2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/nmi.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock
);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node
);
77 EXPORT_PER_CPU_SYMBOL(numa_node
);
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
92 * Array of node states.
94 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
95 [N_POSSIBLE
] = NODE_MASK_ALL
,
96 [N_ONLINE
] = { { [0] = 1UL } },
98 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
100 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY
] = { { [0] = 1UL } },
105 [N_CPU
] = { { [0] = 1UL } },
108 EXPORT_SYMBOL(node_states
);
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock
);
113 unsigned long totalram_pages __read_mostly
;
114 unsigned long totalreserve_pages __read_mostly
;
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
121 unsigned long dirty_balance_reserve __read_mostly
;
123 int percpu_pagelist_fraction
;
124 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
126 #ifdef CONFIG_PM_SLEEP
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
136 static gfp_t saved_gfp_mask
;
138 void pm_restore_gfp_mask(void)
140 WARN_ON(!mutex_is_locked(&pm_mutex
));
141 if (saved_gfp_mask
) {
142 gfp_allowed_mask
= saved_gfp_mask
;
147 void pm_restrict_gfp_mask(void)
149 WARN_ON(!mutex_is_locked(&pm_mutex
));
150 WARN_ON(saved_gfp_mask
);
151 saved_gfp_mask
= gfp_allowed_mask
;
152 gfp_allowed_mask
&= ~GFP_IOFS
;
155 bool pm_suspended_storage(void)
157 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
161 #endif /* CONFIG_PM_SLEEP */
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly
;
167 static void __free_pages_ok(struct page
*page
, unsigned int order
);
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
180 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
181 #ifdef CONFIG_ZONE_DMA
184 #ifdef CONFIG_ZONE_DMA32
187 #ifdef CONFIG_HIGHMEM
193 EXPORT_SYMBOL(totalram_pages
);
195 static char * const zone_names
[MAX_NR_ZONES
] = {
196 #ifdef CONFIG_ZONE_DMA
199 #ifdef CONFIG_ZONE_DMA32
203 #ifdef CONFIG_HIGHMEM
209 int min_free_kbytes
= 1024;
210 int user_min_free_kbytes
= -1;
212 static unsigned long __meminitdata nr_kernel_pages
;
213 static unsigned long __meminitdata nr_all_pages
;
214 static unsigned long __meminitdata dma_reserve
;
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
219 static unsigned long __initdata required_kernelcore
;
220 static unsigned long __initdata required_movablecore
;
221 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 EXPORT_SYMBOL(movable_zone
);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
229 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
230 int nr_online_nodes __read_mostly
= 1;
231 EXPORT_SYMBOL(nr_node_ids
);
232 EXPORT_SYMBOL(nr_online_nodes
);
235 int page_group_by_mobility_disabled __read_mostly
;
237 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
239 if (unlikely(page_group_by_mobility_disabled
&&
240 migratetype
< MIGRATE_PCPTYPES
))
241 migratetype
= MIGRATE_UNMOVABLE
;
243 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
244 PB_migrate
, PB_migrate_end
);
247 bool oom_killer_disabled __read_mostly
;
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
254 unsigned long pfn
= page_to_pfn(page
);
255 unsigned long sp
, start_pfn
;
258 seq
= zone_span_seqbegin(zone
);
259 start_pfn
= zone
->zone_start_pfn
;
260 sp
= zone
->spanned_pages
;
261 if (!zone_spans_pfn(zone
, pfn
))
263 } while (zone_span_seqretry(zone
, seq
));
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn
, zone_to_nid(zone
), zone
->name
,
268 start_pfn
, start_pfn
+ sp
);
273 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
275 if (!pfn_valid_within(page_to_pfn(page
)))
277 if (zone
!= page_zone(page
))
283 * Temporary debugging check for pages not lying within a given zone.
285 static int bad_range(struct zone
*zone
, struct page
*page
)
287 if (page_outside_zone_boundaries(zone
, page
))
289 if (!page_is_consistent(zone
, page
))
295 static inline int bad_range(struct zone
*zone
, struct page
*page
)
301 static void bad_page(struct page
*page
, const char *reason
,
302 unsigned long bad_flags
)
304 static unsigned long resume
;
305 static unsigned long nr_shown
;
306 static unsigned long nr_unshown
;
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page
)) {
310 page_mapcount_reset(page
); /* remove PageBuddy */
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
318 if (nr_shown
== 60) {
319 if (time_before(jiffies
, resume
)) {
325 "BUG: Bad page state: %lu messages suppressed\n",
332 resume
= jiffies
+ 60 * HZ
;
334 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
335 current
->comm
, page_to_pfn(page
));
336 dump_page_badflags(page
, reason
, bad_flags
);
341 /* Leave bad fields for debug, except PageBuddy could make trouble */
342 page_mapcount_reset(page
); /* remove PageBuddy */
343 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
347 * Higher-order pages are called "compound pages". They are structured thusly:
349 * The first PAGE_SIZE page is called the "head page".
351 * The remaining PAGE_SIZE pages are called "tail pages".
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
361 static void free_compound_page(struct page
*page
)
363 __free_pages_ok(page
, compound_order(page
));
366 void prep_compound_page(struct page
*page
, unsigned long order
)
369 int nr_pages
= 1 << order
;
371 set_compound_page_dtor(page
, free_compound_page
);
372 set_compound_order(page
, order
);
374 for (i
= 1; i
< nr_pages
; i
++) {
375 struct page
*p
= page
+ i
;
376 set_page_count(p
, 0);
377 p
->first_page
= page
;
378 /* Make sure p->first_page is always valid for PageTail() */
384 /* update __split_huge_page_refcount if you change this function */
385 static int destroy_compound_page(struct page
*page
, unsigned long order
)
388 int nr_pages
= 1 << order
;
391 if (unlikely(compound_order(page
) != order
)) {
392 bad_page(page
, "wrong compound order", 0);
396 __ClearPageHead(page
);
398 for (i
= 1; i
< nr_pages
; i
++) {
399 struct page
*p
= page
+ i
;
401 if (unlikely(!PageTail(p
))) {
402 bad_page(page
, "PageTail not set", 0);
404 } else if (unlikely(p
->first_page
!= page
)) {
405 bad_page(page
, "first_page not consistent", 0);
414 static inline void prep_zero_page(struct page
*page
, unsigned int order
,
420 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 * and __GFP_HIGHMEM from hard or soft interrupt context.
423 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
424 for (i
= 0; i
< (1 << order
); i
++)
425 clear_highpage(page
+ i
);
428 #ifdef CONFIG_DEBUG_PAGEALLOC
429 unsigned int _debug_guardpage_minorder
;
431 static int __init
debug_guardpage_minorder_setup(char *buf
)
435 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
436 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
439 _debug_guardpage_minorder
= res
;
440 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
443 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
445 static inline void set_page_guard_flag(struct page
*page
)
447 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
450 static inline void clear_page_guard_flag(struct page
*page
)
452 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
455 static inline void set_page_guard_flag(struct page
*page
) { }
456 static inline void clear_page_guard_flag(struct page
*page
) { }
459 static inline void set_page_order(struct page
*page
, unsigned int order
)
461 set_page_private(page
, order
);
462 __SetPageBuddy(page
);
465 static inline void rmv_page_order(struct page
*page
)
467 __ClearPageBuddy(page
);
468 set_page_private(page
, 0);
472 * Locate the struct page for both the matching buddy in our
473 * pair (buddy1) and the combined O(n+1) page they form (page).
475 * 1) Any buddy B1 will have an order O twin B2 which satisfies
476 * the following equation:
478 * For example, if the starting buddy (buddy2) is #8 its order
480 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
482 * 2) Any buddy B will have an order O+1 parent P which
483 * satisfies the following equation:
486 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
488 static inline unsigned long
489 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
491 return page_idx
^ (1 << order
);
495 * This function checks whether a page is free && is the buddy
496 * we can do coalesce a page and its buddy if
497 * (a) the buddy is not in a hole &&
498 * (b) the buddy is in the buddy system &&
499 * (c) a page and its buddy have the same order &&
500 * (d) a page and its buddy are in the same zone.
502 * For recording whether a page is in the buddy system, we set ->_mapcount
503 * PAGE_BUDDY_MAPCOUNT_VALUE.
504 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
505 * serialized by zone->lock.
507 * For recording page's order, we use page_private(page).
509 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
512 if (!pfn_valid_within(page_to_pfn(buddy
)))
515 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
516 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
518 if (page_zone_id(page
) != page_zone_id(buddy
))
524 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
525 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
528 * zone check is done late to avoid uselessly
529 * calculating zone/node ids for pages that could
532 if (page_zone_id(page
) != page_zone_id(buddy
))
541 * Freeing function for a buddy system allocator.
543 * The concept of a buddy system is to maintain direct-mapped table
544 * (containing bit values) for memory blocks of various "orders".
545 * The bottom level table contains the map for the smallest allocatable
546 * units of memory (here, pages), and each level above it describes
547 * pairs of units from the levels below, hence, "buddies".
548 * At a high level, all that happens here is marking the table entry
549 * at the bottom level available, and propagating the changes upward
550 * as necessary, plus some accounting needed to play nicely with other
551 * parts of the VM system.
552 * At each level, we keep a list of pages, which are heads of continuous
553 * free pages of length of (1 << order) and marked with _mapcount
554 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
556 * So when we are allocating or freeing one, we can derive the state of the
557 * other. That is, if we allocate a small block, and both were
558 * free, the remainder of the region must be split into blocks.
559 * If a block is freed, and its buddy is also free, then this
560 * triggers coalescing into a block of larger size.
565 static inline void __free_one_page(struct page
*page
,
567 struct zone
*zone
, unsigned int order
,
570 unsigned long page_idx
;
571 unsigned long combined_idx
;
572 unsigned long uninitialized_var(buddy_idx
);
575 VM_BUG_ON(!zone_is_initialized(zone
));
577 if (unlikely(PageCompound(page
)))
578 if (unlikely(destroy_compound_page(page
, order
)))
581 VM_BUG_ON(migratetype
== -1);
583 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
585 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
586 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
588 while (order
< MAX_ORDER
-1) {
589 buddy_idx
= __find_buddy_index(page_idx
, order
);
590 buddy
= page
+ (buddy_idx
- page_idx
);
591 if (!page_is_buddy(page
, buddy
, order
))
594 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
595 * merge with it and move up one order.
597 if (page_is_guard(buddy
)) {
598 clear_page_guard_flag(buddy
);
599 set_page_private(page
, 0);
600 __mod_zone_freepage_state(zone
, 1 << order
,
603 list_del(&buddy
->lru
);
604 zone
->free_area
[order
].nr_free
--;
605 rmv_page_order(buddy
);
607 combined_idx
= buddy_idx
& page_idx
;
608 page
= page
+ (combined_idx
- page_idx
);
609 page_idx
= combined_idx
;
612 set_page_order(page
, order
);
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
622 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
623 struct page
*higher_page
, *higher_buddy
;
624 combined_idx
= buddy_idx
& page_idx
;
625 higher_page
= page
+ (combined_idx
- page_idx
);
626 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
627 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
628 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
629 list_add_tail(&page
->lru
,
630 &zone
->free_area
[order
].free_list
[migratetype
]);
635 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
637 zone
->free_area
[order
].nr_free
++;
640 static inline int free_pages_check(struct page
*page
)
642 const char *bad_reason
= NULL
;
643 unsigned long bad_flags
= 0;
645 if (unlikely(page_mapcount(page
)))
646 bad_reason
= "nonzero mapcount";
647 if (unlikely(page
->mapping
!= NULL
))
648 bad_reason
= "non-NULL mapping";
649 if (unlikely(atomic_read(&page
->_count
) != 0))
650 bad_reason
= "nonzero _count";
651 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
652 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
655 if (unlikely(mem_cgroup_bad_page_check(page
)))
656 bad_reason
= "cgroup check failed";
657 if (unlikely(bad_reason
)) {
658 bad_page(page
, bad_reason
, bad_flags
);
661 page_cpupid_reset_last(page
);
662 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
663 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
668 * Frees a number of pages from the PCP lists
669 * Assumes all pages on list are in same zone, and of same order.
670 * count is the number of pages to free.
672 * If the zone was previously in an "all pages pinned" state then look to
673 * see if this freeing clears that state.
675 * And clear the zone's pages_scanned counter, to hold off the "all pages are
676 * pinned" detection logic.
678 static void free_pcppages_bulk(struct zone
*zone
, int count
,
679 struct per_cpu_pages
*pcp
)
685 spin_lock(&zone
->lock
);
686 zone
->pages_scanned
= 0;
690 struct list_head
*list
;
693 * Remove pages from lists in a round-robin fashion. A
694 * batch_free count is maintained that is incremented when an
695 * empty list is encountered. This is so more pages are freed
696 * off fuller lists instead of spinning excessively around empty
701 if (++migratetype
== MIGRATE_PCPTYPES
)
703 list
= &pcp
->lists
[migratetype
];
704 } while (list_empty(list
));
706 /* This is the only non-empty list. Free them all. */
707 if (batch_free
== MIGRATE_PCPTYPES
)
708 batch_free
= to_free
;
711 int mt
; /* migratetype of the to-be-freed page */
713 page
= list_entry(list
->prev
, struct page
, lru
);
714 /* must delete as __free_one_page list manipulates */
715 list_del(&page
->lru
);
716 mt
= get_freepage_migratetype(page
);
717 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
718 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
719 trace_mm_page_pcpu_drain(page
, 0, mt
);
720 if (likely(!is_migrate_isolate_page(page
))) {
721 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
722 if (is_migrate_cma(mt
))
723 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
725 } while (--to_free
&& --batch_free
&& !list_empty(list
));
727 spin_unlock(&zone
->lock
);
730 static void free_one_page(struct zone
*zone
,
731 struct page
*page
, unsigned long pfn
,
735 spin_lock(&zone
->lock
);
736 zone
->pages_scanned
= 0;
738 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
739 if (unlikely(!is_migrate_isolate(migratetype
)))
740 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
741 spin_unlock(&zone
->lock
);
744 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
749 trace_mm_page_free(page
, order
);
750 kmemcheck_free_shadow(page
, order
);
753 page
->mapping
= NULL
;
754 for (i
= 0; i
< (1 << order
); i
++)
755 bad
+= free_pages_check(page
+ i
);
759 if (!PageHighMem(page
)) {
760 debug_check_no_locks_freed(page_address(page
),
762 debug_check_no_obj_freed(page_address(page
),
765 arch_free_page(page
, order
);
766 kernel_map_pages(page
, 1 << order
, 0);
771 static void __free_pages_ok(struct page
*page
, unsigned int order
)
775 unsigned long pfn
= page_to_pfn(page
);
777 if (!free_pages_prepare(page
, order
))
780 migratetype
= get_pfnblock_migratetype(page
, pfn
);
781 local_irq_save(flags
);
782 __count_vm_events(PGFREE
, 1 << order
);
783 set_freepage_migratetype(page
, migratetype
);
784 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
785 local_irq_restore(flags
);
788 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
790 unsigned int nr_pages
= 1 << order
;
791 struct page
*p
= page
;
795 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
797 __ClearPageReserved(p
);
798 set_page_count(p
, 0);
800 __ClearPageReserved(p
);
801 set_page_count(p
, 0);
803 page_zone(page
)->managed_pages
+= nr_pages
;
804 set_page_refcounted(page
);
805 __free_pages(page
, order
);
809 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
810 void __init
init_cma_reserved_pageblock(struct page
*page
)
812 unsigned i
= pageblock_nr_pages
;
813 struct page
*p
= page
;
816 __ClearPageReserved(p
);
817 set_page_count(p
, 0);
820 set_pageblock_migratetype(page
, MIGRATE_CMA
);
822 if (pageblock_order
>= MAX_ORDER
) {
823 i
= pageblock_nr_pages
;
826 set_page_refcounted(p
);
827 __free_pages(p
, MAX_ORDER
- 1);
828 p
+= MAX_ORDER_NR_PAGES
;
829 } while (i
-= MAX_ORDER_NR_PAGES
);
831 set_page_refcounted(page
);
832 __free_pages(page
, pageblock_order
);
835 adjust_managed_page_count(page
, pageblock_nr_pages
);
840 * The order of subdivision here is critical for the IO subsystem.
841 * Please do not alter this order without good reasons and regression
842 * testing. Specifically, as large blocks of memory are subdivided,
843 * the order in which smaller blocks are delivered depends on the order
844 * they're subdivided in this function. This is the primary factor
845 * influencing the order in which pages are delivered to the IO
846 * subsystem according to empirical testing, and this is also justified
847 * by considering the behavior of a buddy system containing a single
848 * large block of memory acted on by a series of small allocations.
849 * This behavior is a critical factor in sglist merging's success.
853 static inline void expand(struct zone
*zone
, struct page
*page
,
854 int low
, int high
, struct free_area
*area
,
857 unsigned long size
= 1 << high
;
863 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
865 #ifdef CONFIG_DEBUG_PAGEALLOC
866 if (high
< debug_guardpage_minorder()) {
868 * Mark as guard pages (or page), that will allow to
869 * merge back to allocator when buddy will be freed.
870 * Corresponding page table entries will not be touched,
871 * pages will stay not present in virtual address space
873 INIT_LIST_HEAD(&page
[size
].lru
);
874 set_page_guard_flag(&page
[size
]);
875 set_page_private(&page
[size
], high
);
876 /* Guard pages are not available for any usage */
877 __mod_zone_freepage_state(zone
, -(1 << high
),
882 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
884 set_page_order(&page
[size
], high
);
889 * This page is about to be returned from the page allocator
891 static inline int check_new_page(struct page
*page
)
893 const char *bad_reason
= NULL
;
894 unsigned long bad_flags
= 0;
896 if (unlikely(page_mapcount(page
)))
897 bad_reason
= "nonzero mapcount";
898 if (unlikely(page
->mapping
!= NULL
))
899 bad_reason
= "non-NULL mapping";
900 if (unlikely(atomic_read(&page
->_count
) != 0))
901 bad_reason
= "nonzero _count";
902 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
903 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
904 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
906 if (unlikely(mem_cgroup_bad_page_check(page
)))
907 bad_reason
= "cgroup check failed";
908 if (unlikely(bad_reason
)) {
909 bad_page(page
, bad_reason
, bad_flags
);
915 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
)
919 for (i
= 0; i
< (1 << order
); i
++) {
920 struct page
*p
= page
+ i
;
921 if (unlikely(check_new_page(p
)))
925 set_page_private(page
, 0);
926 set_page_refcounted(page
);
928 arch_alloc_page(page
, order
);
929 kernel_map_pages(page
, 1 << order
, 1);
931 if (gfp_flags
& __GFP_ZERO
)
932 prep_zero_page(page
, order
, gfp_flags
);
934 if (order
&& (gfp_flags
& __GFP_COMP
))
935 prep_compound_page(page
, order
);
941 * Go through the free lists for the given migratetype and remove
942 * the smallest available page from the freelists
945 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
948 unsigned int current_order
;
949 struct free_area
*area
;
952 /* Find a page of the appropriate size in the preferred list */
953 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
954 area
= &(zone
->free_area
[current_order
]);
955 if (list_empty(&area
->free_list
[migratetype
]))
958 page
= list_entry(area
->free_list
[migratetype
].next
,
960 list_del(&page
->lru
);
961 rmv_page_order(page
);
963 expand(zone
, page
, order
, current_order
, area
, migratetype
);
964 set_freepage_migratetype(page
, migratetype
);
973 * This array describes the order lists are fallen back to when
974 * the free lists for the desirable migrate type are depleted
976 static int fallbacks
[MIGRATE_TYPES
][4] = {
977 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
978 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
980 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
981 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
983 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
985 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
986 #ifdef CONFIG_MEMORY_ISOLATION
987 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
992 * Move the free pages in a range to the free lists of the requested type.
