 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7349 temp_name
[16] = '\0';
7350 dev_info(dev
, " Server Name = %s\n", temp_name
);
7351 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7352 readl(&(tb
->HeartBeat
)));
7353 #endif /* HPSA_DEBUG */
7356 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7358 int i
, offset
, mem_type
, bar_type
;
7360 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7363 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7364 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7365 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7368 mem_type
= pci_resource_flags(pdev
, i
) &
7369 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7371 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7372 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7373 offset
+= 4; /* 32 bit */
7375 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7378 default: /* reserved in PCI 2.2 */
7379 dev_warn(&pdev
->dev
,
7380 "base address is invalid\n");
7385 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7391 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7393 if (h
->msix_vector
) {
7394 if (h
->pdev
->msix_enabled
)
7395 pci_disable_msix(h
->pdev
);
7397 } else if (h
->msi_vector
) {
7398 if (h
->pdev
->msi_enabled
)
7399 pci_disable_msi(h
->pdev
);
7404 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7405 * controllers that are capable. If not, we use legacy INTx mode.
7407 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
7409 #ifdef CONFIG_PCI_MSI
7411 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
7413 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
7414 hpsa_msix_entries
[i
].vector
= 0;
7415 hpsa_msix_entries
[i
].entry
= i
;
7418 /* Some boards advertise MSI but don't really support it */
7419 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
7420 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
7421 goto default_int_mode
;
7422 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
7423 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
7424 h
->msix_vector
= MAX_REPLY_QUEUES
;
7425 if (h
->msix_vector
> num_online_cpus())
7426 h
->msix_vector
= num_online_cpus();
7427 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7430 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7432 goto single_msi_mode
;
7433 } else if (err
< h
->msix_vector
) {
7434 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7435 "available\n", err
);
7437 h
->msix_vector
= err
;
7438 for (i
= 0; i
< h
->msix_vector
; i
++)
7439 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7443 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7444 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7445 if (!pci_enable_msi(h
->pdev
))
7448 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7451 #endif /* CONFIG_PCI_MSI */
7452 /* if we get here we're going to use the default interrupt mode */
7453 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7456 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7459 u32 subsystem_vendor_id
, subsystem_device_id
;
7461 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7462 subsystem_device_id
= pdev
->subsystem_device
;
7463 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7464 subsystem_vendor_id
;
7466 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7467 if (*board_id
== products
[i
].board_id
)
7470 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7471 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7473 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7474 "0x%08x, ignoring.\n", *board_id
);
7477 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7480 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7481 unsigned long *memory_bar
)
7485 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7486 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7487 /* addressing mode bits already removed */
7488 *memory_bar
= pci_resource_start(pdev
, i
);
7489 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7493 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7497 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7503 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7505 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7507 for (i
= 0; i
< iterations
; i
++) {
7508 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7509 if (wait_for_ready
) {
7510 if (scratchpad
== HPSA_FIRMWARE_READY
)
7513 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7516 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7518 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7522 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7523 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7526 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7527 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7528 *cfg_base_addr
&= (u32
) 0x0000ffff;
7529 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7530 if (*cfg_base_addr_index
== -1) {
7531 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7537 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7539 if (h
->transtable
) {
7540 iounmap(h
->transtable
);
7541 h
->transtable
= NULL
;
7544 iounmap(h
->cfgtable
);
7549 /* Find and map CISS config table and transfer table
7550 + * several items must be unmapped (freed) later
7552 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7556 u64 cfg_base_addr_index
;
7560 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7561 &cfg_base_addr_index
, &cfg_offset
);
7564 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7565 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7567 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7570 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7573 /* Find performant mode table. */
7574 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7575 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7576 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7577 sizeof(*h
->transtable
));
7578 if (!h
->transtable
) {
7579 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7580 hpsa_free_cfgtables(h
);
7586 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7588 #define MIN_MAX_COMMANDS 16
7589 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7591 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7593 /* Limit commands in memory limited kdump scenario. */
7594 if (reset_devices
&& h
->max_commands
> 32)
7595 h
->max_commands
= 32;
7597 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7598 dev_warn(&h
->pdev
->dev
,
7599 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7602 h
->max_commands
= MIN_MAX_COMMANDS
;
7606 /* If the controller reports that the total max sg entries is greater than 512,
7607 * then we know that chained SG blocks work. (Original smart arrays did not
7608 * support chained SG blocks and would return zero for max sg entries.)
7610 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7612 return h
->maxsgentries
> 512;
7615 /* Interrogate the hardware for some limits:
7616 * max commands, max SG elements without chaining, and with chaining,
7617 * SG chain block size, etc.
7619 static void hpsa_find_board_params(struct ctlr_info
*h
)
7621 hpsa_get_max_perf_mode_cmds(h
);
7622 h
->nr_cmds
= h
->max_commands
;
7623 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7624 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7625 if (hpsa_supports_chained_sg_blocks(h
)) {
7626 /* Limit in-command s/g elements to 32 save dma'able memory. */
7627 h
->max_cmd_sg_entries
= 32;
7628 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7629 h
->maxsgentries
--; /* save one for chain pointer */
7632 * Original smart arrays supported at most 31 s/g entries
7633 * embedded inline in the command (trying to use more
7634 * would lock up the controller)
7636 h
->max_cmd_sg_entries
= 31;
7637 h
->maxsgentries
= 31; /* default to traditional values */
7641 /* Find out what task management functions are supported and cache */
7642 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7643 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7644 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7645 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7646 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7647 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7648 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7651 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7653 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7654 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7660 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7664 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7665 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7667 driver_support
|= ENABLE_SCSI_PREFETCH
;
7669 driver_support
|= ENABLE_UNIT_ATTN
;
7670 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7673 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7674 * in a prefetch beyond physical memory.
7676 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7680 if (h
->board_id
!= 0x3225103C)
7682 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7683 dma_prefetch
|= 0x8000;
7684 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7687 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7691 unsigned long flags
;
7692 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7693 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7694 spin_lock_irqsave(&h
->lock
, flags
);
7695 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7696 spin_unlock_irqrestore(&h
->lock
, flags
);
7697 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7699 /* delay and try again */
7700 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7707 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7711 unsigned long flags
;
7713 /* under certain very rare conditions, this can take awhile.
7714 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7715 * as we enter this code.)
