1 // SPDX-License-Identifier: GPL-2.0
3 * arch/sparc64/mm/init.c
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/memblock.h>
29 #include <linux/mmzone.h>
30 #include <linux/gfp.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/iommu.h>
39 #include <linux/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlbflush.h>
43 #include <asm/starfire.h>
45 #include <asm/spitfire.h>
46 #include <asm/sections.h>
48 #include <asm/hypervisor.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
52 #include <asm/setup.h>
57 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
58 static unsigned long page_cache4v_flag
;
60 /* A bitmap, two bits for every 256MB of physical memory. These two
61 * bits determine what page size we use for kernel linear
62 * translations. They form an index into kern_linear_pte_xor[]. The
63 * value in the indexed slot is XOR'd with the TLB miss virtual
64 * address to form the resulting TTE. The mapping is:
71 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
72 * support 2GB pages, and hopefully future cpus will support the 16GB
73 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
74 * if these larger page sizes are not supported by the cpu.
76 * It would be nice to determine this from the machine description
77 * 'cpu' properties, but we need to have this table setup before the
78 * MDESC is initialized.
81 #ifndef CONFIG_DEBUG_PAGEALLOC
82 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
83 * Space is allocated for this right after the trap table in
84 * arch/sparc64/kernel/head.S
86 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
88 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
90 static unsigned long cpu_pgsz_mask
;
92 #define MAX_BANKS 1024
94 static struct linux_prom64_registers pavail
[MAX_BANKS
];
95 static int pavail_ents
;
97 u64 numa_latency
[MAX_NUMNODES
][MAX_NUMNODES
];
99 static int cmp_p64(const void *a
, const void *b
)
101 const struct linux_prom64_registers
*x
= a
, *y
= b
;
103 if (x
->phys_addr
> y
->phys_addr
)
105 if (x
->phys_addr
< y
->phys_addr
)
110 static void __init
read_obp_memory(const char *property
,
111 struct linux_prom64_registers
*regs
,
114 phandle node
= prom_finddevice("/memory");
115 int prop_size
= prom_getproplen(node
, property
);
118 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
119 if (ents
> MAX_BANKS
) {
120 prom_printf("The machine has more %s property entries than "
121 "this kernel can support (%d).\n",
122 property
, MAX_BANKS
);
126 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
128 prom_printf("Couldn't get %s property from /memory.\n",
133 /* Sanitize what we got from the firmware, by page aligning
136 for (i
= 0; i
< ents
; i
++) {
137 unsigned long base
, size
;
139 base
= regs
[i
].phys_addr
;
140 size
= regs
[i
].reg_size
;
143 if (base
& ~PAGE_MASK
) {
144 unsigned long new_base
= PAGE_ALIGN(base
);
146 size
-= new_base
- base
;
147 if ((long) size
< 0L)
152 /* If it is empty, simply get rid of it.
153 * This simplifies the logic of the other
154 * functions that process these arrays.
156 memmove(®s
[i
], ®s
[i
+ 1],
157 (ents
- i
- 1) * sizeof(regs
[0]));
162 regs
[i
].phys_addr
= base
;
163 regs
[i
].reg_size
= size
;
168 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
172 /* Kernel physical address base and size in bytes. */
173 unsigned long kern_base __read_mostly
;
174 unsigned long kern_size __read_mostly
;
176 /* Initial ramdisk setup */
177 extern unsigned long sparc_ramdisk_image64
;
178 extern unsigned int sparc_ramdisk_image
;
179 extern unsigned int sparc_ramdisk_size
;
181 struct page
*mem_map_zero __read_mostly
;
182 EXPORT_SYMBOL(mem_map_zero
);
184 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
186 unsigned long sparc64_kern_pri_context __read_mostly
;
187 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
188 unsigned long sparc64_kern_sec_context __read_mostly
;
190 int num_kernel_image_mappings
;
192 #ifdef CONFIG_DEBUG_DCFLUSH
193 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
195 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
199 inline void flush_dcache_page_impl(struct page
*page
)
201 BUG_ON(tlb_type
== hypervisor
);
202 #ifdef CONFIG_DEBUG_DCFLUSH
203 atomic_inc(&dcpage_flushes
);
206 #ifdef DCACHE_ALIASING_POSSIBLE
207 __flush_dcache_page(page_address(page
),
208 ((tlb_type
== spitfire
) &&
209 page_mapping(page
) != NULL
));
211 if (page_mapping(page
) != NULL
&&
212 tlb_type
== spitfire
)
213 __flush_icache_page(__pa(page_address(page
)));
217 #define PG_dcache_dirty PG_arch_1
218 #define PG_dcache_cpu_shift 32UL
219 #define PG_dcache_cpu_mask \
220 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
222 #define dcache_dirty_cpu(page) \
223 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
225 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
227 unsigned long mask
= this_cpu
;
228 unsigned long non_cpu_bits
;
230 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
231 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
233 __asm__
__volatile__("1:\n\t"
235 "and %%g7, %1, %%g1\n\t"
236 "or %%g1, %0, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
242 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
246 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
248 unsigned long mask
= (1UL << PG_dcache_dirty
);
250 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
253 "srlx %%g7, %4, %%g1\n\t"
254 "and %%g1, %3, %%g1\n\t"
256 "bne,pn %%icc, 2f\n\t"
257 " andn %%g7, %1, %%g1\n\t"
258 "casx [%2], %%g7, %%g1\n\t"
260 "bne,pn %%xcc, 1b\n\t"
264 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
265 "i" (PG_dcache_cpu_mask
),
266 "i" (PG_dcache_cpu_shift
)
270 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
272 unsigned long tsb_addr
= (unsigned long) ent
;
274 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
275 tsb_addr
= __pa(tsb_addr
);
277 __tsb_insert(tsb_addr
, tag
, pte
);
280 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
282 static void flush_dcache(unsigned long pfn
)
286 page
= pfn_to_page(pfn
);
288 unsigned long pg_flags
;
290 pg_flags
= page
->flags
;
291 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
292 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
294 int this_cpu
= get_cpu();
296 /* This is just to optimize away some function calls
300 flush_dcache_page_impl(page
);
302 smp_flush_dcache_page_impl(page
, cpu
);
304 clear_dcache_dirty_cpu(page
, cpu
);
311 /* mm->context.lock must be held */
312 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
313 unsigned long tsb_hash_shift
, unsigned long address
,
316 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
322 tsb
+= ((address
>> tsb_hash_shift
) &
323 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
324 tag
= (address
>> 22UL);
325 tsb_insert(tsb
, tag
, tte
);
328 #ifdef CONFIG_HUGETLB_PAGE
329 static void __init
add_huge_page_size(unsigned long size
)
333 if (size_to_hstate(size
))
336 order
= ilog2(size
) - PAGE_SHIFT
;
337 hugetlb_add_hstate(order
);
340 static int __init
hugetlbpage_init(void)
342 add_huge_page_size(1UL << HPAGE_64K_SHIFT
);
343 add_huge_page_size(1UL << HPAGE_SHIFT
);
344 add_huge_page_size(1UL << HPAGE_256MB_SHIFT
);
345 add_huge_page_size(1UL << HPAGE_2GB_SHIFT
);
350 arch_initcall(hugetlbpage_init
);
352 static void __init
pud_huge_patch(void)
354 struct pud_huge_patch_entry
*p
;
357 p
= &__pud_huge_patch
;
359 *(unsigned int *)addr
= p
->insn
;
361 __asm__
__volatile__("flush %0" : : "r" (addr
));
364 static int __init
setup_hugepagesz(char *string
)
366 unsigned long long hugepage_size
;
367 unsigned int hugepage_shift
;
368 unsigned short hv_pgsz_idx
;
369 unsigned int hv_pgsz_mask
;
372 hugepage_size
= memparse(string
, &string
);
373 hugepage_shift
= ilog2(hugepage_size
);
375 switch (hugepage_shift
) {
376 case HPAGE_16GB_SHIFT
:
377 hv_pgsz_mask
= HV_PGSZ_MASK_16GB
;
378 hv_pgsz_idx
= HV_PGSZ_IDX_16GB
;
381 case HPAGE_2GB_SHIFT
:
382 hv_pgsz_mask
= HV_PGSZ_MASK_2GB
;
383 hv_pgsz_idx
= HV_PGSZ_IDX_2GB
;
385 case HPAGE_256MB_SHIFT
:
386 hv_pgsz_mask
= HV_PGSZ_MASK_256MB
;
387 hv_pgsz_idx
= HV_PGSZ_IDX_256MB
;
390 hv_pgsz_mask
= HV_PGSZ_MASK_4MB
;
391 hv_pgsz_idx
= HV_PGSZ_IDX_4MB
;
393 case HPAGE_64K_SHIFT
:
394 hv_pgsz_mask
= HV_PGSZ_MASK_64K
;
395 hv_pgsz_idx
= HV_PGSZ_IDX_64K
;
401 if ((hv_pgsz_mask
& cpu_pgsz_mask
) == 0U) {
403 pr_err("hugepagesz=%llu not supported by MMU.\n",
408 add_huge_page_size(hugepage_size
);
414 __setup("hugepagesz=", setup_hugepagesz
);
415 #endif /* CONFIG_HUGETLB_PAGE */
417 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
419 struct mm_struct
*mm
;
424 if (tlb_type
!= hypervisor
) {
425 unsigned long pfn
= pte_pfn(pte
);
433 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
434 if (!pte_accessible(mm
, pte
))
437 spin_lock_irqsave(&mm
->context
.lock
, flags
);
440 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
441 if (mm
->context
.hugetlb_pte_count
|| mm
->context
.thp_pte_count
) {
442 unsigned long hugepage_size
= PAGE_SIZE
;
444 if (is_vm_hugetlb_page(vma
))
445 hugepage_size
= huge_page_size(hstate_vma(vma
));
447 if (hugepage_size
>= PUD_SIZE
) {
448 unsigned long mask
= 0x1ffc00000UL
;
450 /* Transfer bits [32:22] from address to resolve
453 pte_val(pte
) &= ~mask
;
454 pte_val(pte
) |= (address
& mask
);
455 } else if (hugepage_size
>= PMD_SIZE
) {
456 /* We are fabricating 8MB pages using 4MB
459 pte_val(pte
) |= (address
& (1UL << REAL_HPAGE_SHIFT
));
462 if (hugepage_size
>= PMD_SIZE
) {
463 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
,
464 REAL_HPAGE_SHIFT
, address
, pte_val(pte
));
470 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
471 address
, pte_val(pte
));
473 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
476 void flush_dcache_page(struct page
*page
)
478 struct address_space
*mapping
;
481 if (tlb_type
== hypervisor
)
484 /* Do not bother with the expensive D-cache flush if it
485 * is merely the zero page. The 'bigcore' testcase in GDB
486 * causes this case to run millions of times.
