inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blob7199e400fbace9b9dd1d11d629a650c7a5e7996a
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
29 #include "xhci.h"
30 #include "xhci-trace.h"
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state,
41 unsigned int max_packet,
42 gfp_t flags)
44 struct xhci_segment *seg;
45 dma_addr_t dma;
46 int i;
48 seg = kzalloc(sizeof *seg, flags);
49 if (!seg)
50 return NULL;
52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 if (!seg->trbs) {
54 kfree(seg);
55 return NULL;
58 if (max_packet) {
59 seg->bounce_buf = kzalloc(max_packet, flags);
60 if (!seg->bounce_buf) {
61 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 kfree(seg);
63 return NULL;
66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 if (cycle_state == 0) {
68 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
71 seg->dma = dma;
72 seg->next = NULL;
74 return seg;
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
79 if (seg->trbs) {
80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 seg->trbs = NULL;
83 kfree(seg->bounce_buf);
84 kfree(seg);
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 struct xhci_segment *first)
90 struct xhci_segment *seg;
92 seg = first->next;
93 while (seg != first) {
94 struct xhci_segment *next = seg->next;
95 xhci_segment_free(xhci, seg);
96 seg = next;
98 xhci_segment_free(xhci, first);
102 * Make the prev segment point to the next segment.
104 * Change the last TRB in the prev segment to be a Link TRB which points to the
105 * DMA address of the next segment. The caller needs to set any Link TRB
106 * related flags, such as End TRB, Toggle Cycle, and no snoop.
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 struct xhci_segment *next, enum xhci_ring_type type)
111 u32 val;
113 if (!prev || !next)
114 return;
115 prev->next = next;
116 if (type != TYPE_EVENT) {
117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 cpu_to_le64(next->dma);
120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 val &= ~TRB_TYPE_BITMASK;
123 val |= TRB_TYPE(TRB_LINK);
124 /* Always set the chain bit with 0.95 hardware */
125 /* Set chain bit for isoc rings on AMD 0.96 host */
126 if (xhci_link_trb_quirk(xhci) ||
127 (type == TYPE_ISOC &&
128 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 val |= TRB_CHAIN;
130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
135 * Link the ring to the new segments.
136 * Set Toggle Cycle for the new ring if needed.
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 struct xhci_segment *first, struct xhci_segment *last,
140 unsigned int num_segs)
142 struct xhci_segment *next;
144 if (!ring || !first || !last)
145 return;
147 next = ring->enq_seg->next;
148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 xhci_link_segments(xhci, last, next, ring->type);
150 ring->num_segs += num_segs;
151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 &= ~cpu_to_le32(LINK_TOGGLE);
156 last->trbs[TRBS_PER_SEGMENT-1].link.control
157 |= cpu_to_le32(LINK_TOGGLE);
158 ring->last_seg = last;
163 * We need a radix tree for mapping physical addresses of TRBs to which stream
164 * ID they belong to. We need to do this because the host controller won't tell
165 * us which stream ring the TRB came from. We could store the stream ID in an
166 * event data TRB, but that doesn't help us for the cancellation case, since the
167 * endpoint may stop before it reaches that event data TRB.
169 * The radix tree maps the upper portion of the TRB DMA address to a ring
170 * segment that has the same upper portion of DMA addresses. For example, say I
171 * have segments of size 1KB, that are always 1KB aligned. A segment may
172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
174 * pass the radix tree a key to get the right stream ID:
176 * 0x10c90fff >> 10 = 0x43243
177 * 0x10c912c0 >> 10 = 0x43244
178 * 0x10c91400 >> 10 = 0x43245
180 * Obviously, only those TRBs with DMA addresses that are within the segment
181 * will make the radix tree return the stream ID for that ring.
183 * Caveats for the radix tree:
185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
190 * extended systems (where the DMA address can be bigger than 32-bits),
191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 struct xhci_ring *ring,
195 struct xhci_segment *seg,
196 gfp_t mem_flags)
198 unsigned long key;
199 int ret;
201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 /* Skip any segments that were already added. */
203 if (radix_tree_lookup(trb_address_map, key))
204 return 0;
206 ret = radix_tree_maybe_preload(mem_flags);
207 if (ret)
208 return ret;
209 ret = radix_tree_insert(trb_address_map,
210 key, ring);
211 radix_tree_preload_end();
212 return ret;
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 struct xhci_segment *seg)
218 unsigned long key;
220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 if (radix_tree_lookup(trb_address_map, key))
222 radix_tree_delete(trb_address_map, key);
225 static int xhci_update_stream_segment_mapping(
226 struct radix_tree_root *trb_address_map,
227 struct xhci_ring *ring,
228 struct xhci_segment *first_seg,
229 struct xhci_segment *last_seg,
230 gfp_t mem_flags)
232 struct xhci_segment *seg;
233 struct xhci_segment *failed_seg;
234 int ret;
236 if (WARN_ON_ONCE(trb_address_map == NULL))
237 return 0;
239 seg = first_seg;
240 do {
241 ret = xhci_insert_segment_mapping(trb_address_map,
242 ring, seg, mem_flags);
243 if (ret)
244 goto remove_streams;
245 if (seg == last_seg)
246 return 0;
247 seg = seg->next;
248 } while (seg != first_seg);
250 return 0;
252 remove_streams:
253 failed_seg = seg;
254 seg = first_seg;
255 do {
256 xhci_remove_segment_mapping(trb_address_map, seg);
257 if (seg == failed_seg)
258 return ret;
259 seg = seg->next;
260 } while (seg != first_seg);
262 return ret;
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267 struct xhci_segment *seg;
269 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 return;
272 seg = ring->first_seg;
273 do {
274 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 seg = seg->next;
276 } while (seg != ring->first_seg);
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 ring->first_seg, ring->last_seg, mem_flags);
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288 if (!ring)
289 return;
291 if (ring->first_seg) {
292 if (ring->type == TYPE_STREAM)
293 xhci_remove_stream_mapping(ring);
294 xhci_free_segments_for_ring(xhci, ring->first_seg);
297 kfree(ring);
300 static void xhci_initialize_ring_info(struct xhci_ring *ring,
301 unsigned int cycle_state)
303 /* The ring is empty, so the enqueue pointer == dequeue pointer */
304 ring->enqueue = ring->first_seg->trbs;
305 ring->enq_seg = ring->first_seg;
306 ring->dequeue = ring->enqueue;
307 ring->deq_seg = ring->first_seg;
308 /* The ring is initialized to 0. The producer must write 1 to the cycle
309 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
310 * compare CCS to the cycle bit to check ownership, so CCS = 1.
312 * New rings are initialized with cycle state equal to 1; if we are
313 * handling ring expansion, set the cycle state equal to the old ring.
315 ring->cycle_state = cycle_state;
316 /* Not necessary for new rings, but needed for re-initialized rings */
317 ring->enq_updates = 0;
318 ring->deq_updates = 0;
321 * Each segment has a link TRB, and leave an extra TRB for SW
322 * accounting purpose
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329 struct xhci_segment **first, struct xhci_segment **last,
330 unsigned int num_segs, unsigned int cycle_state,
331 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
333 struct xhci_segment *prev;
335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 if (!prev)
337 return -ENOMEM;
338 num_segs--;
340 *first = prev;
341 while (num_segs > 0) {
342 struct xhci_segment *next;
344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345 if (!next) {
346 prev = *first;
347 while (prev) {
348 next = prev->next;
349 xhci_segment_free(xhci, prev);
350 prev = next;
352 return -ENOMEM;
354 xhci_link_segments(xhci, prev, next, type);
356 prev = next;
357 num_segs--;
359 xhci_link_segments(xhci, prev, *first, type);
360 *last = prev;
362 return 0;
366 * Create a new ring with zero or more segments.
368 * Link each segment together into a ring.
369 * Set the end flag and the cycle toggle bit on the last segment.
370 * See section 4.9.1 and figures 15 and 16.
372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373 unsigned int num_segs, unsigned int cycle_state,
374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
376 struct xhci_ring *ring;
377 int ret;
379 ring = kzalloc(sizeof *(ring), flags);
380 if (!ring)
381 return NULL;
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
402 xhci_initialize_ring_info(ring, cycle_state);
403 return ring;
405 fail:
406 kfree(ring);
407 return NULL;
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411 struct xhci_virt_device *virt_dev,
412 unsigned int ep_index)
414 int rings_cached;
416 rings_cached = virt_dev->num_rings_cached;
417 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418 virt_dev->ring_cache[rings_cached] =
419 virt_dev->eps[ep_index].ring;
420 virt_dev->num_rings_cached++;
421 xhci_dbg(xhci, "Cached old ring, "
422 "%d ring%s cached\n",
423 virt_dev->num_rings_cached,
424 (virt_dev->num_rings_cached > 1) ? "s" : "");
425 } else {
426 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427 xhci_dbg(xhci, "Ring cache full (%d rings), "
428 "freeing ring\n",
429 virt_dev->num_rings_cached);
431 virt_dev->eps[ep_index].ring = NULL;
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435 * pointers to the beginning of the ring.