7717 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7718 if (h
->remove_in_progress
)
7720 spin_lock_irqsave(&h
->lock
, flags
);
7721 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7722 spin_unlock_irqrestore(&h
->lock
, flags
);
7723 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7725 /* delay and try again */
7726 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7733 /* return -ENODEV or other reason on error, 0 on success */
7734 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7738 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7739 if (!(trans_support
& SIMPLE_MODE
))
7742 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7744 /* Update the field, and then ring the doorbell */
7745 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7746 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7747 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7748 if (hpsa_wait_for_mode_change_ack(h
))
7750 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7751 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7753 h
->transMethod
= CFGTBL_Trans_Simple
;
7756 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7760 /* free items allocated or mapped by hpsa_pci_init */
7761 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7763 hpsa_free_cfgtables(h
); /* pci_init 4 */
7764 iounmap(h
->vaddr
); /* pci_init 3 */
7766 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7768 * call pci_disable_device before pci_release_regions per
7769 * Documentation/PCI/pci.txt
7771 pci_disable_device(h
->pdev
); /* pci_init 1 */
7772 pci_release_regions(h
->pdev
); /* pci_init 2 */
7775 /* several items must be freed later */
7776 static int hpsa_pci_init(struct ctlr_info
*h
)
7778 int prod_index
, err
;
7780 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7783 h
->product_name
= products
[prod_index
].product_name
;
7784 h
->access
= *(products
[prod_index
].access
);
7786 h
->needs_abort_tags_swizzled
=
7787 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7789 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7790 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7792 err
= pci_enable_device(h
->pdev
);
7794 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7795 pci_disable_device(h
->pdev
);
7799 err
= pci_request_regions(h
->pdev
, HPSA
);
7801 dev_err(&h
->pdev
->dev
,
7802 "failed to obtain PCI resources\n");
7803 pci_disable_device(h
->pdev
);
7807 pci_set_master(h
->pdev
);
7809 hpsa_interrupt_mode(h
);
7810 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7812 goto clean2
; /* intmode+region, pci */
7813 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7815 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7817 goto clean2
; /* intmode+region, pci */
7819 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7821 goto clean3
; /* vaddr, intmode+region, pci */
7822 err
= hpsa_find_cfgtables(h
);
7824 goto clean3
; /* vaddr, intmode+region, pci */
7825 hpsa_find_board_params(h
);
7827 if (!hpsa_CISS_signature_present(h
)) {
7829 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7831 hpsa_set_driver_support_bits(h
);
7832 hpsa_p600_dma_prefetch_quirk(h
);
7833 err
= hpsa_enter_simple_mode(h
);
7835 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7838 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7839 hpsa_free_cfgtables(h
);
7840 clean3
: /* vaddr, intmode+region, pci */
7843 clean2
: /* intmode+region, pci */
7844 hpsa_disable_interrupt_mode(h
);
7846 * call pci_disable_device before pci_release_regions per
7847 * Documentation/PCI/pci.txt
7849 pci_disable_device(h
->pdev
);
7850 pci_release_regions(h
->pdev
);
7854 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7858 #define HBA_INQUIRY_BYTE_COUNT 64
7859 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7860 if (!h
->hba_inquiry_data
)
7862 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7863 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7865 kfree(h
->hba_inquiry_data
);
7866 h
->hba_inquiry_data
= NULL
;
7870 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7873 void __iomem
*vaddr
;
7878 /* kdump kernel is loading, we don't know in which state is
7879 * the pci interface. The dev->enable_cnt is equal zero
7880 * so we call enable+disable, wait a while and switch it on.
7882 rc
= pci_enable_device(pdev
);
7884 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7887 pci_disable_device(pdev
);
7888 msleep(260); /* a randomly chosen number */
7889 rc
= pci_enable_device(pdev
);
7891 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7895 pci_set_master(pdev
);
7897 vaddr
= pci_ioremap_bar(pdev
, 0);
7898 if (vaddr
== NULL
) {
7902 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7905 /* Reset the controller with a PCI power-cycle or via doorbell */
7906 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7908 /* -ENOTSUPP here means we cannot reset the controller
7909 * but it's already (and still) up and running in
7910 * "performant mode". Or, it might be 640x, which can't reset
7911 * due to concerns about shared bbwc between 6402/6404 pair.
7916 /* Now try to get the controller to respond to a no-op */
7917 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7918 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7919 if (hpsa_noop(pdev
) == 0)
7922 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7923 (i
< 11 ? "; re-trying" : ""));
7928 pci_disable_device(pdev
);
7932 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7934 kfree(h
->cmd_pool_bits
);
7935 h
->cmd_pool_bits
= NULL
;
7937 pci_free_consistent(h
->pdev
,
7938 h
->nr_cmds
* sizeof(struct CommandList
),
7940 h
->cmd_pool_dhandle
);
7942 h
->cmd_pool_dhandle
= 0;
7944 if (h
->errinfo_pool
) {
7945 pci_free_consistent(h
->pdev
,
7946 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7948 h
->errinfo_pool_dhandle
);
7949 h
->errinfo_pool
= NULL
;
7950 h
->errinfo_pool_dhandle
= 0;
7954 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7956 h
->cmd_pool_bits
= kzalloc(
7957 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7958 sizeof(unsigned long), GFP_KERNEL
);
7959 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7960 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7961 &(h
->cmd_pool_dhandle
));
7962 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7963 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7964 &(h
->errinfo_pool_dhandle
));
7965 if ((h
->cmd_pool_bits
== NULL
)
7966 || (h
->cmd_pool
== NULL
)
7967 || (h
->errinfo_pool
== NULL
)) {
7968 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7971 hpsa_preinitialize_commands(h
);
7974 hpsa_free_cmd_pool(h
);
7978 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
7982 cpu
= cpumask_first(cpu_online_mask
);
7983 for (i
= 0; i
< h
->msix_vector
; i
++) {
7984 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
7985 cpu
= cpumask_next(cpu
, cpu_online_mask
);
7989 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7990 static void hpsa_free_irqs(struct ctlr_info
*h
)
7994 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
7995 /* Single reply queue, only one irq to free */
7997 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7998 free_irq(h
->intr
[i
], &h
->q
[i
]);
8003 for (i
= 0; i
< h
->msix_vector
; i
++) {
8004 irq_set_affinity_hint(h
->intr
[i
], NULL
);
8005 free_irq(h
->intr
[i
], &h
->q
[i
]);
8008 for (; i
< MAX_REPLY_QUEUES
; i
++)
8012 /* returns 0 on success; cleans up and returns -Enn on error */
8013 static int hpsa_request_irqs(struct ctlr_info
*h
,
8014 irqreturn_t (*msixhandler
)(int, void *),
8015 irqreturn_t (*intxhandler
)(int, void *))
8020 * initialize h->q[x] = x so that interrupt handlers know which
8023 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8026 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
8027 /* If performant mode and MSI-X, use multiple reply queues */
8028 for (i
= 0; i
< h
->msix_vector
; i
++) {
8029 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8030 rc
= request_irq(h
->intr
[i
], msixhandler
,
8036 dev_err(&h
->pdev
->dev
,
8037 "failed to get irq %d for %s\n",
8038 h
->intr
[i
], h
->devname
);
8039 for (j
= 0; j
< i
; j
++) {
8040 free_irq(h
->intr
[j
], &h
->q
[j
]);
8043 for (; j