488 if (page
== ZERO_PAGE(0))
491 this_cpu
= get_cpu();
493 mapping
= page_mapping(page
);
494 if (mapping
&& !mapping_mapped(mapping
)) {
495 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
497 int dirty_cpu
= dcache_dirty_cpu(page
);
499 if (dirty_cpu
== this_cpu
)
501 smp_flush_dcache_page_impl(page
, dirty_cpu
);
503 set_dcache_dirty(page
, this_cpu
);
505 /* We could delay the flush for the !page_mapping
506 * case too. But that case is for exec env/arg
507 * pages and those are %99 certainly going to get
508 * faulted into the tlb (and thus flushed) anyways.
510 flush_dcache_page_impl(page
);
516 EXPORT_SYMBOL(flush_dcache_page
);
518 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
520 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
521 if (tlb_type
== spitfire
) {
524 /* This code only runs on Spitfire cpus so this is
525 * why we can assume _PAGE_PADDR_4U.
527 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
528 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
530 if (kaddr
>= PAGE_OFFSET
)
531 paddr
= kaddr
& mask
;
533 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
534 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
535 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
536 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
538 paddr
= pte_val(*ptep
) & mask
;
540 __flush_icache_page(paddr
);
544 EXPORT_SYMBOL(flush_icache_range
);
546 void mmu_info(struct seq_file
*m
)
548 static const char *pgsz_strings
[] = {
549 "8K", "64K", "512K", "4MB", "32MB",
550 "256MB", "2GB", "16GB",
554 if (tlb_type
== cheetah
)
555 seq_printf(m
, "MMU Type\t: Cheetah\n");
556 else if (tlb_type
== cheetah_plus
)
557 seq_printf(m
, "MMU Type\t: Cheetah+\n");
558 else if (tlb_type
== spitfire
)
559 seq_printf(m
, "MMU Type\t: Spitfire\n");
560 else if (tlb_type
== hypervisor
)
561 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
563 seq_printf(m
, "MMU Type\t: ???\n");
565 seq_printf(m
, "MMU PGSZs\t: ");
567 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
568 if (cpu_pgsz_mask
& (1UL << i
)) {
569 seq_printf(m
, "%s%s",
570 printed
? "," : "", pgsz_strings
[i
]);
576 #ifdef CONFIG_DEBUG_DCFLUSH
577 seq_printf(m
, "DCPageFlushes\t: %d\n",
578 atomic_read(&dcpage_flushes
));
580 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
581 atomic_read(&dcpage_flushes_xcall
));
582 #endif /* CONFIG_SMP */
583 #endif /* CONFIG_DEBUG_DCFLUSH */
586 struct linux_prom_translation prom_trans
[512] __read_mostly
;
587 unsigned int prom_trans_ents __read_mostly
;
589 unsigned long kern_locked_tte_data
;
591 /* The obp translations are saved based on 8k pagesize, since obp can
592 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
593 * HI_OBP_ADDRESS range are handled in ktlb.S.
595 static inline int in_obp_range(unsigned long vaddr
)
597 return (vaddr
>= LOW_OBP_ADDRESS
&&
598 vaddr
< HI_OBP_ADDRESS
);
601 static int cmp_ptrans(const void *a
, const void *b
)
603 const struct linux_prom_translation
*x
= a
, *y
= b
;
605 if (x
->virt
> y
->virt
)
607 if (x
->virt
< y
->virt
)
612 /* Read OBP translations property into 'prom_trans[]'. */
613 static void __init
read_obp_translations(void)
615 int n
, node
, ents
, first
, last
, i
;
617 node
= prom_finddevice("/virtual-memory");
618 n
= prom_getproplen(node
, "translations");
619 if (unlikely(n
== 0 || n
== -1)) {
620 prom_printf("prom_mappings: Couldn't get size.\n");
623 if (unlikely(n
> sizeof(prom_trans
))) {
624 prom_printf("prom_mappings: Size %d is too big.\n", n
);
628 if ((n
= prom_getproperty(node
, "translations",
629 (char *)&prom_trans
[0],
630 sizeof(prom_trans
))) == -1) {
631 prom_printf("prom_mappings: Couldn't get property.\n");
635 n
= n
/ sizeof(struct linux_prom_translation
);
639 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
642 /* Now kick out all the non-OBP entries. */
643 for (i
= 0; i
< ents
; i
++) {
644 if (in_obp_range(prom_trans
[i
].virt
))
648 for (; i
< ents
; i
++) {
649 if (!in_obp_range(prom_trans
[i
].virt
))
654 for (i
= 0; i
< (last
- first
); i
++) {
655 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
656 struct linux_prom_translation
*dest
= &prom_trans
[i
];
660 for (; i
< ents
; i
++) {
661 struct linux_prom_translation
*dest
= &prom_trans
[i
];
662 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
665 prom_trans_ents
= last
- first
;
667 if (tlb_type
== spitfire
) {
668 /* Clear diag TTE bits. */
669 for (i
= 0; i
< prom_trans_ents
; i
++)
670 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
673 /* Force execute bit on. */
674 for (i
= 0; i
< prom_trans_ents
; i
++)
675 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
676 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
679 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
683 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
686 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
687 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
692 static unsigned long kern_large_tte(unsigned long paddr
);
694 static void __init
remap_kernel(void)
696 unsigned long phys_page
, tte_vaddr
, tte_data
;
697 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
699 tte_vaddr
= (unsigned long) KERNBASE
;
700 phys_page
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
701 tte_data
= kern_large_tte(phys_page
);
703 kern_locked_tte_data
= tte_data
;
705 /* Now lock us into the TLBs via Hypervisor or OBP. */
706 if (tlb_type
== hypervisor
) {
707 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
708 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
709 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
710 tte_vaddr
+= 0x400000;
711 tte_data
+= 0x400000;
714 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
715 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
716 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
717 tte_vaddr
+= 0x400000;
718 tte_data
+= 0x400000;
720 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
722 if (tlb_type
== cheetah_plus
) {
723 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
724 CTX_CHEETAH_PLUS_NUC
);
725 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
726 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
731 static void __init
inherit_prom_mappings(void)
733 /* Now fixup OBP's idea about where we really are mapped. */
734 printk("Remapping the kernel... ");
739 void prom_world(int enter
)
744 __asm__
__volatile__("flushw");
747 void __flush_dcache_range(unsigned long start
, unsigned long end
)
751 if (tlb_type
== spitfire
) {
754 for (va
= start
; va
< end
; va
+= 32) {
755 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
759 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
762 for (va
= start
; va
< end
; va
+= 32)
763 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
767 "i" (ASI_DCACHE_INVALIDATE
));
770 EXPORT_SYMBOL(__flush_dcache_range
);
772 /* get_new_mmu_context() uses "cache + 1". */
773 DEFINE_SPINLOCK(ctx_alloc_lock
);
774 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
;
775 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
776 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
777 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
778 DEFINE_PER_CPU(struct mm_struct
*, per_cpu_secondary_mm
) = {0};
780 static void mmu_context_wrap(void)
782 unsigned long old_ver
= tlb_context_cache
& CTX_VERSION_MASK
;
783 unsigned long new_ver
, new_ctx
, old_ctx
;
784 struct mm_struct
*mm
;
787 bitmap_zero(mmu_context_bmap
, 1 << CTX_NR_BITS
);
789 /* Reserve kernel context */
790 set_bit(0, mmu_context_bmap
);
792 new_ver
= (tlb_context_cache
& CTX_VERSION_MASK
) + CTX_FIRST_VERSION
;
793 if (unlikely(new_ver
== 0))
794 new_ver
= CTX_FIRST_VERSION
;
795 tlb_context_cache
= new_ver
;
798 * Make sure that any new mm that are added into per_cpu_secondary_mm,
799 * are going to go through get_new_mmu_context() path.
