inet: frag: enforce memory limits earlier
[linux/fpc-iii.git] / kernel / cpu.c
blob967163fb90a835b3481444fc7937aa6e32b9d79b
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
33 #include "smpboot.h"
35 /**
36 * cpuhp_cpu_state - Per cpu hotplug state storage
37 * @state: The current cpu state
38 * @target: The target state
39 * @thread: Pointer to the hotplug thread
40 * @should_run: Thread should execute
41 * @rollback: Perform a rollback
42 * @single: Single callback invocation
43 * @bringup: Single callback bringup or teardown selector
44 * @cb_state: The state for a single callback (install/uninstall)
45 * @result: Result of the operation
46 * @done: Signal completion to the issuer of the task
48 struct cpuhp_cpu_state {
49 enum cpuhp_state state;
50 enum cpuhp_state target;
51 #ifdef CONFIG_SMP
52 struct task_struct *thread;
53 bool should_run;
54 bool rollback;
55 bool single;
56 bool bringup;
57 struct hlist_node *node;
58 enum cpuhp_state cb_state;
59 int result;
60 struct completion done;
61 #endif
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
66 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
67 static struct lock_class_key cpuhp_state_key;
68 static struct lockdep_map cpuhp_state_lock_map =
69 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
70 #endif
72 /**
73 * cpuhp_step - Hotplug state machine step
74 * @name: Name of the step
75 * @startup: Startup function of the step
76 * @teardown: Teardown function of the step
77 * @skip_onerr: Do not invoke the functions on error rollback
78 * Will go away once the notifiers are gone
79 * @cant_stop: Bringup/teardown can't be stopped at this step
81 struct cpuhp_step {
82 const char *name;
83 union {
84 int (*single)(unsigned int cpu);
85 int (*multi)(unsigned int cpu,
86 struct hlist_node *node);
87 } startup;
88 union {
89 int (*single)(unsigned int cpu);
90 int (*multi)(unsigned int cpu,
91 struct hlist_node *node);
92 } teardown;
93 struct hlist_head list;
94 bool skip_onerr;
95 bool cant_stop;
96 bool multi_instance;
99 static DEFINE_MUTEX(cpuhp_state_mutex);
100 static struct cpuhp_step cpuhp_bp_states[];
101 static struct cpuhp_step cpuhp_ap_states[];
103 static bool cpuhp_is_ap_state(enum cpuhp_state state)
106 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
107 * purposes as that state is handled explicitly in cpu_down.
109 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
112 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
114 struct cpuhp_step *sp;
116 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
117 return sp + state;
121 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
122 * @cpu: The cpu for which the callback should be invoked
123 * @step: The step in the state machine
124 * @bringup: True if the bringup callback should be invoked
126 * Called from cpu hotplug and from the state register machinery.
128 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
129 bool bringup, struct hlist_node *node)
131 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
132 struct cpuhp_step *step = cpuhp_get_step(state);
133 int (*cbm)(unsigned int cpu, struct hlist_node *node);
134 int (*cb)(unsigned int cpu);
135 int ret, cnt;
137 if (!step->multi_instance) {
138 cb = bringup ? step->startup.single : step->teardown.single;
139 if (!cb)
140 return 0;
141 trace_cpuhp_enter(cpu, st->target, state, cb);
142 ret = cb(cpu);
143 trace_cpuhp_exit(cpu, st->state, state, ret);
144 return ret;
146 cbm = bringup ? step->startup.multi : step->teardown.multi;
147 if (!cbm)
148 return 0;
150 /* Single invocation for instance add/remove */
151 if (node) {
152 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
153 ret = cbm(cpu, node);
154 trace_cpuhp_exit(cpu, st->state, state, ret);
155 return ret;
158 /* State transition. Invoke on all instances */
159 cnt = 0;
160 hlist_for_each(node, &step->list) {
161 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
162 ret = cbm(cpu, node);
163 trace_cpuhp_exit(cpu, st->state, state, ret);
164 if (ret)
165 goto err;
166 cnt++;
168 return 0;
169 err:
170 /* Rollback the instances if one failed */
171 cbm = !bringup ? step->startup.multi : step->teardown.multi;
172 if (!cbm)
173 return ret;
175 hlist_for_each(node, &step->list) {
176 if (!cnt--)
177 break;
178 cbm(cpu, node);
180 return ret;
183 #ifdef CONFIG_SMP
184 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
185 static DEFINE_MUTEX(cpu_add_remove_lock);
186 bool cpuhp_tasks_frozen;
187 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
190 * The following two APIs (cpu_maps_update_begin/done) must be used when
191 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
192 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
193 * hotplug callback (un)registration performed using __register_cpu_notifier()
194 * or __unregister_cpu_notifier().
196 void cpu_maps_update_begin(void)
198 mutex_lock(&cpu_add_remove_lock);
200 EXPORT_SYMBOL(cpu_notifier_register_begin);
202 void cpu_maps_update_done(void)
204 mutex_unlock(&cpu_add_remove_lock);
206 EXPORT_SYMBOL(cpu_notifier_register_done);
208 static RAW_NOTIFIER_HEAD(cpu_chain);
210 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
211 * Should always be manipulated under cpu_add_remove_lock
213 static int cpu_hotplug_disabled;
215 #ifdef CONFIG_HOTPLUG_CPU
217 static struct {
218 struct task_struct *active_writer;
219 /* wait queue to wake up the active_writer */
220 wait_queue_head_t wq;
221 /* verifies that no writer will get active while readers are active */
222 struct mutex lock;
224 * Also blocks the new readers during
225 * an ongoing cpu hotplug operation.
227 atomic_t refcount;
229 #ifdef CONFIG_DEBUG_LOCK_ALLOC
230 struct lockdep_map dep_map;
231 #endif
232 } cpu_hotplug = {
233 .active_writer = NULL,
234 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
235 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
236 #ifdef CONFIG_DEBUG_LOCK_ALLOC
237 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
238 #endif
241 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
242 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
243 #define cpuhp_lock_acquire_tryread() \
244 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
245 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
246 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
249 void get_online_cpus(void)
251 might_sleep();
252 if (cpu_hotplug.active_writer == current)
253 return;
254 cpuhp_lock_acquire_read();
255 mutex_lock(&cpu_hotplug.lock);
256 atomic_inc(&cpu_hotplug.refcount);
257 mutex_unlock(&cpu_hotplug.lock);
259 EXPORT_SYMBOL_GPL(get_online_cpus);
261 void put_online_cpus(void)
263 int refcount;
265 if (cpu_hotplug.active_writer == current)
266 return;
268 refcount = atomic_dec_return(&cpu_hotplug.refcount);
269 if (WARN_ON(refcount < 0)) /* try to fix things up */
270 atomic_inc(&cpu_hotplug.refcount);
272 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
273 wake_up(&cpu_hotplug.wq);
275 cpuhp_lock_release();
278 EXPORT_SYMBOL_GPL(put_online_cpus);
281 * This ensures that the hotplug operation can begin only when the
282 * refcount goes to zero.