993 * Note that start_page and end_pages are not aligned on a pageblock
994 * boundary. If alignment is required, use move_freepages_block()
996 int move_freepages(struct zone
*zone
,
997 struct page
*start_page
, struct page
*end_page
,
1001 unsigned long order
;
1002 int pages_moved
= 0;
1004 #ifndef CONFIG_HOLES_IN_ZONE
1006 * page_zone is not safe to call in this context when
1007 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1008 * anyway as we check zone boundaries in move_freepages_block().
1009 * Remove at a later date when no bug reports exist related to
1010 * grouping pages by mobility
1012 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1015 for (page
= start_page
; page
<= end_page
;) {
1016 /* Make sure we are not inadvertently changing nodes */
1017 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1019 if (!pfn_valid_within(page_to_pfn(page
))) {
1024 if (!PageBuddy(page
)) {
1029 order
= page_order(page
);
1030 list_move(&page
->lru
,
1031 &zone
->free_area
[order
].free_list
[migratetype
]);
1032 set_freepage_migratetype(page
, migratetype
);
1034 pages_moved
+= 1 << order
;
1040 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1043 unsigned long start_pfn
, end_pfn
;
1044 struct page
*start_page
, *end_page
;
1046 start_pfn
= page_to_pfn(page
);
1047 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1048 start_page
= pfn_to_page(start_pfn
);
1049 end_page
= start_page
+ pageblock_nr_pages
- 1;
1050 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1052 /* Do not cross zone boundaries */
1053 if (!zone_spans_pfn(zone
, start_pfn
))
1055 if (!zone_spans_pfn(zone
, end_pfn
))
1058 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1061 static void change_pageblock_range(struct page
*pageblock_page
,
1062 int start_order
, int migratetype
)
1064 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1066 while (nr_pageblocks
--) {
1067 set_pageblock_migratetype(pageblock_page
, migratetype
);
1068 pageblock_page
+= pageblock_nr_pages
;
1073 * If breaking a large block of pages, move all free pages to the preferred
1074 * allocation list. If falling back for a reclaimable kernel allocation, be
1075 * more aggressive about taking ownership of free pages.
1077 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1078 * nor move CMA pages to different free lists. We don't want unmovable pages
1079 * to be allocated from MIGRATE_CMA areas.
1081 * Returns the allocation migratetype if free pages were stolen, or the
1082 * fallback migratetype if it was decided not to steal.
1084 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1085 int start_type
, int fallback_type
)
1087 int current_order
= page_order(page
);
1090 * When borrowing from MIGRATE_CMA, we need to release the excess
1091 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1092 * is set to CMA so it is returned to the correct freelist in case
1093 * the page ends up being not actually allocated from the pcp lists.
1095 if (is_migrate_cma(fallback_type
))
1096 return fallback_type
;
1098 /* Take ownership for orders >= pageblock_order */
1099 if (current_order
>= pageblock_order
) {
1100 change_pageblock_range(page
, current_order
, start_type
);
1104 if (current_order
>= pageblock_order
/ 2 ||
1105 start_type
== MIGRATE_RECLAIMABLE
||
1106 page_group_by_mobility_disabled
) {
1109 pages
= move_freepages_block(zone
, page
, start_type
);
1111 /* Claim the whole block if over half of it is free */
1112 if (pages
>= (1 << (pageblock_order
-1)) ||
1113 page_group_by_mobility_disabled
)
1114 set_pageblock_migratetype(page
, start_type
);
1119 return fallback_type
;
1122 /* Remove an element from the buddy allocator from the fallback list */
1123 static inline struct page
*
1124 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1126 struct free_area
*area
;
1127 unsigned int current_order
;
1129 int migratetype
, new_type
, i
;
1131 /* Find the largest possible block of pages in the other list */
1132 for (current_order
= MAX_ORDER
-1;
1133 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1136 migratetype
= fallbacks
[start_migratetype
][i
];
1138 /* MIGRATE_RESERVE handled later if necessary */
1139 if (migratetype
== MIGRATE_RESERVE
)
1142 area
= &(zone
->free_area
[current_order
]);
1143 if (list_empty(&area
->free_list
[migratetype
]))
1146 page
= list_entry(area
->free_list
[migratetype
].next
,
1150 new_type
= try_to_steal_freepages(zone
, page
,
1154 /* Remove the page from the freelists */
1155 list_del(&page
->lru
);
1156 rmv_page_order(page
);
1158 expand(zone
, page
, order
, current_order
, area
,
1160 /* The freepage_migratetype may differ from pageblock's
1161 * migratetype depending on the decisions in
1162 * try_to_steal_freepages. This is OK as long as it does
1163 * not differ for MIGRATE_CMA type.
1165 set_freepage_migratetype(page
, new_type
);
1167 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1168 start_migratetype
, migratetype
);
1178 * Do the hard work of removing an element from the buddy allocator.
1179 * Call me with the zone->lock already held.
1181 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1187 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1189 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1190 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1193 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1194 * is used because __rmqueue_smallest is an inline function
1195 * and we want just one call site
1198 migratetype
= MIGRATE_RESERVE
;
1203 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1208 * Obtain a specified number of elements from the buddy allocator, all under
1209 * a single hold of the lock, for efficiency. Add them to the supplied list.
1210 * Returns the number of new pages which were placed at *list.
1212 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1213 unsigned long count
, struct list_head
*list
,
1214 int migratetype
, bool cold
)
1218 spin_lock(&zone
->lock
);
1219 for (i
= 0; i
< count
; ++i
) {
1220 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1221 if (unlikely(page
== NULL
))
1225 * Split buddy pages returned by expand() are received here
1226 * in physical page order. The page is added to the callers and
1227 * list and the list head then moves forward. From the callers
1228 * perspective, the linked list is ordered by page number in
1229 * some conditions. This is useful for IO devices that can
1230 * merge IO requests if the physical pages are ordered
1234 list_add(&page
->lru
, list
);
1236 list_add_tail(&page
->lru
, list
);
1238 if (is_migrate_cma(get_freepage_migratetype(page
)))
1239 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1242 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1243 spin_unlock(&zone
->lock
);
1249 * Called from the vmstat counter updater to drain pagesets of this
1250 * currently executing processor on remote nodes after they have
1253 * Note that this function must be called with the thread pinned to
1254 * a single processor.
1256 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1258 unsigned long flags
;
1260 unsigned long batch
;
1262 local_irq_save(flags
);
1263 batch
= ACCESS_ONCE(pcp
->batch
);
1264 if (pcp
->count
>= batch
)
1267 to_drain
= pcp
->count
;
1269 free_pcppages_bulk(zone
, to_drain
, pcp
);
1270 pcp
->count
-= to_drain
;
1272 local_irq_restore(flags
);
1277 * Drain pages of the indicated processor.
1279 * The processor must either be the current processor and the
1280 * thread pinned to the current processor or a processor that
1283 static void drain_pages(unsigned int cpu
)
1285 unsigned long flags
;
1288 for_each_populated_zone(zone
) {
1289 struct per_cpu_pageset
*pset
;
1290 struct per_cpu_pages
*pcp
;
1292 local_irq_save(flags
);
1293 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1297 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1300 local_irq_restore(flags
);
1305 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1307 void drain_local_pages(void *arg
)
1309 drain_pages(smp_processor_id());
1313 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1315 * Note that this code is protected against sending an IPI to an offline
1316 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1317 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1318 * nothing keeps CPUs from showing up after we populated the cpumask and
1319 * before the call to on_each_cpu_mask().
1321 void drain_all_pages(void)
1324 struct per_cpu_pageset
*pcp
;
1328 * Allocate in the BSS so we wont require allocation in
1329 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1331 static cpumask_t cpus_with_pcps
;
1334 * We don't care about racing with CPU hotplug event
1335 * as offline notification will cause the notified
1336 * cpu to drain that CPU pcps and on_each_cpu_mask
1337 * disables preemption as part of its processing
1339 for_each_online_cpu(cpu
) {
1340 bool has_pcps
= false;
1341 for_each_populated_zone(zone
) {
1342 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1343 if (pcp
->pcp
.count
) {
1349 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1351 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1353 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1356 #ifdef CONFIG_HIBERNATION
1359 * Touch the watchdog for every WD_PAGE_COUNT pages.
1361 #define WD_PAGE_COUNT (128*1024)
1363 void mark_free_pages(struct zone
*zone
)
1365 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
1366 unsigned long flags
;
1367 unsigned int order
, t
;
1368 struct list_head
*curr
;
1370 if (zone_is_empty(zone
))
1373 spin_lock_irqsave(&zone
->lock
, flags
);
1375 max_zone_pfn
= zone_end_pfn(zone
);
1376 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1377 if (pfn_valid(pfn
)) {
1378 struct page
*page
= pfn_to_page(pfn
);
1380 if (!--page_count
) {
1381 touch_nmi_watchdog();
1382 page_count
= WD_PAGE_COUNT
;
1385 if (!swsusp_page_is_forbidden(page
))
1386 swsusp_unset_page_free(page
);
1389 for_each_migratetype_order(order
, t
) {
1390 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1393 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1394 for (i
= 0; i
< (1UL << order
); i
++) {
1395 if (!--page_count
) {
1396 touch_nmi_watchdog();
1397 page_count
= WD_PAGE_COUNT
;
1399 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1403 spin_unlock_irqrestore(&zone
->lock
, flags
);
1405 #endif /* CONFIG_PM */
1408 * Free a 0-order page
1409 * cold == true ? free a cold page : free a hot page
1411 void free_hot_cold_page(struct page
*page
, bool cold
)
1413 struct zone
*zone
= page_zone(page
);
1414 struct per_cpu_pages
*pcp
;
1415 unsigned long flags
;
1416 unsigned long pfn
= page_to_pfn(page
);
1419 if (!free_pages_prepare(page
, 0))
1422 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1423 set_freepage_migratetype(page
, migratetype
);
1424 local_irq_save(flags
);
1425 __count_vm_event(PGFREE
);
1428 * We only track unmovable, reclaimable and movable on pcp lists.
1429 * Free ISOLATE pages back to the allocator because they are being
1430 * offlined but treat RESERVE as movable pages so we can get those
1431 * areas back if necessary. Otherwise, we may have to free
1432 * excessively into the page allocator
1434 if (migratetype
>= MIGRATE_PCPTYPES
) {
1435 if (unlikely(is_migrate_isolate(migratetype
))) {
1436 free_one_page(zone
, page
, pfn
, 0, migratetype
);
1439 migratetype
= MIGRATE_MOVABLE
;
1442 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1444 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1446 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1448 if (pcp
->count
>= pcp
->high
) {
1449 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1450 free_pcppages_bulk(zone
, batch
, pcp
);
1451 pcp
->count
-= batch
;
1455 local_irq_restore(flags
);
1459 * Free a list of 0-order pages
1461 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
1463 struct page
*page
, *next
;
1465 list_for_each_entry_safe(page
, next
, list
, lru
) {
1466 trace_mm_page_free_batched(page
, cold
);
1467 free_hot_cold_page(page
, cold
);
1472 * split_page takes a non-compound higher-order page, and splits it into
1473 * n (1<<order) sub-pages: page[0..n]
1474 * Each sub-page must be freed individually.
1476 * Note: this is probably too low level an operation for use in drivers.
1477 * Please consult with lkml before using this in your driver.
1479 void split_page(struct page
*page
, unsigned int order
)
1483 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1484 VM_BUG_ON_PAGE(!page_count(page
), page
);
1486 #ifdef CONFIG_KMEMCHECK
1488 * Split shadow pages too, because free(page[0]) would
1489 * otherwise free the whole shadow.
1491 if (kmemcheck_page_is_tracked(page
))
1492 split_page(virt_to_page(page
[0].shadow
), order
);
1495 for (i
= 1; i
< (1 << order
); i
++)
1496 set_page_refcounted(page
+ i
);
1498 EXPORT_SYMBOL_GPL(split_page
);
1500 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1502 unsigned long watermark
;
1506 BUG_ON(!PageBuddy(page
));
1508 zone
= page_zone(page
);
1509 mt
= get_pageblock_migratetype(page
);
1511 if (!is_migrate_isolate(mt
)) {
1512 /* Obey watermarks as if the page was being allocated */
1513 watermark
= low_wmark_pages(zone
) + (1 << order
);
1514 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1517 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1520 /* Remove page from free list */
1521 list_del(&page
->lru
);
1522 zone
->free_area
[order
].nr_free
--;
1523 rmv_page_order(page
);
1525 /* Set the pageblock if the isolated page is at least a pageblock */
1526 if (order
>= pageblock_order
- 1) {
1527 struct page
*endpage
= page
+ (1 << order
) - 1;
1528 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1529 int mt
= get_pageblock_migratetype(page
);
1530 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1531 set_pageblock_migratetype(page
,
1536 return 1UL << order
;
1540 * Similar to split_page except the page is already free. As this is only
1541 * being used for migration, the migratetype of the block also changes.
1542 * As this is called with interrupts disabled, the caller is responsible
1543 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1546 * Note: this is probably too low level an operation for use in drivers.
1547 * Please consult with lkml before using this in your driver.
1549 int split_free_page(struct page
*page
)
1554 order
= page_order(page
);
1556 nr_pages
= __isolate_free_page(page
, order
);
1560 /* Split into individual pages */
1561 set_page_refcounted(page
);
1562 split_page(page
, order
);
1567 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1568 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1572 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1573 struct zone
*zone
, unsigned int order
,
1574 gfp_t gfp_flags
, int migratetype
)
1576 unsigned long flags
;
1578 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
1581 if (likely(order
== 0)) {
1582 struct per_cpu_pages
*pcp
;
1583 struct list_head
*list
;
1585 local_irq_save(flags
);
1586 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1587 list
= &pcp
->lists
[migratetype
];
1588 if (list_empty(list
)) {
1589 pcp
->count
+= rmqueue_bulk(zone
, 0,
1592 if (unlikely(list_empty(list
)))
1597 page
= list_entry(list
->prev
, struct page
, lru
);
1599 page
= list_entry(list
->next
, struct page
, lru
);
1601 list_del(&page
->lru
);
1604 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1606 * __GFP_NOFAIL is not to be used in new code.
1608 * All __GFP_NOFAIL callers should be fixed so that they
1609 * properly detect and handle allocation failures.
1611 * We most definitely don't want callers attempting to
1612 * allocate greater than order-1 page units with
1615 WARN_ON_ONCE(order
> 1);
1617 spin_lock_irqsave(&zone
->lock
, flags
);
1618 page
= __rmqueue(zone
, order
, migratetype
);
1619 spin_unlock(&zone
->lock
);
1622 __mod_zone_freepage_state(zone
, -(1 << order
),
1623 get_freepage_migratetype(page
));
1626 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1628 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1629 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1630 local_irq_restore(flags
);
1632 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1633 if (prep_new_page(page
, order
, gfp_flags
))
1638 local_irq_restore(flags
);
1642 #ifdef CONFIG_FAIL_PAGE_ALLOC
1645 struct fault_attr attr
;
1647 u32 ignore_gfp_highmem
;
1648 u32 ignore_gfp_wait
;
1650 } fail_page_alloc
= {
1651 .attr
= FAULT_ATTR_INITIALIZER
,
1652 .ignore_gfp_wait
= 1,
1653 .ignore_gfp_highmem
= 1,
1657 static int __init
setup_fail_page_alloc(char *str
)
1659 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1661 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1663 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1665 if (order
< fail_page_alloc
.min_order
)
1667 if (gfp_mask
& __GFP_NOFAIL
)
1669 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1671 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1674 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1677 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1679 static int __init
fail_page_alloc_debugfs(void)
1681 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1684 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1685 &fail_page_alloc
.attr
);
1687 return PTR_ERR(dir
);
1689 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1690 &fail_page_alloc
.ignore_gfp_wait
))
1692 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1693 &fail_page_alloc
.ignore_gfp_highmem
))
1695 if (!debugfs_create_u32("min-order", mode
, dir
,
1696 &fail_page_alloc
.min_order
))
1701 debugfs_remove_recursive(dir
);
1706 late_initcall(fail_page_alloc_debugfs
);
1708 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1710 #else /* CONFIG_FAIL_PAGE_ALLOC */
1712 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1717 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1720 * Return true if free pages are above 'mark'. This takes into account the order
1721 * of the allocation.
1723 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
1724 unsigned long mark
, int classzone_idx
, int alloc_flags
,
1727 /* free_pages my go negative - that's OK */
1729 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1733 free_pages
-= (1 << order
) - 1;
1734 if (alloc_flags
& ALLOC_HIGH
)
1736 if (alloc_flags
& ALLOC_HARDER
)
1739 /* If allocation can't use CMA areas don't use free CMA pages */
1740 if (!(alloc_flags
& ALLOC_CMA
))
1741 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1744 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1746 for (o
= 0; o
< order
; o
++) {
1747 /* At the next order, this order's pages become unavailable */
1748 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1750 /* Require fewer higher order pages to be free */
1753 if (free_pages
<= min
)
1759 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
1760 int classzone_idx
, int alloc_flags
)
1762 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1763 zone_page_state(z
, NR_FREE_PAGES
));
1766 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
1767 unsigned long mark
, int classzone_idx
, int alloc_flags
)
1769 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1771 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1772 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1774 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1780 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1781 * skip over zones that are not allowed by the cpuset, or that have
1782 * been recently (in last second) found to be nearly full. See further
1783 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1784 * that have to skip over a lot of full or unallowed zones.
1786 * If the zonelist cache is present in the passed zonelist, then
1787 * returns a pointer to the allowed node mask (either the current
1788 * tasks mems_allowed, or node_states[N_MEMORY].)
1790 * If the zonelist cache is not available for this zonelist, does
1791 * nothing and returns NULL.