< MAX_REPLY_QUEUES
; j
++)
8048 hpsa_irq_affinity_hints(h
);
8050 /* Use single reply pool */
8051 if (h
->msix_vector
> 0 || h
->msi_vector
) {
8053 sprintf(h
->intrname
[h
->intr_mode
],
8054 "%s-msix", h
->devname
);
8056 sprintf(h
->intrname
[h
->intr_mode
],
8057 "%s-msi", h
->devname
);
8058 rc
= request_irq(h
->intr
[h
->intr_mode
],
8060 h
->intrname
[h
->intr_mode
],
8061 &h
->q
[h
->intr_mode
]);
8063 sprintf(h
->intrname
[h
->intr_mode
],
8064 "%s-intx", h
->devname
);
8065 rc
= request_irq(h
->intr
[h
->intr_mode
],
8066 intxhandler
, IRQF_SHARED
,
8067 h
->intrname
[h
->intr_mode
],
8068 &h
->q
[h
->intr_mode
]);
8070 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
8073 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8074 h
->intr
[h
->intr_mode
], h
->devname
);
8081 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8084 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
8086 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8087 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8089 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8093 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8094 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8096 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8097 "after soft reset.\n");
8104 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8108 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8109 if (!h
->reply_queue
[i
].head
)
8111 pci_free_consistent(h
->pdev
,
8112 h
->reply_queue_size
,
8113 h
->reply_queue
[i
].head
,
8114 h
->reply_queue
[i
].busaddr
);
8115 h
->reply_queue
[i
].head
= NULL
;
8116 h
->reply_queue
[i
].busaddr
= 0;
8118 h
->reply_queue_size
= 0;
8121 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8123 hpsa_free_performant_mode(h
); /* init_one 7 */
8124 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8125 hpsa_free_cmd_pool(h
); /* init_one 5 */
8126 hpsa_free_irqs(h
); /* init_one 4 */
8127 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8128 h
->scsi_host
= NULL
; /* init_one 3 */
8129 hpsa_free_pci_init(h
); /* init_one 2_5 */
8130 free_percpu(h
->lockup_detected
); /* init_one 2 */
8131 h
->lockup_detected
= NULL
; /* init_one 2 */
8132 if (h
->resubmit_wq
) {
8133 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8134 h
->resubmit_wq
= NULL
;
8136 if (h
->rescan_ctlr_wq
) {
8137 destroy_workqueue(h
->rescan_ctlr_wq
);
8138 h
->rescan_ctlr_wq
= NULL
;
8140 kfree(h
); /* init_one 1 */
8143 /* Called when controller lockup detected. */
8144 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8147 struct CommandList
*c
;
8150 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8151 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8152 c
= h
->cmd_pool
+ i
;
8153 refcount
= atomic_inc_return(&c
->refcount
);
8155 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8157 atomic_dec(&h
->commands_outstanding
);
8162 dev_warn(&h
->pdev
->dev
,
8163 "failed %d commands in fail_all\n", failcount
);
8166 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8170 for_each_online_cpu(cpu
) {
8171 u32
*lockup_detected
;
8172 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8173 *lockup_detected
= value
;
8175 wmb(); /* be sure the per-cpu variables are out to memory */
8178 static void controller_lockup_detected(struct ctlr_info
*h
)
8180 unsigned long flags
;
8181 u32 lockup_detected
;
8183 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8184 spin_lock_irqsave(&h
->lock
, flags
);
8185 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8186 if (!lockup_detected
) {
8187 /* no heartbeat, but controller gave us a zero. */
8188 dev_warn(&h
->pdev
->dev
,
8189 "lockup detected after %d but scratchpad register is zero\n",
8190 h
->heartbeat_sample_interval
/ HZ
);
8191 lockup_detected
= 0xffffffff;
8193 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8194 spin_unlock_irqrestore(&h
->lock
, flags
);
8195 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8196 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8197 pci_disable_device(h
->pdev
);
8198 fail_all_outstanding_cmds(h
);
8201 static int detect_controller_lockup(struct ctlr_info
*h
)
8205 unsigned long flags
;
8207 now
= get_jiffies_64();
8208 /* If we've received an interrupt recently, we're ok. */
8209 if (time_after64(h
->last_intr_timestamp
+
8210 (h
->heartbeat_sample_interval
), now
))
8214 * If we've already checked the heartbeat recently, we're ok.
8215 * This could happen if someone sends us a signal. We
8216 * otherwise don't care about signals in this thread.
8218 if (time_after64(h
->last_heartbeat_timestamp
+
8219 (h
->heartbeat_sample_interval
), now
))
8222 /* If heartbeat has not changed since we last looked, we're not ok. */
8223 spin_lock_irqsave(&h
->lock
, flags
);
8224 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8225 spin_unlock_irqrestore(&h
->lock
, flags
);
8226 if (h
->last_heartbeat
== heartbeat
) {
8227 controller_lockup_detected(h
);
8232 h
->last_heartbeat
= heartbeat
;
8233 h
->last_heartbeat_timestamp
= now
;
8237 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8242 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8245 /* Ask the controller to clear the events we're handling. */
8246 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8247 | CFGTBL_Trans_io_accel2
)) &&
8248 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8249 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8251 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8252 event_type
= "state change";
8253 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8254 event_type
= "configuration change";
8255 /* Stop sending new RAID offload reqs via the IO accelerator */
8256 scsi_block_requests(h
->scsi_host
);
8257 for (i
= 0; i
< h
->ndevices
; i
++)
8258 h
->dev
[i
]->offload_enabled
= 0;
8259 hpsa_drain_accel_commands(h
);
8260 /* Set 'accelerator path config change' bit */
8261 dev_warn(&h
->pdev
->dev
,
8262 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8263 h
->events
, event_type
);
8264 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8265 /* Set the "clear event notify field update" bit 6 */
8266 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8267 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8268 hpsa_wait_for_clear_event_notify_ack(h
);
8269 scsi_unblock_requests(h
->scsi_host
);
8271 /* Acknowledge controller notification events. */
8272 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8273 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8274 hpsa_wait_for_clear_event_notify_ack(h
);
8276 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8277 hpsa_wait_for_mode_change_ack(h
);
8283 /* Check a register on the controller to see if there are configuration
8284 * changes (added/changed/removed logical drives, etc.) which mean that
8285 * we should rescan the controller for devices.
8286 * Also check flag for driver-initiated rescan.
8288 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8290 if (h
->drv_req_rescan
) {
8291 h
->drv_req_rescan
= 0;
8295 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8298 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8299 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8303 * Check if any of the offline devices have become ready
8305 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8307 unsigned long flags
;
8308 struct offline_device_entry
*d
;
8309 struct list_head
*this, *tmp
;
8311 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8312 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8313 d
= list_entry(this, struct offline_device_entry
,
8315 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8316 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8317 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8318 list_del(&d
->offline_list
);
8319 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8322 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8324 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8328 static int hpsa_luns_changed(struct ctlr_info
*h
)
8330 int rc
= 1; /* assume there are changes */
8331 struct ReportLUNdata
*logdev
= NULL
;
8333 /* if we can't find out if lun data has changed,
8334 * assume that it has.