804 * Updated versions to current on those CPUs that had valid secondary
807 for_each_online_cpu(cpu
) {
809 * If a new mm is stored after we took this mm from the array,
810 * it will go into get_new_mmu_context() path, because we
811 * already bumped the version in tlb_context_cache.
813 mm
= per_cpu(per_cpu_secondary_mm
, cpu
);
815 if (unlikely(!mm
|| mm
== &init_mm
))
818 old_ctx
= mm
->context
.sparc64_ctx_val
;
819 if (likely((old_ctx
& CTX_VERSION_MASK
) == old_ver
)) {
820 new_ctx
= (old_ctx
& ~CTX_VERSION_MASK
) | new_ver
;
821 set_bit(new_ctx
& CTX_NR_MASK
, mmu_context_bmap
);
822 mm
->context
.sparc64_ctx_val
= new_ctx
;
827 /* Caller does TLB context flushing on local CPU if necessary.
828 * The caller also ensures that CTX_VALID(mm->context) is false.
830 * We must be careful about boundary cases so that we never
831 * let the user have CTX 0 (nucleus) or we ever use a CTX
832 * version of zero (and thus NO_CONTEXT would not be caught
833 * by version mis-match tests in mmu_context.h).
835 * Always invoked with interrupts disabled.
837 void get_new_mmu_context(struct mm_struct
*mm
)
839 unsigned long ctx
, new_ctx
;
840 unsigned long orig_pgsz_bits
;
842 spin_lock(&ctx_alloc_lock
);
844 /* wrap might have happened, test again if our context became valid */
845 if (unlikely(CTX_VALID(mm
->context
)))
847 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
848 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
849 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
850 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
851 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
852 if (new_ctx
>= ctx
) {
857 if (mm
->context
.sparc64_ctx_val
)
858 cpumask_clear(mm_cpumask(mm
));
859 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
860 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
861 tlb_context_cache
= new_ctx
;
862 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
864 spin_unlock(&ctx_alloc_lock
);
867 static int numa_enabled
= 1;
868 static int numa_debug
;
870 static int __init
early_numa(char *p
)
875 if (strstr(p
, "off"))
878 if (strstr(p
, "debug"))
883 early_param("numa", early_numa
);
885 #define numadbg(f, a...) \
886 do { if (numa_debug) \
887 printk(KERN_INFO f, ## a); \
890 static void __init
find_ramdisk(unsigned long phys_base
)
892 #ifdef CONFIG_BLK_DEV_INITRD
893 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
894 unsigned long ramdisk_image
;
896 /* Older versions of the bootloader only supported a
897 * 32-bit physical address for the ramdisk image
898 * location, stored at sparc_ramdisk_image. Newer
899 * SILO versions set sparc_ramdisk_image to zero and
900 * provide a full 64-bit physical address at
901 * sparc_ramdisk_image64.
903 ramdisk_image
= sparc_ramdisk_image
;
905 ramdisk_image
= sparc_ramdisk_image64
;
907 /* Another bootloader quirk. The bootloader normalizes
908 * the physical address to KERNBASE, so we have to
909 * factor that back out and add in the lowest valid
910 * physical page address to get the true physical address.
912 ramdisk_image
-= KERNBASE
;
913 ramdisk_image
+= phys_base
;
915 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
916 ramdisk_image
, sparc_ramdisk_size
);
918 initrd_start
= ramdisk_image
;
919 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
921 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
923 initrd_start
+= PAGE_OFFSET
;
924 initrd_end
+= PAGE_OFFSET
;
929 struct node_mem_mask
{
933 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
934 static int num_node_masks
;
936 #ifdef CONFIG_NEED_MULTIPLE_NODES
938 struct mdesc_mlgroup
{
945 static struct mdesc_mlgroup
*mlgroups
;
946 static int num_mlgroups
;
948 int numa_cpu_lookup_table
[NR_CPUS
];
949 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
951 struct mdesc_mblock
{
954 u64 offset
; /* RA-to-PA */
956 static struct mdesc_mblock
*mblocks
;
957 static int num_mblocks
;
959 static struct mdesc_mblock
* __init
addr_to_mblock(unsigned long addr
)
961 struct mdesc_mblock
*m
= NULL
;
964 for (i
= 0; i
< num_mblocks
; i
++) {
967 if (addr
>= m
->base
&&
968 addr
< (m
->base
+ m
->size
)) {
976 static u64 __init
memblock_nid_range_sun4u(u64 start
, u64 end
, int *nid
)
978 int prev_nid
, new_nid
;
981 for ( ; start
< end
; start
+= PAGE_SIZE
) {
982 for (new_nid
= 0; new_nid
< num_node_masks
; new_nid
++) {
983 struct node_mem_mask
*p
= &node_masks
[new_nid
];
985 if ((start
& p
->mask
) == p
->match
) {
992 if (new_nid
== num_node_masks
) {
994 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
999 if (prev_nid
!= new_nid
)
1004 return start
> end
? end
: start
;
1007 static u64 __init
memblock_nid_range(u64 start
, u64 end
, int *nid
)
1009 u64 ret_end
, pa_start
, m_mask
, m_match
, m_end
;
1010 struct mdesc_mblock
*mblock
;
1013 if (tlb_type
!= hypervisor
)
1014 return memblock_nid_range_sun4u(start
, end
, nid
);
1016 mblock
= addr_to_mblock(start
);
1018 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1026 pa_start
= start
+ mblock
->offset
;
1030 for (_nid
= 0; _nid
< num_node_masks
; _nid
++) {
1031 struct node_mem_mask
*const m
= &node_masks
[_nid
];
1033 if ((pa_start
& m
->mask
) == m
->match
) {
1040 if (num_node_masks
== _nid
) {
1041 /* We could not find NUMA group, so default to 0, but lets
1042 * search for latency group, so we could calculate the correct
1043 * end address that we return
1047 for (i
= 0; i
< num_mlgroups
; i
++) {
1048 struct mdesc_mlgroup
*const m
= &mlgroups
[i
];
1050 if ((pa_start
& m
->mask
) == m
->match
) {
1057 if (i
== num_mlgroups
) {
1058 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1067 * Each latency group has match and mask, and each memory block has an
1068 * offset. An address belongs to a latency group if its address matches
1069 * the following formula: ((addr + offset) & mask) == match
1070 * It is, however, slow to check every single page if it matches a
1071 * particular latency group. As optimization we calculate end value by
1072 * using bit arithmetics.
1074 m_end
= m_match
+ (1ul << __ffs(m_mask
)) - mblock
->offset
;
1075 m_end
+= pa_start
& ~((1ul << fls64(m_mask
)) - 1);
1076 ret_end
= m_end
> end
? end
: m_end
;
1084 /* This must be invoked after performing all of the necessary
1085 * memblock_set_node() calls for 'nid'. We need to be able to get
1086 * correct data from get_pfn_range_for_nid().
1088 static void __init
allocate_node_data(int nid
)
1090 struct pglist_data
*p
;
1091 unsigned long start_pfn
, end_pfn
;
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 unsigned long paddr
;
1095 paddr
= memblock_alloc_try_nid(sizeof(struct pglist_data
), SMP_CACHE_BYTES
, nid
);
1097 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
1100 NODE_DATA(nid
) = __va(paddr
);
1101 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
1103 NODE_DATA(nid
)->node_id
= nid
;
1108 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1109 p
->node_start_pfn
= start_pfn
;
1110 p
->node_spanned_pages
= end_pfn
- start_pfn
;
1113 static void init_node_masks_nonnuma(void)
1115 #ifdef CONFIG_NEED_MULTIPLE_NODES
1119 numadbg("Initializing tables for non-numa.\n");
1121 node_masks
[0].mask
= 0;
1122 node_masks
[0].match
= 0;
1125 #ifdef CONFIG_NEED_MULTIPLE_NODES
1126 for (i
= 0; i
< NR_CPUS
; i
++)
1127 numa_cpu_lookup_table
[i
] = 0;
1129 cpumask_setall(&numa_cpumask_lookup_table
[0]);
1133 #ifdef CONFIG_NEED_MULTIPLE_NODES
1134 struct pglist_data
*node_data
[MAX_NUMNODES
];
1136 EXPORT_SYMBOL(numa_cpu_lookup_table
);
1137 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
1138 EXPORT_SYMBOL(node_data
);
1140 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
1145 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
1146 u64 target
= mdesc_arc_target(md
, arc
);
1149 val
= mdesc_get_property(md
, target
,
1150 "cfg-handle", NULL
);
1151 if (val
&& *val
== cfg_handle
)
1157 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
1160 u64 arc
, candidate
, best_latency
= ~(u64
)0;
1162 candidate
= MDESC_NODE_NULL
;
1163 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1164 u64 target
= mdesc_arc_target(md
, arc
);
1165 const char *name
= mdesc_node_name(md
, target
);
1168 if (strcmp(name
, "pio-latency-group"))
1171 val
= mdesc_get_property(md
, target
, "latency", NULL
);
1175 if (*val
< best_latency
) {
1177 best_latency
= *val
;
1181 if (candidate
== MDESC_NODE_NULL
)
1184 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
1187 int of_node_to_nid(struct device_node
*dp
)
1189 const struct linux_prom64_registers
*regs
;
1190 struct mdesc_handle
*md
;
1195 /* This is the right thing to do on currently supported
1196 * SUN4U NUMA platforms as well, as the PCI controller does
1197 * not sit behind any particular memory controller.