1793 * If the fullzones BITMAP in the zonelist cache is stale (more than
1794 * a second since last zap'd) then we zap it out (clear its bits.)
1796 * We hold off even calling zlc_setup, until after we've checked the
1797 * first zone in the zonelist, on the theory that most allocations will
1798 * be satisfied from that first zone, so best to examine that zone as
1799 * quickly as we can.
1801 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1803 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1804 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1806 zlc
= zonelist
->zlcache_ptr
;
1810 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1811 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1812 zlc
->last_full_zap
= jiffies
;
1815 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1816 &cpuset_current_mems_allowed
:
1817 &node_states
[N_MEMORY
];
1818 return allowednodes
;
1822 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1823 * if it is worth looking at further for free memory:
1824 * 1) Check that the zone isn't thought to be full (doesn't have its
1825 * bit set in the zonelist_cache fullzones BITMAP).
1826 * 2) Check that the zones node (obtained from the zonelist_cache
1827 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1828 * Return true (non-zero) if zone is worth looking at further, or
1829 * else return false (zero) if it is not.
1831 * This check -ignores- the distinction between various watermarks,
1832 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1833 * found to be full for any variation of these watermarks, it will
1834 * be considered full for up to one second by all requests, unless
1835 * we are so low on memory on all allowed nodes that we are forced
1836 * into the second scan of the zonelist.
1838 * In the second scan we ignore this zonelist cache and exactly
1839 * apply the watermarks to all zones, even it is slower to do so.
1840 * We are low on memory in the second scan, and should leave no stone
1841 * unturned looking for a free page.
1843 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1844 nodemask_t
*allowednodes
)
1846 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1847 int i
; /* index of *z in zonelist zones */
1848 int n
; /* node that zone *z is on */
1850 zlc
= zonelist
->zlcache_ptr
;
1854 i
= z
- zonelist
->_zonerefs
;
1857 /* This zone is worth trying if it is allowed but not full */
1858 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1862 * Given 'z' scanning a zonelist, set the corresponding bit in
1863 * zlc->fullzones, so that subsequent attempts to allocate a page
1864 * from that zone don't waste time re-examining it.
1866 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1868 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1869 int i
; /* index of *z in zonelist zones */
1871 zlc
= zonelist
->zlcache_ptr
;
1875 i
= z
- zonelist
->_zonerefs
;
1877 set_bit(i
, zlc
->fullzones
);
1881 * clear all zones full, called after direct reclaim makes progress so that
1882 * a zone that was recently full is not skipped over for up to a second
1884 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1886 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1888 zlc
= zonelist
->zlcache_ptr
;
1892 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1895 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1897 return local_zone
->node
== zone
->node
;
1900 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1902 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
1906 #else /* CONFIG_NUMA */
1908 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1913 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1914 nodemask_t
*allowednodes
)
1919 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1923 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1927 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1932 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1937 #endif /* CONFIG_NUMA */
1940 * get_page_from_freelist goes through the zonelist trying to allocate
1943 static struct page
*
1944 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1945 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1946 struct zone
*preferred_zone
, int classzone_idx
, int migratetype
)
1949 struct page
*page
= NULL
;
1951 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1952 int zlc_active
= 0; /* set if using zonelist_cache */
1953 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1954 bool consider_zone_dirty
= (alloc_flags
& ALLOC_WMARK_LOW
) &&
1955 (gfp_mask
& __GFP_WRITE
);
1959 * Scan zonelist, looking for a zone with enough free.
1960 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1962 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1963 high_zoneidx
, nodemask
) {
1966 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1967 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1969 if (cpusets_enabled() &&
1970 (alloc_flags
& ALLOC_CPUSET
) &&
1971 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1974 * Distribute pages in proportion to the individual
1975 * zone size to ensure fair page aging. The zone a
1976 * page was allocated in should have no effect on the
1977 * time the page has in memory before being reclaimed.
1979 if (alloc_flags
& ALLOC_FAIR
) {
1980 if (!zone_local(preferred_zone
, zone
))
1982 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0)
1986 * When allocating a page cache page for writing, we
1987 * want to get it from a zone that is within its dirty
1988 * limit, such that no single zone holds more than its
1989 * proportional share of globally allowed dirty pages.
1990 * The dirty limits take into account the zone's
1991 * lowmem reserves and high watermark so that kswapd
1992 * should be able to balance it without having to
1993 * write pages from its LRU list.
1995 * This may look like it could increase pressure on
1996 * lower zones by failing allocations in higher zones
1997 * before they are full. But the pages that do spill
1998 * over are limited as the lower zones are protected
1999 * by this very same mechanism. It should not become
2000 * a practical burden to them.
2002 * XXX: For now, allow allocations to potentially
2003 * exceed the per-zone dirty limit in the slowpath
2004 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2005 * which is important when on a NUMA setup the allowed
2006 * zones are together not big enough to reach the
2007 * global limit. The proper fix for these situations
2008 * will require awareness of zones in the
2009 * dirty-throttling and the flusher threads.
2011 if (consider_zone_dirty
&& !zone_dirty_ok(zone
))
2014 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2015 if (!zone_watermark_ok(zone
, order
, mark
,
2016 classzone_idx
, alloc_flags
)) {
2019 /* Checked here to keep the fast path fast */
2020 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2021 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2024 if (IS_ENABLED(CONFIG_NUMA
) &&
2025 !did_zlc_setup
&& nr_online_nodes
> 1) {
2027 * we do zlc_setup if there are multiple nodes
2028 * and before considering the first zone allowed
2031 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2036 if (zone_reclaim_mode
== 0 ||
2037 !zone_allows_reclaim(preferred_zone
, zone
))
2038 goto this_zone_full
;
2041 * As we may have just activated ZLC, check if the first
2042 * eligible zone has failed zone_reclaim recently.
2044 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2045 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2048 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2050 case ZONE_RECLAIM_NOSCAN
:
2053 case ZONE_RECLAIM_FULL
:
2054 /* scanned but unreclaimable */
2057 /* did we reclaim enough */
2058 if (zone_watermark_ok(zone
, order
, mark
,
2059 classzone_idx
, alloc_flags
))
2063 * Failed to reclaim enough to meet watermark.
2064 * Only mark the zone full if checking the min
2065 * watermark or if we failed to reclaim just
2066 * 1<<order pages or else the page allocator
2067 * fastpath will prematurely mark zones full
2068 * when the watermark is between the low and
2071 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2072 ret
== ZONE_RECLAIM_SOME
)
2073 goto this_zone_full
;
2080 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2081 gfp_mask
, migratetype
);
2085 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
)
2086 zlc_mark_zone_full(zonelist
, z
);
2089 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
2090 /* Disable zlc cache for second zonelist scan */
2097 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2098 * necessary to allocate the page. The expectation is
2099 * that the caller is taking steps that will free more
2100 * memory. The caller should avoid the page being used
2101 * for !PFMEMALLOC purposes.
2103 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2109 * Large machines with many possible nodes should not always dump per-node
2110 * meminfo in irq context.
2112 static inline bool should_suppress_show_mem(void)
2117 ret
= in_interrupt();
2122 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2123 DEFAULT_RATELIMIT_INTERVAL
,
2124 DEFAULT_RATELIMIT_BURST
);
2126 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2128 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2130 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2131 debug_guardpage_minorder() > 0)
2135 * This documents exceptions given to allocations in certain
2136 * contexts that are allowed to allocate outside current's set
2139 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2140 if (test_thread_flag(TIF_MEMDIE
) ||
2141 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2142 filter
&= ~SHOW_MEM_FILTER_NODES
;
2143 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2144 filter
&= ~SHOW_MEM_FILTER_NODES
;
2147 struct va_format vaf
;
2150 va_start(args
, fmt
);
2155 pr_warn("%pV", &vaf
);
2160 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2161 current
->comm
, order
, gfp_mask
);
2164 if (!should_suppress_show_mem())
2169 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2170 unsigned long did_some_progress
,
2171 unsigned long pages_reclaimed
)
2173 /* Do not loop if specifically requested */
2174 if (gfp_mask
& __GFP_NORETRY
)
2177 /* Always retry if specifically requested */
2178 if (gfp_mask
& __GFP_NOFAIL
)
2182 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2183 * making forward progress without invoking OOM. Suspend also disables
2184 * storage devices so kswapd will not help. Bail if we are suspending.
2186 if (!did_some_progress
&& pm_suspended_storage())
2190 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2191 * means __GFP_NOFAIL, but that may not be true in other
2194 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2198 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2199 * specified, then we retry until we no longer reclaim any pages
2200 * (above), or we've reclaimed an order of pages at least as
2201 * large as the allocation's order. In both cases, if the
2202 * allocation still fails, we stop retrying.
2204 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2210 static inline struct page
*
2211 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2212 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2213 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2214 int classzone_idx
, int migratetype
)
2218 /* Acquire the OOM killer lock for the zones in zonelist */
2219 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2220 schedule_timeout_uninterruptible(1);
2225 * PM-freezer should be notified that there might be an OOM killer on
2226 * its way to kill and wake somebody up. This is too early and we might
2227 * end up not killing anything but false positives are acceptable.
2228 * See freeze_processes.
2233 * Go through the zonelist yet one more time, keep very high watermark
2234 * here, this is only to catch a parallel oom killing, we must fail if
2235 * we're still under heavy pressure.
2237 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2238 order
, zonelist
, high_zoneidx
,
2239 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2240 preferred_zone
, classzone_idx
, migratetype
);
2244 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2245 /* The OOM killer will not help higher order allocs */
2246 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2248 /* The OOM killer does not needlessly kill tasks for lowmem */
2249 if (high_zoneidx
< ZONE_NORMAL
)
2252 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2253 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2254 * The caller should handle page allocation failure by itself if
2255 * it specifies __GFP_THISNODE.
2256 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2258 if (gfp_mask
& __GFP_THISNODE
)
2261 /* Exhausted what can be done so it's blamo time */
2262 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2265 clear_zonelist_oom(zonelist
, gfp_mask
);
2269 #ifdef CONFIG_COMPACTION
2270 /* Try memory compaction for high-order allocations before reclaim */
2271 static struct page
*
2272 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2273 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2274 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2275 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2276 bool *contended_compaction
, bool *deferred_compaction
,
2277 unsigned long *did_some_progress
)
2282 if (compaction_deferred(preferred_zone
, order
)) {
2283 *deferred_compaction
= true;
2287 current
->flags
|= PF_MEMALLOC
;
2288 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2290 contended_compaction
);
2291 current
->flags
&= ~PF_MEMALLOC
;
2293 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2296 /* Page migration frees to the PCP lists but we want merging */
2297 drain_pages(get_cpu());
2300 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2301 order
, zonelist
, high_zoneidx
,
2302 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2303 preferred_zone
, classzone_idx
, migratetype
);
2305 preferred_zone
->compact_blockskip_flush
= false;
2306 compaction_defer_reset(preferred_zone
, order
, true);
2307 count_vm_event(COMPACTSUCCESS
);
2312 * It's bad if compaction run occurs and fails.
2313 * The most likely reason is that pages exist,
2314 * but not enough to satisfy watermarks.
2316 count_vm_event(COMPACTFAIL
);
2319 * As async compaction considers a subset of pageblocks, only
2320 * defer if the failure was a sync compaction failure.
2322 if (mode
!= MIGRATE_ASYNC
)
2323 defer_compaction(preferred_zone
, order
);
2331 static inline struct page
*
2332 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2333 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2334 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2335 int classzone_idx
, int migratetype
,
2336 enum migrate_mode mode
, bool *contended_compaction
,
2337 bool *deferred_compaction
, unsigned long *did_some_progress
)
2341 #endif /* CONFIG_COMPACTION */
2343 /* Perform direct synchronous page reclaim */
2345 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2346 nodemask_t
*nodemask
)
2348 struct reclaim_state reclaim_state
;
2353 /* We now go into synchronous reclaim */
2354 cpuset_memory_pressure_bump();
2355 current
->flags
|= PF_MEMALLOC
;
2356 lockdep_set_current_reclaim_state(gfp_mask
);
2357 reclaim_state
.reclaimed_slab
= 0;
2358 current
->reclaim_state
= &reclaim_state
;
2360 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2362 current
->reclaim_state
= NULL
;
2363 lockdep_clear_current_reclaim_state();
2364 current
->flags
&= ~PF_MEMALLOC
;
2371 /* The really slow allocator path where we enter direct reclaim */
2372 static inline struct page
*
2373 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2374 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2375 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2376 int classzone_idx
, int migratetype
, unsigned long *did_some_progress
)
2378 struct page
*page
= NULL
;
2379 bool drained
= false;
2381 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2383 if (unlikely(!(*did_some_progress
)))
2386 /* After successful reclaim, reconsider all zones for allocation */
2387 if (IS_ENABLED(CONFIG_NUMA
))
2388 zlc_clear_zones_full(zonelist
);
2391 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2392 zonelist
, high_zoneidx
,
2393 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2394 preferred_zone
, classzone_idx
,
2398 * If an allocation failed after direct reclaim, it could be because
2399 * pages are pinned on the per-cpu lists. Drain them and try again
2401 if (!page
&& !drained
) {
2411 * This is called in the allocator slow-path if the allocation request is of
2412 * sufficient urgency to ignore watermarks and take other desperate measures
2414 static inline struct page
*
2415 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2416 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2417 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2418 int classzone_idx
, int migratetype
)
2423 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2424 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2425 preferred_zone
, classzone_idx
, migratetype
);
2427 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2428 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2429 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2434 static void reset_alloc_batches(struct zonelist
*zonelist
,
2435 enum zone_type high_zoneidx
,
2436 struct zone
*preferred_zone
)
2441 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
2443 * Only reset the batches of zones that were actually
2444 * considered in the fairness pass, we don't want to
2445 * trash fairness information for zones that are not
2446 * actually part of this zonelist's round-robin cycle.
2448 if (!zone_local(preferred_zone
, zone
))
2450 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
2451 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
2452 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
2456 static void wake_all_kswapds(unsigned int order
,
2457 struct zonelist
*zonelist
,
2458 enum zone_type high_zoneidx
,
2459 struct zone
*preferred_zone
)
2464 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2465 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2469 gfp_to_alloc_flags(gfp_t gfp_mask
)
2471 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2472 const bool atomic
= !(gfp_mask
& (__GFP_WAIT
| __GFP_NO_KSWAPD
));
2474 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2475 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2478 * The caller may dip into page reserves a bit more if the caller
2479 * cannot run direct reclaim, or if the caller has realtime scheduling
2480 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2481 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2483 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2487 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2488 * if it can't schedule.
2490 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2491 alloc_flags
|= ALLOC_HARDER
;
2493 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2494 * comment for __cpuset_node_allowed_softwall().
2496 alloc_flags
&= ~ALLOC_CPUSET
;
2497 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2498 alloc_flags
|= ALLOC_HARDER
;
2500 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2501 if (gfp_mask
& __GFP_MEMALLOC
)
2502 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2503 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2504 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2505 else if (!in_interrupt() &&
2506 ((current
->flags
& PF_MEMALLOC
) ||
2507 unlikely(test_thread_flag(TIF_MEMDIE
))))
2508 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2511 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2512 alloc_flags
|= ALLOC_CMA
;
2517 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2519 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2522 static inline struct page
*
2523 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2524 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2525 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2526 int classzone_idx
, int migratetype
)
2528 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2529 struct page
*page
= NULL
;
2531 unsigned long pages_reclaimed
= 0;
2532 unsigned long did_some_progress
;
2533 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2534 bool deferred_compaction
= false;
2535 bool contended_compaction
= false;
2538 * In the slowpath, we sanity check order to avoid ever trying to
2539 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2540 * be using allocators in order of preference for an area that is
2543 if (order
>= MAX_ORDER
) {
2544 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2549 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2550 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2551 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2552 * using a larger set of nodes after it has established that the
2553 * allowed per node queues are empty and that nodes are
2556 if (IS_ENABLED(CONFIG_NUMA
) &&
2557 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2561 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2562 wake_all_kswapds(order
, zonelist
, high_zoneidx
, preferred_zone
);
2565 * OK, we're below the kswapd watermark and have kicked background
2566 * reclaim. Now things get more complex, so set up alloc_flags according
2567 * to how we want to proceed.
2569 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2572 * Find the true preferred zone if the allocation is unconstrained by
2575 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
) {
2576 struct zoneref
*preferred_zoneref
;
2577 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2578 NULL
, &preferred_zone
);
2579 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2583 /* This is the last chance, in general, before the goto nopage. */
2584 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2585 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2586 preferred_zone
, classzone_idx
, migratetype
);
2590 /* Allocate without watermarks if the context allows */
2591 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2593 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2594 * the allocation is high priority and these type of
2595 * allocations are system rather than user orientated
2597 if (!(gfp_mask
& __GFP_THISNODE
))
2598 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2600 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2601 zonelist
, high_zoneidx
, nodemask
,
2602 preferred_zone
, classzone_idx
, migratetype
);
2608 /* Atomic allocations - we can't balance anything */
2611 * All existing users of the deprecated __GFP_NOFAIL are
2612 * blockable, so warn of any new users that actually allow this
2613 * type of allocation to fail.
2615 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
2619 /* Avoid recursion of direct reclaim */
2620 if (current
->flags
& PF_MEMALLOC
)
2623 /* Avoid allocations with no watermarks from looping endlessly */
2624 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2628 * Try direct compaction. The first pass is asynchronous. Subsequent
2629 * attempts after direct reclaim are synchronous
2631 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2632 high_zoneidx
, nodemask
, alloc_flags
,
2634 classzone_idx
, migratetype
,
2635 migration_mode
, &contended_compaction
,
2636 &deferred_compaction
,
2637 &did_some_progress
);
2642 * It can become very expensive to allocate transparent hugepages at
2643 * fault, so use asynchronous memory compaction for THP unless it is
2644 * khugepaged trying to collapse.
2646 if (!(gfp_mask
& __GFP_NO_KSWAPD
) || (current
->flags
& PF_KTHREAD
))
2647 migration_mode
= MIGRATE_SYNC_LIGHT
;
2650 * If compaction is deferred for high-order allocations, it is because
2651 * sync compaction recently failed. In this is the case and the caller
2652 * requested a movable allocation that does not heavily disrupt the
2653 * system then fail the allocation instead of entering direct reclaim.
2655 if ((deferred_compaction
|| contended_compaction
) &&
2656 (gfp_mask
& __GFP_NO_KSWAPD
))
2659 /* Try direct reclaim and then allocating */
2660 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2661 zonelist
, high_zoneidx
,
2663 alloc_flags
, preferred_zone
,
2664 classzone_idx
, migratetype
,
2665 &did_some_progress
);
2670 * If we failed to make any progress reclaiming, then we are
2671 * running out of options and have to consider going OOM
2673 if (!did_some_progress
) {
2674 if (oom_gfp_allowed(gfp_mask
)) {
2675 if (oom_killer_disabled
)
2677 /* Coredumps can quickly deplete all memory reserves */
2678 if ((current
->flags
& PF_DUMPCORE
) &&
2679 !(gfp_mask
& __GFP_NOFAIL
))
2681 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2682 zonelist
, high_zoneidx
,
2683 nodemask
, preferred_zone
,
2684 classzone_idx
, migratetype
);
2688 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2690 * The oom killer is not called for high-order
2691 * allocations that may fail, so if no progress
2692 * is being made, there are no other options and
2693 * retrying is unlikely to help.