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438 struct xhci_ring *ring, unsigned int cycle_state,
439 enum xhci_ring_type type)
441 struct xhci_segment *seg = ring->first_seg;
442 int i;
444 do {
445 memset(seg->trbs, 0,
446 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447 if (cycle_state == 0) {
448 for (i = 0; i < TRBS_PER_SEGMENT; i++)
449 seg->trbs[i].link.control |=
450 cpu_to_le32(TRB_CYCLE);
452 /* All endpoint rings have link TRBs */
453 xhci_link_segments(xhci, seg, seg->next, type);
454 seg = seg->next;
455 } while (seg != ring->first_seg);
456 ring->type = type;
457 xhci_initialize_ring_info(ring, cycle_state);
458 /* td list should be empty since all URBs have been cancelled,
459 * but just in case...
461 INIT_LIST_HEAD(&ring->td_list);
465 * Expand an existing ring.
466 * Look for a cached ring or allocate a new ring which has same segment numbers
467 * and link the two rings.
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470 unsigned int num_trbs, gfp_t flags)
472 struct xhci_segment *first;
473 struct xhci_segment *last;
474 unsigned int num_segs;
475 unsigned int num_segs_needed;
476 int ret;
478 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479 (TRBS_PER_SEGMENT - 1);
481 /* Allocate number of segments we needed, or double the ring size */
482 num_segs = ring->num_segs > num_segs_needed ?
483 ring->num_segs : num_segs_needed;
485 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486 num_segs, ring->cycle_state, ring->type,
487 ring->bounce_buf_len, flags);
488 if (ret)
489 return -ENOMEM;
491 if (ring->type == TYPE_STREAM)
492 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493 ring, first, last, flags);
494 if (ret) {
495 struct xhci_segment *next;
496 do {
497 next = first->next;
498 xhci_segment_free(xhci, first);
499 if (first == last)
500 break;
501 first = next;
502 } while (true);
503 return ret;
506 xhci_link_rings(xhci, ring, first, last, num_segs);
507 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508 "ring expansion succeed, now has %d segments",
509 ring->num_segs);
511 return 0;
514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517 int type, gfp_t flags)
519 struct xhci_container_ctx *ctx;
521 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522 return NULL;
524 ctx = kzalloc(sizeof(*ctx), flags);
525 if (!ctx)
526 return NULL;
528 ctx->type = type;
529 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530 if (type == XHCI_CTX_TYPE_INPUT)
531 ctx->size += CTX_SIZE(xhci->hcc_params);
533 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534 if (!ctx->bytes) {
535 kfree(ctx);
536 return NULL;
538 return ctx;
541 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542 struct xhci_container_ctx *ctx)
544 if (!ctx)
545 return;
546 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547 kfree(ctx);
550 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551 struct xhci_container_ctx *ctx)
553 if (ctx->type != XHCI_CTX_TYPE_INPUT)
554 return NULL;
556 return (struct xhci_input_control_ctx *)ctx->bytes;
559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560 struct xhci_container_ctx *ctx)
562 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563 return (struct xhci_slot_ctx *)ctx->bytes;
565 return (struct xhci_slot_ctx *)
566 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570 struct xhci_container_ctx *ctx,
571 unsigned int ep_index)
573 /* increment ep index by offset of start of ep ctx array */
574 ep_index++;
575 if (ctx->type == XHCI_CTX_TYPE_INPUT)
576 ep_index++;
578 return (struct xhci_ep_ctx *)
579 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
583 /***************** Streams structures manipulation *************************/
585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586 unsigned int num_stream_ctxs,
587 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
589 struct device *dev = xhci_to_hcd(xhci)->self.controller;
590 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
592 if (size > MEDIUM_STREAM_ARRAY_SIZE)
593 dma_free_coherent(dev, size,
594 stream_ctx, dma);
595 else if (size <= SMALL_STREAM_ARRAY_SIZE)
596 return dma_pool_free(xhci->small_streams_pool,
597 stream_ctx, dma);
598 else
599 return dma_pool_free(xhci->medium_streams_pool,
600 stream_ctx, dma);
604 * The stream context array for each endpoint with bulk streams enabled can
605 * vary in size, based on:
606 * - how many streams the endpoint supports,
607 * - the maximum primary stream array size the host controller supports,
608 * - and how many streams the device driver asks for.
610 * The stream context array must be a power of 2, and can be as small as
611 * 64 bytes or as large as 1MB.
613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614 unsigned int num_stream_ctxs, dma_addr_t *dma,
615 gfp_t mem_flags)
617 struct device *dev = xhci_to_hcd(xhci)->self.controller;
618 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
620 if (size > MEDIUM_STREAM_ARRAY_SIZE)
621 return dma_alloc_coherent(dev, size,
622 dma, mem_flags);
623 else if (size <= SMALL_STREAM_ARRAY_SIZE)
624 return dma_pool_alloc(xhci->small_streams_pool,
625 mem_flags, dma);
626 else
627 return dma_pool_alloc(xhci->medium_streams_pool,
628 mem_flags, dma);
631 struct xhci_ring *xhci_dma_to_transfer_ring(
632 struct xhci_virt_ep *ep,
633 u64 address)
635 if (ep->ep_state & EP_HAS_STREAMS)
636 return radix_tree_lookup(&ep->stream_info->trb_address_map,
637 address >> TRB_SEGMENT_SHIFT);
638 return ep->ring;
641 struct xhci_ring *xhci_stream_id_to_ring(
642 struct xhci_virt_device *dev,
643 unsigned int ep_index,
644 unsigned int stream_id)
646 struct xhci_virt_ep *ep = &dev->eps[ep_index];
648 if (stream_id == 0)
649 return ep->ring;
650 if (!ep->stream_info)
651 return NULL;
653 if (stream_id >= ep->stream_info->num_streams)
654 return NULL;
655 return ep->stream_info->stream_rings[stream_id];
659 * Change an endpoint's internal structure so it supports stream IDs. The
660 * number of requested streams includes stream 0, which cannot be used by device
661 * drivers.
663 * The number of stream contexts in the stream context array may be bigger than
664 * the number of streams the driver wants to use. This is because the number of
665 * stream context array entries must be a power of two.
667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668 unsigned int num_stream_ctxs,
669 unsigned int num_streams,
670 unsigned int max_packet, gfp_t mem_flags)
672 struct xhci_stream_info *stream_info;
673 u32 cur_stream;
674 struct xhci_ring *cur_ring;
675 u64 addr;
676 int ret;
678 xhci_dbg(xhci, "Allocating %u streams and %u "
679 "stream context array entries.\n",
680 num_streams, num_stream_ctxs);
681 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683 return NULL;
685 xhci->cmd_ring_reserved_trbs++;
687 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688 if (!stream_info)
689 goto cleanup_trbs;
691 stream_info->num_streams = num_streams;
692 stream_info->num_stream_ctxs = num_stream_ctxs;
694 /* Initialize the array of virtual pointers to stream rings. */
695 stream_info->stream_rings = kzalloc(
696 sizeof(struct xhci_ring *)*num_streams,
697 mem_flags);
698 if (!stream_info->stream_rings)
699 goto cleanup_info;
701 /* Initialize the array of DMA addresses for stream rings for the HW. */
702 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703 num_stream_ctxs, &stream_info->ctx_array_dma,
704 mem_flags);
705 if (!stream_info->stream_ctx_array)
706 goto cleanup_ctx;
707 memset(stream_info->stream_ctx_array, 0,
708 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
710 /* Allocate everything needed to free the stream rings later */
711 stream_info->free_streams_command =
712 xhci_alloc_command(xhci, true, true, mem_flags);
713 if (!stream_info->free_streams_command)
714 goto cleanup_ctx;
716 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
718 /* Allocate rings for all the streams that the driver will use,
719 * and add their segment DMA addresses to the radix tree.
720 * Stream 0 is reserved.
723 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724 stream_info->stream_rings[cur_stream] =
725 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726 mem_flags);
727 cur_ring = stream_info->stream_rings[cur_stream];
728 if (!cur_ring)
729 goto cleanup_rings;
730 cur_ring->stream_id = cur_stream;
731 cur_ring->trb_address_map = &stream_info->trb_address_map;
732 /* Set deq ptr, cycle bit, and stream context type */
733 addr = cur_ring->first_seg->dma |
734 SCT_FOR_CTX(SCT_PRI_TR) |
735 cur_ring->cycle_state;
736 stream_info->stream_ctx_array[cur_stream].stream_ring =
737 cpu_to_le64(addr);
738 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739 cur_stream, (unsigned long long) addr);
741 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742 if (ret) {
743 xhci_ring_free(xhci, cur_ring);
744 stream_info->stream_rings[cur_stream] = NULL;
745 goto cleanup_rings;
748 /* Leave the other unused stream ring pointers in the stream context
749 * array initialized to zero. This will cause the xHC to give us an
750 * error if the device asks for a stream ID we don't have setup (if it
751 * was any other way, the host controller would assume the ring is
752 * "empty" and wait forever for data to be queued to that stream ID).
