1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <linux/uaccess.h>
77 #include <uapi/linux/limits.h>
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
96 /* determines whether we collect data for signals sent */
99 struct audit_aux_data
{
100 struct audit_aux_data
*next
;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids
{
110 struct audit_aux_data d
;
111 pid_t target_pid
[AUDIT_AUX_PIDS
];
112 kuid_t target_auid
[AUDIT_AUX_PIDS
];
113 kuid_t target_uid
[AUDIT_AUX_PIDS
];
114 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
115 u32 target_sid
[AUDIT_AUX_PIDS
];
116 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
120 struct audit_aux_data_bprm_fcaps
{
121 struct audit_aux_data d
;
122 struct audit_cap_data fcap
;
123 unsigned int fcap_ver
;
124 struct audit_cap_data old_pcap
;
125 struct audit_cap_data new_pcap
;
128 struct audit_tree_refs
{
129 struct audit_tree_refs
*next
;
130 struct audit_chunk
*c
[31];
133 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
140 switch (audit_classify_syscall(ctx
->arch
, n
)) {
142 if ((mask
& AUDIT_PERM_WRITE
) &&
143 audit_match_class(AUDIT_CLASS_WRITE
, n
))
145 if ((mask
& AUDIT_PERM_READ
) &&
146 audit_match_class(AUDIT_CLASS_READ
, n
))
148 if ((mask
& AUDIT_PERM_ATTR
) &&
149 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
152 case 1: /* 32bit on biarch */
153 if ((mask
& AUDIT_PERM_WRITE
) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
156 if ((mask
& AUDIT_PERM_READ
) &&
157 audit_match_class(AUDIT_CLASS_READ_32
, n
))
159 if ((mask
& AUDIT_PERM_ATTR
) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
164 return mask
& ACC_MODE(ctx
->argv
[1]);
166 return mask
& ACC_MODE(ctx
->argv
[2]);
167 case 4: /* socketcall */
168 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
170 return mask
& AUDIT_PERM_EXEC
;
176 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
178 struct audit_names
*n
;
179 umode_t mode
= (umode_t
)val
;
184 list_for_each_entry(n
, &ctx
->names_list
, list
) {
185 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
186 ((n
->mode
& S_IFMT
) == mode
))
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context
*ctx
)
208 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
212 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
214 struct audit_tree_refs
*p
= ctx
->trees
;
215 int left
= ctx
->tree_count
;
217 p
->c
[--left
] = chunk
;
218 ctx
->tree_count
= left
;
227 ctx
->tree_count
= 30;
233 static int grow_tree_refs(struct audit_context
*ctx
)
235 struct audit_tree_refs
*p
= ctx
->trees
;
236 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
242 p
->next
= ctx
->trees
;
244 ctx
->first_trees
= ctx
->trees
;
245 ctx
->tree_count
= 31;
250 static void unroll_tree_refs(struct audit_context
*ctx
,
251 struct audit_tree_refs
*p
, int count
)
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs
*q
;
257 /* we started with empty chain */
258 p
= ctx
->first_trees
;
260 /* if the very first allocation has failed, nothing to do */
265 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
267 audit_put_chunk(q
->c
[n
]);
271 while (n
-- > ctx
->tree_count
) {
272 audit_put_chunk(q
->c
[n
]);
276 ctx
->tree_count
= count
;
280 static void free_tree_refs(struct audit_context
*ctx
)
282 struct audit_tree_refs
*p
, *q
;
283 for (p
= ctx
->first_trees
; p
; p
= q
) {
289 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs
*p
;
297 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
298 for (n
= 0; n
< 31; n
++)
299 if (audit_tree_match(p
->c
[n
], tree
))
304 for (n
= ctx
->tree_count
; n
< 31; n
++)
305 if (audit_tree_match(p
->c
[n
], tree
))
312 static int audit_compare_uid(kuid_t uid
,
313 struct audit_names
*name
,
314 struct audit_field
*f
,
315 struct audit_context
*ctx
)
317 struct audit_names
*n
;
321 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
327 list_for_each_entry(n
, &ctx
->names_list
, list
) {
328 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
336 static int audit_compare_gid(kgid_t gid
,
337 struct audit_names
*name
,
338 struct audit_field
*f
,
339 struct audit_context
*ctx
)
341 struct audit_names
*n
;
345 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
351 list_for_each_entry(n
, &ctx
->names_list
, list
) {
352 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
360 static int audit_field_compare(struct task_struct
*tsk
,
361 const struct cred
*cred
,
362 struct audit_field
*f
,
363 struct audit_context
*ctx
,
364 struct audit_names
*name
)
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
369 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
371 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
373 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
375 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
377 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
379 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
381 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
383 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
385 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID
:
388 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
389 case AUDIT_COMPARE_UID_TO_EUID
:
390 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
391 case AUDIT_COMPARE_UID_TO_SUID
:
392 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
393 case AUDIT_COMPARE_UID_TO_FSUID
:
394 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID
:
397 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
398 case AUDIT_COMPARE_AUID_TO_SUID
:
399 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
400 case AUDIT_COMPARE_AUID_TO_FSUID
:
401 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID
:
404 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
405 case AUDIT_COMPARE_EUID_TO_FSUID
:
406 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID
:
409 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID
:
412 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
413 case AUDIT_COMPARE_GID_TO_SGID
:
414 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
415 case AUDIT_COMPARE_GID_TO_FSGID
:
416 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID
:
419 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
420 case AUDIT_COMPARE_EGID_TO_FSGID
:
421 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID
:
424 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
440 static int audit_filter_rules(struct task_struct
*tsk
,
441 struct audit_krule
*rule
,
442 struct audit_context
*ctx
,
443 struct audit_names
*name
,
444 enum audit_state
*state
,
447 const struct cred
*cred
;
451 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
453 for (i
= 0; i
< rule
->field_count
; i
++) {
454 struct audit_field
*f
= &rule
->fields
[i
];
455 struct audit_names
*n
;