284 * Note that during a cpu-hotplug operation, the new readers, if any,
285 * will be blocked by the cpu_hotplug.lock
287 * Since cpu_hotplug_begin() is always called after invoking
288 * cpu_maps_update_begin(), we can be sure that only one writer is active.
290 * Note that theoretically, there is a possibility of a livelock:
291 * - Refcount goes to zero, last reader wakes up the sleeping
292 * writer.
293 * - Last reader unlocks the cpu_hotplug.lock.
294 * - A new reader arrives at this moment, bumps up the refcount.
295 * - The writer acquires the cpu_hotplug.lock finds the refcount
296 * non zero and goes to sleep again.
298 * However, this is very difficult to achieve in practice since
299 * get_online_cpus() not an api which is called all that often.
302 void cpu_hotplug_begin(void)
304 DEFINE_WAIT(wait);
306 cpu_hotplug.active_writer = current;
307 cpuhp_lock_acquire();
309 for (;;) {
310 mutex_lock(&cpu_hotplug.lock);
311 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
312 if (likely(!atomic_read(&cpu_hotplug.refcount)))
313 break;
314 mutex_unlock(&cpu_hotplug.lock);
315 schedule();
317 finish_wait(&cpu_hotplug.wq, &wait);
320 void cpu_hotplug_done(void)
322 cpu_hotplug.active_writer = NULL;
323 mutex_unlock(&cpu_hotplug.lock);
324 cpuhp_lock_release();
328 * Wait for currently running CPU hotplug operations to complete (if any) and
329 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
330 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
331 * hotplug path before performing hotplug operations. So acquiring that lock
332 * guarantees mutual exclusion from any currently running hotplug operations.
334 void cpu_hotplug_disable(void)
336 cpu_maps_update_begin();
337 cpu_hotplug_disabled++;
338 cpu_maps_update_done();
340 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
342 static void __cpu_hotplug_enable(void)
344 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
345 return;
346 cpu_hotplug_disabled--;
349 void cpu_hotplug_enable(void)
351 cpu_maps_update_begin();
352 __cpu_hotplug_enable();
353 cpu_maps_update_done();
355 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
356 #endif /* CONFIG_HOTPLUG_CPU */
358 /* Need to know about CPUs going up/down? */
359 int register_cpu_notifier(struct notifier_block *nb)
361 int ret;
362 cpu_maps_update_begin();
363 ret = raw_notifier_chain_register(&cpu_chain, nb);
364 cpu_maps_update_done();
365 return ret;
368 int __register_cpu_notifier(struct notifier_block *nb)
370 return raw_notifier_chain_register(&cpu_chain, nb);
373 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
374 int *nr_calls)
376 unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
377 void *hcpu = (void *)(long)cpu;
379 int ret;
381 ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
382 nr_calls);
384 return notifier_to_errno(ret);
387 static int cpu_notify(unsigned long val, unsigned int cpu)
389 return __cpu_notify(val, cpu, -1, NULL);
392 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
394 BUG_ON(cpu_notify(val, cpu));
397 /* Notifier wrappers for transitioning to state machine */
398 static int notify_prepare(unsigned int cpu)
400 int nr_calls = 0;
401 int ret;
403 ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
404 if (ret) {
405 nr_calls--;
406 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
407 __func__, cpu);
408 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
410 return ret;
413 static int notify_online(unsigned int cpu)
415 cpu_notify(CPU_ONLINE, cpu);
416 return 0;
419 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
421 static int bringup_wait_for_ap(unsigned int cpu)
423 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
425 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
426 wait_for_completion(&st->done);
427 if (WARN_ON_ONCE((!cpu_online(cpu))))
428 return -ECANCELED;
430 /* Unpark the stopper thread and the hotplug thread of the target cpu */
431 stop_machine_unpark(cpu);
432 kthread_unpark(st->thread);
434 /* Should we go further up ? */
435 if (st->target > CPUHP_AP_ONLINE_IDLE) {
436 __cpuhp_kick_ap_work(st);
437 wait_for_completion(&st->done);
439 return st->result;
442 static int bringup_cpu(unsigned int cpu)
444 struct task_struct *idle = idle_thread_get(cpu);
445 int ret;
448 * Some architectures have to walk the irq descriptors to
449 * setup the vector space for the cpu which comes online.
450 * Prevent irq alloc/free across the bringup.
452 irq_lock_sparse();
454 /* Arch-specific enabling code. */
455 ret = __cpu_up(cpu, idle);
456 irq_unlock_sparse();
457 if (ret) {
458 cpu_notify(CPU_UP_CANCELED, cpu);
459 return ret;
461 return bringup_wait_for_ap(cpu);
465 * Hotplug state machine related functions
467 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
469 for (st->state++; st->state < st->target; st->state++) {
470 struct cpuhp_step *step = cpuhp_get_step(st->state);
472 if (!step->skip_onerr)
473 cpuhp_invoke_callback(cpu, st->state, true, NULL);
477 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
478 enum cpuhp_state target)
480 enum cpuhp_state prev_state = st->state;
481 int ret = 0;
483 for (; st->state > target; st->state--) {
484 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
485 if (ret) {
486 st->target = prev_state;
487 undo_cpu_down(cpu, st);
488 break;
491 return ret;
494 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
496 for (st->state--; st->state > st->target; st->state--) {
497 struct cpuhp_step *step = cpuhp_get_step(st->state);
499 if (!step->skip_onerr)
500 cpuhp_invoke_callback(cpu, st->state, false, NULL);
504 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
505 enum cpuhp_state target)
507 enum cpuhp_state prev_state = st->state;
508 int ret = 0;
510 while (st->state < target) {
511 st->state++;
512 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
513 if (ret) {
514 st->target = prev_state;
515 undo_cpu_up(cpu, st);
516 break;
519 return ret;
523 * The cpu hotplug threads manage the bringup and teardown of the cpus
525 static void cpuhp_create(unsigned int cpu)
527 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
529 init_completion(&st->done);
532 static int cpuhp_should_run(unsigned int cpu)
534 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
536 return st->should_run;
539 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
540 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
542 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
544 return cpuhp_down_callbacks(cpu, st, target);
547 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
548 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
550 return cpuhp_up_callbacks(cpu, st, st->target);
554 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
555 * callbacks when a state gets [un]installed at runtime.