755 return stream_info;
757 cleanup_rings:
758 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759 cur_ring = stream_info->stream_rings[cur_stream];
760 if (cur_ring) {
761 xhci_ring_free(xhci, cur_ring);
762 stream_info->stream_rings[cur_stream] = NULL;
765 xhci_free_command(xhci, stream_info->free_streams_command);
766 cleanup_ctx:
767 kfree(stream_info->stream_rings);
768 cleanup_info:
769 kfree(stream_info);
770 cleanup_trbs:
771 xhci->cmd_ring_reserved_trbs--;
772 return NULL;
775 * Sets the MaxPStreams field and the Linear Stream Array field.
776 * Sets the dequeue pointer to the stream context array.
778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779 struct xhci_ep_ctx *ep_ctx,
780 struct xhci_stream_info *stream_info)
782 u32 max_primary_streams;
783 /* MaxPStreams is the number of stream context array entries, not the
784 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
785 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
787 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
789 "Setting number of stream ctx array entries to %u",
790 1 << (max_primary_streams + 1));
791 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793 | EP_HAS_LSA);
794 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
798 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800 * not at the beginning of the ring).
802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803 struct xhci_virt_ep *ep)
805 dma_addr_t addr;
806 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
811 /* Frees all stream contexts associated with the endpoint,
813 * Caller should fix the endpoint context streams fields.
815 void xhci_free_stream_info(struct xhci_hcd *xhci,
816 struct xhci_stream_info *stream_info)
818 int cur_stream;
819 struct xhci_ring *cur_ring;
821 if (!stream_info)
822 return;
824 for (cur_stream = 1; cur_stream < stream_info->num_streams;
825 cur_stream++) {
826 cur_ring = stream_info->stream_rings[cur_stream];
827 if (cur_ring) {
828 xhci_ring_free(xhci, cur_ring);
829 stream_info->stream_rings[cur_stream] = NULL;
832 xhci_free_command(xhci, stream_info->free_streams_command);
833 xhci->cmd_ring_reserved_trbs--;
834 if (stream_info->stream_ctx_array)
835 xhci_free_stream_ctx(xhci,
836 stream_info->num_stream_ctxs,
837 stream_info->stream_ctx_array,
838 stream_info->ctx_array_dma);
840 kfree(stream_info->stream_rings);
841 kfree(stream_info);
845 /***************** Device context manipulation *************************/
847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848 struct xhci_virt_ep *ep)
850 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851 (unsigned long)ep);
852 ep->xhci = xhci;
855 static void xhci_free_tt_info(struct xhci_hcd *xhci,
856 struct xhci_virt_device *virt_dev,
857 int slot_id)
859 struct list_head *tt_list_head;
860 struct xhci_tt_bw_info *tt_info, *next;
861 bool slot_found = false;
863 /* If the device never made it past the Set Address stage,
864 * it may not have the real_port set correctly.
866 if (virt_dev->real_port == 0 ||
867 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868 xhci_dbg(xhci, "Bad real port.\n");
869 return;
872 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874 /* Multi-TT hubs will have more than one entry */
875 if (tt_info->slot_id == slot_id) {
876 slot_found = true;
877 list_del(&tt_info->tt_list);
878 kfree(tt_info);
879 } else if (slot_found) {
880 break;
885 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886 struct xhci_virt_device *virt_dev,
887 struct usb_device *hdev,
888 struct usb_tt *tt, gfp_t mem_flags)
890 struct xhci_tt_bw_info *tt_info;
891 unsigned int num_ports;
892 int i, j;
894 if (!tt->multi)
895 num_ports = 1;
896 else
897 num_ports = hdev->maxchild;
899 for (i = 0; i < num_ports; i++, tt_info++) {
900 struct xhci_interval_bw_table *bw_table;
902 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903 if (!tt_info)
904 goto free_tts;
905 INIT_LIST_HEAD(&tt_info->tt_list);
906 list_add(&tt_info->tt_list,
907 &xhci->rh_bw[virt_dev->real_port - 1].tts);
908 tt_info->slot_id = virt_dev->udev->slot_id;
909 if (tt->multi)
910 tt_info->ttport = i+1;
911 bw_table = &tt_info->bw_table;
912 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
915 return 0;
917 free_tts:
918 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919 return -ENOMEM;
923 /* All the xhci_tds in the ring's TD list should be freed at this point.
924 * Should be called with xhci->lock held if there is any chance the TT lists
925 * will be manipulated by the configure endpoint, allocate device, or update
926 * hub functions while this function is removing the TT entries from the list.
928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
930 struct xhci_virt_device *dev;
931 int i;
932 int old_active_eps = 0;
934 /* Slot ID 0 is reserved */
935 if (slot_id == 0 || !xhci->devs[slot_id])
936 return;
938 dev = xhci->devs[slot_id];
939 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940 if (!dev)
941 return;
943 if (dev->tt_info)
944 old_active_eps = dev->tt_info->active_eps;
946 for (i = 0; i < 31; ++i) {
947 if (dev->eps[i].ring)
948 xhci_ring_free(xhci, dev->eps[i].ring);
949 if (dev->eps[i].stream_info)
950 xhci_free_stream_info(xhci,
951 dev->eps[i].stream_info);
952 /* Endpoints on the TT/root port lists should have been removed
953 * when usb_disable_device() was called for the device.
954 * We can't drop them anyway, because the udev might have gone
955 * away by this point, and we can't tell what speed it was.
957 if (!list_empty(&dev->eps[i].bw_endpoint_list))
958 xhci_warn(xhci, "Slot %u endpoint %u "
959 "not removed from BW list!\n",
960 slot_id, i);
962 /* If this is a hub, free the TT(s) from the TT list */
963 xhci_free_tt_info(xhci, dev, slot_id);
964 /* If necessary, update the number of active TTs on this root port */
965 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
967 if (dev->ring_cache) {
968 for (i = 0; i < dev->num_rings_cached; i++)
969 xhci_ring_free(xhci, dev->ring_cache[i]);
970 kfree(dev->ring_cache);
973 if (dev->in_ctx)
974 xhci_free_container_ctx(xhci, dev->in_ctx);
975 if (dev->out_ctx)
976 xhci_free_container_ctx(xhci, dev->out_ctx);
978 if (dev->udev && dev->udev->slot_id)
979 dev->udev->slot_id = 0;
980 kfree(xhci->devs[slot_id]);
981 xhci->devs[slot_id] = NULL;
985 * Free a virt_device structure.
986 * If the virt_device added a tt_info (a hub) and has children pointing to
987 * that tt_info, then free the child first. Recursive.
988 * We can't rely on udev at this point to find child-parent relationships.
990 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
992 struct xhci_virt_device *vdev;
993 struct list_head *tt_list_head;
994 struct xhci_tt_bw_info *tt_info, *next;
995 int i;
997 vdev = xhci->devs[slot_id];
998 if (!vdev)
999 return;
1001 if (vdev->real_port == 0 ||
1002 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
1003 xhci_dbg(xhci, "Bad vdev->real_port.\n");
1004 goto out;
1007 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1008 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1009 /* is this a hub device that added a tt_info to the tts list */
1010 if (tt_info->slot_id == slot_id) {
1011 /* are any devices using this tt_info? */
1012 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1013 vdev = xhci->devs[i];
1014 if (vdev && (vdev->tt_info == tt_info))
1015 xhci_free_virt_devices_depth_first(
1016 xhci, i);
1020 out:
1021 /* we are now at a leaf device */
1022 xhci_free_virt_device(xhci, slot_id);
1025 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1026 struct usb_device *udev, gfp_t flags)
1028 struct xhci_virt_device *dev;
1029 int i;
1031 /* Slot ID 0 is reserved */
1032 if (slot_id == 0 || xhci->devs[slot_id]) {
1033 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1034 return 0;
1037 dev = kzalloc(sizeof(*dev), flags);
1038 if (!dev)
1039 return 0;
1041 /* Allocate the (output) device context that will be used in the HC. */
1042 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1043 if (!dev->out_ctx)
1044 goto fail;
1046 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1047 (unsigned long long)dev->out_ctx->dma);
1049 /* Allocate the (input) device context for address device command */
1050 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1051 if (!dev->in_ctx)
1052 goto fail;
1054 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1055 (unsigned long long)dev->in_ctx->dma);
1057 /* Initialize the cancellation list and watchdog timers for each ep */
1058 for (i = 0; i < 31; i++) {
1059 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1060 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1061 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1064 /* Allocate endpoint 0 ring */
1065 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1066 if (!dev->eps[0].ring)
1067 goto fail;
1069 /* Allocate pointers to the ring cache */
1070 dev->ring_cache = kzalloc(
1071 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1072 flags);
1073 if (!dev->ring_cache)
1074 goto fail;
1075 dev->num_rings_cached = 0;
1077 init_completion(&dev->cmd_completion);
1078 dev->udev = udev;
1080 /* Point to output device context in dcbaa. */
1081 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1082 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1083 slot_id,
1084 &xhci->dcbaa->dev_context_ptrs[slot_id],
1085 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1087 xhci->devs[slot_id] = dev;
1089 return 1;
1090 fail:
1091 if (dev->eps[0].ring)
1092 xhci_ring_free(xhci, dev->eps[0].ring);
1093 if (dev->in_ctx)
1094 xhci_free_container_ctx(xhci, dev->in_ctx);
1095 if (dev->out_ctx)
1096 xhci_free_container_ctx(xhci, dev->out_ctx);
1097 kfree(dev);
1099 return 0;
1102 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1103 struct usb_device *udev)
1105 struct xhci_virt_device *virt_dev;
1106 struct xhci_ep_ctx *ep0_ctx;
1107 struct xhci_ring *ep_ring;
1109 virt_dev = xhci->devs[udev->slot_id];
1110 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1111 ep_ring = virt_dev->eps[0].ring;
1113 * FIXME we don't keep track of the dequeue pointer very well after a
1114 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1115 * host to our enqueue pointer. This should only be called after a
1116 * configured device has reset, so all control transfers should have
1117 * been completed or cancelled before the reset.