1202 regs
= of_get_property(dp
, "reg", NULL
);
1206 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
1212 mdesc_for_each_node_by_name(md
, grp
, "group") {
1213 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1225 static void __init
add_node_ranges(void)
1227 struct memblock_region
*reg
;
1228 unsigned long prev_max
;
1231 prev_max
= memblock
.memory
.max
;
1233 for_each_memblock(memory
, reg
) {
1234 unsigned long size
= reg
->size
;
1235 unsigned long start
, end
;
1239 while (start
< end
) {
1240 unsigned long this_end
;
1243 this_end
= memblock_nid_range(start
, end
, &nid
);
1245 numadbg("Setting memblock NUMA node nid[%d] "
1246 "start[%lx] end[%lx]\n",
1247 nid
, start
, this_end
);
1249 memblock_set_node(start
, this_end
- start
,
1250 &memblock
.memory
, nid
);
1251 if (memblock
.memory
.max
!= prev_max
)
1252 goto memblock_resized
;
1258 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1260 unsigned long paddr
;
1264 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1269 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mlgroup
),
1274 mlgroups
= __va(paddr
);
1275 num_mlgroups
= count
;
1278 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1279 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1284 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1286 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1288 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1291 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1292 "match[%llx] mask[%llx]\n",
1293 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1299 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1301 unsigned long paddr
;
1305 mdesc_for_each_node_by_name(md
, node
, "mblock")
1310 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mblock
),
1315 mblocks
= __va(paddr
);
1316 num_mblocks
= count
;
1319 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1320 struct mdesc_mblock
*m
= &mblocks
[count
++];
1323 val
= mdesc_get_property(md
, node
, "base", NULL
);
1325 val
= mdesc_get_property(md
, node
, "size", NULL
);
1327 val
= mdesc_get_property(md
, node
,
1328 "address-congruence-offset", NULL
);
1330 /* The address-congruence-offset property is optional.
1331 * Explicity zero it be identifty this.
1338 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1339 count
- 1, m
->base
, m
->size
, m
->offset
);
1345 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1346 u64 grp
, cpumask_t
*mask
)
1350 cpumask_clear(mask
);
1352 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1353 u64 target
= mdesc_arc_target(md
, arc
);
1354 const char *name
= mdesc_node_name(md
, target
);
1357 if (strcmp(name
, "cpu"))
1359 id
= mdesc_get_property(md
, target
, "id", NULL
);
1360 if (*id
< nr_cpu_ids
)
1361 cpumask_set_cpu(*id
, mask
);
1365 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1369 for (i
= 0; i
< num_mlgroups
; i
++) {
1370 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1371 if (m
->node
== node
)
1377 int __node_distance(int from
, int to
)
1379 if ((from
>= MAX_NUMNODES
) || (to
>= MAX_NUMNODES
)) {
1380 pr_warn("Returning default NUMA distance value for %d->%d\n",
1382 return (from
== to
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1384 return numa_latency
[from
][to
];
1386 EXPORT_SYMBOL(__node_distance
);
1388 static int __init
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup
*grp
)
1392 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1393 struct node_mem_mask
*n
= &node_masks
[i
];
1395 if ((grp
->mask
== n
->mask
) && (grp
->match
== n
->match
))
1401 static void __init
find_numa_latencies_for_group(struct mdesc_handle
*md
,
1406 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1408 u64 target
= mdesc_arc_target(md
, arc
);
1409 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1413 tnode
= find_best_numa_node_for_mlgroup(m
);
1414 if (tnode
== MAX_NUMNODES
)
1416 numa_latency
[index
][tnode
] = m
->latency
;
1420 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1423 struct mdesc_mlgroup
*candidate
= NULL
;
1424 u64 arc
, best_latency
= ~(u64
)0;
1425 struct node_mem_mask
*n
;
1427 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1428 u64 target
= mdesc_arc_target(md
, arc
);
1429 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1432 if (m
->latency
< best_latency
) {
1434 best_latency
= m
->latency
;
1440 if (num_node_masks
!= index
) {
1441 printk(KERN_ERR
"Inconsistent NUMA state, "
1442 "index[%d] != num_node_masks[%d]\n",
1443 index
, num_node_masks
);
1447 n
= &node_masks
[num_node_masks
++];
1449 n
->mask
= candidate
->mask
;
1450 n
->match
= candidate
->match
;
1452 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1453 index
, n
->mask
, n
->match
, candidate
->latency
);
1458 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1464 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1466 for_each_cpu(cpu
, &mask
)
1467 numa_cpu_lookup_table
[cpu
] = index
;
1468 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1471 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1472 for_each_cpu(cpu
, &mask
)
1477 return numa_attach_mlgroup(md
, grp
, index
);
1480 static int __init
numa_parse_mdesc(void)
1482 struct mdesc_handle
*md
= mdesc_grab();
1483 int i
, j
, err
, count
;
1486 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1487 if (node
== MDESC_NODE_NULL
) {
1492 err
= grab_mblocks(md
);
1496 err
= grab_mlgroups(md
);
1501 mdesc_for_each_node_by_name(md
, node
, "group") {
1502 err
= numa_parse_mdesc_group(md
, node
, count
);
1509 mdesc_for_each_node_by_name(md
, node
, "group") {
1510 find_numa_latencies_for_group(md
, node
, count
);
1514 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1515 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1516 u64 self_latency
= numa_latency
[i
][i
];
1518 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
1519 numa_latency
[i
][j
] =
1520 (numa_latency
[i
][j
] * LOCAL_DISTANCE
) /
1527 for (i
= 0; i
< num_node_masks
; i
++) {
1528 allocate_node_data(i
);
1538 static int __init
numa_parse_jbus(void)
1540 unsigned long cpu
, index
;
1542 /* NUMA node id is encoded in bits 36 and higher, and there is
1543 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1546 for_each_present_cpu(cpu
) {
1547 numa_cpu_lookup_table
[cpu
] = index
;
1548 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1549 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1550 node_masks
[index
].match
= cpu
<< 36UL;
1554 num_node_masks
= index
;
1558 for (index
= 0; index
< num_node_masks
; index
++) {
1559 allocate_node_data(index
);
1560 node_set_online(index
);
1566 static int __init
numa_parse_sun4u(void)
1568 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1571 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1572 if ((ver
>> 32UL) == __JALAPENO_ID
||
1573 (ver
>> 32UL) == __SERRANO_ID
)
1574 return numa_parse_jbus();
1579 static int __init
bootmem_init_numa(void)
1584 numadbg("bootmem_init_numa()\n");
1586 /* Some sane defaults for numa latency values */
1587 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1588 for (j
= 0; j
< MAX_NUMNODES
; j
++)
1589 numa_latency
[i
][j
] = (i
== j
) ?