557 static void cpuhp_thread_fun(unsigned int cpu)
559 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
560 int ret = 0;
563 * Paired with the mb() in cpuhp_kick_ap_work and
564 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
566 smp_mb();
567 if (!st->should_run)
568 return;
570 st->should_run = false;
572 lock_map_acquire(&cpuhp_state_lock_map);
573 /* Single callback invocation for [un]install ? */
574 if (st->single) {
575 if (st->cb_state < CPUHP_AP_ONLINE) {
576 local_irq_disable();
577 ret = cpuhp_invoke_callback(cpu, st->cb_state,
578 st->bringup, st->node);
579 local_irq_enable();
580 } else {
581 ret = cpuhp_invoke_callback(cpu, st->cb_state,
582 st->bringup, st->node);
584 } else if (st->rollback) {
585 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
587 undo_cpu_down(cpu, st);
589 * This is a momentary workaround to keep the notifier users
590 * happy. Will go away once we got rid of the notifiers.
592 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
593 st->rollback = false;
594 } else {
595 /* Cannot happen .... */
596 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
598 /* Regular hotplug work */
599 if (st->state < st->target)
600 ret = cpuhp_ap_online(cpu, st);
601 else if (st->state > st->target)
602 ret = cpuhp_ap_offline(cpu, st);
604 lock_map_release(&cpuhp_state_lock_map);
605 st->result = ret;
606 complete(&st->done);
609 /* Invoke a single callback on a remote cpu */
610 static int
611 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
612 struct hlist_node *node)
614 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
616 if (!cpu_online(cpu))
617 return 0;
619 lock_map_acquire(&cpuhp_state_lock_map);
620 lock_map_release(&cpuhp_state_lock_map);
623 * If we are up and running, use the hotplug thread. For early calls
624 * we invoke the thread function directly.
626 if (!st->thread)
627 return cpuhp_invoke_callback(cpu, state, bringup, node);
629 st->cb_state = state;
630 st->single = true;
631 st->bringup = bringup;
632 st->node = node;
635 * Make sure the above stores are visible before should_run becomes
636 * true. Paired with the mb() above in cpuhp_thread_fun()
638 smp_mb();
639 st->should_run = true;
640 wake_up_process(st->thread);
641 wait_for_completion(&st->done);
642 return st->result;
645 /* Regular hotplug invocation of the AP hotplug thread */
646 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
648 st->result = 0;
649 st->single = false;
651 * Make sure the above stores are visible before should_run becomes
652 * true. Paired with the mb() above in cpuhp_thread_fun()
654 smp_mb();
655 st->should_run = true;
656 wake_up_process(st->thread);
659 static int cpuhp_kick_ap_work(unsigned int cpu)
661 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
662 enum cpuhp_state state = st->state;
664 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
665 lock_map_acquire(&cpuhp_state_lock_map);
666 lock_map_release(&cpuhp_state_lock_map);
667 __cpuhp_kick_ap_work(st);
668 wait_for_completion(&st->done);
669 trace_cpuhp_exit(cpu, st->state, state, st->result);
670 return st->result;
673 static struct smp_hotplug_thread cpuhp_threads = {
674 .store = &cpuhp_state.thread,
675 .create = &cpuhp_create,
676 .thread_should_run = cpuhp_should_run,
677 .thread_fn = cpuhp_thread_fun,
678 .thread_comm = "cpuhp/%u",
679 .selfparking = true,
682 void __init cpuhp_threads_init(void)
684 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
685 kthread_unpark(this_cpu_read(cpuhp_state.thread));
688 EXPORT_SYMBOL(register_cpu_notifier);
689 EXPORT_SYMBOL(__register_cpu_notifier);
690 void unregister_cpu_notifier(struct notifier_block *nb)
692 cpu_maps_update_begin();
693 raw_notifier_chain_unregister(&cpu_chain, nb);
694 cpu_maps_update_done();
696 EXPORT_SYMBOL(unregister_cpu_notifier);
698 void __unregister_cpu_notifier(struct notifier_block *nb)
700 raw_notifier_chain_unregister(&cpu_chain, nb);
702 EXPORT_SYMBOL(__unregister_cpu_notifier);
704 #ifdef CONFIG_HOTPLUG_CPU
706 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
707 * @cpu: a CPU id
709 * This function walks all processes, finds a valid mm struct for each one and
710 * then clears a corresponding bit in mm's cpumask. While this all sounds
711 * trivial, there are various non-obvious corner cases, which this function
712 * tries to solve in a safe manner.
714 * Also note that the function uses a somewhat relaxed locking scheme, so it may
715 * be called only for an already offlined CPU.
717 void clear_tasks_mm_cpumask(int cpu)
719 struct task_struct *p;
722 * This function is called after the cpu is taken down and marked
723 * offline, so its not like new tasks will ever get this cpu set in
724 * their mm mask. -- Peter Zijlstra
725 * Thus, we may use rcu_read_lock() here, instead of grabbing
726 * full-fledged tasklist_lock.
728 WARN_ON(cpu_online(cpu));
729 rcu_read_lock();
730 for_each_process(p) {
731 struct task_struct *t;
734 * Main thread might exit, but other threads may still have
735 * a valid mm. Find one.
737 t = find_lock_task_mm(p);
738 if (!t)
739 continue;
740 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
741 task_unlock(t);
743 rcu_read_unlock();
746 static inline void check_for_tasks(int dead_cpu)
748 struct task_struct *g, *p;
750 read_lock(&tasklist_lock);
751 for_each_process_thread(g, p) {
752 if (!p->on_rq)
753 continue;
755 * We do the check with unlocked task_rq(p)->lock.