1119 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1120 ep_ring->enqueue)
1121 | ep_ring->cycle_state);
1125 * The xHCI roothub may have ports of differing speeds in any order in the port
1126 * status registers. xhci->port_array provides an array of the port speed for
1127 * each offset into the port status registers.
1129 * The xHCI hardware wants to know the roothub port number that the USB device
1130 * is attached to (or the roothub port its ancestor hub is attached to). All we
1131 * know is the index of that port under either the USB 2.0 or the USB 3.0
1132 * roothub, but that doesn't give us the real index into the HW port status
1133 * registers. Call xhci_find_raw_port_number() to get real index.
1135 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1136 struct usb_device *udev)
1138 struct usb_device *top_dev;
1139 struct usb_hcd *hcd;
1141 if (udev->speed >= USB_SPEED_SUPER)
1142 hcd = xhci->shared_hcd;
1143 else
1144 hcd = xhci->main_hcd;
1146 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1147 top_dev = top_dev->parent)
1148 /* Found device below root hub */;
1150 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1153 /* Setup an xHCI virtual device for a Set Address command */
1154 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1156 struct xhci_virt_device *dev;
1157 struct xhci_ep_ctx *ep0_ctx;
1158 struct xhci_slot_ctx *slot_ctx;
1159 u32 port_num;
1160 u32 max_packets;
1161 struct usb_device *top_dev;
1163 dev = xhci->devs[udev->slot_id];
1164 /* Slot ID 0 is reserved */
1165 if (udev->slot_id == 0 || !dev) {
1166 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1167 udev->slot_id);
1168 return -EINVAL;
1170 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1171 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1173 /* 3) Only the control endpoint is valid - one endpoint context */
1174 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1175 switch (udev->speed) {
1176 case USB_SPEED_SUPER_PLUS:
1177 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1178 max_packets = MAX_PACKET(512);
1179 break;
1180 case USB_SPEED_SUPER:
1181 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1182 max_packets = MAX_PACKET(512);
1183 break;
1184 case USB_SPEED_HIGH:
1185 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1186 max_packets = MAX_PACKET(64);
1187 break;
1188 /* USB core guesses at a 64-byte max packet first for FS devices */
1189 case USB_SPEED_FULL:
1190 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1191 max_packets = MAX_PACKET(64);
1192 break;
1193 case USB_SPEED_LOW:
1194 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1195 max_packets = MAX_PACKET(8);
1196 break;
1197 case USB_SPEED_WIRELESS:
1198 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1199 return -EINVAL;
1200 break;
1201 default:
1202 /* Speed was set earlier, this shouldn't happen. */
1203 return -EINVAL;
1205 /* Find the root hub port this device is under */
1206 port_num = xhci_find_real_port_number(xhci, udev);
1207 if (!port_num)
1208 return -EINVAL;
1209 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1210 /* Set the port number in the virtual_device to the faked port number */
1211 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1212 top_dev = top_dev->parent)
1213 /* Found device below root hub */;
1214 dev->fake_port = top_dev->portnum;
1215 dev->real_port = port_num;
1216 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1217 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1219 /* Find the right bandwidth table that this device will be a part of.
1220 * If this is a full speed device attached directly to a root port (or a
1221 * decendent of one), it counts as a primary bandwidth domain, not a
1222 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1223 * will never be created for the HS root hub.
1225 if (!udev->tt || !udev->tt->hub->parent) {
1226 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1227 } else {
1228 struct xhci_root_port_bw_info *rh_bw;
1229 struct xhci_tt_bw_info *tt_bw;
1231 rh_bw = &xhci->rh_bw[port_num - 1];
1232 /* Find the right TT. */
1233 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1234 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1235 continue;
1237 if (!dev->udev->tt->multi ||
1238 (udev->tt->multi &&
1239 tt_bw->ttport == dev->udev->ttport)) {
1240 dev->bw_table = &tt_bw->bw_table;
1241 dev->tt_info = tt_bw;
1242 break;
1245 if (!dev->tt_info)
1246 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1249 /* Is this a LS/FS device under an external HS hub? */
1250 if (udev->tt && udev->tt->hub->parent) {
1251 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1252 (udev->ttport << 8));
1253 if (udev->tt->multi)
1254 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1256 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1257 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1259 /* Step 4 - ring already allocated */
1260 /* Step 5 */
1261 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1263 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1264 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1265 max_packets);
1267 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1268 dev->eps[0].ring->cycle_state);
1270 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1272 return 0;
1276 * Convert interval expressed as 2^(bInterval - 1) == interval into
1277 * straight exponent value 2^n == interval.
1280 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1281 struct usb_host_endpoint *ep)
1283 unsigned int interval;
1285 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1286 if (interval != ep->desc.bInterval - 1)
1287 dev_warn(&udev->dev,
1288 "ep %#x - rounding interval to %d %sframes\n",
1289 ep->desc.bEndpointAddress,
1290 1 << interval,
1291 udev->speed == USB_SPEED_FULL ? "" : "micro");
1293 if (udev->speed == USB_SPEED_FULL) {
1295 * Full speed isoc endpoints specify interval in frames,
1296 * not microframes. We are using microframes everywhere,
1297 * so adjust accordingly.
1299 interval += 3; /* 1 frame = 2^3 uframes */
1302 return interval;
1306 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1307 * microframes, rounded down to nearest power of 2.
1309 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1310 struct usb_host_endpoint *ep, unsigned int desc_interval,
1311 unsigned int min_exponent, unsigned int max_exponent)
1313 unsigned int interval;
1315 interval = fls(desc_interval) - 1;
1316 interval = clamp_val(interval, min_exponent, max_exponent);
1317 if ((1 << interval) != desc_interval)
1318 dev_dbg(&udev->dev,
1319 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1320 ep->desc.bEndpointAddress,
1321 1 << interval,
1322 desc_interval);
1324 return interval;
1327 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1328 struct usb_host_endpoint *ep)
1330 if (ep->desc.bInterval == 0)
1331 return 0;
1332 return xhci_microframes_to_exponent(udev, ep,
1333 ep->desc.bInterval, 0, 15);
1337 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1338 struct usb_host_endpoint *ep)
1340 return xhci_microframes_to_exponent(udev, ep,
1341 ep->desc.bInterval * 8, 3, 10);
1344 /* Return the polling or NAK interval.
1346 * The polling interval is expressed in "microframes". If xHCI's Interval field
1347 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1349 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1350 * is set to 0.
1352 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1353 struct usb_host_endpoint *ep)
1355 unsigned int interval = 0;
1357 switch (udev->speed) {
1358 case USB_SPEED_HIGH:
1359 /* Max NAK rate */
1360 if (usb_endpoint_xfer_control(&ep->desc) ||
1361 usb_endpoint_xfer_bulk(&ep->desc)) {
1362 interval = xhci_parse_microframe_interval(udev, ep);
1363 break;
1365 /* Fall through - SS and HS isoc/int have same decoding */
1367 case USB_SPEED_SUPER_PLUS:
1368 case USB_SPEED_SUPER:
1369 if (usb_endpoint_xfer_int(&ep->desc) ||
1370 usb_endpoint_xfer_isoc(&ep->desc)) {
1371 interval = xhci_parse_exponent_interval(udev, ep);
1373 break;
1375 case USB_SPEED_FULL:
1376 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1377 interval = xhci_parse_exponent_interval(udev, ep);
1378 break;
1381 * Fall through for interrupt endpoint interval decoding
1382 * since it uses the same rules as low speed interrupt
1383 * endpoints.
1386 case USB_SPEED_LOW:
1387 if (usb_endpoint_xfer_int(&ep->desc) ||
1388 usb_endpoint_xfer_isoc(&ep->desc)) {
1390 interval = xhci_parse_frame_interval(udev, ep);
1392 break;
1394 default:
1395 BUG();
1397 return interval;
1400 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1401 * High speed endpoint descriptors can define "the number of additional
1402 * transaction opportunities per microframe", but that goes in the Max Burst
1403 * endpoint context field.
