2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
38 #include <linux/smp.h>
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
65 #include <asm/x86_init.h>
66 #include <asm/pgalloc.h>
67 #include <asm/proto.h>
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
74 DECLARE_BITMAP(used_vectors
, NR_VECTORS
);
76 static inline void cond_local_irq_enable(struct pt_regs
*regs
)
78 if (regs
->flags
& X86_EFLAGS_IF
)
82 static inline void cond_local_irq_disable(struct pt_regs
*regs
)
84 if (regs
->flags
& X86_EFLAGS_IF
)
89 * In IST context, we explicitly disable preemption. This serves two
90 * purposes: it makes it much less likely that we would accidentally
91 * schedule in IST context and it will force a warning if we somehow
92 * manage to schedule by accident.
94 void ist_enter(struct pt_regs
*regs
)
96 if (user_mode(regs
)) {
97 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
100 * We might have interrupted pretty much anything. In
101 * fact, if we're a machine check, we can even interrupt
102 * NMI processing. We don't want in_nmi() to return true,
103 * but we need to notify RCU.
110 /* This code is a bit fragile. Test it. */
111 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
114 void ist_exit(struct pt_regs
*regs
)
116 preempt_enable_no_resched();
118 if (!user_mode(regs
))
123 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
124 * @regs: regs passed to the IST exception handler
126 * IST exception handlers normally cannot schedule. As a special
127 * exception, if the exception interrupted userspace code (i.e.
128 * user_mode(regs) would return true) and the exception was not
129 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
130 * begins a non-atomic section within an ist_enter()/ist_exit() region.
131 * Callers are responsible for enabling interrupts themselves inside
132 * the non-atomic section, and callers must call ist_end_non_atomic()
135 void ist_begin_non_atomic(struct pt_regs
*regs
)
137 BUG_ON(!user_mode(regs
));
140 * Sanity check: we need to be on the normal thread stack. This
141 * will catch asm bugs and any attempt to use ist_preempt_enable
144 BUG_ON(!on_thread_stack());
146 preempt_enable_no_resched();
150 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 * Ends a non-atomic section started with ist_begin_non_atomic().
154 void ist_end_non_atomic(void)
159 int is_valid_bugaddr(unsigned long addr
)
163 if (addr
< TASK_SIZE_MAX
)
166 if (probe_kernel_address((unsigned short *)addr
, ud
))
169 return ud
== INSN_UD0
|| ud
== INSN_UD2
;
172 int fixup_bug(struct pt_regs
*regs
, int trapnr
)
174 if (trapnr
!= X86_TRAP_UD
)
177 switch (report_bug(regs
->ip
, regs
)) {
178 case BUG_TRAP_TYPE_NONE
:
179 case BUG_TRAP_TYPE_BUG
:
182 case BUG_TRAP_TYPE_WARN
:
190 static nokprobe_inline
int
191 do_trap_no_signal(struct task_struct
*tsk
, int trapnr
, char *str
,
192 struct pt_regs
*regs
, long error_code
)
194 if (v8086_mode(regs
)) {
196 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
197 * On nmi (interrupt 2), do_trap should not be called.
199 if (trapnr
< X86_TRAP_UD
) {
200 if (!handle_vm86_trap((struct kernel_vm86_regs
*) regs
,
207 if (!user_mode(regs
)) {
208 if (fixup_exception(regs
, trapnr
))
211 tsk
->thread
.error_code
= error_code
;
212 tsk
->thread
.trap_nr
= trapnr
;
213 die(str
, regs
, error_code
);
219 static siginfo_t
*fill_trap_info(struct pt_regs
*regs
, int signr
, int trapnr
,
222 unsigned long siaddr
;
227 return SEND_SIG_PRIV
;
231 siaddr
= uprobe_get_trap_addr(regs
);
235 siaddr
= uprobe_get_trap_addr(regs
);
243 info
->si_signo
= signr
;
245 info
->si_code
= sicode
;
246 info
->si_addr
= (void __user
*)siaddr
;
251 do_trap(int trapnr
, int signr
, char *str
, struct pt_regs
*regs
,
252 long error_code
, siginfo_t
*info
)
254 struct task_struct
*tsk
= current
;
257 if (!do_trap_no_signal(tsk
, trapnr
, str
, regs
, error_code
))
260 * We want error_code and trap_nr set for userspace faults and
261 * kernelspace faults which result in die(), but not
262 * kernelspace faults which are fixed up. die() gives the
263 * process no chance to handle the signal and notice the
264 * kernel fault information, so that won't result in polluting
265 * the information about previously queued, but not yet
266 * delivered, faults. See also do_general_protection below.