2695 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2698 * The oom killer is not called for lowmem
2699 * allocations to prevent needlessly killing
2702 if (high_zoneidx
< ZONE_NORMAL
)
2710 /* Check if we should retry the allocation */
2711 pages_reclaimed
+= did_some_progress
;
2712 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2714 /* Wait for some write requests to complete then retry */
2715 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2719 * High-order allocations do not necessarily loop after
2720 * direct reclaim and reclaim/compaction depends on compaction
2721 * being called after reclaim so call directly if necessary
2723 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2724 high_zoneidx
, nodemask
, alloc_flags
,
2726 classzone_idx
, migratetype
,
2727 migration_mode
, &contended_compaction
,
2728 &deferred_compaction
,
2729 &did_some_progress
);
2735 warn_alloc_failed(gfp_mask
, order
, NULL
);
2738 if (kmemcheck_enabled
)
2739 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2745 * This is the 'heart' of the zoned buddy allocator.
2748 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2749 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2751 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2752 struct zone
*preferred_zone
;
2753 struct zoneref
*preferred_zoneref
;
2754 struct page
*page
= NULL
;
2755 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2756 unsigned int cpuset_mems_cookie
;
2757 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2760 gfp_mask
&= gfp_allowed_mask
;
2762 lockdep_trace_alloc(gfp_mask
);
2764 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2766 if (should_fail_alloc_page(gfp_mask
, order
))
2770 * Check the zones suitable for the gfp_mask contain at least one
2771 * valid zone. It's possible to have an empty zonelist as a result
2772 * of GFP_THISNODE and a memoryless node
2774 if (unlikely(!zonelist
->_zonerefs
->zone
))
2778 cpuset_mems_cookie
= read_mems_allowed_begin();
2780 /* The preferred zone is used for statistics later */
2781 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2782 nodemask
? : &cpuset_current_mems_allowed
,
2784 if (!preferred_zone
)
2786 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2789 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2790 alloc_flags
|= ALLOC_CMA
;
2793 /* First allocation attempt */
2794 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2795 zonelist
, high_zoneidx
, alloc_flags
,
2796 preferred_zone
, classzone_idx
, migratetype
);
2797 if (unlikely(!page
)) {
2799 * The first pass makes sure allocations are spread
2800 * fairly within the local node. However, the local
2801 * node might have free pages left after the fairness
2802 * batches are exhausted, and remote zones haven't
2803 * even been considered yet. Try once more without
2804 * fairness, and include remote zones now, before
2805 * entering the slowpath and waking kswapd: prefer
2806 * spilling to a remote zone over swapping locally.
2808 if (alloc_flags
& ALLOC_FAIR
) {
2809 reset_alloc_batches(zonelist
, high_zoneidx
,
2811 alloc_flags
&= ~ALLOC_FAIR
;
2815 * Runtime PM, block IO and its error handling path
2816 * can deadlock because I/O on the device might not
2819 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2820 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2821 zonelist
, high_zoneidx
, nodemask
,
2822 preferred_zone
, classzone_idx
, migratetype
);
2825 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2829 * When updating a task's mems_allowed, it is possible to race with
2830 * parallel threads in such a way that an allocation can fail while
2831 * the mask is being updated. If a page allocation is about to fail,
2832 * check if the cpuset changed during allocation and if so, retry.
2834 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2839 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2842 * Common helper functions.
2844 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2849 * __get_free_pages() returns a 32-bit address, which cannot represent
2852 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2854 page
= alloc_pages(gfp_mask
, order
);
2857 return (unsigned long) page_address(page
);
2859 EXPORT_SYMBOL(__get_free_pages
);
2861 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2863 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2865 EXPORT_SYMBOL(get_zeroed_page
);
2867 void __free_pages(struct page
*page
, unsigned int order
)
2869 if (put_page_testzero(page
)) {
2871 free_hot_cold_page(page
, false);
2873 __free_pages_ok(page
, order
);
2877 EXPORT_SYMBOL(__free_pages
);
2879 void free_pages(unsigned long addr
, unsigned int order
)
2882 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2883 __free_pages(virt_to_page((void *)addr
), order
);
2887 EXPORT_SYMBOL(free_pages
);
2890 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2891 * of the current memory cgroup.
2893 * It should be used when the caller would like to use kmalloc, but since the
2894 * allocation is large, it has to fall back to the page allocator.
2896 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
2899 struct mem_cgroup
*memcg
= NULL
;
2901 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2903 page
= alloc_pages(gfp_mask
, order
);
2904 memcg_kmem_commit_charge(page
, memcg
, order
);
2908 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
2911 struct mem_cgroup
*memcg
= NULL
;
2913 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2915 page
= alloc_pages_node(nid
, gfp_mask
, order
);
2916 memcg_kmem_commit_charge(page
, memcg
, order
);
2921 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2924 void __free_kmem_pages(struct page
*page
, unsigned int order
)
2926 memcg_kmem_uncharge_pages(page
, order
);
2927 __free_pages(page
, order
);
2930 void free_kmem_pages(unsigned long addr
, unsigned int order
)
2933 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2934 __free_kmem_pages(virt_to_page((void *)addr
), order
);
2938 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2941 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2942 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2944 split_page(virt_to_page((void *)addr
), order
);
2945 while (used
< alloc_end
) {
2950 return (void *)addr
;
2954 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2955 * @size: the number of bytes to allocate
2956 * @gfp_mask: GFP flags for the allocation
2958 * This function is similar to alloc_pages(), except that it allocates the
2959 * minimum number of pages to satisfy the request. alloc_pages() can only
2960 * allocate memory in power-of-two pages.
2962 * This function is also limited by MAX_ORDER.
2964 * Memory allocated by this function must be released by free_pages_exact().
2966 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2968 unsigned int order
= get_order(size
);
2971 addr
= __get_free_pages(gfp_mask
, order
);
2972 return make_alloc_exact(addr
, order
, size
);
2974 EXPORT_SYMBOL(alloc_pages_exact
);
2977 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2979 * @nid: the preferred node ID where memory should be allocated
2980 * @size: the number of bytes to allocate
2981 * @gfp_mask: GFP flags for the allocation
2983 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2985 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2988 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2990 unsigned order
= get_order(size
);
2991 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2994 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2996 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2999 * free_pages_exact - release memory allocated via alloc_pages_exact()
3000 * @virt: the value returned by alloc_pages_exact.
3001 * @size: size of allocation, same value as passed to alloc_pages_exact().
3003 * Release the memory allocated by a previous call to alloc_pages_exact.
3005 void free_pages_exact(void *virt
, size_t size
)
3007 unsigned long addr
= (unsigned long)virt
;
3008 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3010 while (addr
< end
) {
3015 EXPORT_SYMBOL(free_pages_exact
);
3018 * nr_free_zone_pages - count number of pages beyond high watermark
3019 * @offset: The zone index of the highest zone
3021 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3022 * high watermark within all zones at or below a given zone index. For each
3023 * zone, the number of pages is calculated as:
3024 * managed_pages - high_pages
3026 static unsigned long nr_free_zone_pages(int offset
)
3031 /* Just pick one node, since fallback list is circular */
3032 unsigned long sum
= 0;
3034 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3036 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3037 unsigned long size
= zone
->managed_pages
;
3038 unsigned long high
= high_wmark_pages(zone
);
3047 * nr_free_buffer_pages - count number of pages beyond high watermark
3049 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3050 * watermark within ZONE_DMA and ZONE_NORMAL.
3052 unsigned long nr_free_buffer_pages(void)
3054 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3056 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3059 * nr_free_pagecache_pages - count number of pages beyond high watermark
3061 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3062 * high watermark within all zones.
3064 unsigned long nr_free_pagecache_pages(void)
3066 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3069 static inline void show_node(struct zone
*zone
)
3071 if (IS_ENABLED(CONFIG_NUMA
))
3072 printk("Node %d ", zone_to_nid(zone
));
3075 long si_mem_available(void)
3078 unsigned long pagecache
;
3079 unsigned long wmark_low
= 0;
3080 unsigned long pages
[NR_LRU_LISTS
];
3084 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
3085 pages
[lru
] = global_page_state(NR_LRU_BASE
+ lru
);
3088 wmark_low
+= zone
->watermark
[WMARK_LOW
];
3091 * Estimate the amount of memory available for userspace allocations,
3092 * without causing swapping.
3094 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
3097 * Not all the page cache can be freed, otherwise the system will
3098 * start swapping. Assume at least half of the page cache, or the
3099 * low watermark worth of cache, needs to stay.
3101 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
3102 pagecache
-= min(pagecache
/ 2, wmark_low
);
3103 available
+= pagecache
;
3106 * Part of the reclaimable slab consists of items that are in use,
3107 * and cannot be freed. Cap this estimate at the low watermark.
3109 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
3110 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
3116 EXPORT_SYMBOL_GPL(si_mem_available
);
3118 void si_meminfo(struct sysinfo
*val
)
3120 val
->totalram
= totalram_pages
;
3122 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3123 val
->bufferram
= nr_blockdev_pages();
3124 val
->totalhigh
= totalhigh_pages
;
3125 val
->freehigh
= nr_free_highpages();
3126 val
->mem_unit
= PAGE_SIZE
;
3129 EXPORT_SYMBOL(si_meminfo
);
3132 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3134 int zone_type
; /* needs to be signed */
3135 unsigned long managed_pages
= 0;
3136 pg_data_t
*pgdat
= NODE_DATA(nid
);
3138 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3139 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3140 val
->totalram
= managed_pages
;
3141 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3142 #ifdef CONFIG_HIGHMEM
3143 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3144 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3150 val
->mem_unit
= PAGE_SIZE
;
3155 * Determine whether the node should be displayed or not, depending on whether
3156 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3158 bool skip_free_areas_node(unsigned int flags
, int nid
)
3161 unsigned int cpuset_mems_cookie
;
3163 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3167 cpuset_mems_cookie
= read_mems_allowed_begin();
3168 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3169 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3174 #define K(x) ((x) << (PAGE_SHIFT-10))
3176 static void show_migration_types(unsigned char type
)
3178 static const char types
[MIGRATE_TYPES
] = {
3179 [MIGRATE_UNMOVABLE
] = 'U',
3180 [MIGRATE_RECLAIMABLE
] = 'E',
3181 [MIGRATE_MOVABLE
] = 'M',
3182 [MIGRATE_RESERVE
] = 'R',
3184 [MIGRATE_CMA
] = 'C',
3186 #ifdef CONFIG_MEMORY_ISOLATION
3187 [MIGRATE_ISOLATE
] = 'I',
3190 char tmp
[MIGRATE_TYPES
+ 1];
3194 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3195 if (type
& (1 << i
))
3200 printk("(%s) ", tmp
);
3204 * Show free area list (used inside shift_scroll-lock stuff)
3205 * We also calculate the percentage fragmentation. We do this by counting the
3206 * memory on each free list with the exception of the first item on the list.
3207 * Suppresses nodes that are not allowed by current's cpuset if
3208 * SHOW_MEM_FILTER_NODES is passed.
3210 void show_free_areas(unsigned int filter
)
3215 for_each_populated_zone(zone
) {
3216 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3219 printk("%s per-cpu:\n", zone
->name
);
3221 for_each_online_cpu(cpu
) {
3222 struct per_cpu_pageset
*pageset
;
3224 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3226 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3227 cpu
, pageset
->pcp
.high
,
3228 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3232 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3233 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3235 " dirty:%lu writeback:%lu unstable:%lu\n"
3236 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3237 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3239 global_page_state(NR_ACTIVE_ANON
),
3240 global_page_state(NR_INACTIVE_ANON
),
3241 global_page_state(NR_ISOLATED_ANON
),
3242 global_page_state(NR_ACTIVE_FILE
),
3243 global_page_state(NR_INACTIVE_FILE
),
3244 global_page_state(NR_ISOLATED_FILE
),
3245 global_page_state(NR_UNEVICTABLE
),
3246 global_page_state(NR_FILE_DIRTY
),
3247 global_page_state(NR_WRITEBACK
),
3248 global_page_state(NR_UNSTABLE_NFS
),
3249 global_page_state(NR_FREE_PAGES
),
3250 global_page_state(NR_SLAB_RECLAIMABLE
),
3251 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3252 global_page_state(NR_FILE_MAPPED
),
3253 global_page_state(NR_SHMEM
),
3254 global_page_state(NR_PAGETABLE
),
3255 global_page_state(NR_BOUNCE
),
3256 global_page_state(NR_FREE_CMA_PAGES
));
3258 for_each_populated_zone(zone
) {
3261 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3269 " active_anon:%lukB"
3270 " inactive_anon:%lukB"
3271 " active_file:%lukB"
3272 " inactive_file:%lukB"
3273 " unevictable:%lukB"
3274 " isolated(anon):%lukB"
3275 " isolated(file):%lukB"
3283 " slab_reclaimable:%lukB"
3284 " slab_unreclaimable:%lukB"
3285 " kernel_stack:%lukB"
3290 " writeback_tmp:%lukB"
3291 " pages_scanned:%lu"
3292 " all_unreclaimable? %s"
3295 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3296 K(min_wmark_pages(zone
)),
3297 K(low_wmark_pages(zone
)),
3298 K(high_wmark_pages(zone
)),
3299 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3300 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3301 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3302 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3303 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3304 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3305 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3306 K(zone
->present_pages
),
3307 K(zone
->managed_pages
),
3308 K(zone_page_state(zone
, NR_MLOCK
)),
3309 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3310 K(zone_page_state(zone
, NR_WRITEBACK
)),
3311 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3312 K(zone_page_state(zone
, NR_SHMEM
)),
3313 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3314 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3315 zone_page_state(zone
, NR_KERNEL_STACK
) *
3317 K(zone_page_state(zone
, NR_PAGETABLE
)),
3318 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3319 K(zone_page_state(zone
, NR_BOUNCE
)),
3320 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3321 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3322 zone
->pages_scanned
,
3323 (!zone_reclaimable(zone
) ? "yes" : "no")
3325 printk("lowmem_reserve[]:");
3326 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3327 printk(" %lu", zone
->lowmem_reserve
[i
]);
3331 for_each_populated_zone(zone
) {
3332 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3333 unsigned char types
[MAX_ORDER
];
3335 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3338 printk("%s: ", zone
->name
);
3340 spin_lock_irqsave(&zone
->lock
, flags
);
3341 for (order
= 0; order
< MAX_ORDER
; order
++) {
3342 struct free_area
*area
= &zone
->free_area
[order
];
3345 nr
[order
] = area
->nr_free
;
3346 total
+= nr
[order
] << order
;
3349 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3350 if (!list_empty(&area
->free_list
[type
]))
3351 types
[order
] |= 1 << type
;
3354 spin_unlock_irqrestore(&zone
->lock
, flags
);
3355 for (order
= 0; order
< MAX_ORDER
; order
++) {
3356 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3358 show_migration_types(types
[order
]);
3360 printk("= %lukB\n", K(total
));
3363 hugetlb_show_meminfo();
3365 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3367 show_swap_cache_info();
3370 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3372 zoneref
->zone
= zone
;
3373 zoneref
->zone_idx
= zone_idx(zone
);
3377 * Builds allocation fallback zone lists.
3379 * Add all populated zones of a node to the zonelist.
3381 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3385 enum zone_type zone_type
= MAX_NR_ZONES
;
3389 zone
= pgdat
->node_zones
+ zone_type
;
3390 if (populated_zone(zone
)) {
3391 zoneref_set_zone(zone
,
3392 &zonelist
->_zonerefs
[nr_zones
++]);
3393 check_highest_zone(zone_type
);
3395 } while (zone_type
);
3403 * 0 = automatic detection of better ordering.
3404 * 1 = order by ([node] distance, -zonetype)
3405 * 2 = order by (-zonetype, [node] distance)
3407 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3408 * the same zonelist. So only NUMA can configure this param.
3410 #define ZONELIST_ORDER_DEFAULT 0
3411 #define ZONELIST_ORDER_NODE 1
3412 #define ZONELIST_ORDER_ZONE 2
3414 /* zonelist order in the kernel.
3415 * set_zonelist_order() will set this to NODE or ZONE.
3417 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3418 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3422 /* The value user specified ....changed by config */
3423 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3424 /* string for sysctl */
3425 #define NUMA_ZONELIST_ORDER_LEN 16
3426 char numa_zonelist_order
[16] = "default";
3429 * interface for configure zonelist ordering.
3430 * command line option "numa_zonelist_order"
3431 * = "[dD]efault - default, automatic configuration.
3432 * = "[nN]ode - order by node locality, then by zone within node
3433 * = "[zZ]one - order by zone, then by locality within zone
3436 static int __parse_numa_zonelist_order(char *s
)
3438 if (*s
== 'd' || *s
== 'D') {
3439 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3440 } else if (*s
== 'n' || *s
== 'N') {
3441 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3442 } else if (*s
== 'z' || *s
== 'Z') {
3443 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3446 "Ignoring invalid numa_zonelist_order value: "
3453 static __init
int setup_numa_zonelist_order(char *s
)
3460 ret
= __parse_numa_zonelist_order(s
);
3462 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3466 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3469 * sysctl handler for numa_zonelist_order
3471 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
3472 void __user
*buffer
, size_t *length
,
3475 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3477 static DEFINE_MUTEX(zl_order_mutex
);
3479 mutex_lock(&zl_order_mutex
);
3481 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3485 strcpy(saved_string
, (char *)table
->data
);
3487 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3491 int oldval
= user_zonelist_order
;
3493 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3496 * bogus value. restore saved string
3498 strncpy((char *)table
->data
, saved_string
,
3499 NUMA_ZONELIST_ORDER_LEN
);
3500 user_zonelist_order
= oldval
;
3501 } else if (oldval
!= user_zonelist_order
) {
3502 mutex_lock(&zonelists_mutex
);
3503 build_all_zonelists(NULL
, NULL
);
3504 mutex_unlock(&zonelists_mutex
);
3508 mutex_unlock(&zl_order_mutex
);
3513 #define MAX_NODE_LOAD (nr_online_nodes)
3514 static int node_load
[MAX_NUMNODES
];
3517 * find_next_best_node - find the next node that should appear in a given node's fallback list
3518 * @node: node whose fallback list we're appending
3519 * @used_node_mask: nodemask_t of already used nodes
3521 * We use a number of factors to determine which is the next node that should
3522 * appear on a given node's fallback list. The node should not have appeared
3523 * already in @node's fallback list, and it should be the next closest node
3524 * according to the distance array (which contains arbitrary distance values
3525 * from each node to each node in the system), and should also prefer nodes
3526 * with no CPUs, since presumably they'll have very little allocation pressure
3527 * on them otherwise.