461 pid
= task_pid_nr(tsk
);
462 result
= audit_comparator(pid
, f
->op
, f
->val
);
467 ctx
->ppid
= task_ppid_nr(tsk
);
468 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
472 result
= audit_exe_compare(tsk
, rule
->exe
);
475 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
478 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
481 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
484 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
487 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
488 if (f
->op
== Audit_equal
) {
490 result
= in_group_p(f
->gid
);
491 } else if (f
->op
== Audit_not_equal
) {
493 result
= !in_group_p(f
->gid
);
497 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
498 if (f
->op
== Audit_equal
) {
500 result
= in_egroup_p(f
->gid
);
501 } else if (f
->op
== Audit_not_equal
) {
503 result
= !in_egroup_p(f
->gid
);
507 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
510 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
513 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
517 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
521 if (ctx
&& ctx
->return_valid
)
522 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
525 if (ctx
&& ctx
->return_valid
) {
527 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
529 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
534 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
535 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
538 list_for_each_entry(n
, &ctx
->names_list
, list
) {
539 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
540 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
549 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
550 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
553 list_for_each_entry(n
, &ctx
->names_list
, list
) {
554 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
555 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
564 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
566 list_for_each_entry(n
, &ctx
->names_list
, list
) {
567 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
576 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
578 list_for_each_entry(n
, &ctx
->names_list
, list
) {
579 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
588 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
590 list_for_each_entry(n
, &ctx
->names_list
, list
) {
591 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
600 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
604 result
= match_tree_refs(ctx
, rule
->tree
);
607 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
609 case AUDIT_LOGINUID_SET
:
610 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
612 case AUDIT_SUBJ_USER
:
613 case AUDIT_SUBJ_ROLE
:
614 case AUDIT_SUBJ_TYPE
:
617 /* NOTE: this may return negative values indicating
618 a temporary error. We simply treat this as a
619 match for now to avoid losing information that
620 may be wanted. An error message will also be
624 security_task_getsecid(tsk
, &sid
);
627 result
= security_audit_rule_match(sid
, f
->type
,
636 case AUDIT_OBJ_LEV_LOW
:
637 case AUDIT_OBJ_LEV_HIGH
:
638 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
641 /* Find files that match */
643 result
= security_audit_rule_match(
644 name
->osid
, f
->type
, f
->op
,
647 list_for_each_entry(n
, &ctx
->names_list
, list
) {
648 if (security_audit_rule_match(n
->osid
, f
->type
,
656 /* Find ipc objects that match */
657 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
659 if (security_audit_rule_match(ctx
->ipc
.osid
,
670 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
672 case AUDIT_FILTERKEY
:
673 /* ignore this field for filtering */
677 result
= audit_match_perm(ctx
, f
->val
);
680 result
= audit_match_filetype(ctx
, f
->val
);
682 case AUDIT_FIELD_COMPARE
:
683 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
691 if (rule
->prio
<= ctx
->prio
)
693 if (rule
->filterkey
) {
694 kfree(ctx
->filterkey
);
695 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
697 ctx
->prio
= rule
->prio
;
699 switch (rule
->action
) {
700 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
701 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
706 /* At process creation time, we can determine if system-call auditing is
707 * completely disabled for this task. Since we only have the task
708 * structure at this point, we can only check uid and gid.
710 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
712 struct audit_entry
*e
;
713 enum audit_state state
;
716 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
717 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
719 if (state
== AUDIT_RECORD_CONTEXT
)
720 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
726 return AUDIT_BUILD_CONTEXT
;
729 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
733 if (val
> 0xffffffff)
736 word
= AUDIT_WORD(val
);
737 if (word
>= AUDIT_BITMASK_SIZE
)
740 bit
= AUDIT_BIT(val
);
742 return rule
->mask
[word
] & bit
;
745 /* At syscall entry and exit time, this filter is called if the
746 * audit_state is not low enough that auditing cannot take place, but is
747 * also not high enough that we already know we have to write an audit
748 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
750 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
751 struct audit_context
*ctx
,
752 struct list_head
*list
)
754 struct audit_entry
*e
;
755 enum audit_state state
;
757 if (audit_pid
&& tsk
->tgid
== audit_pid
)
758 return AUDIT_DISABLED
;
761 if (!list_empty(list
)) {
762 list_for_each_entry_rcu(e
, list
, list
) {
763 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
764 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
767 ctx
->current_state
= state
;
773 return AUDIT_BUILD_CONTEXT
;
777 * Given an audit_name check the inode hash table to see if they match.
778 * Called holding the rcu read lock to protect the use of audit_inode_hash
780 static int audit_filter_inode_name(struct task_struct
*tsk
,
781 struct audit_names
*n
,
782 struct audit_context
*ctx
) {
783 int h
= audit_hash_ino((u32
)n
->ino
);
784 struct list_head
*list
= &audit_inode_hash
[h
];
785 struct audit_entry
*e
;
786 enum audit_state state
;
788 if (list_empty(list
))
791 list_for_each_entry_rcu(e
, list
, list
) {
792 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
793 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
794 ctx
->current_state
= state
;
802 /* At syscall exit time, this filter is called if any audit_names have been
803 * collected during syscall processing. We only check rules in sublists at hash
804 * buckets applicable to the inode numbers in audit_names.
805 * Regarding audit_state, same rules apply as for audit_filter_syscall().