1405 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1406 struct usb_host_endpoint *ep)
1408 if (udev->speed < USB_SPEED_SUPER ||
1409 !usb_endpoint_xfer_isoc(&ep->desc))
1410 return 0;
1411 return ep->ss_ep_comp.bmAttributes;
1414 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1415 struct usb_host_endpoint *ep)
1417 /* Super speed and Plus have max burst in ep companion desc */
1418 if (udev->speed >= USB_SPEED_SUPER)
1419 return ep->ss_ep_comp.bMaxBurst;
1421 if (udev->speed == USB_SPEED_HIGH &&
1422 (usb_endpoint_xfer_isoc(&ep->desc) ||
1423 usb_endpoint_xfer_int(&ep->desc)))
1424 return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1426 return 0;
1429 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1431 int in;
1433 in = usb_endpoint_dir_in(&ep->desc);
1435 if (usb_endpoint_xfer_control(&ep->desc))
1436 return CTRL_EP;
1437 if (usb_endpoint_xfer_bulk(&ep->desc))
1438 return in ? BULK_IN_EP : BULK_OUT_EP;
1439 if (usb_endpoint_xfer_isoc(&ep->desc))
1440 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1441 if (usb_endpoint_xfer_int(&ep->desc))
1442 return in ? INT_IN_EP : INT_OUT_EP;
1443 return 0;
1446 /* Return the maximum endpoint service interval time (ESIT) payload.
1447 * Basically, this is the maxpacket size, multiplied by the burst size
1448 * and mult size.
1450 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1451 struct usb_host_endpoint *ep)
1453 int max_burst;
1454 int max_packet;
1456 /* Only applies for interrupt or isochronous endpoints */
1457 if (usb_endpoint_xfer_control(&ep->desc) ||
1458 usb_endpoint_xfer_bulk(&ep->desc))
1459 return 0;
1461 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1462 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1463 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1464 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1465 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1466 else if (udev->speed >= USB_SPEED_SUPER)
1467 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1469 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1470 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1471 /* A 0 in max burst means 1 transfer per ESIT */
1472 return max_packet * (max_burst + 1);
1475 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1476 * Drivers will have to call usb_alloc_streams() to do that.
1478 int xhci_endpoint_init(struct xhci_hcd *xhci,
1479 struct xhci_virt_device *virt_dev,
1480 struct usb_device *udev,
1481 struct usb_host_endpoint *ep,
1482 gfp_t mem_flags)
1484 unsigned int ep_index;
1485 struct xhci_ep_ctx *ep_ctx;
1486 struct xhci_ring *ep_ring;
1487 unsigned int max_packet;
1488 enum xhci_ring_type ring_type;
1489 u32 max_esit_payload;
1490 u32 endpoint_type;
1491 unsigned int max_burst;
1492 unsigned int interval;
1493 unsigned int mult;
1494 unsigned int avg_trb_len;
1495 unsigned int err_count = 0;
1497 ep_index = xhci_get_endpoint_index(&ep->desc);
1498 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1500 endpoint_type = xhci_get_endpoint_type(ep);
1501 if (!endpoint_type)
1502 return -EINVAL;
1504 ring_type = usb_endpoint_type(&ep->desc);
1507 * Get values to fill the endpoint context, mostly from ep descriptor.
1508 * The average TRB buffer lengt for bulk endpoints is unclear as we
1509 * have no clue on scatter gather list entry size. For Isoc and Int,
1510 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1512 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1513 interval = xhci_get_endpoint_interval(udev, ep);
1515 /* Periodic endpoint bInterval limit quirk */
1516 if (usb_endpoint_xfer_int(&ep->desc) ||
1517 usb_endpoint_xfer_isoc(&ep->desc)) {
1518 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1519 udev->speed >= USB_SPEED_HIGH &&
1520 interval >= 7) {
1521 interval = 6;
1525 mult = xhci_get_endpoint_mult(udev, ep);
1526 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1527 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1528 avg_trb_len = max_esit_payload;
1530 /* FIXME dig Mult and streams info out of ep companion desc */
1532 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1533 if (!usb_endpoint_xfer_isoc(&ep->desc))
1534 err_count = 3;
1535 /* Some devices get this wrong */
1536 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1537 max_packet = 512;
1538 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1539 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1540 avg_trb_len = 8;
1541 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1542 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1543 mult = 0;
1545 /* Set up the endpoint ring */
1546 virt_dev->eps[ep_index].new_ring =
1547 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1548 if (!virt_dev->eps[ep_index].new_ring) {
1549 /* Attempt to use the ring cache */
1550 if (virt_dev->num_rings_cached == 0)
1551 return -ENOMEM;
1552 virt_dev->num_rings_cached--;
1553 virt_dev->eps[ep_index].new_ring =
1554 virt_dev->ring_cache[virt_dev->num_rings_cached];
1555 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1556 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1557 1, ring_type);
1559 virt_dev->eps[ep_index].skip = false;
1560 ep_ring = virt_dev->eps[ep_index].new_ring;
1562 /* Fill the endpoint context */
1563 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1564 EP_INTERVAL(interval) |
1565 EP_MULT(mult));
1566 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1567 MAX_PACKET(max_packet) |
1568 MAX_BURST(max_burst) |
1569 ERROR_COUNT(err_count));
1570 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1571 ep_ring->cycle_state);
1573 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1574 EP_AVG_TRB_LENGTH(avg_trb_len));
1576 /* FIXME Debug endpoint context */
1577 return 0;
1580 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1581 struct xhci_virt_device *virt_dev,
1582 struct usb_host_endpoint *ep)
1584 unsigned int ep_index;
1585 struct xhci_ep_ctx *ep_ctx;
1587 ep_index = xhci_get_endpoint_index(&ep->desc);
1588 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1590 ep_ctx->ep_info = 0;
1591 ep_ctx->ep_info2 = 0;
1592 ep_ctx->deq = 0;
1593 ep_ctx->tx_info = 0;
1594 /* Don't free the endpoint ring until the set interface or configuration
1595 * request succeeds.
1599 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1601 bw_info->ep_interval = 0;
1602 bw_info->mult = 0;
1603 bw_info->num_packets = 0;
1604 bw_info->max_packet_size = 0;
1605 bw_info->type = 0;
1606 bw_info->max_esit_payload = 0;
1609 void xhci_update_bw_info(struct xhci_hcd *xhci,
1610 struct xhci_container_ctx *in_ctx,
1611 struct xhci_input_control_ctx *ctrl_ctx,
1612 struct xhci_virt_device *virt_dev)
1614 struct xhci_bw_info *bw_info;
1615 struct xhci_ep_ctx *ep_ctx;
1616 unsigned int ep_type;
1617 int i;
1619 for (i = 1; i < 31; ++i) {
1620 bw_info = &virt_dev->eps[i].bw_info;
1622 /* We can't tell what endpoint type is being dropped, but
1623 * unconditionally clearing the bandwidth info for non-periodic
1624 * endpoints should be harmless because the info will never be
1625 * set in the first place.
1627 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1628 /* Dropped endpoint */
1629 xhci_clear_endpoint_bw_info(bw_info);
1630 continue;
1633 if (EP_IS_ADDED(ctrl_ctx, i)) {
1634 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1635 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1637 /* Ignore non-periodic endpoints */
1638 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1639 ep_type != ISOC_IN_EP &&
1640 ep_type != INT_IN_EP)
1641 continue;
1643 /* Added or changed endpoint */
1644 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1645 le32_to_cpu(ep_ctx->ep_info));
1646 /* Number of packets and mult are zero-based in the
1647 * input context, but we want one-based for the
1648 * interval table.
1650 bw_info->mult = CTX_TO_EP_MULT(
1651 le32_to_cpu(ep_ctx->ep_info)) + 1;
1652 bw_info->num_packets = CTX_TO_MAX_BURST(
1653 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1654 bw_info->max_packet_size = MAX_PACKET_DECODED(
1655 le32_to_cpu(ep_ctx->ep_info2));
1656 bw_info->type = ep_type;
1657 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1658 le32_to_cpu(ep_ctx->tx_info));
1663 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1664 * Useful when you want to change one particular aspect of the endpoint and then
1665 * issue a configure endpoint command.
1667 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1668 struct xhci_container_ctx *in_ctx,
1669 struct xhci_container_ctx *out_ctx,
1670 unsigned int ep_index)
1672 struct xhci_ep_ctx *out_ep_ctx;
1673 struct xhci_ep_ctx *in_ep_ctx;
1675 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1676 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1678 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1679 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1680 in_ep_ctx->deq = out_ep_ctx->deq;
1681 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1684 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1685 * Useful when you want to change one particular aspect of the endpoint and then
1686 * issue a configure endpoint command. Only the context entries field matters,
1687 * but we'll copy the whole thing anyway.