3528 * It returns -1 if no node is found.
3530 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3533 int min_val
= INT_MAX
;
3534 int best_node
= NUMA_NO_NODE
;
3535 const struct cpumask
*tmp
= cpumask_of_node(0);
3537 /* Use the local node if we haven't already */
3538 if (!node_isset(node
, *used_node_mask
)) {
3539 node_set(node
, *used_node_mask
);
3543 for_each_node_state(n
, N_MEMORY
) {
3545 /* Don't want a node to appear more than once */
3546 if (node_isset(n
, *used_node_mask
))
3549 /* Use the distance array to find the distance */
3550 val
= node_distance(node
, n
);
3552 /* Penalize nodes under us ("prefer the next node") */
3555 /* Give preference to headless and unused nodes */
3556 tmp
= cpumask_of_node(n
);
3557 if (!cpumask_empty(tmp
))
3558 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3560 /* Slight preference for less loaded node */
3561 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3562 val
+= node_load
[n
];
3564 if (val
< min_val
) {
3571 node_set(best_node
, *used_node_mask
);
3578 * Build zonelists ordered by node and zones within node.
3579 * This results in maximum locality--normal zone overflows into local
3580 * DMA zone, if any--but risks exhausting DMA zone.
3582 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3585 struct zonelist
*zonelist
;
3587 zonelist
= &pgdat
->node_zonelists
[0];
3588 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3590 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3591 zonelist
->_zonerefs
[j
].zone
= NULL
;
3592 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3596 * Build gfp_thisnode zonelists
3598 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3601 struct zonelist
*zonelist
;
3603 zonelist
= &pgdat
->node_zonelists
[1];
3604 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3605 zonelist
->_zonerefs
[j
].zone
= NULL
;
3606 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3610 * Build zonelists ordered by zone and nodes within zones.
3611 * This results in conserving DMA zone[s] until all Normal memory is
3612 * exhausted, but results in overflowing to remote node while memory
3613 * may still exist in local DMA zone.
3615 static int node_order
[MAX_NUMNODES
];
3617 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3620 int zone_type
; /* needs to be signed */
3622 struct zonelist
*zonelist
;
3624 zonelist
= &pgdat
->node_zonelists
[0];
3626 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3627 for (j
= 0; j
< nr_nodes
; j
++) {
3628 node
= node_order
[j
];
3629 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3630 if (populated_zone(z
)) {
3632 &zonelist
->_zonerefs
[pos
++]);
3633 check_highest_zone(zone_type
);
3637 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3638 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3641 static int default_zonelist_order(void)
3644 unsigned long low_kmem_size
, total_size
;
3648 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3649 * If they are really small and used heavily, the system can fall
3650 * into OOM very easily.
3651 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3653 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3656 for_each_online_node(nid
) {
3657 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3658 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3659 if (populated_zone(z
)) {
3660 if (zone_type
< ZONE_NORMAL
)
3661 low_kmem_size
+= z
->managed_pages
;
3662 total_size
+= z
->managed_pages
;
3663 } else if (zone_type
== ZONE_NORMAL
) {
3665 * If any node has only lowmem, then node order
3666 * is preferred to allow kernel allocations
3667 * locally; otherwise, they can easily infringe
3668 * on other nodes when there is an abundance of
3669 * lowmem available to allocate from.
3671 return ZONELIST_ORDER_NODE
;
3675 if (!low_kmem_size
|| /* there are no DMA area. */
3676 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3677 return ZONELIST_ORDER_NODE
;
3679 * look into each node's config.
3680 * If there is a node whose DMA/DMA32 memory is very big area on
3681 * local memory, NODE_ORDER may be suitable.
3683 average_size
= total_size
/
3684 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3685 for_each_online_node(nid
) {
3688 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3689 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3690 if (populated_zone(z
)) {
3691 if (zone_type
< ZONE_NORMAL
)
3692 low_kmem_size
+= z
->present_pages
;
3693 total_size
+= z
->present_pages
;
3696 if (low_kmem_size
&&
3697 total_size
> average_size
&& /* ignore small node */
3698 low_kmem_size
> total_size
* 70/100)
3699 return ZONELIST_ORDER_NODE
;
3701 return ZONELIST_ORDER_ZONE
;
3704 static void set_zonelist_order(void)
3706 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3707 current_zonelist_order
= default_zonelist_order();
3709 current_zonelist_order
= user_zonelist_order
;
3712 static void build_zonelists(pg_data_t
*pgdat
)
3716 nodemask_t used_mask
;
3717 int local_node
, prev_node
;
3718 struct zonelist
*zonelist
;
3719 int order
= current_zonelist_order
;
3721 /* initialize zonelists */
3722 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3723 zonelist
= pgdat
->node_zonelists
+ i
;
3724 zonelist
->_zonerefs
[0].zone
= NULL
;
3725 zonelist
->_zonerefs
[0].zone_idx
= 0;
3728 /* NUMA-aware ordering of nodes */
3729 local_node
= pgdat
->node_id
;
3730 load
= nr_online_nodes
;
3731 prev_node
= local_node
;
3732 nodes_clear(used_mask
);
3734 memset(node_order
, 0, sizeof(node_order
));
3737 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3739 * We don't want to pressure a particular node.
3740 * So adding penalty to the first node in same
3741 * distance group to make it round-robin.
3743 if (node_distance(local_node
, node
) !=
3744 node_distance(local_node
, prev_node
))
3745 node_load
[node
] = load
;
3749 if (order
== ZONELIST_ORDER_NODE
)
3750 build_zonelists_in_node_order(pgdat
, node
);
3752 node_order
[j
++] = node
; /* remember order */
3755 if (order
== ZONELIST_ORDER_ZONE
) {
3756 /* calculate node order -- i.e., DMA last! */
3757 build_zonelists_in_zone_order(pgdat
, j
);
3760 build_thisnode_zonelists(pgdat
);
3763 /* Construct the zonelist performance cache - see further mmzone.h */
3764 static void build_zonelist_cache(pg_data_t
*pgdat
)
3766 struct zonelist
*zonelist
;
3767 struct zonelist_cache
*zlc
;
3770 zonelist
= &pgdat
->node_zonelists
[0];
3771 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3772 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3773 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3774 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3777 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3779 * Return node id of node used for "local" allocations.
3780 * I.e., first node id of first zone in arg node's generic zonelist.
3781 * Used for initializing percpu 'numa_mem', which is used primarily
3782 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3784 int local_memory_node(int node
)
3788 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3789 gfp_zone(GFP_KERNEL
),
3796 #else /* CONFIG_NUMA */
3798 static void set_zonelist_order(void)
3800 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3803 static void build_zonelists(pg_data_t
*pgdat
)
3805 int node
, local_node
;
3807 struct zonelist
*zonelist
;
3809 local_node
= pgdat
->node_id
;
3811 zonelist
= &pgdat
->node_zonelists
[0];
3812 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3815 * Now we build the zonelist so that it contains the zones
3816 * of all the other nodes.
3817 * We don't want to pressure a particular node, so when
3818 * building the zones for node N, we make sure that the
3819 * zones coming right after the local ones are those from
3820 * node N+1 (modulo N)
3822 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3823 if (!node_online(node
))
3825 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3827 for (node
= 0; node
< local_node
; node
++) {
3828 if (!node_online(node
))
3830 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3833 zonelist
->_zonerefs
[j
].zone
= NULL
;
3834 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3837 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3838 static void build_zonelist_cache(pg_data_t
*pgdat
)
3840 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3843 #endif /* CONFIG_NUMA */
3846 * Boot pageset table. One per cpu which is going to be used for all
3847 * zones and all nodes. The parameters will be set in such a way
3848 * that an item put on a list will immediately be handed over to
3849 * the buddy list. This is safe since pageset manipulation is done
3850 * with interrupts disabled.
3852 * The boot_pagesets must be kept even after bootup is complete for
3853 * unused processors and/or zones. They do play a role for bootstrapping
3854 * hotplugged processors.
3856 * zoneinfo_show() and maybe other functions do
3857 * not check if the processor is online before following the pageset pointer.
3858 * Other parts of the kernel may not check if the zone is available.
3860 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3861 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3862 static void setup_zone_pageset(struct zone
*zone
);
3865 * Global mutex to protect against size modification of zonelists
3866 * as well as to serialize pageset setup for the new populated zone.
3868 DEFINE_MUTEX(zonelists_mutex
);
3870 /* return values int ....just for stop_machine() */
3871 static int __build_all_zonelists(void *data
)
3875 pg_data_t
*self
= data
;
3878 memset(node_load
, 0, sizeof(node_load
));
3881 if (self
&& !node_online(self
->node_id
)) {
3882 build_zonelists(self
);
3883 build_zonelist_cache(self
);
3886 for_each_online_node(nid
) {
3887 pg_data_t
*pgdat
= NODE_DATA(nid
);
3889 build_zonelists(pgdat
);
3890 build_zonelist_cache(pgdat
);
3894 * Initialize the boot_pagesets that are going to be used
3895 * for bootstrapping processors. The real pagesets for
3896 * each zone will be allocated later when the per cpu
3897 * allocator is available.
3899 * boot_pagesets are used also for bootstrapping offline
3900 * cpus if the system is already booted because the pagesets
3901 * are needed to initialize allocators on a specific cpu too.
3902 * F.e. the percpu allocator needs the page allocator which
3903 * needs the percpu allocator in order to allocate its pagesets
3904 * (a chicken-egg dilemma).
3906 for_each_possible_cpu(cpu
) {
3907 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3909 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3911 * We now know the "local memory node" for each node--
3912 * i.e., the node of the first zone in the generic zonelist.
3913 * Set up numa_mem percpu variable for on-line cpus. During
3914 * boot, only the boot cpu should be on-line; we'll init the
3915 * secondary cpus' numa_mem as they come on-line. During
3916 * node/memory hotplug, we'll fixup all on-line cpus.
3918 if (cpu_online(cpu
))
3919 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3927 * Called with zonelists_mutex held always
3928 * unless system_state == SYSTEM_BOOTING.
3930 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3932 set_zonelist_order();
3934 if (system_state
== SYSTEM_BOOTING
) {
3935 __build_all_zonelists(NULL
);
3936 mminit_verify_zonelist();
3937 cpuset_init_current_mems_allowed();
3939 #ifdef CONFIG_MEMORY_HOTPLUG
3941 setup_zone_pageset(zone
);
3943 /* we have to stop all cpus to guarantee there is no user
3945 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3946 /* cpuset refresh routine should be here */
3948 vm_total_pages
= nr_free_pagecache_pages();
3950 * Disable grouping by mobility if the number of pages in the
3951 * system is too low to allow the mechanism to work. It would be
3952 * more accurate, but expensive to check per-zone. This check is
3953 * made on memory-hotadd so a system can start with mobility
3954 * disabled and enable it later
3956 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3957 page_group_by_mobility_disabled
= 1;
3959 page_group_by_mobility_disabled
= 0;
3961 printk("Built %i zonelists in %s order, mobility grouping %s. "
3962 "Total pages: %ld\n",
3964 zonelist_order_name
[current_zonelist_order
],
3965 page_group_by_mobility_disabled
? "off" : "on",
3968 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3973 * Helper functions to size the waitqueue hash table.
3974 * Essentially these want to choose hash table sizes sufficiently
3975 * large so that collisions trying to wait on pages are rare.
3976 * But in fact, the number of active page waitqueues on typical
3977 * systems is ridiculously low, less than 200. So this is even
3978 * conservative, even though it seems large.
3980 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3981 * waitqueues, i.e. the size of the waitq table given the number of pages.
3983 #define PAGES_PER_WAITQUEUE 256
3985 #ifndef CONFIG_MEMORY_HOTPLUG
3986 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3988 unsigned long size
= 1;
3990 pages
/= PAGES_PER_WAITQUEUE
;
3992 while (size
< pages
)
3996 * Once we have dozens or even hundreds of threads sleeping
3997 * on IO we've got bigger problems than wait queue collision.
3998 * Limit the size of the wait table to a reasonable size.
4000 size
= min(size
, 4096UL);
4002 return max(size
, 4UL);
4006 * A zone's size might be changed by hot-add, so it is not possible to determine
4007 * a suitable size for its wait_table. So we use the maximum size now.
4009 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4011 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4012 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4013 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4015 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4016 * or more by the traditional way. (See above). It equals:
4018 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4019 * ia64(16K page size) : = ( 8G + 4M)byte.
4020 * powerpc (64K page size) : = (32G +16M)byte.
4022 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
4029 * This is an integer logarithm so that shifts can be used later
4030 * to extract the more random high bits from the multiplicative
4031 * hash function before the remainder is taken.
4033 static inline unsigned long wait_table_bits(unsigned long size
)
4039 * Check if a pageblock contains reserved pages
4041 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
4045 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4046 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
4053 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4054 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4055 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4056 * higher will lead to a bigger reserve which will get freed as contiguous
4057 * blocks as reclaim kicks in
4059 static void setup_zone_migrate_reserve(struct zone
*zone
)
4061 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
4063 unsigned long block_migratetype
;
4068 * Get the start pfn, end pfn and the number of blocks to reserve
4069 * We have to be careful to be aligned to pageblock_nr_pages to
4070 * make sure that we always check pfn_valid for the first page in
4073 start_pfn
= zone
->zone_start_pfn
;
4074 end_pfn
= zone_end_pfn(zone
);
4075 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
4076 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
4080 * Reserve blocks are generally in place to help high-order atomic
4081 * allocations that are short-lived. A min_free_kbytes value that
4082 * would result in more than 2 reserve blocks for atomic allocations
4083 * is assumed to be in place to help anti-fragmentation for the
4084 * future allocation of hugepages at runtime.
4086 reserve
= min(2, reserve
);
4087 old_reserve
= zone
->nr_migrate_reserve_block
;
4089 /* When memory hot-add, we almost always need to do nothing */
4090 if (reserve
== old_reserve
)
4092 zone
->nr_migrate_reserve_block
= reserve
;
4094 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
4095 if (!pfn_valid(pfn
))
4097 page
= pfn_to_page(pfn
);
4099 /* Watch out for overlapping nodes */
4100 if (page_to_nid(page
) != zone_to_nid(zone
))
4103 block_migratetype
= get_pageblock_migratetype(page
);
4105 /* Only test what is necessary when the reserves are not met */
4108 * Blocks with reserved pages will never free, skip
4111 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
4112 if (pageblock_is_reserved(pfn
, block_end_pfn
))
4115 /* If this block is reserved, account for it */
4116 if (block_migratetype
== MIGRATE_RESERVE
) {
4121 /* Suitable for reserving if this block is movable */
4122 if (block_migratetype
== MIGRATE_MOVABLE
) {
4123 set_pageblock_migratetype(page
,
4125 move_freepages_block(zone
, page
,
4130 } else if (!old_reserve
) {
4132 * At boot time we don't need to scan the whole zone
4133 * for turning off MIGRATE_RESERVE.
4139 * If the reserve is met and this is a previous reserved block,
4142 if (block_migratetype
== MIGRATE_RESERVE
) {
4143 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4144 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4150 * Initially all pages are reserved - free ones are freed
4151 * up by free_all_bootmem() once the early boot process is
4152 * done. Non-atomic initialization, single-pass.
4154 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4155 unsigned long start_pfn
, enum memmap_context context
)
4158 unsigned long end_pfn
= start_pfn
+ size
;
4162 if (highest_memmap_pfn
< end_pfn
- 1)
4163 highest_memmap_pfn
= end_pfn
- 1;
4165 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4166 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4168 * There can be holes in boot-time mem_map[]s
4169 * handed to this function. They do not
4170 * exist on hotplugged memory.
4172 if (context
== MEMMAP_EARLY
) {
4173 if (!early_pfn_valid(pfn
))
4175 if (!early_pfn_in_nid(pfn
, nid
))
4178 page
= pfn_to_page(pfn
);
4179 set_page_links(page
, zone
, nid
, pfn
);
4180 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4181 init_page_count(page
);
4182 page_mapcount_reset(page
);
4183 page_cpupid_reset_last(page
);
4184 SetPageReserved(page
);
4186 * Mark the block movable so that blocks are reserved for
4187 * movable at startup. This will force kernel allocations
4188 * to reserve their blocks rather than leaking throughout
4189 * the address space during boot when many long-lived
4190 * kernel allocations are made. Later some blocks near
4191 * the start are marked MIGRATE_RESERVE by
4192 * setup_zone_migrate_reserve()
4194 * bitmap is created for zone's valid pfn range. but memmap
4195 * can be created for invalid pages (for alignment)
4196 * check here not to call set_pageblock_migratetype() against
4199 if ((z
->zone_start_pfn
<= pfn
)
4200 && (pfn
< zone_end_pfn(z
))
4201 && !(pfn
& (pageblock_nr_pages
- 1)))
4202 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4204 INIT_LIST_HEAD(&page
->lru
);
4205 #ifdef WANT_PAGE_VIRTUAL
4206 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4207 if (!is_highmem_idx(zone
))
4208 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4213 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4215 unsigned int order
, t
;
4216 for_each_migratetype_order(order
, t
) {
4217 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4218 zone
->free_area
[order
].nr_free
= 0;
4222 #ifndef __HAVE_ARCH_MEMMAP_INIT
4223 #define memmap_init(size, nid, zone, start_pfn) \
4224 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4227 static int zone_batchsize(struct zone
*zone
)
4233 * The per-cpu-pages pools are set to around 1000th of the
4234 * size of the zone. But no more than 1/2 of a meg.
4236 * OK, so we don't know how big the cache is. So guess.
4238 batch
= zone
->managed_pages
/ 1024;
4239 if (batch
* PAGE_SIZE
> 512 * 1024)
4240 batch
= (512 * 1024) / PAGE_SIZE
;
4241 batch
/= 4; /* We effectively *= 4 below */
4246 * Clamp the batch to a 2^n - 1 value. Having a power
4247 * of 2 value was found to be more likely to have
4248 * suboptimal cache aliasing properties in some cases.
4250 * For example if 2 tasks are alternately allocating
4251 * batches of pages, one task can end up with a lot
4252 * of pages of one half of the possible page colors
4253 * and the other with pages of the other colors.
4255 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4260 /* The deferral and batching of frees should be suppressed under NOMMU
4263 * The problem is that NOMMU needs to be able to allocate large chunks
4264 * of contiguous memory as there's no hardware page translation to
4265 * assemble apparent contiguous memory from discontiguous pages.