807 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
809 struct audit_names
*n
;
811 if (audit_pid
&& tsk
->tgid
== audit_pid
)
816 list_for_each_entry(n
, &ctx
->names_list
, list
) {
817 if (audit_filter_inode_name(tsk
, n
, ctx
))
823 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
824 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
828 struct audit_context
*context
= tsk
->audit_context
;
832 context
->return_valid
= return_valid
;
835 * we need to fix up the return code in the audit logs if the actual
836 * return codes are later going to be fixed up by the arch specific
839 * This is actually a test for:
840 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
841 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
843 * but is faster than a bunch of ||
845 if (unlikely(return_code
<= -ERESTARTSYS
) &&
846 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
847 (return_code
!= -ENOIOCTLCMD
))
848 context
->return_code
= -EINTR
;
850 context
->return_code
= return_code
;
852 if (context
->in_syscall
&& !context
->dummy
) {
853 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
854 audit_filter_inodes(tsk
, context
);
857 tsk
->audit_context
= NULL
;
861 static inline void audit_proctitle_free(struct audit_context
*context
)
863 kfree(context
->proctitle
.value
);
864 context
->proctitle
.value
= NULL
;
865 context
->proctitle
.len
= 0;
868 static inline void audit_free_names(struct audit_context
*context
)
870 struct audit_names
*n
, *next
;
872 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
879 context
->name_count
= 0;
880 path_put(&context
->pwd
);
881 context
->pwd
.dentry
= NULL
;
882 context
->pwd
.mnt
= NULL
;
885 static inline void audit_free_aux(struct audit_context
*context
)
887 struct audit_aux_data
*aux
;
889 while ((aux
= context
->aux
)) {
890 context
->aux
= aux
->next
;
893 while ((aux
= context
->aux_pids
)) {
894 context
->aux_pids
= aux
->next
;
899 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
901 struct audit_context
*context
;
903 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
906 context
->state
= state
;
907 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
908 INIT_LIST_HEAD(&context
->killed_trees
);
909 INIT_LIST_HEAD(&context
->names_list
);
914 * audit_alloc - allocate an audit context block for a task
917 * Filter on the task information and allocate a per-task audit context
918 * if necessary. Doing so turns on system call auditing for the
919 * specified task. This is called from copy_process, so no lock is
922 int audit_alloc(struct task_struct
*tsk
)
924 struct audit_context
*context
;
925 enum audit_state state
;
928 if (likely(!audit_ever_enabled
))
929 return 0; /* Return if not auditing. */
931 state
= audit_filter_task(tsk
, &key
);
932 if (state
== AUDIT_DISABLED
) {
933 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
937 if (!(context
= audit_alloc_context(state
))) {
939 audit_log_lost("out of memory in audit_alloc");
942 context
->filterkey
= key
;
944 tsk
->audit_context
= context
;
945 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
949 static inline void audit_free_context(struct audit_context
*context
)
951 audit_free_names(context
);
952 unroll_tree_refs(context
, NULL
, 0);
953 free_tree_refs(context
);
954 audit_free_aux(context
);
955 kfree(context
->filterkey
);
956 kfree(context
->sockaddr
);
957 audit_proctitle_free(context
);
961 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
962 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
965 struct audit_buffer
*ab
;
970 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
974 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
975 from_kuid(&init_user_ns
, auid
),
976 from_kuid(&init_user_ns
, uid
), sessionid
);
978 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
979 audit_log_format(ab
, " obj=(none)");
982 audit_log_format(ab
, " obj=%s", ctx
);
983 security_release_secctx(ctx
, len
);
986 audit_log_format(ab
, " ocomm=");
987 audit_log_untrustedstring(ab
, comm
);
993 static void audit_log_execve_info(struct audit_context
*context
,
994 struct audit_buffer
**ab
)
1008 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1010 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1011 * data we put in the audit record for this argument (see the
1012 * code below) ... at this point in time 96 is plenty */
1015 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1016 * current value of 7500 is not as important as the fact that it
1017 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1018 * room if we go over a little bit in the logging below */
1019 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1020 len_max
= MAX_EXECVE_AUDIT_LEN
;
1022 /* scratch buffer to hold the userspace args */
1023 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1025 audit_panic("out of memory for argv string");
1030 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1035 require_data
= true;
1040 /* NOTE: we don't ever want to trust this value for anything
1041 * serious, but the audit record format insists we
1042 * provide an argument length for really long arguments,
1043 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1044 * to use strncpy_from_user() to obtain this value for
1045 * recording in the log, although we don't use it
1046 * anywhere here to avoid a double-fetch problem */
1048 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1050 /* read more data from userspace */
1052 /* can we make more room in the buffer? */
1053 if (buf
!= buf_head
) {
1054 memmove(buf_head
, buf
, len_buf
);
1058 /* fetch as much as we can of the argument */
1059 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1061 if (len_tmp
== -EFAULT
) {
1062 /* unable to copy from userspace */
1063 send_sig(SIGKILL
, current
, 0);
1065 } else if (len_tmp
== (len_max
- len_buf
)) {
1066 /* buffer is not large enough */
1067 require_data
= true;
1068 /* NOTE: if we are going to span multiple
1069 * buffers force the encoding so we stand
1070 * a chance at a sane len_full value and
1071 * consistent record encoding */
1073 len_full
= len_full
* 2;
1076 require_data
= false;
1078 encode
= audit_string_contains_control(
1080 /* try to use a trusted value for len_full */
1081 if (len_full
< len_max
)
1082 len_full
= (encode
?