756 * Order the reading to do not warn about a task,
757 * which was running on this cpu in the past, and
758 * it's just been woken on another cpu.
760 rmb();
761 if (task_cpu(p) != dead_cpu)
762 continue;
764 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
765 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
767 read_unlock(&tasklist_lock);
770 static int notify_down_prepare(unsigned int cpu)
772 int err, nr_calls = 0;
774 err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
775 if (err) {
776 nr_calls--;
777 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
778 pr_warn("%s: attempt to take down CPU %u failed\n",
779 __func__, cpu);
781 return err;
784 /* Take this CPU down. */
785 static int take_cpu_down(void *_param)
787 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
788 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
789 int err, cpu = smp_processor_id();
791 /* Ensure this CPU doesn't handle any more interrupts. */
792 err = __cpu_disable();
793 if (err < 0)
794 return err;
797 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
798 * do this step again.
800 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
801 st->state--;
802 /* Invoke the former CPU_DYING callbacks */
803 for (; st->state > target; st->state--)
804 cpuhp_invoke_callback(cpu, st->state, false, NULL);
806 /* Give up timekeeping duties */
807 tick_handover_do_timer();
808 /* Park the stopper thread */
809 stop_machine_park(cpu);
810 return 0;
813 static int takedown_cpu(unsigned int cpu)
815 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
816 int err;
818 /* Park the smpboot threads */
819 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
820 smpboot_park_threads(cpu);
823 * Prevent irq alloc/free while the dying cpu reorganizes the
824 * interrupt affinities.
826 irq_lock_sparse();
829 * So now all preempt/rcu users must observe !cpu_active().
831 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
832 if (err) {
833 /* CPU refused to die */
834 irq_unlock_sparse();
835 /* Unpark the hotplug thread so we can rollback there */
836 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
837 return err;
839 BUG_ON(cpu_online(cpu));
842 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
843 * runnable tasks from the cpu, there's only the idle task left now
844 * that the migration thread is done doing the stop_machine thing.
846 * Wait for the stop thread to go away.
848 wait_for_completion(&st->done);
849 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
851 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
852 irq_unlock_sparse();
854 hotplug_cpu__broadcast_tick_pull(cpu);
855 /* This actually kills the CPU. */
856 __cpu_die(cpu);
858 tick_cleanup_dead_cpu(cpu);
859 return 0;
862 static int notify_dead(unsigned int cpu)
864 cpu_notify_nofail(CPU_DEAD, cpu);
865 check_for_tasks(cpu);
866 return 0;
869 static void cpuhp_complete_idle_dead(void *arg)
871 struct cpuhp_cpu_state *st = arg;
873 complete(&st->done);
876 void cpuhp_report_idle_dead(void)
878 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
880 BUG_ON(st->state != CPUHP_AP_OFFLINE);
881 rcu_report_dead(smp_processor_id());
882 st->state = CPUHP_AP_IDLE_DEAD;
884 * We cannot call complete after rcu_report_dead() so we delegate it
885 * to an online cpu.
887 smp_call_function_single(cpumask_first(cpu_online_mask),
888 cpuhp_complete_idle_dead, st, 0);
891 #else
892 #define notify_down_prepare NULL
893 #define takedown_cpu NULL
894 #define notify_dead NULL
895 #endif
897 #ifdef CONFIG_HOTPLUG_CPU
899 /* Requires cpu_add_remove_lock to be held */
900 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
901 enum cpuhp_state target)
903 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
904 int prev_state, ret = 0;
905 bool hasdied = false;
907 if (num_online_cpus() == 1)
908 return -EBUSY;
910 if (!cpu_present(cpu))
911 return -EINVAL;
913 cpu_hotplug_begin();
915 cpuhp_tasks_frozen = tasks_frozen;
917 prev_state = st->state;
918 st->target = target;
920 * If the current CPU state is in the range of the AP hotplug thread,
921 * then we need to kick the thread.
923 if (st->state > CPUHP_TEARDOWN_CPU) {
924 ret = cpuhp_kick_ap_work(cpu);
926 * The AP side has done the error rollback already. Just
927 * return the error code..
929 if (ret)
930 goto out;
933 * We might have stopped still in the range of the AP hotplug
934 * thread. Nothing to do anymore.
936 if (st->state > CPUHP_TEARDOWN_CPU)
937 goto out;
940 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
941 * to do the further cleanups.
943 ret = cpuhp_down_callbacks(cpu, st, target);
944 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
945 st->target = prev_state;
946 st->rollback = true;
947 cpuhp_kick_ap_work(cpu);
950 hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
951 out:
952 cpu_hotplug_done();
953 /* This post dead nonsense must die */
954 if (!ret && hasdied)
955 cpu_notify_nofail(CPU_POST_DEAD, cpu);
956 return ret;
959 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
961 int err;
963 cpu_maps_update_begin();
965 if (cpu_hotplug_disabled) {
966 err = -EBUSY;
967 goto out;
970 err = _cpu_down(cpu, 0, target);
972 out:
973 cpu_maps_update_done();
974 return err;
976 int cpu_down(unsigned int cpu)
978 return do_cpu_down(cpu, CPUHP_OFFLINE);
980 EXPORT_SYMBOL(cpu_down);
981 #endif /*CONFIG_HOTPLUG_CPU*/
984 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
985 * @cpu: cpu that just started
987 * It must be called by the arch code on the new cpu, before the new cpu
988 * enables interrupts and before the "boot" cpu returns from __cpu_up().
990 void notify_cpu_starting(unsigned int cpu)
992 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
993 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
995 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
996 while (st->state < target) {
997 st->state++;
998 cpuhp_invoke_callback(cpu, st->state, true, NULL);
1003 * Called from the idle task. Wake up the controlling task which brings the
1004 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1005 * the rest of the online bringup to the hotplug thread.
1007 void cpuhp_online_idle(enum cpuhp_state state)
1009 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1011 /* Happens for the boot cpu */
1012 if (state != CPUHP_AP_ONLINE_IDLE)
1013 return;
1015 st->state = CPUHP_AP_ONLINE_IDLE;
1016 complete(&st->done);
1019 /* Requires cpu_add_remove_lock to be held */
1020 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1022 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1023 struct task_struct *idle;
1024 int ret = 0;
1026 cpu_hotplug_begin();
1028 if (!cpu_present(cpu)) {
1029 ret = -EINVAL;
1030 goto out;
1034 * The caller of do_cpu_up might have raced with another
1035 * caller. Ignore it for now.