4267 * Queueing large contiguous runs of pages for batching, however,
4268 * causes the pages to actually be freed in smaller chunks. As there
4269 * can be a significant delay between the individual batches being
4270 * recycled, this leads to the once large chunks of space being
4271 * fragmented and becoming unavailable for high-order allocations.
4278 * pcp->high and pcp->batch values are related and dependent on one another:
4279 * ->batch must never be higher then ->high.
4280 * The following function updates them in a safe manner without read side
4283 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4284 * those fields changing asynchronously (acording the the above rule).
4286 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4287 * outside of boot time (or some other assurance that no concurrent updaters
4290 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4291 unsigned long batch
)
4293 /* start with a fail safe value for batch */
4297 /* Update high, then batch, in order */
4304 /* a companion to pageset_set_high() */
4305 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4307 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4310 static void pageset_init(struct per_cpu_pageset
*p
)
4312 struct per_cpu_pages
*pcp
;
4315 memset(p
, 0, sizeof(*p
));
4319 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4320 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4323 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4326 pageset_set_batch(p
, batch
);
4330 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4331 * to the value high for the pageset p.
4333 static void pageset_set_high(struct per_cpu_pageset
*p
,
4336 unsigned long batch
= max(1UL, high
/ 4);
4337 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4338 batch
= PAGE_SHIFT
* 8;
4340 pageset_update(&p
->pcp
, high
, batch
);
4343 static void pageset_set_high_and_batch(struct zone
*zone
,
4344 struct per_cpu_pageset
*pcp
)
4346 if (percpu_pagelist_fraction
)
4347 pageset_set_high(pcp
,
4348 (zone
->managed_pages
/
4349 percpu_pagelist_fraction
));
4351 pageset_set_batch(pcp
, zone_batchsize(zone
));
4354 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4356 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4359 pageset_set_high_and_batch(zone
, pcp
);
4362 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4365 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4366 for_each_possible_cpu(cpu
)
4367 zone_pageset_init(zone
, cpu
);
4371 * Allocate per cpu pagesets and initialize them.
4372 * Before this call only boot pagesets were available.
4374 void __init
setup_per_cpu_pageset(void)
4378 for_each_populated_zone(zone
)
4379 setup_zone_pageset(zone
);
4382 static noinline __init_refok
4383 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4389 * The per-page waitqueue mechanism uses hashed waitqueues
4392 zone
->wait_table_hash_nr_entries
=
4393 wait_table_hash_nr_entries(zone_size_pages
);
4394 zone
->wait_table_bits
=
4395 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4396 alloc_size
= zone
->wait_table_hash_nr_entries
4397 * sizeof(wait_queue_head_t
);
4399 if (!slab_is_available()) {
4400 zone
->wait_table
= (wait_queue_head_t
*)
4401 memblock_virt_alloc_node_nopanic(
4402 alloc_size
, zone
->zone_pgdat
->node_id
);
4405 * This case means that a zone whose size was 0 gets new memory
4406 * via memory hot-add.
4407 * But it may be the case that a new node was hot-added. In
4408 * this case vmalloc() will not be able to use this new node's
4409 * memory - this wait_table must be initialized to use this new
4410 * node itself as well.
4411 * To use this new node's memory, further consideration will be
4414 zone
->wait_table
= vmalloc(alloc_size
);
4416 if (!zone
->wait_table
)
4419 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4420 init_waitqueue_head(zone
->wait_table
+ i
);
4425 static __meminit
void zone_pcp_init(struct zone
*zone
)
4428 * per cpu subsystem is not up at this point. The following code
4429 * relies on the ability of the linker to provide the
4430 * offset of a (static) per cpu variable into the per cpu area.
4432 zone
->pageset
= &boot_pageset
;
4434 if (populated_zone(zone
))
4435 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4436 zone
->name
, zone
->present_pages
,
4437 zone_batchsize(zone
));
4440 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4441 unsigned long zone_start_pfn
,
4443 enum memmap_context context
)
4445 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4447 ret
= zone_wait_table_init(zone
, size
);
4450 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4452 zone
->zone_start_pfn
= zone_start_pfn
;
4454 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4455 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4457 (unsigned long)zone_idx(zone
),
4458 zone_start_pfn
, (zone_start_pfn
+ size
));
4460 zone_init_free_lists(zone
);
4465 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4466 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4468 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4470 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4472 unsigned long start_pfn
, end_pfn
;
4475 * NOTE: The following SMP-unsafe globals are only used early in boot
4476 * when the kernel is running single-threaded.
4478 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4479 static int __meminitdata last_nid
;
4481 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4484 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4486 last_start_pfn
= start_pfn
;
4487 last_end_pfn
= end_pfn
;
4493 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4495 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4499 nid
= __early_pfn_to_nid(pfn
);
4502 /* just returns 0 */
4506 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4507 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4511 nid
= __early_pfn_to_nid(pfn
);
4512 if (nid
>= 0 && nid
!= node
)
4519 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4520 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4521 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4523 * If an architecture guarantees that all ranges registered contain no holes
4524 * and may be freed, this this function may be used instead of calling
4525 * memblock_free_early_nid() manually.
4527 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4529 unsigned long start_pfn
, end_pfn
;
4532 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4533 start_pfn
= min(start_pfn
, max_low_pfn
);
4534 end_pfn
= min(end_pfn
, max_low_pfn
);
4536 if (start_pfn
< end_pfn
)
4537 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4538 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4544 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4545 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4547 * If an architecture guarantees that all ranges registered contain no holes and may
4548 * be freed, this function may be used instead of calling memory_present() manually.
4550 void __init
sparse_memory_present_with_active_regions(int nid
)
4552 unsigned long start_pfn
, end_pfn
;
4555 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4556 memory_present(this_nid
, start_pfn
, end_pfn
);
4560 * get_pfn_range_for_nid - Return the start and end page frames for a node
4561 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4562 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4563 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4565 * It returns the start and end page frame of a node based on information
4566 * provided by memblock_set_node(). If called for a node
4567 * with no available memory, a warning is printed and the start and end
4570 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4571 unsigned long *start_pfn
, unsigned long *end_pfn
)
4573 unsigned long this_start_pfn
, this_end_pfn
;
4579 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4580 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4581 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4584 if (*start_pfn
== -1UL)
4589 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4590 * assumption is made that zones within a node are ordered in monotonic
4591 * increasing memory addresses so that the "highest" populated zone is used
4593 static void __init
find_usable_zone_for_movable(void)
4596 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4597 if (zone_index
== ZONE_MOVABLE
)
4600 if (arch_zone_highest_possible_pfn
[zone_index
] >
4601 arch_zone_lowest_possible_pfn
[zone_index
])
4605 VM_BUG_ON(zone_index
== -1);
4606 movable_zone
= zone_index
;
4610 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4611 * because it is sized independent of architecture. Unlike the other zones,
4612 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4613 * in each node depending on the size of each node and how evenly kernelcore
4614 * is distributed. This helper function adjusts the zone ranges
4615 * provided by the architecture for a given node by using the end of the
4616 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4617 * zones within a node are in order of monotonic increases memory addresses
4619 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4620 unsigned long zone_type
,
4621 unsigned long node_start_pfn
,
4622 unsigned long node_end_pfn
,
4623 unsigned long *zone_start_pfn
,
4624 unsigned long *zone_end_pfn
)
4626 /* Only adjust if ZONE_MOVABLE is on this node */
4627 if (zone_movable_pfn
[nid
]) {
4628 /* Size ZONE_MOVABLE */
4629 if (zone_type
== ZONE_MOVABLE
) {
4630 *zone_start_pfn
= zone_movable_pfn
[nid
];
4631 *zone_end_pfn
= min(node_end_pfn
,
4632 arch_zone_highest_possible_pfn
[movable_zone
]);
4634 /* Adjust for ZONE_MOVABLE starting within this range */
4635 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4636 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4637 *zone_end_pfn
= zone_movable_pfn
[nid
];
4639 /* Check if this whole range is within ZONE_MOVABLE */
4640 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4641 *zone_start_pfn
= *zone_end_pfn
;
4646 * Return the number of pages a zone spans in a node, including holes
4647 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4649 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4650 unsigned long zone_type
,
4651 unsigned long node_start_pfn
,
4652 unsigned long node_end_pfn
,
4653 unsigned long *ignored
)
4655 unsigned long zone_start_pfn
, zone_end_pfn
;
4657 /* Get the start and end of the zone */
4658 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4659 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4660 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4661 node_start_pfn
, node_end_pfn
,
4662 &zone_start_pfn
, &zone_end_pfn
);
4664 /* Check that this node has pages within the zone's required range */
4665 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4668 /* Move the zone boundaries inside the node if necessary */
4669 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4670 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4672 /* Return the spanned pages */
4673 return zone_end_pfn
- zone_start_pfn
;
4677 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4678 * then all holes in the requested range will be accounted for.
4680 unsigned long __meminit
__absent_pages_in_range(int nid
,
4681 unsigned long range_start_pfn
,
4682 unsigned long range_end_pfn
)
4684 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4685 unsigned long start_pfn
, end_pfn
;
4688 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4689 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4690 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4691 nr_absent
-= end_pfn
- start_pfn
;
4697 * absent_pages_in_range - Return number of page frames in holes within a range
4698 * @start_pfn: The start PFN to start searching for holes
4699 * @end_pfn: The end PFN to stop searching for holes
4701 * It returns the number of pages frames in memory holes within a range.
4703 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4704 unsigned long end_pfn
)
4706 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4709 /* Return the number of page frames in holes in a zone on a node */
4710 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4711 unsigned long zone_type
,
4712 unsigned long node_start_pfn
,
4713 unsigned long node_end_pfn
,
4714 unsigned long *ignored
)
4716 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4717 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4718 unsigned long zone_start_pfn
, zone_end_pfn
;
4720 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4721 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4723 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4724 node_start_pfn
, node_end_pfn
,
4725 &zone_start_pfn
, &zone_end_pfn
);
4726 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4729 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4730 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4731 unsigned long zone_type
,
4732 unsigned long node_start_pfn
,
4733 unsigned long node_end_pfn
,
4734 unsigned long *zones_size
)
4736 return zones_size
[zone_type
];
4739 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4740 unsigned long zone_type
,
4741 unsigned long node_start_pfn
,
4742 unsigned long node_end_pfn
,
4743 unsigned long *zholes_size
)
4748 return zholes_size
[zone_type
];
4751 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4753 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4754 unsigned long node_start_pfn
,
4755 unsigned long node_end_pfn
,
4756 unsigned long *zones_size
,
4757 unsigned long *zholes_size
)
4759 unsigned long realtotalpages
, totalpages
= 0;
4762 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4763 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4767 pgdat
->node_spanned_pages
= totalpages
;
4769 realtotalpages
= totalpages
;
4770 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4772 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4773 node_start_pfn
, node_end_pfn
,
4775 pgdat
->node_present_pages
= realtotalpages
;
4776 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4780 #ifndef CONFIG_SPARSEMEM
4782 * Calculate the size of the zone->blockflags rounded to an unsigned long
4783 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4784 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4785 * round what is now in bits to nearest long in bits, then return it in
4788 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4790 unsigned long usemapsize
;
4792 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4793 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4794 usemapsize
= usemapsize
>> pageblock_order
;
4795 usemapsize
*= NR_PAGEBLOCK_BITS
;
4796 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4798 return usemapsize
/ 8;
4801 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4803 unsigned long zone_start_pfn
,
4804 unsigned long zonesize
)
4806 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4807 zone
->pageblock_flags
= NULL
;
4809 zone
->pageblock_flags
=
4810 memblock_virt_alloc_node_nopanic(usemapsize
,
4814 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4815 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4816 #endif /* CONFIG_SPARSEMEM */
4818 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4820 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4821 void __paginginit
set_pageblock_order(void)
4825 /* Check that pageblock_nr_pages has not already been setup */
4826 if (pageblock_order
)
4829 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4830 order
= HUGETLB_PAGE_ORDER
;
4832 order
= MAX_ORDER
- 1;
4835 * Assume the largest contiguous order of interest is a huge page.
4836 * This value may be variable depending on boot parameters on IA64 and
4839 pageblock_order
= order
;
4841 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4844 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4845 * is unused as pageblock_order is set at compile-time. See
4846 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4849 void __paginginit
set_pageblock_order(void)
4853 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4855 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4856 unsigned long present_pages
)
4858 unsigned long pages
= spanned_pages
;
4861 * Provide a more accurate estimation if there are holes within
4862 * the zone and SPARSEMEM is in use. If there are holes within the
4863 * zone, each populated memory region may cost us one or two extra
4864 * memmap pages due to alignment because memmap pages for each
4865 * populated regions may not naturally algined on page boundary.
4866 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4868 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4869 IS_ENABLED(CONFIG_SPARSEMEM
))
4870 pages
= present_pages
;
4872 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4876 * Set up the zone data structures:
4877 * - mark all pages reserved
4878 * - mark all memory queues empty
4879 * - clear the memory bitmaps
4881 * NOTE: pgdat should get zeroed by caller.
4883 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4884 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4885 unsigned long *zones_size
, unsigned long *zholes_size
)
4888 int nid
= pgdat
->node_id
;
4889 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4892 pgdat_resize_init(pgdat
);
4893 #ifdef CONFIG_NUMA_BALANCING
4894 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4895 pgdat
->numabalancing_migrate_nr_pages
= 0;
4896 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4898 init_waitqueue_head(&pgdat
->kswapd_wait
);
4899 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4900 pgdat_page_cgroup_init(pgdat
);
4902 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4903 struct zone
*zone
= pgdat
->node_zones
+ j
;
4904 unsigned long size
, realsize
, freesize
, memmap_pages
;
4906 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4907 node_end_pfn
, zones_size
);
4908 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4914 * Adjust freesize so that it accounts for how much memory
4915 * is used by this zone for memmap. This affects the watermark
4916 * and per-cpu initialisations
4918 memmap_pages
= calc_memmap_size(size
, realsize
);
4919 if (freesize
>= memmap_pages
) {
4920 freesize
-= memmap_pages
;
4923 " %s zone: %lu pages used for memmap\n",
4924 zone_names
[j
], memmap_pages
);
4927 " %s zone: %lu pages exceeds freesize %lu\n",
4928 zone_names
[j
], memmap_pages
, freesize
);
4930 /* Account for reserved pages */
4931 if (j
== 0 && freesize
> dma_reserve
) {
4932 freesize
-= dma_reserve
;
4933 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4934 zone_names
[0], dma_reserve
);
4937 if (!is_highmem_idx(j
))
4938 nr_kernel_pages
+= freesize
;
4939 /* Charge for highmem memmap if there are enough kernel pages */
4940 else if (nr_kernel_pages
> memmap_pages
* 2)
4941 nr_kernel_pages
-= memmap_pages
;
4942 nr_all_pages
+= freesize
;
4944 zone
->spanned_pages
= size
;
4945 zone
->present_pages
= realsize
;
4947 * Set an approximate value for lowmem here, it will be adjusted
4948 * when the bootmem allocator frees pages into the buddy system.
4949 * And all highmem pages will be managed by the buddy system.
4951 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4954 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4956 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4958 zone
->name
= zone_names
[j
];
4959 spin_lock_init(&zone
->lock
);
4960 spin_lock_init(&zone
->lru_lock
);
4961 zone_seqlock_init(zone
);
4962 zone
->zone_pgdat
= pgdat
;
4963 zone_pcp_init(zone
);
4965 /* For bootup, initialized properly in watermark setup */
4966 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4968 lruvec_init(&zone
->lruvec
);
4972 set_pageblock_order();
4973 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4974 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4975 size
, MEMMAP_EARLY
);
4977 memmap_init(size
, nid
, j
, zone_start_pfn
);
4978 zone_start_pfn
+= size
;
4982 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4984 /* Skip empty nodes */
4985 if (!pgdat
->node_spanned_pages
)
4988 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4989 /* ia64 gets its own node_mem_map, before this, without bootmem */
4990 if (!pgdat
->node_mem_map
) {
4991 unsigned long size
, start
, end
;
4995 * The zone's endpoints aren't required to be MAX_ORDER
4996 * aligned but the node_mem_map endpoints must be in order
4997 * for the buddy allocator to function correctly.
4999 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5000 end
= pgdat_end_pfn(pgdat
);
5001 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5002 size
= (end
- start
) * sizeof(struct page
);
5003 map
= alloc_remap(pgdat
->node_id
, size
);
5005 map
= memblock_virt_alloc_node_nopanic(size
,
5007 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
5009 #ifndef CONFIG_NEED_MULTIPLE_NODES
5011 * With no DISCONTIG, the global mem_map is just set as node 0's
5013 if (pgdat
== NODE_DATA(0)) {
5014 mem_map
= NODE_DATA(0)->node_mem_map
;
5015 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5016 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5017 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
5018 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5021 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5024 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5025 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5027 pg_data_t
*pgdat
= NODE_DATA(nid
);
5028 unsigned long start_pfn
= 0;
5029 unsigned long end_pfn
= 0;
5031 /* pg_data_t should be reset to zero when it's allocated */
5032 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
5034 pgdat
->node_id
= nid
;
5035 pgdat
->node_start_pfn
= node_start_pfn
;
5036 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5037 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5039 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5040 zones_size
, zholes_size
);
5042 alloc_node_mem_map(pgdat
);
5043 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5044 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5045 nid
, (unsigned long)pgdat
,
5046 (unsigned long)pgdat
->node_mem_map
);
5049 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
5050 zones_size
, zholes_size
);
5053 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5055 #if MAX_NUMNODES > 1
5057 * Figure out the number of possible node ids.
5059 void __init
setup_nr_node_ids(void)
5062 unsigned int highest
= 0;
5064 for_each_node_mask(node
, node_possible_map
)
5066 nr_node_ids
= highest
+ 1;
5071 * node_map_pfn_alignment - determine the maximum internode alignment
5073 * This function should be called after node map is populated and sorted.
5074 * It calculates the maximum power of two alignment which can distinguish
5077 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5078 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5079 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5080 * shifted, 1GiB is enough and this function will indicate so.
5082 * This is used to test whether pfn -> nid mapping of the chosen memory
5083 * model has fine enough granularity to avoid incorrect mapping for the
5084 * populated node map.
5086 * Returns the determined alignment in pfn's. 0 if there is no alignment
5087 * requirement (single node).
5089 unsigned long __init
node_map_pfn_alignment(void)
5091 unsigned long accl_mask
= 0, last_end
= 0;
5092 unsigned long start
, end
, mask
;
5096 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5097 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5104 * Start with a mask granular enough to pin-point to the
5105 * start pfn and tick off bits one-by-one until it becomes
5106 * too coarse to separate the current node from the last.