1083 len_tmp
* 2 : len_tmp
);
1087 buf_head
[len_buf
] = '\0';
1089 /* length of the buffer in the audit record? */
1090 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1093 /* write as much as we can to the audit log */
1095 /* NOTE: some magic numbers here - basically if we
1096 * can't fit a reasonable amount of data into the
1097 * existing audit buffer, flush it and start with
1099 if ((sizeof(abuf
) + 8) > len_rem
) {
1102 *ab
= audit_log_start(context
,
1103 GFP_KERNEL
, AUDIT_EXECVE
);
1108 /* create the non-arg portion of the arg record */
1110 if (require_data
|| (iter
> 0) ||
1111 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1113 len_tmp
+= snprintf(&abuf
[len_tmp
],
1114 sizeof(abuf
) - len_tmp
,
1118 len_tmp
+= snprintf(&abuf
[len_tmp
],
1119 sizeof(abuf
) - len_tmp
,
1120 " a%d[%d]=", arg
, iter
++);
1122 len_tmp
+= snprintf(&abuf
[len_tmp
],
1123 sizeof(abuf
) - len_tmp
,
1125 WARN_ON(len_tmp
>= sizeof(abuf
));
1126 abuf
[sizeof(abuf
) - 1] = '\0';
1128 /* log the arg in the audit record */
1129 audit_log_format(*ab
, "%s", abuf
);
1133 if (len_abuf
> len_rem
)
1134 len_tmp
= len_rem
/ 2; /* encoding */
1135 audit_log_n_hex(*ab
, buf
, len_tmp
);
1136 len_rem
-= len_tmp
* 2;
1137 len_abuf
-= len_tmp
* 2;
1139 if (len_abuf
> len_rem
)
1140 len_tmp
= len_rem
- 2; /* quotes */
1141 audit_log_n_string(*ab
, buf
, len_tmp
);
1142 len_rem
-= len_tmp
+ 2;
1143 /* don't subtract the "2" because we still need
1144 * to add quotes to the remaining string */
1145 len_abuf
-= len_tmp
;
1151 /* ready to move to the next argument? */
1152 if ((len_buf
== 0) && !require_data
) {
1156 require_data
= true;
1159 } while (arg
< context
->execve
.argc
);
1161 /* NOTE: the caller handles the final audit_log_end() call */
1167 static void show_special(struct audit_context
*context
, int *call_panic
)
1169 struct audit_buffer
*ab
;
1172 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1176 switch (context
->type
) {
1177 case AUDIT_SOCKETCALL
: {
1178 int nargs
= context
->socketcall
.nargs
;
1179 audit_log_format(ab
, "nargs=%d", nargs
);
1180 for (i
= 0; i
< nargs
; i
++)
1181 audit_log_format(ab
, " a%d=%lx", i
,
1182 context
->socketcall
.args
[i
]);
1185 u32 osid
= context
->ipc
.osid
;
1187 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1188 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1189 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1194 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1195 audit_log_format(ab
, " osid=%u", osid
);
1198 audit_log_format(ab
, " obj=%s", ctx
);
1199 security_release_secctx(ctx
, len
);
1202 if (context
->ipc
.has_perm
) {
1204 ab
= audit_log_start(context
, GFP_KERNEL
,
1205 AUDIT_IPC_SET_PERM
);
1208 audit_log_format(ab
,
1209 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1210 context
->ipc
.qbytes
,
1211 context
->ipc
.perm_uid
,
1212 context
->ipc
.perm_gid
,
1213 context
->ipc
.perm_mode
);
1216 case AUDIT_MQ_OPEN
: {
1217 audit_log_format(ab
,
1218 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1219 "mq_msgsize=%ld mq_curmsgs=%ld",
1220 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1221 context
->mq_open
.attr
.mq_flags
,
1222 context
->mq_open
.attr
.mq_maxmsg
,
1223 context
->mq_open
.attr
.mq_msgsize
,
1224 context
->mq_open
.attr
.mq_curmsgs
);
1226 case AUDIT_MQ_SENDRECV
: {
1227 audit_log_format(ab
,
1228 "mqdes=%d msg_len=%zd msg_prio=%u "
1229 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1230 context
->mq_sendrecv
.mqdes
,
1231 context
->mq_sendrecv
.msg_len
,
1232 context
->mq_sendrecv
.msg_prio
,
1233 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1234 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1236 case AUDIT_MQ_NOTIFY
: {
1237 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1238 context
->mq_notify
.mqdes
,
1239 context
->mq_notify
.sigev_signo
);
1241 case AUDIT_MQ_GETSETATTR
: {
1242 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1243 audit_log_format(ab
,
1244 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1246 context
->mq_getsetattr
.mqdes
,
1247 attr
->mq_flags
, attr
->mq_maxmsg
,
1248 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1250 case AUDIT_CAPSET
: {
1251 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1252 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1253 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1254 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1257 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1258 context
->mmap
.flags
);
1260 case AUDIT_EXECVE
: {
1261 audit_log_execve_info(context
, &ab
);
1267 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1269 char *end
= proctitle
+ len
- 1;
1270 while (end
> proctitle
&& !isprint(*end
))
1273 /* catch the case where proctitle is only 1 non-print character */
1274 len
= end
- proctitle
+ 1;
1275 len
-= isprint(proctitle
[len
-1]) == 0;
1279 static void audit_log_proctitle(struct task_struct
*tsk
,
1280 struct audit_context
*context
)
1284 char *msg
= "(null)";
1285 int len
= strlen(msg
);
1286 struct audit_buffer
*ab
;
1288 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1290 return; /* audit_panic or being filtered */
1292 audit_log_format(ab
, "proctitle=");
1295 if (!context
->proctitle
.value
) {
1296 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1299 /* Historically called this from procfs naming */
1300 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1305 res
= audit_proctitle_rtrim(buf
, res
);
1310 context
->proctitle
.value
= buf
;
1311 context
->proctitle
.len
= res
;
1313 msg
= context
->proctitle
.value
;
1314 len
= context
->proctitle
.len
;
1316 audit_log_n_untrustedstring(ab
, msg
, len
);
1320 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1322 int i
, call_panic
= 0;
1323 struct audit_buffer
*ab
;
1324 struct audit_aux_data
*aux
;
1325 struct audit_names
*n
;
1327 /* tsk == current */
1328 context
->personality
= tsk
->personality
;
1330 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1332 return; /* audit_panic has been called */
1333 audit_log_format(ab
, "arch=%x syscall=%d",
1334 context
->arch
, context
->major
);
1335 if (context
->personality
!= PER_LINUX
)
1336 audit_log_format(ab
, " per=%lx", context
->personality
);
1337 if (context
->return_valid
)
1338 audit_log_format(ab
, " success=%s exit=%ld",
1339 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1340 context
->return_code
);
1342 audit_log_format(ab
,
1343 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1348 context
->name_count
);
1350 audit_log_task_info(ab
, tsk
);
1351 audit_log_key(ab
, context
->filterkey
);
1354 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1356 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1358 continue; /* audit_panic has been called */
1360 switch (aux
->type
) {
1362 case AUDIT_BPRM_FCAPS
: {
1363 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1364 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1365 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1366 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1367 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1368 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1369 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1370 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1371 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1372 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1373 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1381 show_special(context
, &call_panic
);
1383 if (context
->fds
[0] >= 0) {
1384 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1386 audit_log_format(ab
, "fd0=%d fd1=%d",
1387 context
->fds
[0], context
->fds
[1]);
1392 if (context
->sockaddr_len
) {
1393 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1395 audit_log_format(ab
, "saddr=");
1396 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1397 context
->sockaddr_len
);
1402 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1403 struct audit_aux_data_pids
*axs
= (void *)aux
;
1405 for (i
= 0; i
< axs
->pid_count
; i
++)
1406 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1407 axs
->target_auid
[i
],
1409 axs
->target_sessionid
[i
],
1411 axs
->target_comm
[i
]))
1415 if (context
->target_pid
&&
1416 audit_log_pid_context(context
, context
->target_pid
,
1417 context
->target_auid
, context
->target_uid
,
1418 context
->target_sessionid
,
1419 context
->target_sid
, context
->target_comm
))
1422 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1423 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1425 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1431 list_for_each_entry(n
, &context
->names_list
, list
) {
1434 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1437 audit_log_proctitle(tsk
, context
);
1439 /* Send end of event record to help user space know we are finished */
1440 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1444 audit_panic("error converting sid to string");
1448 * audit_free - free a per-task audit context
1449 * @tsk: task whose audit context block to free
1451 * Called from copy_process and do_exit
1453 void __audit_free(struct task_struct
*tsk
)
1455 struct audit_context
*context
;
1457 context
= audit_take_context(tsk
, 0, 0);
1461 /* Check for system calls that do not go through the exit
1462 * function (e.g., exit_group), then free context block.