1590 LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1594 if (tlb_type
== hypervisor
)
1595 err
= numa_parse_mdesc();
1597 err
= numa_parse_sun4u();
1604 static int bootmem_init_numa(void)
1611 static void __init
bootmem_init_nonnuma(void)
1613 unsigned long top_of_ram
= memblock_end_of_DRAM();
1614 unsigned long total_ram
= memblock_phys_mem_size();
1616 numadbg("bootmem_init_nonnuma()\n");
1618 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1619 top_of_ram
, total_ram
);
1620 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1621 (top_of_ram
- total_ram
) >> 20);
1623 init_node_masks_nonnuma();
1624 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, &memblock
.memory
, 0);
1625 allocate_node_data(0);
1629 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1631 unsigned long end_pfn
;
1633 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1634 max_pfn
= max_low_pfn
= end_pfn
;
1635 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1637 if (bootmem_init_numa() < 0)
1638 bootmem_init_nonnuma();
1640 /* Dump memblock with node info. */
1641 memblock_dump_all();
1643 /* XXX cpu notifier XXX */
1645 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1651 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1652 static int pall_ents __initdata
;
1654 static unsigned long max_phys_bits
= 40;
1656 bool kern_addr_valid(unsigned long addr
)
1663 if ((long)addr
< 0L) {
1664 unsigned long pa
= __pa(addr
);
1666 if ((pa
>> max_phys_bits
) != 0UL)
1669 return pfn_valid(pa
>> PAGE_SHIFT
);
1672 if (addr
>= (unsigned long) KERNBASE
&&
1673 addr
< (unsigned long)&_end
)
1676 pgd
= pgd_offset_k(addr
);
1680 pud
= pud_offset(pgd
, addr
);
1684 if (pud_large(*pud
))
1685 return pfn_valid(pud_pfn(*pud
));
1687 pmd
= pmd_offset(pud
, addr
);
1691 if (pmd_large(*pmd
))
1692 return pfn_valid(pmd_pfn(*pmd
));
1694 pte
= pte_offset_kernel(pmd
, addr
);
1698 return pfn_valid(pte_pfn(*pte
));
1700 EXPORT_SYMBOL(kern_addr_valid
);
1702 static unsigned long __ref
kernel_map_hugepud(unsigned long vstart
,
1706 const unsigned long mask16gb
= (1UL << 34) - 1UL;
1707 u64 pte_val
= vstart
;
1709 /* Each PUD is 8GB */
1710 if ((vstart
& mask16gb
) ||
1711 (vend
- vstart
<= mask16gb
)) {
1712 pte_val
^= kern_linear_pte_xor
[2];
1713 pud_val(*pud
) = pte_val
| _PAGE_PUD_HUGE
;
1715 return vstart
+ PUD_SIZE
;
1718 pte_val
^= kern_linear_pte_xor
[3];
1719 pte_val
|= _PAGE_PUD_HUGE
;
1721 vend
= vstart
+ mask16gb
+ 1UL;
1722 while (vstart
< vend
) {
1723 pud_val(*pud
) = pte_val
;
1725 pte_val
+= PUD_SIZE
;
1732 static bool kernel_can_map_hugepud(unsigned long vstart
, unsigned long vend
,
1735 if (guard
&& !(vstart
& ~PUD_MASK
) && (vend
- vstart
) >= PUD_SIZE
)
1741 static unsigned long __ref
kernel_map_hugepmd(unsigned long vstart
,
1745 const unsigned long mask256mb
= (1UL << 28) - 1UL;
1746 const unsigned long mask2gb
= (1UL << 31) - 1UL;
1747 u64 pte_val
= vstart
;
1749 /* Each PMD is 8MB */
1750 if ((vstart
& mask256mb
) ||
1751 (vend
- vstart
<= mask256mb
)) {
1752 pte_val
^= kern_linear_pte_xor
[0];
1753 pmd_val(*pmd
) = pte_val
| _PAGE_PMD_HUGE
;
1755 return vstart
+ PMD_SIZE
;
1758 if ((vstart
& mask2gb
) ||
1759 (vend
- vstart
<= mask2gb
)) {
1760 pte_val
^= kern_linear_pte_xor
[1];
1761 pte_val
|= _PAGE_PMD_HUGE
;
1762 vend
= vstart
+ mask256mb
+ 1UL;
1764 pte_val
^= kern_linear_pte_xor
[2];
1765 pte_val
|= _PAGE_PMD_HUGE
;
1766 vend
= vstart
+ mask2gb
+ 1UL;
1769 while (vstart
< vend
) {
1770 pmd_val(*pmd
) = pte_val
;
1772 pte_val
+= PMD_SIZE
;
1780 static bool kernel_can_map_hugepmd(unsigned long vstart
, unsigned long vend
,
1783 if (guard
&& !(vstart
& ~PMD_MASK
) && (vend
- vstart
) >= PMD_SIZE
)
1789 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1790 unsigned long pend
, pgprot_t prot
,
1793 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1794 unsigned long vend
= PAGE_OFFSET
+ pend
;
1795 unsigned long alloc_bytes
= 0UL;
1797 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1798 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1803 while (vstart
< vend
) {
1804 unsigned long this_end
, paddr
= __pa(vstart
);
1805 pgd_t
*pgd
= pgd_offset_k(vstart
);
1810 if (pgd_none(*pgd
)) {
1813 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1814 alloc_bytes
+= PAGE_SIZE
;
1815 pgd_populate(&init_mm
, pgd
, new);
1817 pud
= pud_offset(pgd
, vstart
);
1818 if (pud_none(*pud
)) {
1821 if (kernel_can_map_hugepud(vstart
, vend
, use_huge
)) {
1822 vstart
= kernel_map_hugepud(vstart
, vend
, pud
);
1825 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1826 alloc_bytes
+= PAGE_SIZE
;
1827 pud_populate(&init_mm
, pud
, new);
1830 pmd
= pmd_offset(pud
, vstart
);
1831 if (pmd_none(*pmd
)) {
1834 if (kernel_can_map_hugepmd(vstart
, vend
, use_huge
)) {
1835 vstart
= kernel_map_hugepmd(vstart
, vend
, pmd
);
1838 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1839 alloc_bytes
+= PAGE_SIZE
;
1840 pmd_populate_kernel(&init_mm
, pmd
, new);
1843 pte
= pte_offset_kernel(pmd
, vstart
);
1844 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1845 if (this_end
> vend
)
1848 while (vstart
< this_end
) {
1849 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1851 vstart
+= PAGE_SIZE
;
1860 static void __init
flush_all_kernel_tsbs(void)
1864 for (i
= 0; i
< KERNEL_TSB_NENTRIES
; i
++) {
1865 struct tsb
*ent
= &swapper_tsb
[i
];
1867 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1869 #ifndef CONFIG_DEBUG_PAGEALLOC
1870 for (i
= 0; i
< KERNEL_TSB4M_NENTRIES
; i
++) {
1871 struct tsb
*ent
= &swapper_4m_tsb
[i
];
1873 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1878 extern unsigned int kvmap_linear_patch
[1];
1880 static void __init
kernel_physical_mapping_init(void)
1882 unsigned long i
, mem_alloced
= 0UL;
1883 bool use_huge
= true;
1885 #ifdef CONFIG_DEBUG_PAGEALLOC
1888 for (i
= 0; i
< pall_ents
; i
++) {
1889 unsigned long phys_start
, phys_end
;
1891 phys_start
= pall
[i
].phys_addr
;
1892 phys_end
= phys_start
+ pall
[i
].reg_size
;
1894 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1895 PAGE_KERNEL
, use_huge
);
1898 printk("Allocated %ld bytes for kernel page tables.\n",
1901 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1902 flushi(&kvmap_linear_patch
[0]);
1904 flush_all_kernel_tsbs();
1909 #ifdef CONFIG_DEBUG_PAGEALLOC
1910 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1912 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1913 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1915 kernel_map_range(phys_start
, phys_end
,
1916 (enable
? PAGE_KERNEL
: __pgprot(0)), false);
1918 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1919 PAGE_OFFSET
+ phys_end
);
1921 /* we should perform an IPI and flush all tlbs,
1922 * but that can deadlock->flush only current cpu.
1924 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1925 PAGE_OFFSET
+ phys_end
);
1929 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1933 for (i
= 0; i
< pavail_ents
; i
++) {
1934 if (pavail
[i
].reg_size
>= size
)
1935 return pavail
[i
].phys_addr
;
1941 unsigned long PAGE_OFFSET
;
1942 EXPORT_SYMBOL(PAGE_OFFSET
);
1944 unsigned long VMALLOC_END
= 0x0000010000000000UL
;
1945 EXPORT_SYMBOL(VMALLOC_END
);
1947 unsigned long sparc64_va_hole_top
= 0xfffff80000000000UL
;
1948 unsigned long sparc64_va_hole_bottom
= 0x0000080000000000UL
;
1950 static void __init
setup_page_offset(void)
1952 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1953 /* Cheetah/Panther support a full 64-bit virtual
1954 * address, so we can use all that our page tables
1957 sparc64_va_hole_top
= 0xfff0000000000000UL
;
1958 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
1961 } else if (tlb_type
== hypervisor
) {
1962 switch (sun4v_chip_type
) {
1963 case SUN4V_CHIP_NIAGARA1
:
1964 case SUN4V_CHIP_NIAGARA2
:
1965 /* T1 and T2 support 48-bit virtual addresses. */
1966 sparc64_va_hole_top
= 0xffff800000000000UL
;
1967 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1971 case SUN4V_CHIP_NIAGARA3
:
1972 /* T3 supports 48-bit virtual addresses. */
1973 sparc64_va_hole_top
= 0xffff800000000000UL
;
1974 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1978 case SUN4V_CHIP_NIAGARA4
:
1979 case SUN4V_CHIP_NIAGARA5
:
1980 case SUN4V_CHIP_SPARC64X
:
1981 case SUN4V_CHIP_SPARC_M6
:
1982 /* T4 and later support 52-bit virtual addresses. */
1983 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1984 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1987 case SUN4V_CHIP_SPARC_M7
:
1988 case SUN4V_CHIP_SPARC_SN
:
1989 /* M7 and later support 52-bit virtual addresses. */
1990 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1991 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1994 case SUN4V_CHIP_SPARC_M8
:
1996 /* M8 and later support 54-bit virtual addresses.