5108 mask
= ~((1 << __ffs(start
)) - 1);
5109 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5112 /* accumulate all internode masks */
5116 /* convert mask to number of pages */
5117 return ~accl_mask
+ 1;
5120 /* Find the lowest pfn for a node */
5121 static unsigned long __init
find_min_pfn_for_node(int nid
)
5123 unsigned long min_pfn
= ULONG_MAX
;
5124 unsigned long start_pfn
;
5127 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5128 min_pfn
= min(min_pfn
, start_pfn
);
5130 if (min_pfn
== ULONG_MAX
) {
5132 "Could not find start_pfn for node %d\n", nid
);
5140 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5142 * It returns the minimum PFN based on information provided via
5143 * memblock_set_node().
5145 unsigned long __init
find_min_pfn_with_active_regions(void)
5147 return find_min_pfn_for_node(MAX_NUMNODES
);
5151 * early_calculate_totalpages()
5152 * Sum pages in active regions for movable zone.
5153 * Populate N_MEMORY for calculating usable_nodes.
5155 static unsigned long __init
early_calculate_totalpages(void)
5157 unsigned long totalpages
= 0;
5158 unsigned long start_pfn
, end_pfn
;
5161 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5162 unsigned long pages
= end_pfn
- start_pfn
;
5164 totalpages
+= pages
;
5166 node_set_state(nid
, N_MEMORY
);
5172 * Find the PFN the Movable zone begins in each node. Kernel memory
5173 * is spread evenly between nodes as long as the nodes have enough
5174 * memory. When they don't, some nodes will have more kernelcore than
5177 static void __init
find_zone_movable_pfns_for_nodes(void)
5180 unsigned long usable_startpfn
;
5181 unsigned long kernelcore_node
, kernelcore_remaining
;
5182 /* save the state before borrow the nodemask */
5183 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5184 unsigned long totalpages
= early_calculate_totalpages();
5185 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5186 struct memblock_region
*r
;
5188 /* Need to find movable_zone earlier when movable_node is specified. */
5189 find_usable_zone_for_movable();
5192 * If movable_node is specified, ignore kernelcore and movablecore
5195 if (movable_node_is_enabled()) {
5196 for_each_memblock(memory
, r
) {
5197 if (!memblock_is_hotpluggable(r
))
5202 usable_startpfn
= PFN_DOWN(r
->base
);
5203 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5204 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5212 * If movablecore=nn[KMG] was specified, calculate what size of
5213 * kernelcore that corresponds so that memory usable for
5214 * any allocation type is evenly spread. If both kernelcore
5215 * and movablecore are specified, then the value of kernelcore
5216 * will be used for required_kernelcore if it's greater than
5217 * what movablecore would have allowed.
5219 if (required_movablecore
) {
5220 unsigned long corepages
;
5223 * Round-up so that ZONE_MOVABLE is at least as large as what
5224 * was requested by the user
5226 required_movablecore
=
5227 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5228 corepages
= totalpages
- required_movablecore
;
5230 required_kernelcore
= max(required_kernelcore
, corepages
);
5233 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5234 if (!required_kernelcore
)
5237 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5238 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5241 /* Spread kernelcore memory as evenly as possible throughout nodes */
5242 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5243 for_each_node_state(nid
, N_MEMORY
) {
5244 unsigned long start_pfn
, end_pfn
;
5247 * Recalculate kernelcore_node if the division per node
5248 * now exceeds what is necessary to satisfy the requested
5249 * amount of memory for the kernel
5251 if (required_kernelcore
< kernelcore_node
)
5252 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5255 * As the map is walked, we track how much memory is usable
5256 * by the kernel using kernelcore_remaining. When it is
5257 * 0, the rest of the node is usable by ZONE_MOVABLE
5259 kernelcore_remaining
= kernelcore_node
;
5261 /* Go through each range of PFNs within this node */
5262 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5263 unsigned long size_pages
;
5265 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5266 if (start_pfn
>= end_pfn
)
5269 /* Account for what is only usable for kernelcore */
5270 if (start_pfn
< usable_startpfn
) {
5271 unsigned long kernel_pages
;
5272 kernel_pages
= min(end_pfn
, usable_startpfn
)
5275 kernelcore_remaining
-= min(kernel_pages
,
5276 kernelcore_remaining
);
5277 required_kernelcore
-= min(kernel_pages
,
5278 required_kernelcore
);
5280 /* Continue if range is now fully accounted */
5281 if (end_pfn
<= usable_startpfn
) {
5284 * Push zone_movable_pfn to the end so
5285 * that if we have to rebalance
5286 * kernelcore across nodes, we will
5287 * not double account here
5289 zone_movable_pfn
[nid
] = end_pfn
;
5292 start_pfn
= usable_startpfn
;
5296 * The usable PFN range for ZONE_MOVABLE is from
5297 * start_pfn->end_pfn. Calculate size_pages as the
5298 * number of pages used as kernelcore
5300 size_pages
= end_pfn
- start_pfn
;
5301 if (size_pages
> kernelcore_remaining
)
5302 size_pages
= kernelcore_remaining
;
5303 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5306 * Some kernelcore has been met, update counts and
5307 * break if the kernelcore for this node has been
5310 required_kernelcore
-= min(required_kernelcore
,
5312 kernelcore_remaining
-= size_pages
;
5313 if (!kernelcore_remaining
)
5319 * If there is still required_kernelcore, we do another pass with one
5320 * less node in the count. This will push zone_movable_pfn[nid] further
5321 * along on the nodes that still have memory until kernelcore is
5325 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5329 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5330 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5331 zone_movable_pfn
[nid
] =
5332 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5335 /* restore the node_state */
5336 node_states
[N_MEMORY
] = saved_node_state
;
5339 /* Any regular or high memory on that node ? */
5340 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5342 enum zone_type zone_type
;
5344 if (N_MEMORY
== N_NORMAL_MEMORY
)
5347 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5348 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5349 if (populated_zone(zone
)) {
5350 node_set_state(nid
, N_HIGH_MEMORY
);
5351 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5352 zone_type
<= ZONE_NORMAL
)
5353 node_set_state(nid
, N_NORMAL_MEMORY
);
5360 * free_area_init_nodes - Initialise all pg_data_t and zone data
5361 * @max_zone_pfn: an array of max PFNs for each zone
5363 * This will call free_area_init_node() for each active node in the system.
5364 * Using the page ranges provided by memblock_set_node(), the size of each
5365 * zone in each node and their holes is calculated. If the maximum PFN
5366 * between two adjacent zones match, it is assumed that the zone is empty.
5367 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5368 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5369 * starts where the previous one ended. For example, ZONE_DMA32 starts
5370 * at arch_max_dma_pfn.
5372 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5374 unsigned long start_pfn
, end_pfn
;
5377 /* Record where the zone boundaries are */
5378 memset(arch_zone_lowest_possible_pfn
, 0,
5379 sizeof(arch_zone_lowest_possible_pfn
));
5380 memset(arch_zone_highest_possible_pfn
, 0,
5381 sizeof(arch_zone_highest_possible_pfn
));
5383 start_pfn
= find_min_pfn_with_active_regions();
5385 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5386 if (i
== ZONE_MOVABLE
)
5389 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
5390 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
5391 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
5393 start_pfn
= end_pfn
;
5395 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5396 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5398 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5399 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5400 find_zone_movable_pfns_for_nodes();
5402 /* Print out the zone ranges */
5403 printk("Zone ranges:\n");
5404 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5405 if (i
== ZONE_MOVABLE
)
5407 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5408 if (arch_zone_lowest_possible_pfn
[i
] ==
5409 arch_zone_highest_possible_pfn
[i
])
5410 printk(KERN_CONT
"empty\n");
5412 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5413 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5414 (arch_zone_highest_possible_pfn
[i
]
5415 << PAGE_SHIFT
) - 1);
5418 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5419 printk("Movable zone start for each node\n");
5420 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5421 if (zone_movable_pfn
[i
])
5422 printk(" Node %d: %#010lx\n", i
,
5423 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5426 /* Print out the early node map */
5427 printk("Early memory node ranges\n");
5428 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5429 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5430 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5432 /* Initialise every node */
5433 mminit_verify_pageflags_layout();
5434 setup_nr_node_ids();
5435 for_each_online_node(nid
) {
5436 pg_data_t
*pgdat
= NODE_DATA(nid
);
5437 free_area_init_node(nid
, NULL
,
5438 find_min_pfn_for_node(nid
), NULL
);
5440 /* Any memory on that node */
5441 if (pgdat
->node_present_pages
)
5442 node_set_state(nid
, N_MEMORY
);
5443 check_for_memory(pgdat
, nid
);
5447 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5449 unsigned long long coremem
;
5453 coremem
= memparse(p
, &p
);
5454 *core
= coremem
>> PAGE_SHIFT
;
5456 /* Paranoid check that UL is enough for the coremem value */
5457 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5463 * kernelcore=size sets the amount of memory for use for allocations that
5464 * cannot be reclaimed or migrated.
5466 static int __init
cmdline_parse_kernelcore(char *p
)
5468 return cmdline_parse_core(p
, &required_kernelcore
);
5472 * movablecore=size sets the amount of memory for use for allocations that
5473 * can be reclaimed or migrated.
5475 static int __init
cmdline_parse_movablecore(char *p
)
5477 return cmdline_parse_core(p
, &required_movablecore
);
5480 early_param("kernelcore", cmdline_parse_kernelcore
);
5481 early_param("movablecore", cmdline_parse_movablecore
);
5483 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5485 void adjust_managed_page_count(struct page
*page
, long count
)
5487 spin_lock(&managed_page_count_lock
);
5488 page_zone(page
)->managed_pages
+= count
;
5489 totalram_pages
+= count
;
5490 #ifdef CONFIG_HIGHMEM
5491 if (PageHighMem(page
))
5492 totalhigh_pages
+= count
;
5494 spin_unlock(&managed_page_count_lock
);
5496 EXPORT_SYMBOL(adjust_managed_page_count
);
5498 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5501 unsigned long pages
= 0;
5503 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5504 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5505 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5506 if ((unsigned int)poison
<= 0xFF)
5507 memset(pos
, poison
, PAGE_SIZE
);
5508 free_reserved_page(virt_to_page(pos
));
5512 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5513 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5517 EXPORT_SYMBOL(free_reserved_area
);
5519 #ifdef CONFIG_HIGHMEM
5520 void free_highmem_page(struct page
*page
)
5522 __free_reserved_page(page
);
5524 page_zone(page
)->managed_pages
++;
5530 void __init
mem_init_print_info(const char *str
)
5532 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5533 unsigned long init_code_size
, init_data_size
;
5535 physpages
= get_num_physpages();
5536 codesize
= _etext
- _stext
;
5537 datasize
= _edata
- _sdata
;
5538 rosize
= __end_rodata
- __start_rodata
;
5539 bss_size
= __bss_stop
- __bss_start
;
5540 init_data_size
= __init_end
- __init_begin
;
5541 init_code_size
= _einittext
- _sinittext
;
5544 * Detect special cases and adjust section sizes accordingly:
5545 * 1) .init.* may be embedded into .data sections
5546 * 2) .init.text.* may be out of [__init_begin, __init_end],
5547 * please refer to arch/tile/kernel/vmlinux.lds.S.
5548 * 3) .rodata.* may be embedded into .text or .data sections.
5550 #define adj_init_size(start, end, size, pos, adj) \
5552 if (start <= pos && pos < end && size > adj) \
5556 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5557 _sinittext
, init_code_size
);
5558 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5559 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5560 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5561 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5563 #undef adj_init_size
5565 printk("Memory: %luK/%luK available "
5566 "(%luK kernel code, %luK rwdata, %luK rodata, "
5567 "%luK init, %luK bss, %luK reserved"
5568 #ifdef CONFIG_HIGHMEM
5572 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5573 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5574 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5575 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5576 #ifdef CONFIG_HIGHMEM
5577 totalhigh_pages
<< (PAGE_SHIFT
-10),
5579 str
? ", " : "", str
? str
: "");
5583 * set_dma_reserve - set the specified number of pages reserved in the first zone
5584 * @new_dma_reserve: The number of pages to mark reserved
5586 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5587 * In the DMA zone, a significant percentage may be consumed by kernel image
5588 * and other unfreeable allocations which can skew the watermarks badly. This
5589 * function may optionally be used to account for unfreeable pages in the
5590 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5591 * smaller per-cpu batchsize.
5593 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5595 dma_reserve
= new_dma_reserve
;
5598 void __init
free_area_init(unsigned long *zones_size
)
5600 free_area_init_node(0, zones_size
,
5601 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5604 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5605 unsigned long action
, void *hcpu
)
5607 int cpu
= (unsigned long)hcpu
;
5609 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5610 lru_add_drain_cpu(cpu
);
5614 * Spill the event counters of the dead processor
5615 * into the current processors event counters.
5616 * This artificially elevates the count of the current
5619 vm_events_fold_cpu(cpu
);
5622 * Zero the differential counters of the dead processor
5623 * so that the vm statistics are consistent.
5625 * This is only okay since the processor is dead and cannot
5626 * race with what we are doing.
5628 cpu_vm_stats_fold(cpu
);
5633 void __init
page_alloc_init(void)
5635 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5639 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5640 * or min_free_kbytes changes.
5642 static void calculate_totalreserve_pages(void)
5644 struct pglist_data
*pgdat
;
5645 unsigned long reserve_pages
= 0;
5646 enum zone_type i
, j
;
5648 for_each_online_pgdat(pgdat
) {
5649 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5650 struct zone
*zone
= pgdat
->node_zones
+ i
;
5651 unsigned long max
= 0;
5653 /* Find valid and maximum lowmem_reserve in the zone */
5654 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5655 if (zone
->lowmem_reserve
[j
] > max
)
5656 max
= zone
->lowmem_reserve
[j
];
5659 /* we treat the high watermark as reserved pages. */
5660 max
+= high_wmark_pages(zone
);
5662 if (max
> zone
->managed_pages
)
5663 max
= zone
->managed_pages
;
5664 reserve_pages
+= max
;
5666 * Lowmem reserves are not available to
5667 * GFP_HIGHUSER page cache allocations and
5668 * kswapd tries to balance zones to their high
5669 * watermark. As a result, neither should be
5670 * regarded as dirtyable memory, to prevent a
5671 * situation where reclaim has to clean pages
5672 * in order to balance the zones.
5674 zone
->dirty_balance_reserve
= max
;
5677 dirty_balance_reserve
= reserve_pages
;
5678 totalreserve_pages
= reserve_pages
;
5682 * setup_per_zone_lowmem_reserve - called whenever
5683 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5684 * has a correct pages reserved value, so an adequate number of
5685 * pages are left in the zone after a successful __alloc_pages().
5687 static void setup_per_zone_lowmem_reserve(void)
5689 struct pglist_data
*pgdat
;
5690 enum zone_type j
, idx
;
5692 for_each_online_pgdat(pgdat
) {
5693 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5694 struct zone
*zone
= pgdat
->node_zones
+ j
;
5695 unsigned long managed_pages
= zone
->managed_pages
;
5697 zone
->lowmem_reserve
[j
] = 0;
5701 struct zone
*lower_zone
;
5705 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5706 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5708 lower_zone
= pgdat
->node_zones
+ idx
;
5709 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5710 sysctl_lowmem_reserve_ratio
[idx
];
5711 managed_pages
+= lower_zone
->managed_pages
;
5716 /* update totalreserve_pages */
5717 calculate_totalreserve_pages();
5720 static void __setup_per_zone_wmarks(void)
5722 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5723 unsigned long lowmem_pages
= 0;
5725 unsigned long flags
;
5727 /* Calculate total number of !ZONE_HIGHMEM pages */
5728 for_each_zone(zone
) {
5729 if (!is_highmem(zone
))
5730 lowmem_pages
+= zone
->managed_pages
;
5733 for_each_zone(zone
) {
5736 spin_lock_irqsave(&zone
->lock
, flags
);
5737 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5738 do_div(tmp
, lowmem_pages
);
5739 if (is_highmem(zone
)) {
5741 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5742 * need highmem pages, so cap pages_min to a small
5745 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5746 * deltas controls asynch page reclaim, and so should
5747 * not be capped for highmem.
5749 unsigned long min_pages
;
5751 min_pages
= zone
->managed_pages
/ 1024;
5752 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5753 zone
->watermark
[WMARK_MIN
] = min_pages
;
5756 * If it's a lowmem zone, reserve a number of pages
5757 * proportionate to the zone's size.
5759 zone
->watermark
[WMARK_MIN
] = tmp
;
5762 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5763 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5765 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5766 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
5767 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
5769 setup_zone_migrate_reserve(zone
);
5770 spin_unlock_irqrestore(&zone
->lock
, flags
);
5773 /* update totalreserve_pages */
5774 calculate_totalreserve_pages();
5778 * setup_per_zone_wmarks - called when min_free_kbytes changes
5779 * or when memory is hot-{added|removed}
5781 * Ensures that the watermark[min,low,high] values for each zone are set
5782 * correctly with respect to min_free_kbytes.
5784 void setup_per_zone_wmarks(void)
5786 mutex_lock(&zonelists_mutex
);
5787 __setup_per_zone_wmarks();
5788 mutex_unlock(&zonelists_mutex
);
5792 * The inactive anon list should be small enough that the VM never has to
5793 * do too much work, but large enough that each inactive page has a chance
5794 * to be referenced again before it is swapped out.
5796 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5797 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5798 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5799 * the anonymous pages are kept on the inactive list.
5802 * memory ratio inactive anon
5803 * -------------------------------------
5812 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5814 unsigned int gb
, ratio
;
5816 /* Zone size in gigabytes */
5817 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5819 ratio
= int_sqrt(10 * gb
);
5823 zone
->inactive_ratio
= ratio
;
5826 static void __meminit
setup_per_zone_inactive_ratio(void)
5831 calculate_zone_inactive_ratio(zone
);
5835 * Initialise min_free_kbytes.
5837 * For small machines we want it small (128k min). For large machines
5838 * we want it large (64MB max). But it is not linear, because network
5839 * bandwidth does not increase linearly with machine size. We use
5841 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5842 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5858 int __meminit
init_per_zone_wmark_min(void)
5860 unsigned long lowmem_kbytes
;
5861 int new_min_free_kbytes
;
5863 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5864 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5866 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5867 min_free_kbytes
= new_min_free_kbytes
;
5868 if (min_free_kbytes
< 128)
5869 min_free_kbytes
= 128;
5870 if (min_free_kbytes
> 65536)
5871 min_free_kbytes
= 65536;
5873 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5874 new_min_free_kbytes
, user_min_free_kbytes
);
5876 setup_per_zone_wmarks();
5877 refresh_zone_stat_thresholds();
5878 setup_per_zone_lowmem_reserve();
5879 setup_per_zone_inactive_ratio();
5882 module_init(init_per_zone_wmark_min
)
5885 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5886 * that we can call two helper functions whenever min_free_kbytes
5889 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
5890 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5894 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5899 user_min_free_kbytes
= min_free_kbytes
;
5900 setup_per_zone_wmarks();
5906 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5907 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5912 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5917 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5918 sysctl_min_unmapped_ratio
) / 100;
5922 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5923 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5928 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5933 zone
->min_slab_pages
= (zone
->managed_pages
*
5934 sysctl_min_slab_ratio
) / 100;
5940 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5941 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5942 * whenever sysctl_lowmem_reserve_ratio changes.