1689 void xhci_slot_copy(struct xhci_hcd *xhci,
1690 struct xhci_container_ctx *in_ctx,
1691 struct xhci_container_ctx *out_ctx)
1693 struct xhci_slot_ctx *in_slot_ctx;
1694 struct xhci_slot_ctx *out_slot_ctx;
1696 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1697 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1699 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1700 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1701 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1702 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1705 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1706 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1708 int i;
1709 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1710 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1712 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1713 "Allocating %d scratchpad buffers", num_sp);
1715 if (!num_sp)
1716 return 0;
1718 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1719 if (!xhci->scratchpad)
1720 goto fail_sp;
1722 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1723 num_sp * sizeof(u64),
1724 &xhci->scratchpad->sp_dma, flags);
1725 if (!xhci->scratchpad->sp_array)
1726 goto fail_sp2;
1728 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1729 if (!xhci->scratchpad->sp_buffers)
1730 goto fail_sp3;
1732 xhci->scratchpad->sp_dma_buffers =
1733 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1735 if (!xhci->scratchpad->sp_dma_buffers)
1736 goto fail_sp4;
1738 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1739 for (i = 0; i < num_sp; i++) {
1740 dma_addr_t dma;
1741 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1742 flags);
1743 if (!buf)
1744 goto fail_sp5;
1746 xhci->scratchpad->sp_array[i] = dma;
1747 xhci->scratchpad->sp_buffers[i] = buf;
1748 xhci->scratchpad->sp_dma_buffers[i] = dma;
1751 return 0;
1753 fail_sp5:
1754 for (i = i - 1; i >= 0; i--) {
1755 dma_free_coherent(dev, xhci->page_size,
1756 xhci->scratchpad->sp_buffers[i],
1757 xhci->scratchpad->sp_dma_buffers[i]);
1759 kfree(xhci->scratchpad->sp_dma_buffers);
1761 fail_sp4:
1762 kfree(xhci->scratchpad->sp_buffers);
1764 fail_sp3:
1765 dma_free_coherent(dev, num_sp * sizeof(u64),
1766 xhci->scratchpad->sp_array,
1767 xhci->scratchpad->sp_dma);
1769 fail_sp2:
1770 kfree(xhci->scratchpad);
1771 xhci->scratchpad = NULL;
1773 fail_sp:
1774 return -ENOMEM;
1777 static void scratchpad_free(struct xhci_hcd *xhci)
1779 int num_sp;
1780 int i;
1781 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1783 if (!xhci->scratchpad)
1784 return;
1786 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1788 for (i = 0; i < num_sp; i++) {
1789 dma_free_coherent(dev, xhci->page_size,
1790 xhci->scratchpad->sp_buffers[i],
1791 xhci->scratchpad->sp_dma_buffers[i]);
1793 kfree(xhci->scratchpad->sp_dma_buffers);
1794 kfree(xhci->scratchpad->sp_buffers);
1795 dma_free_coherent(dev, num_sp * sizeof(u64),
1796 xhci->scratchpad->sp_array,
1797 xhci->scratchpad->sp_dma);
1798 kfree(xhci->scratchpad);
1799 xhci->scratchpad = NULL;
1802 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1803 bool allocate_in_ctx, bool allocate_completion,
1804 gfp_t mem_flags)
1806 struct xhci_command *command;
1808 command = kzalloc(sizeof(*command), mem_flags);
1809 if (!command)
1810 return NULL;
1812 if (allocate_in_ctx) {
1813 command->in_ctx =
1814 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1815 mem_flags);
1816 if (!command->in_ctx) {
1817 kfree(command);
1818 return NULL;
1822 if (allocate_completion) {
1823 command->completion =
1824 kzalloc(sizeof(struct completion), mem_flags);
1825 if (!command->completion) {
1826 xhci_free_container_ctx(xhci, command->in_ctx);
1827 kfree(command);
1828 return NULL;
1830 init_completion(command->completion);
1833 command->status = 0;
1834 INIT_LIST_HEAD(&command->cmd_list);
1835 return command;
1838 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1840 if (urb_priv) {
1841 kfree(urb_priv->td[0]);
1842 kfree(urb_priv);
1846 void xhci_free_command(struct xhci_hcd *xhci,
1847 struct xhci_command *command)
1849 xhci_free_container_ctx(xhci,
1850 command->in_ctx);
1851 kfree(command->completion);
1852 kfree(command);
1855 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1857 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1858 int size;
1859 int i, j, num_ports;
1861 cancel_delayed_work_sync(&xhci->cmd_timer);
1863 /* Free the Event Ring Segment Table and the actual Event Ring */
1864 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1865 if (xhci->erst.entries)
1866 dma_free_coherent(dev, size,
1867 xhci->erst.entries, xhci->erst.erst_dma_addr);
1868 xhci->erst.entries = NULL;
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1870 if (xhci->event_ring)
1871 xhci_ring_free(xhci, xhci->event_ring);
1872 xhci->event_ring = NULL;
1873 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1875 if (xhci->lpm_command)
1876 xhci_free_command(xhci, xhci->lpm_command);
1877 xhci->lpm_command = NULL;
1878 if (xhci->cmd_ring)
1879 xhci_ring_free(xhci, xhci->cmd_ring);
1880 xhci->cmd_ring = NULL;
1881 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1882 xhci_cleanup_command_queue(xhci);
1884 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1885 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1886 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1887 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1888 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1889 while (!list_empty(ep))
1890 list_del_init(ep->next);
1894 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1895 xhci_free_virt_devices_depth_first(xhci, i);
1897 dma_pool_destroy(xhci->segment_pool);
1898 xhci->segment_pool = NULL;
1899 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1901 dma_pool_destroy(xhci->device_pool);
1902 xhci->device_pool = NULL;
1903 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1905 dma_pool_destroy(xhci->small_streams_pool);
1906 xhci->small_streams_pool = NULL;
1907 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1908 "Freed small stream array pool");
1910 dma_pool_destroy(xhci->medium_streams_pool);
1911 xhci->medium_streams_pool = NULL;
1912 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1913 "Freed medium stream array pool");
1915 if (xhci->dcbaa)
1916 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1917 xhci->dcbaa, xhci->dcbaa->dma);
1918 xhci->dcbaa = NULL;
1920 scratchpad_free(xhci);
1922 if (!xhci->rh_bw)
1923 goto no_bw;
1925 for (i = 0; i < num_ports; i++) {
1926 struct xhci_tt_bw_info *tt, *n;
1927 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1928 list_del(&tt->tt_list);
1929 kfree(tt);
1933 no_bw:
1934 xhci->cmd_ring_reserved_trbs = 0;
1935 xhci->num_usb2_ports = 0;
1936 xhci->num_usb3_ports = 0;
1937 xhci->num_active_eps = 0;
1938 kfree(xhci->usb2_ports);
1939 kfree(xhci->usb3_ports);
1940 kfree(xhci->port_array);
1941 kfree(xhci->rh_bw);
1942 kfree(xhci->ext_caps);
1944 xhci->usb2_ports = NULL;
1945 xhci->usb3_ports = NULL;
1946 xhci->port_array = NULL;
1947 xhci->rh_bw = NULL;
1948 xhci->ext_caps = NULL;
1950 xhci->page_size = 0;
1951 xhci->page_shift = 0;
1952 xhci->bus_state[0].bus_suspended = 0;
1953 xhci->bus_state[1].bus_suspended = 0;
1956 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1957 struct xhci_segment *input_seg,
1958 union xhci_trb *start_trb,
1959 union xhci_trb *end_trb,
1960 dma_addr_t input_dma,
1961 struct xhci_segment *result_seg,
1962 char *test_name, int test_number)
1964 unsigned long long start_dma;
1965 unsigned long long end_dma;
1966 struct xhci_segment *seg;
1968 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1969 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1971 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1972 if (seg != result_seg) {
1973 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1974 test_name, test_number);
1975 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1976 "input DMA 0x%llx\n",
1977 input_seg,
1978 (unsigned long long) input_dma);
1979 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1980 "ending TRB %p (0x%llx DMA)\n",
1981 start_trb, start_dma,
1982 end_trb, end_dma);
1983 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1984 result_seg, seg);
1985 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1986 true);
1987 return -1;
1989 return 0;
1992 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1993 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1995 struct {
1996 dma_addr_t input_dma;
1997 struct xhci_segment *result_seg;
1998 } simple_test_vector [] = {
1999 /* A zeroed DMA field should fail */
2000 { 0, NULL },
2001 /* One TRB before the ring start should fail */
2002 { xhci->event_ring->first_seg->dma - 16, NULL },
2003 /* One byte before the ring start should fail */
2004 { xhci->event_ring->first_seg->dma - 1, NULL },
2005 /* Starting TRB should succeed */
2006 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
2007 /* Ending TRB should succeed */
2008 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2009 xhci->event_ring->first_seg },
2010 /* One byte after the ring end should fail */
2011 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2012 /* One TRB after the ring end should fail */
2013 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2014 /* An address of all ones should fail */
2015 { (dma_addr_t) (~0), NULL },
2017 struct {
2018 struct xhci_segment *input_seg;
2019 union xhci_trb *start_trb;
2020 union xhci_trb *end_trb;
2021 dma_addr_t input_dma;
2022 struct xhci_segment *result_seg;
2023 } complex_test_vector [] = {
2024 /* Test feeding a valid DMA address from a different ring */
2025 { .input_seg = xhci->event_ring->first_seg,
2026 .start_trb = xhci->event_ring->first_seg->trbs,
2027 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2028 .input_dma = xhci->cmd_ring->first_seg->dma,
2029 .result_seg = NULL,
2031 /* Test feeding a valid end TRB from a different ring */
2032 { .input_seg = xhci->event_ring->first_seg,
2033 .start_trb = xhci->event_ring->first_seg->trbs,
2034 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2035 .input_dma = xhci->cmd_ring->first_seg->dma,
2036 .result_seg = NULL,
2038 /* Test feeding a valid start and end TRB from a different ring */
2039 { .input_seg = xhci->event_ring->first_seg,