1037 if (st->state >= target)
1038 goto out;
1040 if (st->state == CPUHP_OFFLINE) {
1041 /* Let it fail before we try to bring the cpu up */
1042 idle = idle_thread_get(cpu);
1043 if (IS_ERR(idle)) {
1044 ret = PTR_ERR(idle);
1045 goto out;
1049 cpuhp_tasks_frozen = tasks_frozen;
1051 st->target = target;
1053 * If the current CPU state is in the range of the AP hotplug thread,
1054 * then we need to kick the thread once more.
1056 if (st->state > CPUHP_BRINGUP_CPU) {
1057 ret = cpuhp_kick_ap_work(cpu);
1059 * The AP side has done the error rollback already. Just
1060 * return the error code..
1062 if (ret)
1063 goto out;
1067 * Try to reach the target state. We max out on the BP at
1068 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1069 * responsible for bringing it up to the target state.
1071 target = min((int)target, CPUHP_BRINGUP_CPU);
1072 ret = cpuhp_up_callbacks(cpu, st, target);
1073 out:
1074 cpu_hotplug_done();
1075 return ret;
1078 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1080 int err = 0;
1082 if (!cpu_possible(cpu)) {
1083 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1084 cpu);
1085 #if defined(CONFIG_IA64)
1086 pr_err("please check additional_cpus= boot parameter\n");
1087 #endif
1088 return -EINVAL;
1091 err = try_online_node(cpu_to_node(cpu));
1092 if (err)
1093 return err;
1095 cpu_maps_update_begin();
1097 if (cpu_hotplug_disabled) {
1098 err = -EBUSY;
1099 goto out;
1102 err = _cpu_up(cpu, 0, target);
1103 out:
1104 cpu_maps_update_done();
1105 return err;
1108 int cpu_up(unsigned int cpu)
1110 return do_cpu_up(cpu, CPUHP_ONLINE);
1112 EXPORT_SYMBOL_GPL(cpu_up);
1114 #ifdef CONFIG_PM_SLEEP_SMP
1115 static cpumask_var_t frozen_cpus;
1117 int freeze_secondary_cpus(int primary)
1119 int cpu, error = 0;
1121 cpu_maps_update_begin();
1122 if (!cpu_online(primary))
1123 primary = cpumask_first(cpu_online_mask);
1125 * We take down all of the non-boot CPUs in one shot to avoid races
1126 * with the userspace trying to use the CPU hotplug at the same time
1128 cpumask_clear(frozen_cpus);
1130 pr_info("Disabling non-boot CPUs ...\n");
1131 for_each_online_cpu(cpu) {
1132 if (cpu == primary)
1133 continue;
1134 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1135 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1136 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1137 if (!error)
1138 cpumask_set_cpu(cpu, frozen_cpus);
1139 else {
1140 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1141 break;
1145 if (!error)
1146 BUG_ON(num_online_cpus() > 1);
1147 else
1148 pr_err("Non-boot CPUs are not disabled\n");
1151 * Make sure the CPUs won't be enabled by someone else. We need to do
1152 * this even in case of failure as all disable_nonboot_cpus() users are
1153 * supposed to do enable_nonboot_cpus() on the failure path.
1155 cpu_hotplug_disabled++;
1157 cpu_maps_update_done();
1158 return error;
1161 void __weak arch_enable_nonboot_cpus_begin(void)
1165 void __weak arch_enable_nonboot_cpus_end(void)
1169 void enable_nonboot_cpus(void)
1171 int cpu, error;
1173 /* Allow everyone to use the CPU hotplug again */
1174 cpu_maps_update_begin();
1175 __cpu_hotplug_enable();
1176 if (cpumask_empty(frozen_cpus))
1177 goto out;
1179 pr_info("Enabling non-boot CPUs ...\n");
1181 arch_enable_nonboot_cpus_begin();
1183 for_each_cpu(cpu, frozen_cpus) {
1184 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1185 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1186 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1187 if (!error) {
1188 pr_info("CPU%d is up\n", cpu);
1189 continue;
1191 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1194 arch_enable_nonboot_cpus_end();
1196 cpumask_clear(frozen_cpus);
1197 out:
1198 cpu_maps_update_done();
1201 static int __init alloc_frozen_cpus(void)
1203 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1204 return -ENOMEM;
1205 return 0;
1207 core_initcall(alloc_frozen_cpus);
1210 * When callbacks for CPU hotplug notifications are being executed, we must
1211 * ensure that the state of the system with respect to the tasks being frozen
1212 * or not, as reported by the notification, remains unchanged *throughout the
1213 * duration* of the execution of the callbacks.
1214 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1216 * This synchronization is implemented by mutually excluding regular CPU
1217 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1218 * Hibernate notifications.
1220 static int
1221 cpu_hotplug_pm_callback(struct notifier_block *nb,
1222 unsigned long action, void *ptr)
1224 switch (action) {
1226 case PM_SUSPEND_PREPARE:
1227 case PM_HIBERNATION_PREPARE:
1228 cpu_hotplug_disable();
1229 break;
1231 case PM_POST_SUSPEND:
1232 case PM_POST_HIBERNATION:
1233 cpu_hotplug_enable();
1234 break;
1236 default:
1237 return NOTIFY_DONE;
1240 return NOTIFY_OK;
1244 static int __init cpu_hotplug_pm_sync_init(void)
1247 * cpu_hotplug_pm_callback has higher priority than x86
1248 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1249 * to disable cpu hotplug to avoid cpu hotplug race.