8337 if (!h
->lastlogicals
)
8340 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8342 dev_warn(&h
->pdev
->dev
,
8343 "Out of memory, can't track lun changes.\n");
8346 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8347 dev_warn(&h
->pdev
->dev
,
8348 "report luns failed, can't track lun changes.\n");
8351 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8352 dev_info(&h
->pdev
->dev
,
8353 "Lun changes detected.\n");
8354 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8357 rc
= 0; /* no changes detected. */
8363 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8365 unsigned long flags
;
8366 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8367 struct ctlr_info
, rescan_ctlr_work
);
8370 if (h
->remove_in_progress
)
8373 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
8374 scsi_host_get(h
->scsi_host
);
8375 hpsa_ack_ctlr_events(h
);
8376 hpsa_scan_start(h
->scsi_host
);
8377 scsi_host_put(h
->scsi_host
);
8378 } else if (h
->discovery_polling
) {
8379 hpsa_disable_rld_caching(h
);
8380 if (hpsa_luns_changed(h
)) {
8381 struct Scsi_Host
*sh
= NULL
;
8383 dev_info(&h
->pdev
->dev
,
8384 "driver discovery polling rescan.\n");
8385 sh
= scsi_host_get(h
->scsi_host
);
8387 hpsa_scan_start(sh
);
8392 spin_lock_irqsave(&h
->lock
, flags
);
8393 if (!h
->remove_in_progress
)
8394 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8395 h
->heartbeat_sample_interval
);
8396 spin_unlock_irqrestore(&h
->lock
, flags
);
8399 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8401 unsigned long flags
;
8402 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8403 struct ctlr_info
, monitor_ctlr_work
);
8405 detect_controller_lockup(h
);
8406 if (lockup_detected(h
))
8409 spin_lock_irqsave(&h
->lock
, flags
);
8410 if (!h
->remove_in_progress
)
8411 schedule_delayed_work(&h
->monitor_ctlr_work
,
8412 h
->heartbeat_sample_interval
);
8413 spin_unlock_irqrestore(&h
->lock
, flags
);
8416 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8419 struct workqueue_struct
*wq
= NULL
;
8421 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8423 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8428 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8431 struct ctlr_info
*h
;
8432 int try_soft_reset
= 0;
8433 unsigned long flags
;
8436 if (number_of_controllers
== 0)
8437 printk(KERN_INFO DRIVER_NAME
"\n");
8439 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
8441 dev_warn(&pdev
->dev
, "Board ID not found\n");
8445 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8447 if (rc
!= -ENOTSUPP
)
8449 /* If the reset fails in a particular way (it has no way to do
8450 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8451 * a soft reset once we get the controller configured up to the
8452 * point that it can accept a command.
8458 reinit_after_soft_reset
:
8460 /* Command structures must be aligned on a 32-byte boundary because
8461 * the 5 lower bits of the address are used by the hardware. and by
8462 * the driver. See comments in hpsa.h for more info.
8464 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8465 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8467 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8473 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8474 INIT_LIST_HEAD(&h
->offline_device_list
);
8475 spin_lock_init(&h
->lock
);
8476 spin_lock_init(&h
->offline_device_lock
);
8477 spin_lock_init(&h
->scan_lock
);
8478 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8479 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8481 /* Allocate and clear per-cpu variable lockup_detected */
8482 h
->lockup_detected
= alloc_percpu(u32
);
8483 if (!h
->lockup_detected
) {
8484 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8486 goto clean1
; /* aer/h */
8488 set_lockup_detected_for_all_cpus(h
, 0);
8490 rc
= hpsa_pci_init(h
);
8492 goto clean2
; /* lu, aer/h */
8494 /* relies on h-> settings made by hpsa_pci_init, including
8495 * interrupt_mode h->intr */
8496 rc
= hpsa_scsi_host_alloc(h
);
8498 goto clean2_5
; /* pci, lu, aer/h */
8500 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8501 h
->ctlr
= number_of_controllers
;
8502 number_of_controllers
++;
8504 /* configure PCI DMA stuff */
8505 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8509 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8513 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8514 goto clean3
; /* shost, pci, lu, aer/h */
8518 /* make sure the board interrupts are off */
8519 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8521 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8523 goto clean3
; /* shost, pci, lu, aer/h */
8524 rc
= hpsa_alloc_cmd_pool(h
);
8526 goto clean4
; /* irq, shost, pci, lu, aer/h */
8527 rc
= hpsa_alloc_sg_chain_blocks(h
);
8529 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8530 init_waitqueue_head(&h
->scan_wait_queue
);
8531 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8532 init_waitqueue_head(&h
->event_sync_wait_queue
);
8533 mutex_init(&h
->reset_mutex
);
8534 h
->scan_finished
= 1; /* no scan currently in progress */
8536 pci_set_drvdata(pdev
, h
);
8539 spin_lock_init(&h
->devlock
);
8540 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8542 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8544 /* hook into SCSI subsystem */
8545 rc
= hpsa_scsi_add_host(h
);
8547 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8549 /* create the resubmit workqueue */
8550 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8551 if (!h
->rescan_ctlr_wq
) {
8556 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8557 if (!h
->resubmit_wq
) {
8559 goto clean7
; /* aer/h */
8563 * At this point, the controller is ready to take commands.
8564 * Now, if reset_devices and the hard reset didn't work, try
8565 * the soft reset and see if that works.
8567 if (try_soft_reset
) {
8569 /* This is kind of gross. We may or may not get a completion
8570 * from the soft reset command, and if we do, then the value
8571 * from the fifo may or may not be valid. So, we wait 10 secs
8572 * after the reset throwing away any completions we get during
8573 * that time. Unregister the interrupt handler and register
8574 * fake ones to scoop up any residual completions.