2040 .start_trb = xhci->cmd_ring->first_seg->trbs,
2041 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2042 .input_dma = xhci->cmd_ring->first_seg->dma,
2043 .result_seg = NULL,
2045 /* TRB in this ring, but after this TD */
2046 { .input_seg = xhci->event_ring->first_seg,
2047 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2048 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2049 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2050 .result_seg = NULL,
2052 /* TRB in this ring, but before this TD */
2053 { .input_seg = xhci->event_ring->first_seg,
2054 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2055 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2056 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2057 .result_seg = NULL,
2059 /* TRB in this ring, but after this wrapped TD */
2060 { .input_seg = xhci->event_ring->first_seg,
2061 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2062 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2063 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2064 .result_seg = NULL,
2066 /* TRB in this ring, but before this wrapped TD */
2067 { .input_seg = xhci->event_ring->first_seg,
2068 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2069 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2070 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2071 .result_seg = NULL,
2073 /* TRB not in this ring, and we have a wrapped TD */
2074 { .input_seg = xhci->event_ring->first_seg,
2075 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2076 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2077 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2078 .result_seg = NULL,
2082 unsigned int num_tests;
2083 int i, ret;
2085 num_tests = ARRAY_SIZE(simple_test_vector);
2086 for (i = 0; i < num_tests; i++) {
2087 ret = xhci_test_trb_in_td(xhci,
2088 xhci->event_ring->first_seg,
2089 xhci->event_ring->first_seg->trbs,
2090 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2091 simple_test_vector[i].input_dma,
2092 simple_test_vector[i].result_seg,
2093 "Simple", i);
2094 if (ret < 0)
2095 return ret;
2098 num_tests = ARRAY_SIZE(complex_test_vector);
2099 for (i = 0; i < num_tests; i++) {
2100 ret = xhci_test_trb_in_td(xhci,
2101 complex_test_vector[i].input_seg,
2102 complex_test_vector[i].start_trb,
2103 complex_test_vector[i].end_trb,
2104 complex_test_vector[i].input_dma,
2105 complex_test_vector[i].result_seg,
2106 "Complex", i);
2107 if (ret < 0)
2108 return ret;
2110 xhci_dbg(xhci, "TRB math tests passed.\n");
2111 return 0;
2114 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2116 u64 temp;
2117 dma_addr_t deq;
2119 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2120 xhci->event_ring->dequeue);
2121 if (deq == 0 && !in_interrupt())
2122 xhci_warn(xhci, "WARN something wrong with SW event ring "
2123 "dequeue ptr.\n");
2124 /* Update HC event ring dequeue pointer */
2125 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2126 temp &= ERST_PTR_MASK;
2127 /* Don't clear the EHB bit (which is RW1C) because
2128 * there might be more events to service.
2130 temp &= ~ERST_EHB;
2131 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2132 "// Write event ring dequeue pointer, "
2133 "preserving EHB bit");
2134 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2135 &xhci->ir_set->erst_dequeue);
2138 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2139 __le32 __iomem *addr, int max_caps)
2141 u32 temp, port_offset, port_count;
2142 int i;
2143 u8 major_revision, minor_revision;
2144 struct xhci_hub *rhub;
2146 temp = readl(addr);
2147 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2148 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2150 if (major_revision == 0x03) {
2151 rhub = &xhci->usb3_rhub;
2152 } else if (major_revision <= 0x02) {
2153 rhub = &xhci->usb2_rhub;
2154 } else {
2155 xhci_warn(xhci, "Ignoring unknown port speed, "
2156 "Ext Cap %p, revision = 0x%x\n",
2157 addr, major_revision);
2158 /* Ignoring port protocol we can't understand. FIXME */
2159 return;
2161 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2163 if (rhub->min_rev < minor_revision)
2164 rhub->min_rev = minor_revision;
2166 /* Port offset and count in the third dword, see section 7.2 */
2167 temp = readl(addr + 2);
2168 port_offset = XHCI_EXT_PORT_OFF(temp);
2169 port_count = XHCI_EXT_PORT_COUNT(temp);
2170 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2171 "Ext Cap %p, port offset = %u, "
2172 "count = %u, revision = 0x%x",
2173 addr, port_offset, port_count, major_revision);
2174 /* Port count includes the current port offset */
2175 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2176 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2177 return;
2179 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2180 if (rhub->psi_count) {
2181 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2182 GFP_KERNEL);
2183 if (!rhub->psi)
2184 rhub->psi_count = 0;
2186 rhub->psi_uid_count++;
2187 for (i = 0; i < rhub->psi_count; i++) {
2188 rhub->psi[i] = readl(addr + 4 + i);
2190 /* count unique ID values, two consecutive entries can
2191 * have the same ID if link is assymetric
2193 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2194 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2195 rhub->psi_uid_count++;
2197 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2198 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2199 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2200 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2201 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2202 XHCI_EXT_PORT_LP(rhub->psi[i]),
2203 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2206 /* cache usb2 port capabilities */
2207 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2208 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2210 /* Check the host's USB2 LPM capability */
2211 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2212 (temp & XHCI_L1C)) {
2213 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2214 "xHCI 0.96: support USB2 software lpm");
2215 xhci->sw_lpm_support = 1;
2218 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2219 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2220 "xHCI 1.0: support USB2 software lpm");
2221 xhci->sw_lpm_support = 1;
2222 if (temp & XHCI_HLC) {
2223 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2224 "xHCI 1.0: support USB2 hardware lpm");
2225 xhci->hw_lpm_support = 1;
2229 port_offset--;
2230 for (i = port_offset; i < (port_offset + port_count); i++) {
2231 /* Duplicate entry. Ignore the port if the revisions differ. */
2232 if (xhci->port_array[i] != 0) {
2233 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2234 " port %u\n", addr, i);
2235 xhci_warn(xhci, "Port was marked as USB %u, "
2236 "duplicated as USB %u\n",
2237 xhci->port_array[i], major_revision);
2238 /* Only adjust the roothub port counts if we haven't
2239 * found a similar duplicate.
2241 if (xhci->port_array[i] != major_revision &&
2242 xhci->port_array[i] != DUPLICATE_ENTRY) {
2243 if (xhci->port_array[i] == 0x03)
2244 xhci->num_usb3_ports--;
2245 else
2246 xhci->num_usb2_ports--;
2247 xhci->port_array[i] = DUPLICATE_ENTRY;
2249 /* FIXME: Should we disable the port? */
2250 continue;
2252 xhci->port_array[i] = major_revision;
2253 if (major_revision == 0x03)
2254 xhci->num_usb3_ports++;
2255 else
2256 xhci->num_usb2_ports++;
2258 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2262 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2263 * specify what speeds each port is supposed to be. We can't count on the port
2264 * speed bits in the PORTSC register being correct until a device is connected,
2265 * but we need to set up the two fake roothubs with the correct number of USB
2266 * 3.0 and USB 2.0 ports at host controller initialization time.
2268 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2270 void __iomem *base;
2271 u32 offset;
2272 unsigned int num_ports;
2273 int i, j, port_index;
2274 int cap_count = 0;
2275 u32 cap_start;
2277 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2278 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2279 if (!xhci->port_array)
2280 return -ENOMEM;
2282 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2283 if (!xhci->rh_bw)
2284 return -ENOMEM;
2285 for (i = 0; i < num_ports; i++) {
2286 struct xhci_interval_bw_table *bw_table;
2288 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2289 bw_table = &xhci->rh_bw[i].bw_table;
2290 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2291 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2293 base = &xhci->cap_regs->hc_capbase;
2295 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2296 if (!cap_start) {
2297 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2298 return -ENODEV;
2301 offset = cap_start;
2302 /* count extended protocol capability entries for later caching */
2303 while (offset) {
2304 cap_count++;
2305 offset = xhci_find_next_ext_cap(base, offset,
2306 XHCI_EXT_CAPS_PROTOCOL);
2309 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2310 if (!xhci->ext_caps)
2311 return -ENOMEM;
2313 offset = cap_start;
2315 while (offset) {
2316 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2317 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2318 break;
2319 offset = xhci_find_next_ext_cap(base, offset,
2320 XHCI_EXT_CAPS_PROTOCOL);
2323 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2324 xhci_warn(xhci, "No ports on the roothubs?\n");
2325 return -ENODEV;
2327 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2328 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2329 xhci->num_usb2_ports, xhci->num_usb3_ports);
2331 /* Place limits on the number of roothub ports so that the hub
2332 * descriptors aren't longer than the USB core will allocate.
2334 if (xhci->num_usb3_ports > 15) {
2335 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336 "Limiting USB 3.0 roothub ports to 15.");
2337 xhci->num_usb3_ports = 15;
2339 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2340 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2341 "Limiting USB 2.0 roothub ports to %u.",
2342 USB_MAXCHILDREN);
2343 xhci->num_usb2_ports = USB_MAXCHILDREN;
2347 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2348 * Not sure how the USB core will handle a hub with no ports...