1997 * However, restricting M8 and above VA bits to 53
1998 * as 4-level page table cannot support more than
2001 sparc64_va_hole_top
= 0xfff0000000000000UL
;
2002 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
2008 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
2009 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2014 PAGE_OFFSET
= sparc64_va_hole_top
;
2015 VMALLOC_END
= ((sparc64_va_hole_bottom
>> 1) +
2016 (sparc64_va_hole_bottom
>> 2));
2018 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2019 PAGE_OFFSET
, max_phys_bits
);
2020 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2021 VMALLOC_START
, VMALLOC_END
);
2022 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2023 VMEMMAP_BASE
, VMEMMAP_BASE
<< 1);
2026 static void __init
tsb_phys_patch(void)
2028 struct tsb_ldquad_phys_patch_entry
*pquad
;
2029 struct tsb_phys_patch_entry
*p
;
2031 pquad
= &__tsb_ldquad_phys_patch
;
2032 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
2033 unsigned long addr
= pquad
->addr
;
2035 if (tlb_type
== hypervisor
)
2036 *(unsigned int *) addr
= pquad
->sun4v_insn
;
2038 *(unsigned int *) addr
= pquad
->sun4u_insn
;
2040 __asm__
__volatile__("flush %0"
2047 p
= &__tsb_phys_patch
;
2048 while (p
< &__tsb_phys_patch_end
) {
2049 unsigned long addr
= p
->addr
;
2051 *(unsigned int *) addr
= p
->insn
;
2053 __asm__
__volatile__("flush %0"
2061 /* Don't mark as init, we give this to the Hypervisor. */
2062 #ifndef CONFIG_DEBUG_PAGEALLOC
2063 #define NUM_KTSB_DESCR 2
2065 #define NUM_KTSB_DESCR 1
2067 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
2069 /* The swapper TSBs are loaded with a base sequence of:
2071 * sethi %uhi(SYMBOL), REG1
2072 * sethi %hi(SYMBOL), REG2
2073 * or REG1, %ulo(SYMBOL), REG1
2074 * or REG2, %lo(SYMBOL), REG2
2075 * sllx REG1, 32, REG1
2076 * or REG1, REG2, REG1
2078 * When we use physical addressing for the TSB accesses, we patch the
2079 * first four instructions in the above sequence.
2082 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
2084 unsigned long high_bits
, low_bits
;
2086 high_bits
= (pa
>> 32) & 0xffffffff;
2087 low_bits
= (pa
>> 0) & 0xffffffff;
2089 while (start
< end
) {
2090 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
2092 ia
[0] = (ia
[0] & ~0x3fffff) | (high_bits
>> 10);
2093 __asm__
__volatile__("flush %0" : : "r" (ia
));
2095 ia
[1] = (ia
[1] & ~0x3fffff) | (low_bits
>> 10);
2096 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
2098 ia
[2] = (ia
[2] & ~0x1fff) | (high_bits
& 0x3ff);
2099 __asm__
__volatile__("flush %0" : : "r" (ia
+ 2));
2101 ia
[3] = (ia
[3] & ~0x1fff) | (low_bits
& 0x3ff);
2102 __asm__
__volatile__("flush %0" : : "r" (ia
+ 3));
2108 static void ktsb_phys_patch(void)
2110 extern unsigned int __swapper_tsb_phys_patch
;
2111 extern unsigned int __swapper_tsb_phys_patch_end
;
2112 unsigned long ktsb_pa
;
2114 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2115 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
2116 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
2117 #ifndef CONFIG_DEBUG_PAGEALLOC
2119 extern unsigned int __swapper_4m_tsb_phys_patch
;
2120 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
2121 ktsb_pa
= (kern_base
+
2122 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2123 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
2124 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
2129 static void __init
sun4v_ktsb_init(void)
2131 unsigned long ktsb_pa
;
2133 /* First KTSB for PAGE_SIZE mappings. */
2134 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2136 switch (PAGE_SIZE
) {
2139 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
2140 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
2144 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
2145 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
2149 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
2150 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
2153 case 4 * 1024 * 1024:
2154 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2155 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
2159 ktsb_descr
[0].assoc
= 1;
2160 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
2161 ktsb_descr
[0].ctx_idx
= 0;
2162 ktsb_descr
[0].tsb_base
= ktsb_pa
;
2163 ktsb_descr
[0].resv
= 0;
2165 #ifndef CONFIG_DEBUG_PAGEALLOC
2166 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2167 ktsb_pa
= (kern_base
+
2168 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2170 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2171 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
2172 HV_PGSZ_MASK_256MB
|
2174 HV_PGSZ_MASK_16GB
) &
2176 ktsb_descr
[1].assoc
= 1;
2177 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
2178 ktsb_descr
[1].ctx_idx
= 0;
2179 ktsb_descr
[1].tsb_base
= ktsb_pa
;
2180 ktsb_descr
[1].resv
= 0;
2184 void sun4v_ktsb_register(void)
2186 unsigned long pa
, ret
;
2188 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
2190 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
2192 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2193 "errors with %lx\n", pa
, ret
);
2198 static void __init
sun4u_linear_pte_xor_finalize(void)
2200 #ifndef CONFIG_DEBUG_PAGEALLOC
2201 /* This is where we would add Panther support for
2202 * 32MB and 256MB pages.
2207 static void __init
sun4v_linear_pte_xor_finalize(void)
2209 unsigned long pagecv_flag
;
2211 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2212 * enables MCD error. Do not set bit 9 on M7 processor.
2214 switch (sun4v_chip_type
) {
2215 case SUN4V_CHIP_SPARC_M7
:
2216 case SUN4V_CHIP_SPARC_M8
:
2217 case SUN4V_CHIP_SPARC_SN
:
2221 pagecv_flag
= _PAGE_CV_4V
;
2224 #ifndef CONFIG_DEBUG_PAGEALLOC
2225 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
2226 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2228 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| pagecv_flag
|
2229 _PAGE_P_4V
| _PAGE_W_4V
);
2231 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2234 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
2235 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
2237 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| pagecv_flag
|
2238 _PAGE_P_4V
| _PAGE_W_4V
);
2240 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
2243 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
2244 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
2246 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| pagecv_flag
|
2247 _PAGE_P_4V
| _PAGE_W_4V
);
2249 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
2254 /* paging_init() sets up the page tables */
2256 static unsigned long last_valid_pfn
;
2258 static void sun4u_pgprot_init(void);
2259 static void sun4v_pgprot_init(void);
2261 static phys_addr_t __init
available_memory(void)
2263 phys_addr_t available
= 0ULL;
2264 phys_addr_t pa_start
, pa_end
;
2267 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &pa_start
,
2269 available
= available
+ (pa_end
- pa_start
);
2274 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2275 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2276 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2277 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2278 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2279 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2281 /* We need to exclude reserved regions. This exclusion will include
2282 * vmlinux and initrd. To be more precise the initrd size could be used to
2283 * compute a new lower limit because it is freed later during initialization.
2285 static void __init
reduce_memory(phys_addr_t limit_ram
)
2287 phys_addr_t avail_ram
= available_memory();
2288 phys_addr_t pa_start
, pa_end
;
2291 if (limit_ram
>= avail_ram
)
2294 for_each_free_mem_range(i
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &pa_start
,
2296 phys_addr_t region_size
= pa_end
- pa_start
;
2297 phys_addr_t clip_start
= pa_start
;
2299 avail_ram
= avail_ram
- region_size
;
2300 /* Are we consuming too much? */
2301 if (avail_ram
< limit_ram
) {
2302 phys_addr_t give_back
= limit_ram
- avail_ram
;
2304 region_size
= region_size
- give_back
;
2305 clip_start
= clip_start
+ give_back
;
2308 memblock_remove(clip_start
, region_size
);
2310 if (avail_ram
<= limit_ram
)
2316 void __init
paging_init(void)
2318 unsigned long end_pfn
, shift
, phys_base
;
2319 unsigned long real_end
, i
;
2321 setup_page_offset();
2323 /* These build time checkes make sure that the dcache_dirty_cpu()
2324 * page->flags usage will work.
2326 * When a page gets marked as dcache-dirty, we store the
2327 * cpu number starting at bit 32 in the page->flags. Also,
2328 * functions like clear_dcache_dirty_cpu use the cpu mask
2329 * in 13-bit signed-immediate instruction fields.
2333 * Page flags must not reach into upper 32 bits that are used
2334 * for the cpu number
2336 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
2339 * The bit fields placed in the high range must not reach below
2340 * the 32 bit boundary. Otherwise we cannot place the cpu field
2341 * at the 32 bit boundary.
2343 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
2344 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
2346 BUILD_BUG_ON(NR_CPUS
> 4096);
2348 kern_base
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
2349 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
2351 /* Invalidate both kernel TSBs. */
2352 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
2353 #ifndef CONFIG_DEBUG_PAGEALLOC
2354 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2357 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2358 * bit on M7 processor. This is a conflicting usage of the same
2359 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2360 * Detection error on all pages and this will lead to problems
2361 * later. Kernel does not run with MCD enabled and hence rest
2362 * of the required steps to fully configure memory corruption
2363 * detection are not taken. We need to ensure TTE.mcde is not
2364 * set on M7 processor. Compute the value of cacheability
2365 * flag for use later taking this into consideration.