8576 spin_lock_irqsave(&h
->lock
, flags
);
8577 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8578 spin_unlock_irqrestore(&h
->lock
, flags
);
8580 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8581 hpsa_intx_discard_completions
);
8583 dev_warn(&h
->pdev
->dev
,
8584 "Failed to request_irq after soft reset.\n");
8586 * cannot goto clean7 or free_irqs will be called
8587 * again. Instead, do its work
8589 hpsa_free_performant_mode(h
); /* clean7 */
8590 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8591 hpsa_free_cmd_pool(h
); /* clean5 */
8593 * skip hpsa_free_irqs(h) clean4 since that
8594 * was just called before request_irqs failed
8599 rc
= hpsa_kdump_soft_reset(h
);
8601 /* Neither hard nor soft reset worked, we're hosed. */
8604 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8605 dev_info(&h
->pdev
->dev
,
8606 "Waiting for stale completions to drain.\n");
8607 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8609 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8611 rc
= controller_reset_failed(h
->cfgtable
);
8613 dev_info(&h
->pdev
->dev
,
8614 "Soft reset appears to have failed.\n");
8616 /* since the controller's reset, we have to go back and re-init
8617 * everything. Easiest to just forget what we've done and do it
8620 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8623 /* don't goto clean, we already unallocated */
8626 goto reinit_after_soft_reset
;
8629 /* Enable Accelerated IO path at driver layer */
8630 h
->acciopath_status
= 1;
8631 /* Disable discovery polling.*/
8632 h
->discovery_polling
= 0;
8635 /* Turn the interrupts on so we can service requests */
8636 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8638 hpsa_hba_inquiry(h
);
8640 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8641 if (!h
->lastlogicals
)
8642 dev_info(&h
->pdev
->dev
,
8643 "Can't track change to report lun data\n");
8645 /* Monitor the controller for firmware lockups */
8646 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8647 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8648 schedule_delayed_work(&h
->monitor_ctlr_work
,
8649 h
->heartbeat_sample_interval
);
8650 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8651 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8652 h
->heartbeat_sample_interval
);
8655 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8656 hpsa_free_performant_mode(h
);
8657 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8658 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8659 hpsa_free_sg_chain_blocks(h
);
8660 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8661 hpsa_free_cmd_pool(h
);
8662 clean4
: /* irq, shost, pci, lu, aer/h */
8664 clean3
: /* shost, pci, lu, aer/h */
8665 scsi_host_put(h
->scsi_host
);
8666 h
->scsi_host
= NULL
;
8667 clean2_5
: /* pci, lu, aer/h */
8668 hpsa_free_pci_init(h
);
8669 clean2
: /* lu, aer/h */
8670 if (h
->lockup_detected
) {
8671 free_percpu(h
->lockup_detected
);
8672 h
->lockup_detected
= NULL
;
8674 clean1
: /* wq/aer/h */
8675 if (h
->resubmit_wq
) {
8676 destroy_workqueue(h
->resubmit_wq
);
8677 h
->resubmit_wq
= NULL
;
8679 if (h
->rescan_ctlr_wq
) {
8680 destroy_workqueue(h
->rescan_ctlr_wq
);
8681 h
->rescan_ctlr_wq
= NULL
;
8687 static void hpsa_flush_cache(struct ctlr_info
*h
)
8690 struct CommandList
*c
;
8693 if (unlikely(lockup_detected(h
)))
8695 flush_buf
= kzalloc(4, GFP_KERNEL
);
8701 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8702 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8705 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8706 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8709 if (c
->err_info
->CommandStatus
!= 0)
8711 dev_warn(&h
->pdev
->dev
,
8712 "error flushing cache on controller\n");
8717 /* Make controller gather fresh report lun data each time we
8718 * send down a report luns request
8720 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8723 struct CommandList
*c
;
8726 /* Don't bother trying to set diag options if locked up */
8727 if (unlikely(h
->lockup_detected
))
8730 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8732 dev_err(&h
->pdev
->dev
,
8733 "Error: failed to disable rld caching, during alloc.\n");
8739 /* first, get the current diag options settings */
8740 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8741 RAID_CTLR_LUNID
, TYPE_CMD
))
8744 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8745 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8746 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8749 /* Now, set the bit for disabling the RLD caching */
8750 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8752 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8753 RAID_CTLR_LUNID
, TYPE_CMD
))
8756 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8757 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8758 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8761 /* Now verify that it got set: */
8762 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8763 RAID_CTLR_LUNID
, TYPE_CMD
))
8766 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8767 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
8768 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8771 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
8775 dev_err(&h
->pdev
->dev
,
8776 "Error: failed to disable report lun data caching.\n");
8782 static void hpsa_shutdown(struct pci_dev
*pdev
)
8784 struct ctlr_info
*h
;
8786 h
= pci_get_drvdata(pdev
);
8787 /* Turn board interrupts off and send the flush cache command
8788 * sendcmd will turn off interrupt, and send the flush...
8789 * To write all data in the battery backed cache to disks
8791 hpsa_flush_cache(h
);
8792 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8793 hpsa_free_irqs(h
); /* init_one 4 */
8794 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8797 static void hpsa_free_device_info(struct ctlr_info
*h
)
8801 for (i
= 0; i
< h
->ndevices
; i
++) {
8807 static void hpsa_remove_one(struct pci_dev
*pdev
)
8809 struct ctlr_info
*h
;
8810 unsigned long flags
;
8812 if (pci_get_drvdata(pdev
) == NULL
) {
8813 dev_err(&pdev
->dev
, "unable to remove device\n");
8816 h
= pci_get_drvdata(pdev
);
8818 /* Get rid of any controller monitoring work items */
8819 spin_lock_irqsave(&h
->lock
, flags
);
8820 h
->remove_in_progress
= 1;
8821 spin_unlock_irqrestore(&h
->lock
, flags
);
8822 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8823 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8824 destroy_workqueue(h
->rescan_ctlr_wq
);
8825 destroy_workqueue(h
->resubmit_wq
);
8828 * Call before disabling interrupts.
8829 * scsi_remove_host can trigger I/O operations especially
8830 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8831 * operations which cannot complete and will hang the system.
8834 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8835 /* includes hpsa_free_irqs - init_one 4 */
8836 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8837 hpsa_shutdown(pdev
);
8839 hpsa_free_device_info(h
); /* scan */
8841 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8842 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8843 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8844 hpsa_free_performant_mode(h
); /* init_one 7 */
8845 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8846 hpsa_free_cmd_pool(h
); /* init_one 5 */
8847 kfree(h
->lastlogicals
);
8849 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8851 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8852 h
->scsi_host
= NULL
; /* init_one 3 */
8854 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8855 hpsa_free_pci_init(h
); /* init_one 2.5 */
8857 free_percpu(h
->lockup_detected
); /* init_one 2 */
8858 h
->lockup_detected
= NULL
; /* init_one 2 */
8859 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8861 hpsa_delete_sas_host(h
);
8863 kfree(h
); /* init_one 1 */
8866 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8867 __attribute__((unused
)) pm_message_t state
)
8872 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8877 static struct pci_driver hpsa_pci_driver
= {
8879 .probe
= hpsa_init_one
,
8880 .remove
= hpsa_remove_one
,
8881 .id_table
= hpsa_pci_device_id
, /* id_table */
8882 .shutdown
= hpsa_shutdown
,
8883 .suspend
= hpsa_suspend
,
8884 .resume
= hpsa_resume
,
8887 /* Fill in bucket_map[], given nsgs (the max number of
8888 * scatter gather elements supported) and bucket[],
8889 * which is an array of 8 integers. The bucket[] array
8890 * contains 8 different DMA transfer sizes (in 16
8891 * byte increments) which the controller uses to fetch
8892 * commands. This function fills in bucket_map[], which
8893 * maps a given number of scatter gather elements to one of
8894 * the 8 DMA transfer sizes. The point of it is to allow the
8895 * controller to only do as much DMA as needed to fetch the
8896 * command, with the DMA transfer size encoded in the lower
8897 * bits of the command address.
8899 static void calc_bucket_map(int bucket
[], int num_buckets
,
8900 int nsgs
, int min_blocks
, u32
*bucket_map
)
8904 /* Note, bucket_map must have nsgs+1 entries. */
8905 for (i
= 0; i
<= nsgs
; i
++) {
8906 /* Compute size of a command with i SG entries */
8907 size
= i
+ min_blocks
;
8908 b
= num_buckets
; /* Assume the biggest bucket */
8909 /* Find the bucket that is just big enough */
8910 for (j
= 0; j
< num_buckets
; j
++) {
8911 if (bucket
[j
] >= size
) {
8916 /* for a command with i SG entries, use bucket b. */
8922 * return -ENODEV on err, 0 on success (or no action)
8923 * allocates numerous items that must be freed later
8925 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8928 unsigned long register_value
;
8929 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8930 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8931 CFGTBL_Trans_enable_directed_msix
|
8932 (trans_support
& (CFGTBL_Trans_io_accel1
|
8933 CFGTBL_Trans_io_accel2
));
8934 struct access_method access
= SA5_performant_access
;
8936 /* This is a bit complicated. There are 8 registers on
8937 * the controller which we write to to tell it 8 different
8938 * sizes of commands which there may be. It's a way of
8939 * reducing the DMA done to fetch each command. Encoded into
8940 * each command's tag are 3 bits which communicate to the controller
8941 * which of the eight sizes that command fits within. The size of
8942 * each command depends on how many scatter gather entries there are.