1463 * We use GFP_ATOMIC here because we might be doing this
1464 * in the context of the idle thread */
1465 /* that can happen only if we are called from do_exit() */
1466 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1467 audit_log_exit(context
, tsk
);
1468 if (!list_empty(&context
->killed_trees
))
1469 audit_kill_trees(&context
->killed_trees
);
1471 audit_free_context(context
);
1475 * audit_syscall_entry - fill in an audit record at syscall entry
1476 * @major: major syscall type (function)
1477 * @a1: additional syscall register 1
1478 * @a2: additional syscall register 2
1479 * @a3: additional syscall register 3
1480 * @a4: additional syscall register 4
1482 * Fill in audit context at syscall entry. This only happens if the
1483 * audit context was created when the task was created and the state or
1484 * filters demand the audit context be built. If the state from the
1485 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1486 * then the record will be written at syscall exit time (otherwise, it
1487 * will only be written if another part of the kernel requests that it
1490 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1491 unsigned long a3
, unsigned long a4
)
1493 struct task_struct
*tsk
= current
;
1494 struct audit_context
*context
= tsk
->audit_context
;
1495 enum audit_state state
;
1500 BUG_ON(context
->in_syscall
|| context
->name_count
);
1505 context
->arch
= syscall_get_arch();
1506 context
->major
= major
;
1507 context
->argv
[0] = a1
;
1508 context
->argv
[1] = a2
;
1509 context
->argv
[2] = a3
;
1510 context
->argv
[3] = a4
;
1512 state
= context
->state
;
1513 context
->dummy
= !audit_n_rules
;
1514 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1516 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1518 if (state
== AUDIT_DISABLED
)
1521 context
->serial
= 0;
1522 context
->ctime
= CURRENT_TIME
;
1523 context
->in_syscall
= 1;
1524 context
->current_state
= state
;
1529 * audit_syscall_exit - deallocate audit context after a system call
1530 * @success: success value of the syscall
1531 * @return_code: return value of the syscall
1533 * Tear down after system call. If the audit context has been marked as
1534 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1535 * filtering, or because some other part of the kernel wrote an audit
1536 * message), then write out the syscall information. In call cases,
1537 * free the names stored from getname().
1539 void __audit_syscall_exit(int success
, long return_code
)
1541 struct task_struct
*tsk
= current
;
1542 struct audit_context
*context
;
1545 success
= AUDITSC_SUCCESS
;
1547 success
= AUDITSC_FAILURE
;
1549 context
= audit_take_context(tsk
, success
, return_code
);
1553 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1554 audit_log_exit(context
, tsk
);
1556 context
->in_syscall
= 0;
1557 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1559 if (!list_empty(&context
->killed_trees
))
1560 audit_kill_trees(&context
->killed_trees
);
1562 audit_free_names(context
);
1563 unroll_tree_refs(context
, NULL
, 0);
1564 audit_free_aux(context
);
1565 context
->aux
= NULL
;
1566 context
->aux_pids
= NULL
;
1567 context
->target_pid
= 0;
1568 context
->target_sid
= 0;
1569 context
->sockaddr_len
= 0;
1571 context
->fds
[0] = -1;
1572 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1573 kfree(context
->filterkey
);
1574 context
->filterkey
= NULL
;
1576 tsk
->audit_context
= context
;
1579 static inline void handle_one(const struct inode
*inode
)
1581 #ifdef CONFIG_AUDIT_TREE
1582 struct audit_context
*context
;
1583 struct audit_tree_refs
*p
;
1584 struct audit_chunk
*chunk
;
1586 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1588 context
= current
->audit_context
;
1590 count
= context
->tree_count
;
1592 chunk
= audit_tree_lookup(inode
);
1596 if (likely(put_tree_ref(context
, chunk
)))
1598 if (unlikely(!grow_tree_refs(context
))) {
1599 pr_warn("out of memory, audit has lost a tree reference\n");
1600 audit_set_auditable(context
);
1601 audit_put_chunk(chunk
);
1602 unroll_tree_refs(context
, p
, count
);
1605 put_tree_ref(context
, chunk
);
1609 static void handle_path(const struct dentry
*dentry
)
1611 #ifdef CONFIG_AUDIT_TREE
1612 struct audit_context
*context
;
1613 struct audit_tree_refs
*p
;
1614 const struct dentry
*d
, *parent
;
1615 struct audit_chunk
*drop
;
1619 context
= current
->audit_context
;
1621 count
= context
->tree_count
;
1626 seq
= read_seqbegin(&rename_lock
);
1628 struct inode
*inode
= d_backing_inode(d
);
1629 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1630 struct audit_chunk
*chunk
;
1631 chunk
= audit_tree_lookup(inode
);
1633 if (unlikely(!put_tree_ref(context
, chunk
))) {
1639 parent
= d
->d_parent
;
1644 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1647 /* just a race with rename */
1648 unroll_tree_refs(context
, p
, count
);
1651 audit_put_chunk(drop
);
1652 if (grow_tree_refs(context
)) {
1653 /* OK, got more space */
1654 unroll_tree_refs(context
, p
, count
);
1658 pr_warn("out of memory, audit has lost a tree reference\n");
1659 unroll_tree_refs(context
, p
, count
);
1660 audit_set_auditable(context
);
1667 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1670 struct audit_names
*aname
;
1672 if (context
->name_count
< AUDIT_NAMES
) {
1673 aname
= &context
->preallocated_names
[context
->name_count
];
1674 memset(aname
, 0, sizeof(*aname
));
1676 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1679 aname
->should_free
= true;
1682 aname
->ino
= AUDIT_INO_UNSET
;
1684 list_add_tail(&aname
->list
, &context
->names_list
);
1686 context
->name_count
++;
1691 * audit_reusename - fill out filename with info from existing entry
1692 * @uptr: userland ptr to pathname
1694 * Search the audit_names list for the current audit context. If there is an
1695 * existing entry with a matching "uptr" then return the filename
1696 * associated with that audit_name. If not, return NULL.