1251 pm_notifier(cpu_hotplug_pm_callback, 0);
1252 return 0;
1254 core_initcall(cpu_hotplug_pm_sync_init);
1256 #endif /* CONFIG_PM_SLEEP_SMP */
1258 #endif /* CONFIG_SMP */
1260 /* Boot processor state steps */
1261 static struct cpuhp_step cpuhp_bp_states[] = {
1262 [CPUHP_OFFLINE] = {
1263 .name = "offline",
1264 .startup.single = NULL,
1265 .teardown.single = NULL,
1267 #ifdef CONFIG_SMP
1268 [CPUHP_CREATE_THREADS]= {
1269 .name = "threads:prepare",
1270 .startup.single = smpboot_create_threads,
1271 .teardown.single = NULL,
1272 .cant_stop = true,
1274 [CPUHP_PERF_PREPARE] = {
1275 .name = "perf:prepare",
1276 .startup.single = perf_event_init_cpu,
1277 .teardown.single = perf_event_exit_cpu,
1279 [CPUHP_WORKQUEUE_PREP] = {
1280 .name = "workqueue:prepare",
1281 .startup.single = workqueue_prepare_cpu,
1282 .teardown.single = NULL,
1284 [CPUHP_HRTIMERS_PREPARE] = {
1285 .name = "hrtimers:prepare",
1286 .startup.single = hrtimers_prepare_cpu,
1287 .teardown.single = hrtimers_dead_cpu,
1289 [CPUHP_SMPCFD_PREPARE] = {
1290 .name = "smpcfd:prepare",
1291 .startup.single = smpcfd_prepare_cpu,
1292 .teardown.single = smpcfd_dead_cpu,
1294 [CPUHP_RELAY_PREPARE] = {
1295 .name = "relay:prepare",
1296 .startup.single = relay_prepare_cpu,
1297 .teardown.single = NULL,
1299 [CPUHP_SLAB_PREPARE] = {
1300 .name = "slab:prepare",
1301 .startup.single = slab_prepare_cpu,
1302 .teardown.single = slab_dead_cpu,
1304 [CPUHP_RCUTREE_PREP] = {
1305 .name = "RCU/tree:prepare",
1306 .startup.single = rcutree_prepare_cpu,
1307 .teardown.single = rcutree_dead_cpu,
1310 * Preparatory and dead notifiers. Will be replaced once the notifiers
1311 * are converted to states.
1313 [CPUHP_NOTIFY_PREPARE] = {
1314 .name = "notify:prepare",
1315 .startup.single = notify_prepare,
1316 .teardown.single = notify_dead,
1317 .skip_onerr = true,
1318 .cant_stop = true,
1321 * On the tear-down path, timers_dead_cpu() must be invoked
1322 * before blk_mq_queue_reinit_notify() from notify_dead(),
1323 * otherwise a RCU stall occurs.
1325 [CPUHP_TIMERS_PREPARE] = {
1326 .name = "timers:dead",
1327 .startup.single = timers_prepare_cpu,
1328 .teardown.single = timers_dead_cpu,
1330 /* Kicks the plugged cpu into life */
1331 [CPUHP_BRINGUP_CPU] = {
1332 .name = "cpu:bringup",
1333 .startup.single = bringup_cpu,
1334 .teardown.single = NULL,
1335 .cant_stop = true,
1338 * Handled on controll processor until the plugged processor manages
1339 * this itself.
1341 [CPUHP_TEARDOWN_CPU] = {
1342 .name = "cpu:teardown",
1343 .startup.single = NULL,
1344 .teardown.single = takedown_cpu,
1345 .cant_stop = true,
1347 #else
1348 [CPUHP_BRINGUP_CPU] = { },
1349 #endif
1352 /* Application processor state steps */
1353 static struct cpuhp_step cpuhp_ap_states[] = {
1354 #ifdef CONFIG_SMP
1355 /* Final state before CPU kills itself */
1356 [CPUHP_AP_IDLE_DEAD] = {
1357 .name = "idle:dead",
1360 * Last state before CPU enters the idle loop to die. Transient state
1361 * for synchronization.
1363 [CPUHP_AP_OFFLINE] = {
1364 .name = "ap:offline",
1365 .cant_stop = true,
1367 /* First state is scheduler control. Interrupts are disabled */
1368 [CPUHP_AP_SCHED_STARTING] = {
1369 .name = "sched:starting",
1370 .startup.single = sched_cpu_starting,
1371 .teardown.single = sched_cpu_dying,
1373 [CPUHP_AP_RCUTREE_DYING] = {
1374 .name = "RCU/tree:dying",
1375 .startup.single = NULL,
1376 .teardown.single = rcutree_dying_cpu,
1378 [CPUHP_AP_SMPCFD_DYING] = {
1379 .name = "smpcfd:dying",
1380 .startup.single = NULL,
1381 .teardown.single = smpcfd_dying_cpu,
1383 /* Entry state on starting. Interrupts enabled from here on. Transient
1384 * state for synchronsization */
1385 [CPUHP_AP_ONLINE] = {
1386 .name = "ap:online",
1388 /* Handle smpboot threads park/unpark */
1389 [CPUHP_AP_SMPBOOT_THREADS] = {
1390 .name = "smpboot/threads:online",
1391 .startup.single = smpboot_unpark_threads,
1392 .teardown.single = NULL,
1394 [CPUHP_AP_PERF_ONLINE] = {
1395 .name = "perf:online",
1396 .startup.single = perf_event_init_cpu,
1397 .teardown.single = perf_event_exit_cpu,
1399 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1400 .name = "workqueue:online",
1401 .startup.single = workqueue_online_cpu,
1402 .teardown.single = workqueue_offline_cpu,
1404 [CPUHP_AP_RCUTREE_ONLINE] = {
1405 .name = "RCU/tree:online",
1406 .startup.single = rcutree_online_cpu,
1407 .teardown.single = rcutree_offline_cpu,
1411 * Online/down_prepare notifiers. Will be removed once the notifiers
1412 * are converted to states.
1414 [CPUHP_AP_NOTIFY_ONLINE] = {
1415 .name = "notify:online",
1416 .startup.single = notify_online,
1417 .teardown.single = notify_down_prepare,
1418 .skip_onerr = true,
1420 #endif
1422 * The dynamically registered state space is here
1425 #ifdef CONFIG_SMP
1426 /* Last state is scheduler control setting the cpu active */
1427 [CPUHP_AP_ACTIVE] = {
1428 .name = "sched:active",
1429 .startup.single = sched_cpu_activate,
1430 .teardown.single = sched_cpu_deactivate,
1432 #endif
1434 /* CPU is fully up and running. */
1435 [CPUHP_ONLINE] = {
1436 .name = "online",
1437 .startup.single = NULL,
1438 .teardown.single = NULL,
1442 /* Sanity check for callbacks */
1443 static int cpuhp_cb_check(enum cpuhp_state state)
1445 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1446 return -EINVAL;
1447 return 0;
1450 static void cpuhp_store_callbacks(enum cpuhp_state state,
1451 const char *name,
1452 int (*startup)(unsigned int cpu),
1453 int (*teardown)(unsigned int cpu),
1454 bool multi_instance)
1456 /* (Un)Install the callbacks for further cpu hotplug operations */
1457 struct cpuhp_step *sp;
1459 sp = cpuhp_get_step(state);
1460 sp->startup.single = startup;
1461 sp->teardown.single = teardown;
1462 sp->name = name;
1463 sp->multi_instance = multi_instance;
1464 INIT_HLIST_HEAD(&sp->list);
1467 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1469 return cpuhp_get_step(state)->teardown.single;
1473 * Call the startup/teardown function for a step either on the AP or
1474 * on the current CPU.