5944 * The reserve ratio obviously has absolutely no relation with the
5945 * minimum watermarks. The lowmem reserve ratio can only make sense
5946 * if in function of the boot time zone sizes.
5948 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5949 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5951 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5952 setup_per_zone_lowmem_reserve();
5957 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5958 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5959 * pagelist can have before it gets flushed back to buddy allocator.
5961 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
5962 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5965 int old_percpu_pagelist_fraction
;
5968 mutex_lock(&pcp_batch_high_lock
);
5969 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
5971 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5972 if (!write
|| ret
< 0)
5975 /* Sanity checking to avoid pcp imbalance */
5976 if (percpu_pagelist_fraction
&&
5977 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
5978 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
5984 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
5987 for_each_populated_zone(zone
) {
5990 for_each_possible_cpu(cpu
)
5991 pageset_set_high_and_batch(zone
,
5992 per_cpu_ptr(zone
->pageset
, cpu
));
5995 mutex_unlock(&pcp_batch_high_lock
);
5999 int hashdist
= HASHDIST_DEFAULT
;
6002 static int __init
set_hashdist(char *str
)
6006 hashdist
= simple_strtoul(str
, &str
, 0);
6009 __setup("hashdist=", set_hashdist
);
6013 * allocate a large system hash table from bootmem
6014 * - it is assumed that the hash table must contain an exact power-of-2
6015 * quantity of entries
6016 * - limit is the number of hash buckets, not the total allocation size
6018 void *__init
alloc_large_system_hash(const char *tablename
,
6019 unsigned long bucketsize
,
6020 unsigned long numentries
,
6023 unsigned int *_hash_shift
,
6024 unsigned int *_hash_mask
,
6025 unsigned long low_limit
,
6026 unsigned long high_limit
)
6028 unsigned long long max
= high_limit
;
6029 unsigned long log2qty
, size
;
6032 /* allow the kernel cmdline to have a say */
6034 /* round applicable memory size up to nearest megabyte */
6035 numentries
= nr_kernel_pages
;
6037 /* It isn't necessary when PAGE_SIZE >= 1MB */
6038 if (PAGE_SHIFT
< 20)
6039 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
6041 /* limit to 1 bucket per 2^scale bytes of low memory */
6042 if (scale
> PAGE_SHIFT
)
6043 numentries
>>= (scale
- PAGE_SHIFT
);
6045 numentries
<<= (PAGE_SHIFT
- scale
);
6047 /* Make sure we've got at least a 0-order allocation.. */
6048 if (unlikely(flags
& HASH_SMALL
)) {
6049 /* Makes no sense without HASH_EARLY */
6050 WARN_ON(!(flags
& HASH_EARLY
));
6051 if (!(numentries
>> *_hash_shift
)) {
6052 numentries
= 1UL << *_hash_shift
;
6053 BUG_ON(!numentries
);
6055 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
6056 numentries
= PAGE_SIZE
/ bucketsize
;
6058 numentries
= roundup_pow_of_two(numentries
);
6060 /* limit allocation size to 1/16 total memory by default */
6062 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
6063 do_div(max
, bucketsize
);
6065 max
= min(max
, 0x80000000ULL
);
6067 if (numentries
< low_limit
)
6068 numentries
= low_limit
;
6069 if (numentries
> max
)
6072 log2qty
= ilog2(numentries
);
6075 size
= bucketsize
<< log2qty
;
6076 if (flags
& HASH_EARLY
)
6077 table
= memblock_virt_alloc_nopanic(size
, 0);
6079 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6082 * If bucketsize is not a power-of-two, we may free
6083 * some pages at the end of hash table which
6084 * alloc_pages_exact() automatically does
6086 if (get_order(size
) < MAX_ORDER
) {
6087 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6088 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6091 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6094 panic("Failed to allocate %s hash table\n", tablename
);
6096 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6099 ilog2(size
) - PAGE_SHIFT
,
6103 *_hash_shift
= log2qty
;
6105 *_hash_mask
= (1 << log2qty
) - 1;
6110 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6111 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6114 #ifdef CONFIG_SPARSEMEM
6115 return __pfn_to_section(pfn
)->pageblock_flags
;
6117 return zone
->pageblock_flags
;
6118 #endif /* CONFIG_SPARSEMEM */
6121 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6123 #ifdef CONFIG_SPARSEMEM
6124 pfn
&= (PAGES_PER_SECTION
-1);
6125 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6127 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6128 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6129 #endif /* CONFIG_SPARSEMEM */
6133 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6134 * @page: The page within the block of interest
6135 * @pfn: The target page frame number
6136 * @end_bitidx: The last bit of interest to retrieve
6137 * @mask: mask of bits that the caller is interested in
6139 * Return: pageblock_bits flags
6141 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6142 unsigned long end_bitidx
,
6146 unsigned long *bitmap
;
6147 unsigned long bitidx
, word_bitidx
;
6150 zone
= page_zone(page
);
6151 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6152 bitidx
= pfn_to_bitidx(zone
, pfn
);
6153 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6154 bitidx
&= (BITS_PER_LONG
-1);
6156 word
= bitmap
[word_bitidx
];
6157 bitidx
+= end_bitidx
;
6158 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6162 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6163 * @page: The page within the block of interest
6164 * @flags: The flags to set
6165 * @pfn: The target page frame number
6166 * @end_bitidx: The last bit of interest
6167 * @mask: mask of bits that the caller is interested in
6169 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6171 unsigned long end_bitidx
,
6175 unsigned long *bitmap
;
6176 unsigned long bitidx
, word_bitidx
;
6177 unsigned long old_word
, word
;
6179 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6181 zone
= page_zone(page
);
6182 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6183 bitidx
= pfn_to_bitidx(zone
, pfn
);
6184 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6185 bitidx
&= (BITS_PER_LONG
-1);
6187 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6189 bitidx
+= end_bitidx
;
6190 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6191 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6193 word
= ACCESS_ONCE(bitmap
[word_bitidx
]);
6195 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6196 if (word
== old_word
)
6203 * This function checks whether pageblock includes unmovable pages or not.
6204 * If @count is not zero, it is okay to include less @count unmovable pages
6206 * PageLRU check without isolation or lru_lock could race so that
6207 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6208 * expect this function should be exact.
6210 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6211 bool skip_hwpoisoned_pages
)
6213 unsigned long pfn
, iter
, found
;
6217 * For avoiding noise data, lru_add_drain_all() should be called
6218 * If ZONE_MOVABLE, the zone never contains unmovable pages
6220 if (zone_idx(zone
) == ZONE_MOVABLE
)
6222 mt
= get_pageblock_migratetype(page
);
6223 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6226 pfn
= page_to_pfn(page
);
6227 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6228 unsigned long check
= pfn
+ iter
;
6230 if (!pfn_valid_within(check
))
6233 page
= pfn_to_page(check
);
6236 * Hugepages are not in LRU lists, but they're movable.
6237 * We need not scan over tail pages bacause we don't
6238 * handle each tail page individually in migration.
6240 if (PageHuge(page
)) {
6241 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6246 * We can't use page_count without pin a page
6247 * because another CPU can free compound page.
6248 * This check already skips compound tails of THP
6249 * because their page->_count is zero at all time.
6251 if (!atomic_read(&page
->_count
)) {
6252 if (PageBuddy(page
))
6253 iter
+= (1 << page_order(page
)) - 1;
6258 * The HWPoisoned page may be not in buddy system, and
6259 * page_count() is not 0.
6261 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6267 * If there are RECLAIMABLE pages, we need to check it.
6268 * But now, memory offline itself doesn't call shrink_slab()
6269 * and it still to be fixed.
6272 * If the page is not RAM, page_count()should be 0.
6273 * we don't need more check. This is an _used_ not-movable page.
6275 * The problematic thing here is PG_reserved pages. PG_reserved
6276 * is set to both of a memory hole page and a _used_ kernel
6285 bool is_pageblock_removable_nolock(struct page
*page
)
6291 * We have to be careful here because we are iterating over memory
6292 * sections which are not zone aware so we might end up outside of
6293 * the zone but still within the section.
6294 * We have to take care about the node as well. If the node is offline
6295 * its NODE_DATA will be NULL - see page_zone.
6297 if (!node_online(page_to_nid(page
)))
6300 zone
= page_zone(page
);
6301 pfn
= page_to_pfn(page
);
6302 if (!zone_spans_pfn(zone
, pfn
))
6305 return !has_unmovable_pages(zone
, page
, 0, true);
6310 static unsigned long pfn_max_align_down(unsigned long pfn
)
6312 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6313 pageblock_nr_pages
) - 1);
6316 static unsigned long pfn_max_align_up(unsigned long pfn
)
6318 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6319 pageblock_nr_pages
));
6322 /* [start, end) must belong to a single zone. */
6323 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6324 unsigned long start
, unsigned long end
)
6326 /* This function is based on compact_zone() from compaction.c. */
6327 unsigned long nr_reclaimed
;
6328 unsigned long pfn
= start
;
6329 unsigned int tries
= 0;
6334 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6335 if (fatal_signal_pending(current
)) {
6340 if (list_empty(&cc
->migratepages
)) {
6341 cc
->nr_migratepages
= 0;
6342 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6349 } else if (++tries
== 5) {
6350 ret
= ret
< 0 ? ret
: -EBUSY
;
6354 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6356 cc
->nr_migratepages
-= nr_reclaimed
;
6358 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6359 NULL
, 0, cc
->mode
, MR_CMA
);
6362 putback_movable_pages(&cc
->migratepages
);
6369 * alloc_contig_range() -- tries to allocate given range of pages
6370 * @start: start PFN to allocate
6371 * @end: one-past-the-last PFN to allocate
6372 * @migratetype: migratetype of the underlaying pageblocks (either
6373 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6374 * in range must have the same migratetype and it must
6375 * be either of the two.
6377 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6378 * aligned, however it's the caller's responsibility to guarantee that
6379 * we are the only thread that changes migrate type of pageblocks the
6382 * The PFN range must belong to a single zone.
6384 * Returns zero on success or negative error code. On success all
6385 * pages which PFN is in [start, end) are allocated for the caller and
6386 * need to be freed with free_contig_range().
6388 int alloc_contig_range(unsigned long start
, unsigned long end
,
6389 unsigned migratetype
)
6391 unsigned long outer_start
, outer_end
;
6394 struct compact_control cc
= {
6395 .nr_migratepages
= 0,
6397 .zone
= page_zone(pfn_to_page(start
)),
6398 .mode
= MIGRATE_SYNC
,
6399 .ignore_skip_hint
= true,
6401 INIT_LIST_HEAD(&cc
.migratepages
);
6404 * What we do here is we mark all pageblocks in range as
6405 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6406 * have different sizes, and due to the way page allocator
6407 * work, we align the range to biggest of the two pages so
6408 * that page allocator won't try to merge buddies from
6409 * different pageblocks and change MIGRATE_ISOLATE to some
6410 * other migration type.
6412 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6413 * migrate the pages from an unaligned range (ie. pages that
6414 * we are interested in). This will put all the pages in
6415 * range back to page allocator as MIGRATE_ISOLATE.
6417 * When this is done, we take the pages in range from page
6418 * allocator removing them from the buddy system. This way
6419 * page allocator will never consider using them.
6421 * This lets us mark the pageblocks back as
6422 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6423 * aligned range but not in the unaligned, original range are
6424 * put back to page allocator so that buddy can use them.
6427 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6428 pfn_max_align_up(end
), migratetype
,
6433 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6438 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6439 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6440 * more, all pages in [start, end) are free in page allocator.
6441 * What we are going to do is to allocate all pages from
6442 * [start, end) (that is remove them from page allocator).
6444 * The only problem is that pages at the beginning and at the
6445 * end of interesting range may be not aligned with pages that
6446 * page allocator holds, ie. they can be part of higher order
6447 * pages. Because of this, we reserve the bigger range and
6448 * once this is done free the pages we are not interested in.
6450 * We don't have to hold zone->lock here because the pages are
6451 * isolated thus they won't get removed from buddy.
6454 lru_add_drain_all();
6458 outer_start
= start
;
6459 while (!PageBuddy(pfn_to_page(outer_start
))) {
6460 if (++order
>= MAX_ORDER
) {
6464 outer_start
&= ~0UL << order
;
6467 /* Make sure the range is really isolated. */
6468 if (test_pages_isolated(outer_start
, end
, false)) {
6469 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6476 /* Grab isolated pages from freelists. */
6477 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6483 /* Free head and tail (if any) */
6484 if (start
!= outer_start
)
6485 free_contig_range(outer_start
, start
- outer_start
);
6486 if (end
!= outer_end
)
6487 free_contig_range(end
, outer_end
- end
);
6490 undo_isolate_page_range(pfn_max_align_down(start
),
6491 pfn_max_align_up(end
), migratetype
);
6495 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6497 unsigned int count
= 0;
6499 for (; nr_pages
--; pfn
++) {
6500 struct page
*page
= pfn_to_page(pfn
);
6502 count
+= page_count(page
) != 1;
6505 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6509 #ifdef CONFIG_MEMORY_HOTPLUG
6511 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6512 * page high values need to be recalulated.
6514 void __meminit
zone_pcp_update(struct zone
*zone
)
6517 mutex_lock(&pcp_batch_high_lock
);
6518 for_each_possible_cpu(cpu
)
6519 pageset_set_high_and_batch(zone
,
6520 per_cpu_ptr(zone
->pageset
, cpu
));
6521 mutex_unlock(&pcp_batch_high_lock
);
6525 void zone_pcp_reset(struct zone
*zone
)
6527 unsigned long flags
;
6529 struct per_cpu_pageset
*pset
;
6531 /* avoid races with drain_pages() */
6532 local_irq_save(flags
);
6533 if (zone
->pageset
!= &boot_pageset
) {
6534 for_each_online_cpu(cpu
) {
6535 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6536 drain_zonestat(zone
, pset
);
6538 free_percpu(zone
->pageset
);
6539 zone
->pageset
= &boot_pageset
;
6541 local_irq_restore(flags
);
6544 #ifdef CONFIG_MEMORY_HOTREMOVE
6546 * All pages in the range must be isolated before calling this.
6549 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6553 unsigned int order
, i
;
6555 unsigned long flags
;
6556 /* find the first valid pfn */
6557 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6562 zone
= page_zone(pfn_to_page(pfn
));
6563 spin_lock_irqsave(&zone
->lock
, flags
);
6565 while (pfn
< end_pfn
) {
6566 if (!pfn_valid(pfn
)) {
6570 page
= pfn_to_page(pfn
);
6572 * The HWPoisoned page may be not in buddy system, and
6573 * page_count() is not 0.
6575 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6577 SetPageReserved(page
);
6581 BUG_ON(page_count(page
));
6582 BUG_ON(!PageBuddy(page
));
6583 order
= page_order(page
);
6584 #ifdef CONFIG_DEBUG_VM
6585 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6586 pfn
, 1 << order
, end_pfn
);
6588 list_del(&page
->lru
);
6589 rmv_page_order(page
);
6590 zone
->free_area
[order
].nr_free
--;
6591 for (i
= 0; i
< (1 << order
); i
++)
6592 SetPageReserved((page
+i
));
6593 pfn
+= (1 << order
);
6595 spin_unlock_irqrestore(&zone
->lock
, flags
);
6599 #ifdef CONFIG_MEMORY_FAILURE
6600 bool is_free_buddy_page(struct page
*page
)
6602 struct zone
*zone
= page_zone(page
);
6603 unsigned long pfn
= page_to_pfn(page
);
6604 unsigned long flags
;
6607 spin_lock_irqsave(&zone
->lock
, flags
);
6608 for (order
= 0; order
< MAX_ORDER
; order
++) {
6609 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6611 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6614 spin_unlock_irqrestore(&zone
->lock
, flags
);
6616 return order
< MAX_ORDER
;
6620 static const struct trace_print_flags pageflag_names
[] = {
6621 {1UL << PG_locked
, "locked" },
6622 {1UL << PG_error
, "error" },
6623 {1UL << PG_referenced
, "referenced" },
6624 {1UL << PG_uptodate
, "uptodate" },
6625 {1UL << PG_dirty
, "dirty" },
6626 {1UL << PG_lru
, "lru" },
6627 {1UL << PG_active
, "active" },
6628 {1UL << PG_slab
, "slab" },
6629 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6630 {1UL << PG_arch_1
, "arch_1" },
6631 {1UL << PG_reserved
, "reserved" },
6632 {1UL << PG_private
, "private" },
6633 {1UL << PG_private_2
, "private_2" },
6634 {1UL << PG_writeback
, "writeback" },
6635 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6636 {1UL << PG_head
, "head" },
6637 {1UL << PG_tail
, "tail" },
6639 {1UL << PG_compound
, "compound" },
6641 {1UL << PG_swapcache
, "swapcache" },
6642 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6643 {1UL << PG_reclaim
, "reclaim" },
6644 {1UL << PG_swapbacked
, "swapbacked" },
6645 {1UL << PG_unevictable
, "unevictable" },
6647 {1UL << PG_mlocked
, "mlocked" },
6649 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6650 {1UL << PG_uncached
, "uncached" },
6652 #ifdef CONFIG_MEMORY_FAILURE
6653 {1UL << PG_hwpoison
, "hwpoison" },
6655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6656 {1UL << PG_compound_lock
, "compound_lock" },
6660 static void dump_page_flags(unsigned long flags
)
6662 const char *delim
= "";
6666 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6668 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6670 /* remove zone id */
6671 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6673 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6675 mask
= pageflag_names
[i
].mask
;
6676 if ((flags
& mask
) != mask
)
6680 printk("%s%s", delim
, pageflag_names
[i
].name
);
6684 /* check for left over flags */
6686 printk("%s%#lx", delim
, flags
);
6691 void dump_page_badflags(struct page
*page
, const char *reason
,
6692 unsigned long badflags
)
6695 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6696 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6697 page
->mapping
, page
->index
);
6698 dump_page_flags(page
->flags
);
6700 pr_alert("page dumped because: %s\n", reason
);
6701 if (page
->flags
& badflags
) {
6702 pr_alert("bad because of flags:\n");
6703 dump_page_flags(page
->flags
& badflags
);
6705 mem_cgroup_print_bad_page(page
);
6708 void dump_page(struct page
*page
, const char *reason
)
6710 dump_page_badflags(page
, reason
, 0);
6712 EXPORT_SYMBOL(dump_page
);