1699 __audit_reusename(const __user
char *uptr
)
1701 struct audit_context
*context
= current
->audit_context
;
1702 struct audit_names
*n
;
1704 list_for_each_entry(n
, &context
->names_list
, list
) {
1707 if (n
->name
->uptr
== uptr
) {
1716 * audit_getname - add a name to the list
1717 * @name: name to add
1719 * Add a name to the list of audit names for this context.
1720 * Called from fs/namei.c:getname().
1722 void __audit_getname(struct filename
*name
)
1724 struct audit_context
*context
= current
->audit_context
;
1725 struct audit_names
*n
;
1727 if (!context
->in_syscall
)
1730 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1735 n
->name_len
= AUDIT_NAME_FULL
;
1739 if (!context
->pwd
.dentry
)
1740 get_fs_pwd(current
->fs
, &context
->pwd
);
1744 * __audit_inode - store the inode and device from a lookup
1745 * @name: name being audited
1746 * @dentry: dentry being audited
1747 * @flags: attributes for this particular entry
1749 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1752 struct audit_context
*context
= current
->audit_context
;
1753 const struct inode
*inode
= d_backing_inode(dentry
);
1754 struct audit_names
*n
;
1755 bool parent
= flags
& AUDIT_INODE_PARENT
;
1757 if (!context
->in_syscall
)
1764 * If we have a pointer to an audit_names entry already, then we can
1765 * just use it directly if the type is correct.
1770 if (n
->type
== AUDIT_TYPE_PARENT
||
1771 n
->type
== AUDIT_TYPE_UNKNOWN
)
1774 if (n
->type
!= AUDIT_TYPE_PARENT
)
1779 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1781 /* valid inode number, use that for the comparison */
1782 if (n
->ino
!= inode
->i_ino
||
1783 n
->dev
!= inode
->i_sb
->s_dev
)
1785 } else if (n
->name
) {
1786 /* inode number has not been set, check the name */
1787 if (strcmp(n
->name
->name
, name
->name
))
1790 /* no inode and no name (?!) ... this is odd ... */
1793 /* match the correct record type */
1795 if (n
->type
== AUDIT_TYPE_PARENT
||
1796 n
->type
== AUDIT_TYPE_UNKNOWN
)
1799 if (n
->type
!= AUDIT_TYPE_PARENT
)
1805 /* unable to find an entry with both a matching name and type */
1806 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1816 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1817 n
->type
= AUDIT_TYPE_PARENT
;
1818 if (flags
& AUDIT_INODE_HIDDEN
)
1821 n
->name_len
= AUDIT_NAME_FULL
;
1822 n
->type
= AUDIT_TYPE_NORMAL
;
1824 handle_path(dentry
);
1825 audit_copy_inode(n
, dentry
, inode
);
1828 void __audit_file(const struct file
*file
)
1830 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
1834 * __audit_inode_child - collect inode info for created/removed objects
1835 * @parent: inode of dentry parent
1836 * @dentry: dentry being audited
1837 * @type: AUDIT_TYPE_* value that we're looking for
1839 * For syscalls that create or remove filesystem objects, audit_inode
1840 * can only collect information for the filesystem object's parent.
1841 * This call updates the audit context with the child's information.
1842 * Syscalls that create a new filesystem object must be hooked after
1843 * the object is created. Syscalls that remove a filesystem object
1844 * must be hooked prior, in order to capture the target inode during
1845 * unsuccessful attempts.
1847 void __audit_inode_child(const struct inode
*parent
,
1848 const struct dentry
*dentry
,
1849 const unsigned char type
)
1851 struct audit_context
*context
= current
->audit_context
;
1852 const struct inode
*inode
= d_backing_inode(dentry
);
1853 const char *dname
= dentry
->d_name
.name
;
1854 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1856 if (!context
->in_syscall
)
1862 /* look for a parent entry first */
1863 list_for_each_entry(n
, &context
->names_list
, list
) {
1865 (n
->type
!= AUDIT_TYPE_PARENT
&&
1866 n
->type
!= AUDIT_TYPE_UNKNOWN
))
1869 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
1870 !audit_compare_dname_path(dname
,
1871 n
->name
->name
, n
->name_len
)) {
1872 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1873 n
->type
= AUDIT_TYPE_PARENT
;
1879 /* is there a matching child entry? */
1880 list_for_each_entry(n
, &context
->names_list
, list
) {
1881 /* can only match entries that have a name */
1883 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
1886 if (!strcmp(dname
, n
->name
->name
) ||
1887 !audit_compare_dname_path(dname
, n
->name
->name
,
1889 found_parent
->name_len
:
1891 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1898 if (!found_parent
) {
1899 /* create a new, "anonymous" parent record */
1900 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1903 audit_copy_inode(n
, NULL
, parent
);
1907 found_child
= audit_alloc_name(context
, type
);
1911 /* Re-use the name belonging to the slot for a matching parent
1912 * directory. All names for this context are relinquished in
1913 * audit_free_names() */
1915 found_child
->name
= found_parent
->name
;
1916 found_child
->name_len
= AUDIT_NAME_FULL
;
1917 found_child
->name
->refcnt
++;
1922 audit_copy_inode(found_child
, dentry
, inode
);
1924 found_child
->ino
= AUDIT_INO_UNSET
;
1926 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1929 * auditsc_get_stamp - get local copies of audit_context values
1930 * @ctx: audit_context for the task
1931 * @t: timespec to store time recorded in the audit_context
1932 * @serial: serial value that is recorded in the audit_context
1934 * Also sets the context as auditable.