8943 * Each SG entry requires 16 bytes. The eight registers are programmed
8944 * with the number of 16-byte blocks a command of that size requires.
8945 * The smallest command possible requires 5 such 16 byte blocks.
8946 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8947 * blocks. Note, this only extends to the SG entries contained
8948 * within the command block, and does not extend to chained blocks
8949 * of SG elements. bft[] contains the eight values we write to
8950 * the registers. They are not evenly distributed, but have more
8951 * sizes for small commands, and fewer sizes for larger commands.
8953 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8954 #define MIN_IOACCEL2_BFT_ENTRY 5
8955 #define HPSA_IOACCEL2_HEADER_SZ 4
8956 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8957 13, 14, 15, 16, 17, 18, 19,
8958 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8959 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8960 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8961 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8962 16 * MIN_IOACCEL2_BFT_ENTRY
);
8963 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8964 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8965 /* 5 = 1 s/g entry or 4k
8966 * 6 = 2 s/g entry or 8k
8967 * 8 = 4 s/g entry or 16k
8968 * 10 = 6 s/g entry or 24k
8971 /* If the controller supports either ioaccel method then
8972 * we can also use the RAID stack submit path that does not
8973 * perform the superfluous readl() after each command submission.
8975 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8976 access
= SA5_performant_access_no_read
;
8978 /* Controller spec: zero out this buffer. */
8979 for (i
= 0; i
< h
->nreply_queues
; i
++)
8980 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8982 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8983 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8984 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8985 for (i
= 0; i
< 8; i
++)
8986 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8988 /* size of controller ring buffer */
8989 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8990 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8991 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8992 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8994 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8995 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8996 writel(h
->reply_queue
[i
].busaddr
,
8997 &h
->transtable
->RepQAddr
[i
].lower
);
9000 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9001 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9003 * enable outbound interrupt coalescing in accelerator mode;
9005 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9006 access
= SA5_ioaccel_mode1_access
;
9007 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9008 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9010 if (trans_support
& CFGTBL_Trans_io_accel2
) {
9011 access
= SA5_ioaccel_mode2_access
;
9012 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9013 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9016 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9017 if (hpsa_wait_for_mode_change_ack(h
)) {
9018 dev_err(&h
->pdev
->dev
,
9019 "performant mode problem - doorbell timeout\n");
9022 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9023 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9024 dev_err(&h
->pdev
->dev
,
9025 "performant mode problem - transport not active\n");
9028 /* Change the access methods to the performant access methods */
9030 h
->transMethod
= transMethod
;
9032 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9033 (trans_support
& CFGTBL_Trans_io_accel2
)))
9036 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9037 /* Set up I/O accelerator mode */
9038 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9039 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9040 h
->reply_queue
[i
].current_entry
=
9041 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9043 bft
[7] = h
->ioaccel_maxsg
+ 8;
9044 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9045 h
->ioaccel1_blockFetchTable
);
9047 /* initialize all reply queue entries to unused */
9048 for (i
= 0; i
< h
->nreply_queues
; i
++)
9049 memset(h
->reply_queue
[i
].head
,
9050 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9051 h
->reply_queue_size
);
9053 /* set all the constant fields in the accelerator command
9054 * frames once at init time to save CPU cycles later.
9056 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9057 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9059 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9060 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9061 (i
* sizeof(struct ErrorInfo
)));
9062 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9063 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9064 cp
->host_context_flags
=
9065 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9066 cp
->timeout_sec
= 0;
9069 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9071 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9072 (i
* sizeof(struct io_accel1_cmd
)));
9074 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9075 u64 cfg_offset
, cfg_base_addr_index
;
9076 u32 bft2_offset
, cfg_base_addr
;
9079 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9080 &cfg_base_addr_index
, &cfg_offset
);
9081 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9082 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9083 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9084 4, h
->ioaccel2_blockFetchTable
);
9085 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9086 BUILD_BUG_ON(offsetof(struct CfgTable
,
9087 io_accel_request_size_offset
) != 0xb8);
9088 h
->ioaccel2_bft2_regs
=
9089 remap_pci_mem(pci_resource_start(h
->pdev
,
9090 cfg_base_addr_index
) +
9091 cfg_offset
+ bft2_offset
,
9093 sizeof(*h
->ioaccel2_bft2_regs
));
9094 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9095 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9097 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9098 if (hpsa_wait_for_mode_change_ack(h
)) {
9099 dev_err(&h
->pdev
->dev
,
9100 "performant mode problem - enabling ioaccel mode\n");
9106 /* Free ioaccel1 mode command blocks and block fetch table */
9107 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9109 if (h
->ioaccel_cmd_pool
) {
9110 pci_free_consistent(h
->pdev
,
9111 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9112 h
->ioaccel_cmd_pool
,
9113 h
->ioaccel_cmd_pool_dhandle
);
9114 h
->ioaccel_cmd_pool
= NULL
;
9115 h
->ioaccel_cmd_pool_dhandle
= 0;
9117 kfree(h
->ioaccel1_blockFetchTable
);
9118 h
->ioaccel1_blockFetchTable
= NULL
;
9121 /* Allocate ioaccel1 mode command blocks and block fetch table */
9122 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9125 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9126 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9127 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9129 /* Command structures must be aligned on a 128-byte boundary
9130 * because the 7 lower bits of the address are used by the
9133 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9134 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9135 h
->ioaccel_cmd_pool
=
9136 pci_alloc_consistent(h
->pdev
,
9137 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9138 &(h
->ioaccel_cmd_pool_dhandle
));
9140 h