1476 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1477 struct hlist_node *node)
1479 struct cpuhp_step *sp = cpuhp_get_step(state);
1480 int ret;
1482 if ((bringup && !sp->startup.single) ||
1483 (!bringup && !sp->teardown.single))
1484 return 0;
1486 * The non AP bound callbacks can fail on bringup. On teardown
1487 * e.g. module removal we crash for now.
1489 #ifdef CONFIG_SMP
1490 if (cpuhp_is_ap_state(state))
1491 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1492 else
1493 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1494 #else
1495 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1496 #endif
1497 BUG_ON(ret && !bringup);
1498 return ret;
1502 * Called from __cpuhp_setup_state on a recoverable failure.
1504 * Note: The teardown callbacks for rollback are not allowed to fail!
1506 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1507 struct hlist_node *node)
1509 int cpu;
1511 /* Roll back the already executed steps on the other cpus */
1512 for_each_present_cpu(cpu) {
1513 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1514 int cpustate = st->state;
1516 if (cpu >= failedcpu)
1517 break;
1519 /* Did we invoke the startup call on that cpu ? */
1520 if (cpustate >= state)
1521 cpuhp_issue_call(cpu, state, false, node);
1526 * Returns a free for dynamic slot assignment of the Online state. The states
1527 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1528 * by having no name assigned.
1530 static int cpuhp_reserve_state(enum cpuhp_state state)
1532 enum cpuhp_state i;
1534 for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1535 if (cpuhp_ap_states[i].name)
1536 continue;
1538 cpuhp_ap_states[i].name = "Reserved";
1539 return i;
1541 WARN(1, "No more dynamic states available for CPU hotplug\n");
1542 return -ENOSPC;
1545 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1546 bool invoke)
1548 struct cpuhp_step *sp;
1549 int cpu;
1550 int ret;
1552 sp = cpuhp_get_step(state);
1553 if (sp->multi_instance == false)
1554 return -EINVAL;
1556 get_online_cpus();
1557 mutex_lock(&cpuhp_state_mutex);
1559 if (!invoke || !sp->startup.multi)
1560 goto add_node;
1563 * Try to call the startup callback for each present cpu
1564 * depending on the hotplug state of the cpu.
1566 for_each_present_cpu(cpu) {
1567 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1568 int cpustate = st->state;
1570 if (cpustate < state)
1571 continue;
1573 ret = cpuhp_issue_call(cpu, state, true, node);
1574 if (ret) {
1575 if (sp->teardown.multi)
1576 cpuhp_rollback_install(cpu, state, node);
1577 goto err;
1580 add_node:
1581 ret = 0;
1582 hlist_add_head(node, &sp->list);
1584 err:
1585 mutex_unlock(&cpuhp_state_mutex);
1586 put_online_cpus();
1587 return ret;
1589 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1592 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1593 * @state: The state to setup
1594 * @invoke: If true, the startup function is invoked for cpus where
1595 * cpu state >= @state
1596 * @startup: startup callback function
1597 * @teardown: teardown callback function
1599 * Returns 0 if successful, otherwise a proper error code
1601 int __cpuhp_setup_state(enum cpuhp_state state,
1602 const char *name, bool invoke,
1603 int (*startup)(unsigned int cpu),
1604 int (*teardown)(unsigned int cpu),
1605 bool multi_instance)
1607 int cpu, ret = 0;
1608 int dyn_state = 0;
1610 if (cpuhp_cb_check(state) || !name)
1611 return -EINVAL;
1613 get_online_cpus();
1614 mutex_lock(&cpuhp_state_mutex);
1616 /* currently assignments for the ONLINE state are possible */
1617 if (state == CPUHP_AP_ONLINE_DYN) {
1618 dyn_state = 1;
1619 ret = cpuhp_reserve_state(state);
1620 if (ret < 0)
1621 goto out;
1622 state = ret;
1625 cpuhp_store_callbacks(state, name, startup, teardown, multi_instance);
1627 if (!invoke || !startup)
1628 goto out;
1631 * Try to call the startup callback for each present cpu
1632 * depending on the hotplug state of the cpu.
1634 for_each_present_cpu(cpu) {
1635 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1636 int cpustate = st->state;
1638 if (cpustate < state)
1639 continue;
1641 ret = cpuhp_issue_call(cpu, state, true, NULL);
1642 if (ret) {
1643 if (teardown)
1644 cpuhp_rollback_install(cpu, state, NULL);
1645 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1646 goto out;
1649 out:
1650 mutex_unlock(&cpuhp_state_mutex);
1652 put_online_cpus();
1653 if (!ret && dyn_state)
1654 return state;
1655 return ret;
1657 EXPORT_SYMBOL(__cpuhp_setup_state);
1659 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1660 struct hlist_node *node, bool invoke)
1662 struct cpuhp_step *sp = cpuhp_get_step(state);
1663 int cpu;
1665 BUG_ON(cpuhp_cb_check(state));
1667 if (!sp->multi_instance)
1668 return -EINVAL;
1670 get_online_cpus();
1671 mutex_lock(&cpuhp_state_mutex);
1673 if (!invoke || !cpuhp_get_teardown_cb(state))
1674 goto remove;
1676 * Call the teardown callback for each present cpu depending
1677 * on the hotplug state of the cpu. This function is not
1678 * allowed to fail currently!
1680 for_each_present_cpu(cpu) {
1681 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1682 int cpustate = st->state;
1684 if (cpustate >= state)
1685 cpuhp_issue_call(cpu, state, false, node);
1688 remove:
1689 hlist_del(node);
1690 mutex_unlock(&cpuhp_state_mutex);
1691 put_online_cpus();
1693 return 0;
1695 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1697 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1698 * @state: The state to remove
1699 * @invoke: If true, the teardown function is invoked for cpus where
1700 * cpu state >= @state
1702 * The teardown callback is currently not allowed to fail. Think
1703 * about module removal!