1936 int auditsc_get_stamp(struct audit_context
*ctx
,
1937 struct timespec
*t
, unsigned int *serial
)
1939 if (!ctx
->in_syscall
)
1942 ctx
->serial
= audit_serial();
1943 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1944 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1945 *serial
= ctx
->serial
;
1948 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
1953 /* global counter which is incremented every time something logs in */
1954 static atomic_t session_id
= ATOMIC_INIT(0);
1956 static int audit_set_loginuid_perm(kuid_t loginuid
)
1958 /* if we are unset, we don't need privs */
1959 if (!audit_loginuid_set(current
))
1961 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1962 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
1964 /* it is set, you need permission */
1965 if (!capable(CAP_AUDIT_CONTROL
))
1967 /* reject if this is not an unset and we don't allow that */
1968 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
1973 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
1974 unsigned int oldsessionid
, unsigned int sessionid
,
1977 struct audit_buffer
*ab
;
1978 uid_t uid
, oldloginuid
, loginuid
;
1983 uid
= from_kuid(&init_user_ns
, task_uid(current
));
1984 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
1985 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
1987 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1990 audit_log_format(ab
, "pid=%d uid=%u", task_pid_nr(current
), uid
);
1991 audit_log_task_context(ab
);
1992 audit_log_format(ab
, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1993 oldloginuid
, loginuid
, oldsessionid
, sessionid
, !rc
);
1998 * audit_set_loginuid - set current task's audit_context loginuid
1999 * @loginuid: loginuid value
2003 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2005 int audit_set_loginuid(kuid_t loginuid
)
2007 struct task_struct
*task
= current
;
2008 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2012 oldloginuid
= audit_get_loginuid(current
);
2013 oldsessionid
= audit_get_sessionid(current
);
2015 rc
= audit_set_loginuid_perm(loginuid
);
2019 /* are we setting or clearing? */
2020 if (uid_valid(loginuid
))
2021 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2023 task
->sessionid
= sessionid
;
2024 task
->loginuid
= loginuid
;
2026 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2031 * __audit_mq_open - record audit data for a POSIX MQ open
2034 * @attr: queue attributes
2037 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2039 struct audit_context
*context
= current
->audit_context
;
2042 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2044 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2046 context
->mq_open
.oflag
= oflag
;
2047 context
->mq_open
.mode
= mode
;
2049 context
->type
= AUDIT_MQ_OPEN
;
2053 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2054 * @mqdes: MQ descriptor
2055 * @msg_len: Message length
2056 * @msg_prio: Message priority
2057 * @abs_timeout: Message timeout in absolute time
2060 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2061 const struct timespec
*abs_timeout
)
2063 struct audit_context
*context
= current
->audit_context
;
2064 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2067 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2069 memset(p
, 0, sizeof(struct timespec
));
2071 context
->mq_sendrecv
.mqdes
= mqdes
;
2072 context
->mq_sendrecv
.msg_len
= msg_len
;
2073 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2075 context
->type
= AUDIT_MQ_SENDRECV
;
2079 * __audit_mq_notify - record audit data for a POSIX MQ notify
2080 * @mqdes: MQ descriptor
2081 * @notification: Notification event
2085 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2087 struct audit_context
*context
= current
->audit_context
;
2090 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2092 context
->mq_notify
.sigev_signo
= 0;
2094 context
->mq_notify
.mqdes
= mqdes
;
2095 context
->type
= AUDIT_MQ_NOTIFY
;
2099 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2100 * @mqdes: MQ descriptor
2104 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2106 struct audit_context
*context
= current
->audit_context
;
2107 context
->mq_getsetattr
.mqdes
= mqdes
;
2108 context
->mq_getsetattr
.mqstat
= *mqstat
;
2109 context
->type
= AUDIT_MQ_GETSETATTR
;
2113 * audit_ipc_obj - record audit data for ipc object
2114 * @ipcp: ipc permissions
2117 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2119 struct audit_context
*context
= current
->audit_context
;
2120 context
->ipc
.uid
= ipcp
->uid
;
2121 context
->ipc
.gid
= ipcp
->gid
;
2122 context
->ipc
.mode
= ipcp
->mode
;
2123 context
->ipc
.has_perm
= 0;
2124 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2125 context
->type
= AUDIT_IPC
;
2129 * audit_ipc_set_perm - record audit data for new ipc permissions
2130 * @qbytes: msgq bytes
2131 * @uid: msgq user id
2132 * @gid: msgq group id
2133 * @mode: msgq mode (permissions)
2135 * Called only after audit_ipc_obj().
2137 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2139 struct audit_context
*context
= current
->audit_context
;
2141 context
->ipc
.qbytes
= qbytes
;
2142 context
->ipc
.perm_uid
= uid
;
2143 context
->ipc
.perm_gid
= gid
;
2144 context
->ipc
.perm_mode
= mode
;
2145 context
->ipc
.has_perm
= 1;
2148 void __audit_bprm(struct linux_binprm
*bprm
)
2150 struct audit_context
*context
= current
->audit_context
;
2152 context
->type
= AUDIT_EXECVE
;
2153 context
->execve
.argc
= bprm
->argc
;
2158 * audit_socketcall - record audit data for sys_socketcall
2159 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2163 int __audit_socketcall(int nargs
, unsigned long *args
)
2165 struct audit_context
*context
= current
->audit_context
;
2167 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2169 context
->type
= AUDIT_SOCKETCALL
;
2170 context
->socketcall
.nargs
= nargs
;
2171 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2176 * __audit_fd_pair - record audit data for pipe and socketpair
2177 * @fd1: the first file descriptor
2178 * @fd2: the second file descriptor
2181 void __audit_fd_pair(int fd1
, int fd2
)
2183 struct audit_context
*context
= current
->audit_context
;
2184 context
->fds
[0] = fd1
;
2185 context
->fds
[1] = fd2
;
2189 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2190 * @len: data length in user space
2191 * @a: data address in kernel space
2193 * Returns 0 for success or NULL context or < 0 on error.