->ioaccel1_blockFetchTable
=
9141 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9142 sizeof(u32
)), GFP_KERNEL
);
9144 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9145 (h
->ioaccel1_blockFetchTable
== NULL
))
9148 memset(h
->ioaccel_cmd_pool
, 0,
9149 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9153 hpsa_free_ioaccel1_cmd_and_bft(h
);
9157 /* Free ioaccel2 mode command blocks and block fetch table */
9158 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9160 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9162 if (h
->ioaccel2_cmd_pool
) {
9163 pci_free_consistent(h
->pdev
,
9164 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9165 h
->ioaccel2_cmd_pool
,
9166 h
->ioaccel2_cmd_pool_dhandle
);
9167 h
->ioaccel2_cmd_pool
= NULL
;
9168 h
->ioaccel2_cmd_pool_dhandle
= 0;
9170 kfree(h
->ioaccel2_blockFetchTable
);
9171 h
->ioaccel2_blockFetchTable
= NULL
;
9174 /* Allocate ioaccel2 mode command blocks and block fetch table */
9175 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9179 /* Allocate ioaccel2 mode command blocks and block fetch table */
9182 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9183 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9184 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9186 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9187 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9188 h
->ioaccel2_cmd_pool
=
9189 pci_alloc_consistent(h
->pdev
,
9190 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9191 &(h
->ioaccel2_cmd_pool_dhandle
));
9193 h
->ioaccel2_blockFetchTable
=
9194 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9195 sizeof(u32
)), GFP_KERNEL
);
9197 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9198 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9203 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9207 memset(h
->ioaccel2_cmd_pool
, 0,
9208 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9212 hpsa_free_ioaccel2_cmd_and_bft(h
);
9216 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9219 kfree(h
->blockFetchTable
);
9220 h
->blockFetchTable
= NULL
;
9221 hpsa_free_reply_queues(h
);
9222 hpsa_free_ioaccel1_cmd_and_bft(h
);
9223 hpsa_free_ioaccel2_cmd_and_bft(h
);
9226 /* return -ENODEV on error, 0 on success (or no action)
9227 * allocates numerous items that must be freed later
9229 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9232 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9233 CFGTBL_Trans_use_short_tags
;
9236 if (hpsa_simple_mode
)
9239 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9240 if (!(trans_support
& PERFORMANT_MODE
))
9243 /* Check for I/O accelerator mode support */
9244 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9245 transMethod
|= CFGTBL_Trans_io_accel1
|
9246 CFGTBL_Trans_enable_directed_msix
;
9247 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9250 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9251 transMethod
|= CFGTBL_Trans_io_accel2
|
9252 CFGTBL_Trans_enable_directed_msix
;
9253 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9258 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
9259 hpsa_get_max_perf_mode_cmds(h
);
9260 /* Performant mode ring buffer and supporting data structures */
9261 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9263 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9264 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
9265 h
->reply_queue_size
,
9266 &(h
->reply_queue
[i
].busaddr
));
9267 if (!h
->reply_queue
[i
].head
) {
9269 goto clean1
; /* rq, ioaccel */
9271 h
->reply_queue
[i
].size
= h
->max_commands
;
9272 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9273 h
->reply_queue
[i
].current_entry
= 0;
9276 /* Need a block fetch table for performant mode */
9277 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9278 sizeof(u32
)), GFP_KERNEL
);
9279 if (!h
->blockFetchTable
) {
9281 goto clean1
; /* rq, ioaccel */
9284 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9286 goto clean2
; /* bft, rq, ioaccel */
9289 clean2
: /* bft, rq, ioaccel */
9290 kfree(h
->blockFetchTable
);
9291 h
->blockFetchTable
= NULL
;
9292 clean1
: /* rq, ioaccel */
9293 hpsa_free_reply_queues(h
);
9294 hpsa_free_ioaccel1_cmd_and_bft(h
);
9295 hpsa_free_ioaccel2_cmd_and_bft(h
);
9299 static int is_accelerated_cmd(struct CommandList
*c
)
9301 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9304 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9306 struct CommandList
*c
= NULL
;
9307 int i
, accel_cmds_out
;
9310 do { /* wait for all outstanding ioaccel commands to drain out */
9312 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9313 c
= h
->cmd_pool
+ i
;
9314 refcount
= atomic_inc_return(&c
->refcount
);
9315 if (refcount
> 1) /* Command is allocated */
9316 accel_cmds_out
+= is_accelerated_cmd(c
);
9319 if (accel_cmds_out
<= 0)
9325 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9326 struct hpsa_sas_port
*hpsa_sas_port
)
9328 struct hpsa_sas_phy
*hpsa_sas_phy
;
9329 struct sas_phy
*phy
;
9331 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9335 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9336 hpsa_sas_port
->next_phy_index
);
9338 kfree(hpsa_sas_phy
);
9342 hpsa_sas_port
->next_phy_index
++;
9343 hpsa_sas_phy
->phy
= phy
;
9344 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9346 return hpsa_sas_phy
;
9349 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9351 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9353 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9355 if (hpsa_sas_phy
->added_to_port
)
9356 list_del(&hpsa_sas_phy
->phy_list_entry
);
9357 kfree(hpsa_sas_phy
);
9360 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9363 struct hpsa_sas_port
*hpsa_sas_port
;
9364 struct sas_phy
*phy
;
9365 struct sas_identify
*identify
;
9367 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9368 phy
= hpsa_sas_phy
->phy
;
9370 identify
= &phy
->identify
;
9371 memset(identify
, 0, sizeof(*identify
));
9372 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9373 identify
->device_type
= SAS_END_DEVICE
;
9374 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9375 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9376 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9377 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9378 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9379 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9380 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9382 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9386 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9387 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9388 &hpsa_sas_port
->phy_list_head
);
9389 hpsa_sas_phy
->added_to_port
= true;
9395 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9396 struct sas_rphy
*rphy
)
9398 struct sas_identify
*identify
;
9400 identify
= &rphy
->identify
;
9401 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9402 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9403 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9405 return sas_rphy_add(rphy
);
9408 static struct hpsa_sas_port
9409 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9413 struct hpsa_sas_port
*hpsa_sas_port
;
9414 struct sas_port
*port
;
9416 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9420 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9421 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9423 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9425 goto free_hpsa_port