1705 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1707 struct cpuhp_step *sp = cpuhp_get_step(state);
1708 int cpu;
1710 BUG_ON(cpuhp_cb_check(state));
1712 get_online_cpus();
1713 mutex_lock(&cpuhp_state_mutex);
1715 if (sp->multi_instance) {
1716 WARN(!hlist_empty(&sp->list),
1717 "Error: Removing state %d which has instances left.\n",
1718 state);
1719 goto remove;
1722 if (!invoke || !cpuhp_get_teardown_cb(state))
1723 goto remove;
1726 * Call the teardown callback for each present cpu depending
1727 * on the hotplug state of the cpu. This function is not
1728 * allowed to fail currently!
1730 for_each_present_cpu(cpu) {
1731 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1732 int cpustate = st->state;
1734 if (cpustate >= state)
1735 cpuhp_issue_call(cpu, state, false, NULL);
1737 remove:
1738 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1739 mutex_unlock(&cpuhp_state_mutex);
1740 put_online_cpus();
1742 EXPORT_SYMBOL(__cpuhp_remove_state);
1744 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1745 static ssize_t show_cpuhp_state(struct device *dev,
1746 struct device_attribute *attr, char *buf)
1748 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1750 return sprintf(buf, "%d\n", st->state);
1752 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1754 static ssize_t write_cpuhp_target(struct device *dev,
1755 struct device_attribute *attr,
1756 const char *buf, size_t count)
1758 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1759 struct cpuhp_step *sp;
1760 int target, ret;
1762 ret = kstrtoint(buf, 10, &target);
1763 if (ret)
1764 return ret;
1766 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1767 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1768 return -EINVAL;
1769 #else
1770 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1771 return -EINVAL;
1772 #endif
1774 ret = lock_device_hotplug_sysfs();
1775 if (ret)
1776 return ret;
1778 mutex_lock(&cpuhp_state_mutex);
1779 sp = cpuhp_get_step(target);
1780 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1781 mutex_unlock(&cpuhp_state_mutex);
1782 if (ret)
1783 goto out;
1785 if (st->state < target)
1786 ret = do_cpu_up(dev->id, target);
1787 else
1788 ret = do_cpu_down(dev->id, target);
1789 out:
1790 unlock_device_hotplug();
1791 return ret ? ret : count;
1794 static ssize_t show_cpuhp_target(struct device *dev,
1795 struct device_attribute *attr, char *buf)
1797 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1799 return sprintf(buf, "%d\n", st->target);
1801 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1803 static struct attribute *cpuhp_cpu_attrs[] = {
1804 &dev_attr_state.attr,
1805 &dev_attr_target.attr,
1806 NULL
1809 static struct attribute_group cpuhp_cpu_attr_group = {
1810 .attrs = cpuhp_cpu_attrs,
1811 .name = "hotplug",
1812 NULL
1815 static ssize_t show_cpuhp_states(struct device *dev,
1816 struct device_attribute *attr, char *buf)
1818 ssize_t cur, res = 0;
1819 int i;
1821 mutex_lock(&cpuhp_state_mutex);
1822 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1823 struct cpuhp_step *sp = cpuhp_get_step(i);
1825 if (sp->name) {
1826 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1827 buf += cur;
1828 res += cur;
1831 mutex_unlock(&cpuhp_state_mutex);
1832 return res;
1834 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1836 static struct attribute *cpuhp_cpu_root_attrs[] = {
1837 &dev_attr_states.attr,
1838 NULL
1841 static struct attribute_group cpuhp_cpu_root_attr_group = {
1842 .attrs = cpuhp_cpu_root_attrs,
1843 .name = "hotplug",
1844 NULL
1847 static int __init cpuhp_sysfs_init(void)
1849 int cpu, ret;
1851 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1852 &cpuhp_cpu_root_attr_group);
1853 if (ret)
1854 return ret;
1856 for_each_possible_cpu(cpu) {
1857 struct device *dev = get_cpu_device(cpu);
1859 if (!dev)
1860 continue;
1861 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1862 if (ret)
1863 return ret;
1865 return 0;
1867 device_initcall(cpuhp_sysfs_init);
1868 #endif
1871 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1872 * represents all NR_CPUS bits binary values of 1<<nr.
1874 * It is used by cpumask_of() to get a constant address to a CPU
1875 * mask value that has a single bit set only.
1878 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1879 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1880 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1881 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1882 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1884 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1886 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1887 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1888 #if BITS_PER_LONG > 32
1889 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1890 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1891 #endif
1893 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1895 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1896 EXPORT_SYMBOL(cpu_all_bits);
1898 #ifdef CONFIG_INIT_ALL_POSSIBLE
1899 struct cpumask __cpu_possible_mask __read_mostly
1900 = {CPU_BITS_ALL};
1901 #else
1902 struct cpumask __cpu_possible_mask __read_mostly;
1903 #endif
1904 EXPORT_SYMBOL(__cpu_possible_mask);
1906 struct cpumask __cpu_online_mask __read_mostly;
1907 EXPORT_SYMBOL(__cpu_online_mask);
1909 struct cpumask __cpu_present_mask __read_mostly;
1910 EXPORT_SYMBOL(__cpu_present_mask);
1912 struct cpumask __cpu_active_mask __read_mostly;
1913 EXPORT_SYMBOL(__cpu_active_mask);
1915 void init_cpu_present(const struct cpumask *src)
1917 cpumask_copy(&__cpu_present_mask, src);
1920 void init_cpu_possible(const struct cpumask *src)
1922 cpumask_copy(&__cpu_possible_mask, src);
1925 void init_cpu_online(const struct cpumask *src)
1927 cpumask_copy(&__cpu_online_mask, src);
1931 * Activate the first processor.
1933 void __init boot_cpu_init(void)
1935 int cpu = smp_processor_id();
1937 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1938 set_cpu_online(cpu, true);
1939 set_cpu_active(cpu, true);
1940 set_cpu_present(cpu, true);
1941 set_cpu_possible(cpu, true);
1945 * Must be called _AFTER_ setting up the per_cpu areas
1947 void __init boot_cpu_state_init(void)
1949 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;