2195 int __audit_sockaddr(int len
, void *a
)
2197 struct audit_context
*context
= current
->audit_context
;
2199 if (!context
->sockaddr
) {
2200 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2203 context
->sockaddr
= p
;
2206 context
->sockaddr_len
= len
;
2207 memcpy(context
->sockaddr
, a
, len
);
2211 void __audit_ptrace(struct task_struct
*t
)
2213 struct audit_context
*context
= current
->audit_context
;
2215 context
->target_pid
= task_pid_nr(t
);
2216 context
->target_auid
= audit_get_loginuid(t
);
2217 context
->target_uid
= task_uid(t
);
2218 context
->target_sessionid
= audit_get_sessionid(t
);
2219 security_task_getsecid(t
, &context
->target_sid
);
2220 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2224 * audit_signal_info - record signal info for shutting down audit subsystem
2225 * @sig: signal value
2226 * @t: task being signaled
2228 * If the audit subsystem is being terminated, record the task (pid)
2229 * and uid that is doing that.
2231 int __audit_signal_info(int sig
, struct task_struct
*t
)
2233 struct audit_aux_data_pids
*axp
;
2234 struct task_struct
*tsk
= current
;
2235 struct audit_context
*ctx
= tsk
->audit_context
;
2236 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2238 if (audit_pid
&& t
->tgid
== audit_pid
) {
2239 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2240 audit_sig_pid
= task_pid_nr(tsk
);
2241 if (uid_valid(tsk
->loginuid
))
2242 audit_sig_uid
= tsk
->loginuid
;
2244 audit_sig_uid
= uid
;
2245 security_task_getsecid(tsk
, &audit_sig_sid
);
2247 if (!audit_signals
|| audit_dummy_context())
2251 /* optimize the common case by putting first signal recipient directly
2252 * in audit_context */
2253 if (!ctx
->target_pid
) {
2254 ctx
->target_pid
= task_tgid_nr(t
);
2255 ctx
->target_auid
= audit_get_loginuid(t
);
2256 ctx
->target_uid
= t_uid
;
2257 ctx
->target_sessionid
= audit_get_sessionid(t
);
2258 security_task_getsecid(t
, &ctx
->target_sid
);
2259 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2263 axp
= (void *)ctx
->aux_pids
;
2264 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2265 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2269 axp
->d
.type
= AUDIT_OBJ_PID
;
2270 axp
->d
.next
= ctx
->aux_pids
;
2271 ctx
->aux_pids
= (void *)axp
;
2273 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2275 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2276 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2277 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2278 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2279 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2280 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2287 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2288 * @bprm: pointer to the bprm being processed
2289 * @new: the proposed new credentials
2290 * @old: the old credentials
2292 * Simply check if the proc already has the caps given by the file and if not
2293 * store the priv escalation info for later auditing at the end of the syscall
2297 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2298 const struct cred
*new, const struct cred
*old
)
2300 struct audit_aux_data_bprm_fcaps
*ax
;
2301 struct audit_context
*context
= current
->audit_context
;
2302 struct cpu_vfs_cap_data vcaps
;
2304 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2308 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2309 ax
->d
.next
= context
->aux
;
2310 context
->aux
= (void *)ax
;
2312 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2314 ax
->fcap
.permitted
= vcaps
.permitted
;
2315 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2316 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2317 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2319 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2320 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2321 ax
->old_pcap
.effective
= old
->cap_effective
;
2323 ax
->new_pcap
.permitted
= new->cap_permitted
;
2324 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2325 ax
->new_pcap
.effective
= new->cap_effective
;
2330 * __audit_log_capset - store information about the arguments to the capset syscall
2331 * @new: the new credentials
2332 * @old: the old (current) credentials
2334 * Record the arguments userspace sent to sys_capset for later printing by the
2335 * audit system if applicable
2337 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2339 struct audit_context
*context
= current
->audit_context
;
2340 context
->capset
.pid
= task_pid_nr(current
);
2341 context
->capset
.cap
.effective
= new->cap_effective
;
2342 context
->capset
.cap
.inheritable
= new->cap_effective
;
2343 context
->capset
.cap
.permitted
= new->cap_permitted
;
2344 context
->type
= AUDIT_CAPSET
;
2347 void __audit_mmap_fd(int fd
, int flags
)
2349 struct audit_context
*context
= current
->audit_context
;
2350 context
->mmap
.fd
= fd
;
2351 context
->mmap
.flags
= flags
;
2352 context
->type
= AUDIT_MMAP
;
2355 static void audit_log_task(struct audit_buffer
*ab
)
2359 unsigned int sessionid
;
2360 char comm
[sizeof(current
->comm
)];
2362 auid
= audit_get_loginuid(current
);
2363 sessionid
= audit_get_sessionid(current
);
2364 current_uid_gid(&uid
, &gid
);
2366 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2367 from_kuid(&init_user_ns
, auid
),
2368 from_kuid(&init_user_ns
, uid
),
2369 from_kgid(&init_user_ns
, gid
),
2371 audit_log_task_context(ab
);
2372 audit_log_format(ab
, " pid=%d comm=", task_pid_nr(current
));
2373 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2374 audit_log_d_path_exe(ab
, current
->mm
);
2378 * audit_core_dumps - record information about processes that end abnormally
2379 * @signr: signal value
2381 * If a process ends with a core dump, something fishy is going on and we
2382 * should record the event for investigation.
2384 void audit_core_dumps(long signr
)
2386 struct audit_buffer
*ab
;
2391 if (signr
== SIGQUIT
) /* don't care for those */
2394 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2398 audit_log_format(ab
, " sig=%ld", signr
);
2402 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2404 struct audit_buffer
*ab
;
2406 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2410 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2411 signr
, syscall_get_arch(), syscall
, is_compat_task(),
2412 KSTK_EIP(current
), code
);
2416 struct list_head
*audit_killed_trees(void)
2418 struct audit_context
*ctx
= current
->audit_context
;
2419 if (likely(!ctx
|| !ctx
->in_syscall
))
2421 return &ctx
->killed_trees
;