;
9427 rc
= sas_port_add(port
);
9431 hpsa_sas_port
->port
= port
;
9432 hpsa_sas_port
->sas_address
= sas_address
;
9433 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9434 &hpsa_sas_node
->port_list_head
);
9436 return hpsa_sas_port
;
9439 sas_port_free(port
);
9441 kfree(hpsa_sas_port
);
9446 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9448 struct hpsa_sas_phy
*hpsa_sas_phy
;
9449 struct hpsa_sas_phy
*next
;
9451 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9452 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9453 hpsa_free_sas_phy(hpsa_sas_phy
);
9455 sas_port_delete(hpsa_sas_port
->port
);
9456 list_del(&hpsa_sas_port
->port_list_entry
);
9457 kfree(hpsa_sas_port
);
9460 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9462 struct hpsa_sas_node
*hpsa_sas_node
;
9464 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9465 if (hpsa_sas_node
) {
9466 hpsa_sas_node
->parent_dev
= parent_dev
;
9467 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9470 return hpsa_sas_node
;
9473 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9475 struct hpsa_sas_port
*hpsa_sas_port
;
9476 struct hpsa_sas_port
*next
;
9481 list_for_each_entry_safe(hpsa_sas_port
, next
,
9482 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9483 hpsa_free_sas_port(hpsa_sas_port
);
9485 kfree(hpsa_sas_node
);
9488 static struct hpsa_scsi_dev_t
9489 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9490 struct sas_rphy
*rphy
)
9493 struct hpsa_scsi_dev_t
*device
;
9495 for (i
= 0; i
< h
->ndevices
; i
++) {
9497 if (!device
->sas_port
)
9499 if (device
->sas_port
->rphy
== rphy
)
9506 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9509 struct device
*parent_dev
;
9510 struct hpsa_sas_node
*hpsa_sas_node
;
9511 struct hpsa_sas_port
*hpsa_sas_port
;
9512 struct hpsa_sas_phy
*hpsa_sas_phy
;
9514 parent_dev
= &h
->scsi_host
->shost_gendev
;
9516 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9520 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9521 if (!hpsa_sas_port
) {
9526 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9527 if (!hpsa_sas_phy
) {
9532 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9536 h
->sas_host
= hpsa_sas_node
;
9541 hpsa_free_sas_phy(hpsa_sas_phy
);
9543 hpsa_free_sas_port(hpsa_sas_port
);
9545 hpsa_free_sas_node(hpsa_sas_node
);
9550 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9552 hpsa_free_sas_node(h
->sas_host
);
9555 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9556 struct hpsa_scsi_dev_t
*device
)
9559 struct hpsa_sas_port
*hpsa_sas_port
;
9560 struct sas_rphy
*rphy
;
9562 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9566 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9572 hpsa_sas_port
->rphy
= rphy
;
9573 device
->sas_port
= hpsa_sas_port
;
9575 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9582 hpsa_free_sas_port(hpsa_sas_port
);
9583 device
->sas_port
= NULL
;
9588 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9590 if (device
->sas_port
) {
9591 hpsa_free_sas_port(device
->sas_port
);
9592 device
->sas_port
= NULL
;
9597 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9603 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9609 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9615 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9621 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9627 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9633 hpsa_sas_phy_release(struct sas_phy
*phy
)
9638 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9643 /* SMP = Serial Management Protocol */
9645 hpsa_sas_smp_handler(struct Scsi_Host
*shost
, struct sas_rphy
*rphy
,
9646 struct request
*req
)
9651 static struct sas_function_template hpsa_sas_transport_functions
= {
9652 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9653 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9654 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9655 .phy_reset
= hpsa_sas_phy_reset
,
9656 .phy_enable
= hpsa_sas_phy_enable
,
9657 .phy_setup
= hpsa_sas_phy_setup
,
9658 .phy_release
= hpsa_sas_phy_release
,
9659 .set_phy_speed
= hpsa_sas_phy_speed
,
9660 .smp_handler
= hpsa_sas_smp_handler
,
9664 * This is it. Register the PCI driver information for the cards we control
9665 * the OS will call our registered routines when it finds one of our cards.
9667 static int __init
hpsa_init(void)
9671 hpsa_sas_transport_template
=
9672 sas_attach_transport(&hpsa_sas_transport_functions
);
9673 if (!hpsa_sas_transport_template
)
9676 rc
= pci_register_driver(&hpsa_pci_driver
);
9679 sas_release_transport(hpsa_sas_transport_template
);
9684 static void __exit
hpsa_cleanup(void)
9686 pci_unregister_driver(&hpsa_pci_driver
);
9687 sas_release_transport(hpsa_sas_transport_template
);
9690 static void __attribute__((unused
)) verify_offsets(void)
9692 #define VERIFY_OFFSET(member, offset) \
9693 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9695 VERIFY_OFFSET(structure_size
, 0);
9696 VERIFY_OFFSET(volume_blk_size
, 4);
9697 VERIFY_OFFSET(volume_blk_cnt
, 8);
9698 VERIFY_OFFSET(phys_blk_shift
, 16);
9699 VERIFY_OFFSET(parity_rotation_shift
, 17);
9700 VERIFY_OFFSET(strip_size
, 18);
9701 VERIFY_OFFSET(disk_starting_blk
, 20);
9702 VERIFY_OFFSET(disk_blk_cnt
, 28);
9703 VERIFY_OFFSET(data_disks_per_row
, 36);
9704 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9705 VERIFY_OFFSET(row_cnt
, 40);
9706 VERIFY_OFFSET(layout_map_count
, 42);
9707 VERIFY_OFFSET(flags
, 44);
9708 VERIFY_OFFSET(dekindex
, 46);
9709 /* VERIFY_OFFSET(reserved, 48 */
9710 VERIFY_OFFSET(data
, 64);
9712 #undef VERIFY_OFFSET
9714 #define VERIFY_OFFSET(member, offset) \
9715 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9717 VERIFY_OFFSET(IU_type
, 0);
9718 VERIFY_OFFSET(direction
, 1);
9719 VERIFY_OFFSET(reply_queue
, 2);
9720 /* VERIFY_OFFSET(reserved1, 3); */
9721 VERIFY_OFFSET(scsi_nexus
, 4);
9722 VERIFY_OFFSET(Tag
, 8);
9723 VERIFY_OFFSET(cdb
, 16);
9724 VERIFY_OFFSET(cciss_lun
, 32);
9725 VERIFY_OFFSET(data_len
, 40);
9726 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9727 VERIFY_OFFSET(sg_count
, 45);
9728 /* VERIFY_OFFSET(reserved3 */
9729 VERIFY_OFFSET(err_ptr
, 48);
9730 VERIFY_OFFSET(err_len
, 56);
9731 /* VERIFY_OFFSET(reserved4 */
9732 VERIFY_OFFSET(sg
, 64);
9734 #undef VERIFY_OFFSET
9736 #define VERIFY_OFFSET(member, offset) \
9737 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9739 VERIFY_OFFSET(dev_handle
, 0x00);
9740 VERIFY_OFFSET(reserved1
, 0x02);
9741 VERIFY_OFFSET(function
, 0x03);
9742 VERIFY_OFFSET(reserved2
, 0x04);
9743 VERIFY_OFFSET(err_info
, 0x0C);
9744 VERIFY_OFFSET(reserved3
, 0x10);
9745 VERIFY_OFFSET(err_info_len
, 0x12);
9746 VERIFY_OFFSET(reserved4
, 0x13);
9747 VERIFY_OFFSET(sgl_offset
, 0x14);
9748 VERIFY_OFFSET(reserved5
, 0x15);
9749 VERIFY_OFFSET(transfer_len
, 0x1C);
9750 VERIFY_OFFSET(reserved6
, 0x20);
9751 VERIFY_OFFSET(io_flags
, 0x24);
9752 VERIFY_OFFSET(reserved7
, 0x26);
9753 VERIFY_OFFSET(LUN
, 0x34);
9754 VERIFY_OFFSET(control
, 0x3C);
9755 VERIFY_OFFSET(CDB
, 0x40);
9756 VERIFY_OFFSET(reserved8
, 0x50);
9757 VERIFY_OFFSET(host_context_flags
, 0x60);
9758 VERIFY_OFFSET(timeout_sec
, 0x62);
9759 VERIFY_OFFSET(ReplyQueue
, 0x64);
9760 VERIFY_OFFSET(reserved9
, 0x65);
9761 VERIFY_OFFSET(tag
, 0x68);
9762 VERIFY_OFFSET(host_addr
, 0x70);
9763 VERIFY_OFFSET(CISS_LUN
, 0x78);
9764 VERIFY_OFFSET(SG
, 0x78 + 8);
9765 #undef VERIFY_OFFSET
9768 module_init(hpsa_init
);
9769 module_exit(hpsa_cleanup
);