2350 if (xhci->num_usb2_ports) {
2351 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2352 xhci->num_usb2_ports, flags);
2353 if (!xhci->usb2_ports)
2354 return -ENOMEM;
2356 port_index = 0;
2357 for (i = 0; i < num_ports; i++) {
2358 if (xhci->port_array[i] == 0x03 ||
2359 xhci->port_array[i] == 0 ||
2360 xhci->port_array[i] == DUPLICATE_ENTRY)
2361 continue;
2363 xhci->usb2_ports[port_index] =
2364 &xhci->op_regs->port_status_base +
2365 NUM_PORT_REGS*i;
2366 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367 "USB 2.0 port at index %u, "
2368 "addr = %p", i,
2369 xhci->usb2_ports[port_index]);
2370 port_index++;
2371 if (port_index == xhci->num_usb2_ports)
2372 break;
2375 if (xhci->num_usb3_ports) {
2376 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2377 xhci->num_usb3_ports, flags);
2378 if (!xhci->usb3_ports)
2379 return -ENOMEM;
2381 port_index = 0;
2382 for (i = 0; i < num_ports; i++)
2383 if (xhci->port_array[i] == 0x03) {
2384 xhci->usb3_ports[port_index] =
2385 &xhci->op_regs->port_status_base +
2386 NUM_PORT_REGS*i;
2387 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2388 "USB 3.0 port at index %u, "
2389 "addr = %p", i,
2390 xhci->usb3_ports[port_index]);
2391 port_index++;
2392 if (port_index == xhci->num_usb3_ports)
2393 break;
2396 return 0;
2399 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2401 dma_addr_t dma;
2402 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2403 unsigned int val, val2;
2404 u64 val_64;
2405 struct xhci_segment *seg;
2406 u32 page_size, temp;
2407 int i;
2409 INIT_LIST_HEAD(&xhci->cmd_list);
2411 /* init command timeout work */
2412 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2413 init_completion(&xhci->cmd_ring_stop_completion);
2415 page_size = readl(&xhci->op_regs->page_size);
2416 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2417 "Supported page size register = 0x%x", page_size);
2418 for (i = 0; i < 16; i++) {
2419 if ((0x1 & page_size) != 0)
2420 break;
2421 page_size = page_size >> 1;
2423 if (i < 16)
2424 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425 "Supported page size of %iK", (1 << (i+12)) / 1024);
2426 else
2427 xhci_warn(xhci, "WARN: no supported page size\n");
2428 /* Use 4K pages, since that's common and the minimum the HC supports */
2429 xhci->page_shift = 12;
2430 xhci->page_size = 1 << xhci->page_shift;
2431 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2432 "HCD page size set to %iK", xhci->page_size / 1024);
2435 * Program the Number of Device Slots Enabled field in the CONFIG
2436 * register with the max value of slots the HC can handle.
2438 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2439 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2440 "// xHC can handle at most %d device slots.", val);
2441 val2 = readl(&xhci->op_regs->config_reg);
2442 val |= (val2 & ~HCS_SLOTS_MASK);
2443 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444 "// Setting Max device slots reg = 0x%x.", val);
2445 writel(val, &xhci->op_regs->config_reg);
2448 * Section 5.4.8 - doorbell array must be
2449 * "physically contiguous and 64-byte (cache line) aligned".
2451 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2452 flags);
2453 if (!xhci->dcbaa)
2454 goto fail;
2455 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2456 xhci->dcbaa->dma = dma;
2457 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2458 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2459 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2460 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2463 * Initialize the ring segment pool. The ring must be a contiguous
2464 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2465 * however, the command ring segment needs 64-byte aligned segments
2466 * and our use of dma addresses in the trb_address_map radix tree needs
2467 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2469 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2470 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2472 /* See Table 46 and Note on Figure 55 */
2473 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2474 2112, 64, xhci->page_size);
2475 if (!xhci->segment_pool || !xhci->device_pool)
2476 goto fail;
2478 /* Linear stream context arrays don't have any boundary restrictions,
2479 * and only need to be 16-byte aligned.
2481 xhci->small_streams_pool =
2482 dma_pool_create("xHCI 256 byte stream ctx arrays",
2483 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2484 xhci->medium_streams_pool =
2485 dma_pool_create("xHCI 1KB stream ctx arrays",
2486 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2487 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2488 * will be allocated with dma_alloc_coherent()
2491 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2492 goto fail;
2494 /* Set up the command ring to have one segments for now. */
2495 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2496 if (!xhci->cmd_ring)
2497 goto fail;
2498 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2499 "Allocated command ring at %p", xhci->cmd_ring);
2500 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2501 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2503 /* Set the address in the Command Ring Control register */
2504 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2505 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2506 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2507 xhci->cmd_ring->cycle_state;
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509 "// Setting command ring address to 0x%016llx", val_64);
2510 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2511 xhci_dbg_cmd_ptrs(xhci);
2513 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2514 if (!xhci->lpm_command)
2515 goto fail;
2517 /* Reserve one command ring TRB for disabling LPM.
2518 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2519 * disabling LPM, we only need to reserve one TRB for all devices.
2521 xhci->cmd_ring_reserved_trbs++;
2523 val = readl(&xhci->cap_regs->db_off);
2524 val &= DBOFF_MASK;
2525 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2526 "// Doorbell array is located at offset 0x%x"
2527 " from cap regs base addr", val);
2528 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2529 xhci_dbg_regs(xhci);
2530 xhci_print_run_regs(xhci);
2531 /* Set ir_set to interrupt register set 0 */
2532 xhci->ir_set = &xhci->run_regs->ir_set[0];
2535 * Event ring setup: Allocate a normal ring, but also setup
2536 * the event ring segment table (ERST). Section 4.9.3.
2538 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2539 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2540 0, flags);
2541 if (!xhci->event_ring)
2542 goto fail;
2543 if (xhci_check_trb_in_td_math(xhci) < 0)
2544 goto fail;
2546 xhci->erst.entries = dma_alloc_coherent(dev,
2547 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2548 flags);
2549 if (!xhci->erst.entries)
2550 goto fail;
2551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2552 "// Allocated event ring segment table at 0x%llx",
2553 (unsigned long long)dma);
2555 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2556 xhci->erst.num_entries = ERST_NUM_SEGS;
2557 xhci->erst.erst_dma_addr = dma;
2558 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2559 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2560 xhci->erst.num_entries,
2561 xhci->erst.entries,
2562 (unsigned long long)xhci->erst.erst_dma_addr);
2564 /* set ring base address and size for each segment table entry */
2565 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2566 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2567 entry->seg_addr = cpu_to_le64(seg->dma);
2568 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2569 entry->rsvd = 0;
2570 seg = seg->next;
2573 /* set ERST count with the number of entries in the segment table */
2574 val = readl(&xhci->ir_set->erst_size);
2575 val &= ERST_SIZE_MASK;
2576 val |= ERST_NUM_SEGS;
2577 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2578 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2579 val);
2580 writel(val, &xhci->ir_set->erst_size);
2582 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2583 "// Set ERST entries to point to event ring.");
2584 /* set the segment table base address */
2585 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2586 "// Set ERST base address for ir_set 0 = 0x%llx",
2587 (unsigned long long)xhci->erst.erst_dma_addr);
2588 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2589 val_64 &= ERST_PTR_MASK;
2590 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2591 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2593 /* Set the event ring dequeue address */
2594 xhci_set_hc_event_deq(xhci);
2595 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2596 "Wrote ERST address to ir_set 0.");
2597 xhci_print_ir_set(xhci, 0);
2600 * XXX: Might need to set the Interrupter Moderation Register to
2601 * something other than the default (~1ms minimum between interrupts).
2602 * See section 5.5.1.2.
2604 init_completion(&xhci->addr_dev);
2605 for (i = 0; i < MAX_HC_SLOTS; ++i)
2606 xhci->devs[i] = NULL;
2607 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2608 xhci->bus_state[0].resume_done[i] = 0;
2609 xhci->bus_state[1].resume_done[i] = 0;
2610 /* Only the USB 2.0 completions will ever be used. */
2611 init_completion(&xhci->bus_state[1].rexit_done[i]);
2614 if (scratchpad_alloc(xhci, flags))
2615 goto fail;
2616 if (xhci_setup_port_arrays(xhci, flags))
2617 goto fail;
2619 /* Enable USB 3.0 device notifications for function remote wake, which
2620 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2621 * U3 (device suspend).
2623 temp = readl(&xhci->op_regs->dev_notification);
2624 temp &= ~DEV_NOTE_MASK;
2625 temp |= DEV_NOTE_FWAKE;
2626 writel(temp, &xhci->op_regs->dev_notification);
2628 return 0;
2630 fail:
2631 xhci_warn(xhci, "Couldn't initialize memory\n");
2632 xhci_halt(xhci);
2633 xhci_reset(xhci);
2634 xhci_mem_cleanup(xhci);
2635 return -ENOMEM;