2367 switch (sun4v_chip_type
) {
2368 case SUN4V_CHIP_SPARC_M7
:
2369 case SUN4V_CHIP_SPARC_M8
:
2370 case SUN4V_CHIP_SPARC_SN
:
2371 page_cache4v_flag
= _PAGE_CP_4V
;
2374 page_cache4v_flag
= _PAGE_CACHE_4V
;
2378 if (tlb_type
== hypervisor
)
2379 sun4v_pgprot_init();
2381 sun4u_pgprot_init();
2383 if (tlb_type
== cheetah_plus
||
2384 tlb_type
== hypervisor
) {
2389 if (tlb_type
== hypervisor
)
2390 sun4v_patch_tlb_handlers();
2392 /* Find available physical memory...
2394 * Read it twice in order to work around a bug in openfirmware.
2395 * The call to grab this table itself can cause openfirmware to
2396 * allocate memory, which in turn can take away some space from
2397 * the list of available memory. Reading it twice makes sure
2398 * we really do get the final value.
2400 read_obp_translations();
2401 read_obp_memory("reg", &pall
[0], &pall_ents
);
2402 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2403 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2405 phys_base
= 0xffffffffffffffffUL
;
2406 for (i
= 0; i
< pavail_ents
; i
++) {
2407 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
2408 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
2411 memblock_reserve(kern_base
, kern_size
);
2413 find_ramdisk(phys_base
);
2415 if (cmdline_memory_size
)
2416 reduce_memory(cmdline_memory_size
);
2418 memblock_allow_resize();
2419 memblock_dump_all();
2421 set_bit(0, mmu_context_bmap
);
2423 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
2425 real_end
= (unsigned long)_end
;
2426 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << ILOG2_4MB
);
2427 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2428 num_kernel_image_mappings
);
2430 /* Set kernel pgd to upper alias so physical page computations
2433 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
2435 memset(swapper_pg_dir
, 0, sizeof(swapper_pg_dir
));
2437 inherit_prom_mappings();
2439 /* Ok, we can use our TLB miss and window trap handlers safely. */
2444 prom_build_devicetree();
2445 of_populate_present_mask();
2447 of_fill_in_cpu_data();
2450 if (tlb_type
== hypervisor
) {
2452 mdesc_populate_present_mask(cpu_all_mask
);
2454 mdesc_fill_in_cpu_data(cpu_all_mask
);
2456 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
2458 sun4v_linear_pte_xor_finalize();
2461 sun4v_ktsb_register();
2463 unsigned long impl
, ver
;
2465 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
2466 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
2468 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
2469 impl
= ((ver
>> 32) & 0xffff);
2470 if (impl
== PANTHER_IMPL
)
2471 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
2472 HV_PGSZ_MASK_256MB
);
2474 sun4u_linear_pte_xor_finalize();
2477 /* Flush the TLBs and the 4M TSB so that the updated linear
2478 * pte XOR settings are realized for all mappings.
2481 #ifndef CONFIG_DEBUG_PAGEALLOC
2482 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2486 /* Setup bootmem... */
2487 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2489 kernel_physical_mapping_init();
2492 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2494 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2496 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2498 free_area_init_nodes(max_zone_pfns
);
2501 printk("Booting Linux...\n");
2504 int page_in_phys_avail(unsigned long paddr
)
2510 for (i
= 0; i
< pavail_ents
; i
++) {
2511 unsigned long start
, end
;
2513 start
= pavail
[i
].phys_addr
;
2514 end
= start
+ pavail
[i
].reg_size
;
2516 if (paddr
>= start
&& paddr
< end
)
2519 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2521 #ifdef CONFIG_BLK_DEV_INITRD
2522 if (paddr
>= __pa(initrd_start
) &&
2523 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2530 static void __init
register_page_bootmem_info(void)
2532 #ifdef CONFIG_NEED_MULTIPLE_NODES
2535 for_each_online_node(i
)
2536 if (NODE_DATA(i
)->node_spanned_pages
)
2537 register_page_bootmem_info_node(NODE_DATA(i
));
2540 void __init
mem_init(void)
2542 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2547 * Must be done after boot memory is put on freelist, because here we
2548 * might set fields in deferred struct pages that have not yet been
2549 * initialized, and free_all_bootmem() initializes all the reserved
2550 * deferred pages for us.
2552 register_page_bootmem_info();
2555 * Set up the zero page, mark it reserved, so that page count
2556 * is not manipulated when freeing the page from user ptes.
2558 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2559 if (mem_map_zero
== NULL
) {
2560 prom_printf("paging_init: Cannot alloc zero page.\n");
2563 mark_page_reserved(mem_map_zero
);
2565 mem_init_print_info(NULL
);
2567 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2568 cheetah_ecache_flush_init();
2571 void free_initmem(void)
2573 unsigned long addr
, initend
;
2576 /* If the physical memory maps were trimmed by kernel command
2577 * line options, don't even try freeing this initmem stuff up.
2578 * The kernel image could have been in the trimmed out region
2579 * and if so the freeing below will free invalid page structs.
2581 if (cmdline_memory_size
)
2585 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2587 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2588 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2589 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2593 ((unsigned long) __va(kern_base
)) -
2594 ((unsigned long) KERNBASE
));
2595 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2598 free_reserved_page(virt_to_page(page
));
2602 #ifdef CONFIG_BLK_DEV_INITRD
2603 void free_initrd_mem(unsigned long start
, unsigned long end
)
2605 free_reserved_area((void *)start
, (void *)end
, POISON_FREE_INITMEM
,
2610 pgprot_t PAGE_KERNEL __read_mostly
;
2611 EXPORT_SYMBOL(PAGE_KERNEL
);
2613 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2614 pgprot_t PAGE_COPY __read_mostly
;
2616 pgprot_t PAGE_SHARED __read_mostly
;
2617 EXPORT_SYMBOL(PAGE_SHARED
);
2619 unsigned long pg_iobits __read_mostly
;
2621 unsigned long _PAGE_IE __read_mostly
;
2622 EXPORT_SYMBOL(_PAGE_IE
);
2624 unsigned long _PAGE_E __read_mostly
;
2625 EXPORT_SYMBOL(_PAGE_E
);
2627 unsigned long _PAGE_CACHE __read_mostly
;
2628 EXPORT_SYMBOL(_PAGE_CACHE
);
2630 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2631 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2634 unsigned long pte_base
;
2636 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2637 _PAGE_CP_4U
| _PAGE_CV_4U
|
2638 _PAGE_P_4U
| _PAGE_W_4U
);
2639 if (tlb_type
== hypervisor
)
2640 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2641 page_cache4v_flag
| _PAGE_P_4V
| _PAGE_W_4V
);
2643 pte_base
|= _PAGE_PMD_HUGE
;
2645 vstart
= vstart
& PMD_MASK
;
2646 vend
= ALIGN(vend
, PMD_SIZE
);
2647 for (; vstart
< vend
; vstart
+= PMD_SIZE
) {
2648 pgd_t
*pgd
= pgd_offset_k(vstart
);
2653 if (pgd_none(*pgd
)) {
2654 pud_t
*new = vmemmap_alloc_block(PAGE_SIZE
, node
);
2658 pgd_populate(&init_mm
, pgd
, new);
2661 pud
= pud_offset(pgd
, vstart
);
2662 if (pud_none(*pud
)) {
2663 pmd_t
*new = vmemmap_alloc_block(PAGE_SIZE
, node
);
2667 pud_populate(&init_mm
, pud
, new);
2670 pmd
= pmd_offset(pud
, vstart
);
2672 pte
= pmd_val(*pmd
);
2673 if (!(pte
& _PAGE_VALID
)) {
2674 void *block
= vmemmap_alloc_block(PMD_SIZE
, node
);
2679 pmd_val(*pmd
) = pte_base
| __pa(block
);
2686 void vmemmap_free(unsigned long start
, unsigned long end
)
2689 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2691 static void prot_init_common(unsigned long page_none
,
2692 unsigned long page_shared
,
2693 unsigned long page_copy
,
2694 unsigned long page_readonly
,
2695 unsigned long page_exec_bit
)
2697 PAGE_COPY
= __pgprot(page_copy
);
2698 PAGE_SHARED
= __pgprot(page_shared
);
2700 protection_map
[0x0] = __pgprot(page_none
);
2701 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2702 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2703 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2704 protection_map
[0x4] = __pgprot(page_readonly
);
2705 protection_map
[0x5] = __pgprot(page_readonly
);
2706 protection_map
[0x6] = __pgprot(page_copy
);
2707 protection_map
[0x7] = __pgprot(page_copy
);
2708 protection_map
[0x8] = __pgprot(page_none
);
2709 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2710 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2711 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2712 protection_map
[0xc] = __pgprot(page_readonly
);
2713 protection_map
[0xd] = __pgprot(page_readonly
);
2714 protection_map
[0xe] = __pgprot(page_shared
);
2715 protection_map
[0xf] = __pgprot(page_shared
);
2718 static void __init
sun4u_pgprot_init(void)
2720 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2721 unsigned long page_exec_bit
;
2724 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2725 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2726 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2728 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2729 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2730 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2731 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2733 _PAGE_IE
= _PAGE_IE_4U
;
2734 _PAGE_E
= _PAGE_E_4U
;
2735 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2737 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2738 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2740 #ifdef CONFIG_DEBUG_PAGEALLOC
2741 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2743 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2746 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2747 _PAGE_P_4U
| _PAGE_W_4U
);
2749 for (i
= 1; i
< 4; i
++)
2750 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2752 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2753 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2754 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2757 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2758 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2759 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2760 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2761 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2762 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2763 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2765 page_exec_bit
= _PAGE_EXEC_4U
;
2767 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2771 static void __init
sun4v_pgprot_init(void)
2773 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2774 unsigned long page_exec_bit
;
2777 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2778 page_cache4v_flag
| _PAGE_P_4V
|
2779 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2781 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2783 _PAGE_IE
= _PAGE_IE_4V
;
2784 _PAGE_E
= _PAGE_E_4V
;
2785 _PAGE_CACHE
= page_cache4v_flag
;
2787 #ifdef CONFIG_DEBUG_PAGEALLOC
2788 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2790 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2793 kern_linear_pte_xor
[0] |= (page_cache4v_flag
| _PAGE_P_4V
|
2796 for (i
= 1; i
< 4; i
++)
2797 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2799 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2800 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2802 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2803 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2804 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2805 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2807 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| page_cache4v_flag
;
2808 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2809 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2810 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2811 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2812 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2813 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2815 page_exec_bit
= _PAGE_EXEC_4V
;
2817 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2821 unsigned long pte_sz_bits(unsigned long sz
)
2823 if (tlb_type
== hypervisor
) {
2827 return _PAGE_SZ8K_4V
;
2829 return _PAGE_SZ64K_4V
;
2831 return _PAGE_SZ512K_4V
;
2832 case 4 * 1024 * 1024:
2833 return _PAGE_SZ4MB_4V
;
2839 return _PAGE_SZ8K_4U
;
2841 return _PAGE_SZ64K_4U
;
2843 return _PAGE_SZ512K_4U
;
2844 case 4 * 1024 * 1024:
2845 return _PAGE_SZ4MB_4U
;
2850 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2854 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2855 pte_val(pte
) |= (((unsigned long)space
) << 32);
2856 pte_val(pte
) |= pte_sz_bits(page_size
);
2861 static unsigned long kern_large_tte(unsigned long paddr
)
2865 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2866 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2867 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2868 if (tlb_type
== hypervisor
)
2869 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2870 page_cache4v_flag
| _PAGE_P_4V
|
2871 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2876 /* If not locked, zap it. */
2877 void __flush_tlb_all(void)
2879 unsigned long pstate
;
2882 __asm__
__volatile__("flushw\n\t"
2883 "rdpr %%pstate, %0\n\t"
2884 "wrpr %0, %1, %%pstate"
2887 if (tlb_type
== hypervisor
) {
2888 sun4v_mmu_demap_all();
2889 } else if (tlb_type
== spitfire
) {
2890 for (i
= 0; i
< 64; i
++) {
2891 /* Spitfire Errata #32 workaround */
2892 /* NOTE: Always runs on spitfire, so no
2893 * cheetah+ page size encodings.
2895 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2899 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2901 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2902 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2905 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2906 spitfire_put_dtlb_data(i
, 0x0UL
);
2909 /* Spitfire Errata #32 workaround */
2910 /* NOTE: Always runs on spitfire, so no
2911 * cheetah+ page size encodings.
2913 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2917 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2919 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2920 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2923 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2924 spitfire_put_itlb_data(i
, 0x0UL
);
2927 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2928 cheetah_flush_dtlb_all();
2929 cheetah_flush_itlb_all();
2931 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2935 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
,
2936 unsigned long address
)
2938 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2942 pte
= (pte_t
*) page_address(page
);
2947 pgtable_t
pte_alloc_one(struct mm_struct
*mm
,
2948 unsigned long address
)
2950 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2953 if (!pgtable_page_ctor(page
)) {
2954 free_hot_cold_page(page
, 0);
2957 return (pte_t
*) page_address(page
);
2960 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2962 free_page((unsigned long)pte
);
2965 static void __pte_free(pgtable_t pte
)
2967 struct page
*page
= virt_to_page(pte
);
2969 pgtable_page_dtor(page
);
2973 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2978 void pgtable_free(void *table
, bool is_page
)
2983 kmem_cache_free(pgtable_cache
, table
);
2986 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2987 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2990 unsigned long pte
, flags
;
2991 struct mm_struct
*mm
;
2994 if (!pmd_large(entry
) || !pmd_young(entry
))
2997 pte
= pmd_val(entry
);
2999 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
3000 if (!(pte
& _PAGE_VALID
))
3003 /* We are fabricating 8MB pages using 4MB real hw pages. */
3004 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
3008 spin_lock_irqsave(&mm
->context
.lock
, flags
);
3010 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
3011 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
3014 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
3016 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3018 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
3019 static void context_reload(void *__data
)
3021 struct mm_struct
*mm
= __data
;
3023 if (mm
== current
->mm
)
3024 load_secondary_context(mm
);
3027 void hugetlb_setup(struct pt_regs
*regs
)
3029 struct mm_struct
*mm
= current
->mm
;
3030 struct tsb_config
*tp
;
3032 if (faulthandler_disabled() || !mm
) {
3033 const struct exception_table_entry
*entry
;
3035 entry
= search_exception_tables(regs
->tpc
);
3037 regs
->tpc
= entry
->fixup
;
3038 regs
->tnpc
= regs
->tpc
+ 4;
3041 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3042 die_if_kernel("HugeTSB in atomic", regs
);
3045 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
3046 if (likely(tp
->tsb
== NULL
))
3047 tsb_grow(mm
, MM_TSB_HUGE
, 0);
3049 tsb_context_switch(mm
);
3052 /* On UltraSPARC-III+ and later, configure the second half of
3053 * the Data-TLB for huge pages.
3055 if (tlb_type
== cheetah_plus
) {
3056 bool need_context_reload
= false;
3059 spin_lock_irq(&ctx_alloc_lock
);
3060 ctx
= mm
->context
.sparc64_ctx_val
;
3061 ctx
&= ~CTX_PGSZ_MASK
;
3062 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
3063 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
3065 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
3066 /* When changing the page size fields, we
3067 * must perform a context flush so that no
3068 * stale entries match. This flush must
3069 * occur with the original context register
3072 do_flush_tlb_mm(mm
);
3074 /* Reload the context register of all processors
3075 * also executing in this address space.
3077 mm
->context
.sparc64_ctx_val
= ctx
;
3078 need_context_reload
= true;
3080 spin_unlock_irq(&ctx_alloc_lock
);
3082 if (need_context_reload
)
3083 on_each_cpu(context_reload
, mm
, 0);
3088 static struct resource code_resource
= {
3089 .name
= "Kernel code",
3090 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3093 static struct resource data_resource
= {
3094 .name
= "Kernel data",
3095 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3098 static struct resource bss_resource
= {
3099 .name
= "Kernel bss",
3100 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3103 static inline resource_size_t
compute_kern_paddr(void *addr
)
3105 return (resource_size_t
) (addr
- KERNBASE
+ kern_base
);
3108 static void __init
kernel_lds_init(void)
3110 code_resource
.start
= compute_kern_paddr(_text
);
3111 code_resource
.end
= compute_kern_paddr(_etext
- 1);
3112 data_resource
.start
= compute_kern_paddr(_etext
);
3113 data_resource
.end
= compute_kern_paddr(_edata
- 1);
3114 bss_resource
.start
= compute_kern_paddr(__bss_start
);
3115 bss_resource
.end
= compute_kern_paddr(_end
- 1);
3118 static int __init
report_memory(void)
3121 struct resource
*res
;
3125 for (i
= 0; i
< pavail_ents
; i
++) {
3126 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
3129 pr_warn("Failed to allocate source.\n");
3133 res
->name
= "System RAM";
3134 res
->start
= pavail
[i
].phys_addr
;
3135 res
->end
= pavail
[i
].phys_addr
+ pavail
[i
].reg_size
- 1;
3136 res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
3138 if (insert_resource(&iomem_resource
, res
) < 0) {
3139 pr_warn("Resource insertion failed.\n");
3143 insert_resource(res
, &code_resource
);
3144 insert_resource(res
, &data_resource
);
3145 insert_resource(res
, &bss_resource
);
3150 arch_initcall(report_memory
);
3153 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3155 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3158 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
3160 if (start
< HI_OBP_ADDRESS
&& end
> LOW_OBP_ADDRESS
) {
3161 if (start
< LOW_OBP_ADDRESS
) {
3162 flush_tsb_kernel_range(start
, LOW_OBP_ADDRESS
);
3163 do_flush_tlb_kernel_range(start
, LOW_OBP_ADDRESS
);
3165 if (end
> HI_OBP_ADDRESS
) {
3166 flush_tsb_kernel_range(HI_OBP_ADDRESS
, end
);
3167 do_flush_tlb_kernel_range(HI_OBP_ADDRESS
, end
);
3170 flush_tsb_kernel_range(start
, end
);
3171 do_flush_tlb_kernel_range(start
, end
);