268 tsk
->thread
.error_code
= error_code
;
269 tsk
->thread
.trap_nr
= trapnr
;
271 if (show_unhandled_signals
&& unhandled_signal(tsk
, signr
) &&
272 printk_ratelimit()) {
273 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
274 tsk
->comm
, tsk
->pid
, str
,
275 regs
->ip
, regs
->sp
, error_code
);
276 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
280 force_sig_info(signr
, info
?: SEND_SIG_PRIV
, tsk
);
282 NOKPROBE_SYMBOL(do_trap
);
284 static void do_error_trap(struct pt_regs
*regs
, long error_code
, char *str
,
285 unsigned long trapnr
, int signr
)
289 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
292 * WARN*()s end up here; fix them up before we call the
295 if (!user_mode(regs
) && fixup_bug(regs
, trapnr
))
298 if (notify_die(DIE_TRAP
, str
, regs
, error_code
, trapnr
, signr
) !=
300 cond_local_irq_enable(regs
);
301 do_trap(trapnr
, signr
, str
, regs
, error_code
,
302 fill_trap_info(regs
, signr
, trapnr
, &info
));
306 #define DO_ERROR(trapnr, signr, str, name) \
307 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
309 do_error_trap(regs, error_code, str, trapnr, signr); \
312 DO_ERROR(X86_TRAP_DE
, SIGFPE
, "divide error", divide_error
)
313 DO_ERROR(X86_TRAP_OF
, SIGSEGV
, "overflow", overflow
)
314 DO_ERROR(X86_TRAP_UD
, SIGILL
, "invalid opcode", invalid_op
)
315 DO_ERROR(X86_TRAP_OLD_MF
, SIGFPE
, "coprocessor segment overrun",coprocessor_segment_overrun
)
316 DO_ERROR(X86_TRAP_TS
, SIGSEGV
, "invalid TSS", invalid_TSS
)
317 DO_ERROR(X86_TRAP_NP
, SIGBUS
, "segment not present", segment_not_present
)
318 DO_ERROR(X86_TRAP_SS
, SIGBUS
, "stack segment", stack_segment
)
319 DO_ERROR(X86_TRAP_AC
, SIGBUS
, "alignment check", alignment_check
)
321 #ifdef CONFIG_VMAP_STACK
322 __visible
void __noreturn
handle_stack_overflow(const char *message
,
323 struct pt_regs
*regs
,
324 unsigned long fault_address
)
326 printk(KERN_EMERG
"BUG: stack guard page was hit at %p (stack is %p..%p)\n",
327 (void *)fault_address
, current
->stack
,
328 (char *)current
->stack
+ THREAD_SIZE
- 1);
329 die(message
, regs
, 0);
331 /* Be absolutely certain we don't return. */
337 /* Runs on IST stack */
338 dotraplinkage
void do_double_fault(struct pt_regs
*regs
, long error_code
)
340 static const char str
[] = "double fault";
341 struct task_struct
*tsk
= current
;
342 #ifdef CONFIG_VMAP_STACK
346 #ifdef CONFIG_X86_ESPFIX64
347 extern unsigned char native_irq_return_iret
[];
350 * If IRET takes a non-IST fault on the espfix64 stack, then we
351 * end up promoting it to a doublefault. In that case, take
352 * advantage of the fact that we're not using the normal (TSS.sp0)
353 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
354 * and then modify our own IRET frame so that, when we return,
355 * we land directly at the #GP(0) vector with the stack already
356 * set up according to its expectations.
358 * The net result is that our #GP handler will think that we
359 * entered from usermode with the bad user context.
361 * No need for ist_enter here because we don't use RCU.
363 if (((long)regs
->sp
>> P4D_SHIFT
) == ESPFIX_PGD_ENTRY
&&
364 regs
->cs
== __KERNEL_CS
&&
365 regs
->ip
== (unsigned long)native_irq_return_iret
)
367 struct pt_regs
*gpregs
= (struct pt_regs
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
370 * regs->sp points to the failing IRET frame on the
371 * ESPFIX64 stack. Copy it to the entry stack. This fills
372 * in gpregs->ss through gpregs->ip.
375 memmove(&gpregs
->ip
, (void *)regs
->sp
, 5*8);
376 gpregs
->orig_ax
= 0; /* Missing (lost) #GP error code */
379 * Adjust our frame so that we return straight to the #GP
380 * vector with the expected RSP value. This is safe because
381 * we won't enable interupts or schedule before we invoke
382 * general_protection, so nothing will clobber the stack
383 * frame we just set up.
385 regs
->ip
= (unsigned long)general_protection
;
386 regs
->sp
= (unsigned long)&gpregs
->orig_ax
;
393 notify_die(DIE_TRAP
, str
, regs
, error_code
, X86_TRAP_DF
, SIGSEGV
);
395 tsk
->thread
.error_code
= error_code
;
396 tsk
->thread
.trap_nr
= X86_TRAP_DF
;
398 #ifdef CONFIG_VMAP_STACK
400 * If we overflow the stack into a guard page, the CPU will fail
401 * to deliver #PF and will send #DF instead. Similarly, if we
402 * take any non-IST exception while too close to the bottom of
403 * the stack, the processor will get a page fault while
404 * delivering the exception and will generate a double fault.
406 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
407 * Page-Fault Exception (#PF):
409 * Processors update CR2 whenever a page fault is detected. If a
410 * second page fault occurs while an earlier page fault is being
411 * delivered, the faulting linear address of the second fault will
412 * overwrite the contents of CR2 (replacing the previous
413 * address). These updates to CR2 occur even if the page fault
414 * results in a double fault or occurs during the delivery of a
417 * The logic below has a small possibility of incorrectly diagnosing
418 * some errors as stack overflows. For example, if the IDT or GDT
419 * gets corrupted such that #GP delivery fails due to a bad descriptor
420 * causing #GP and we hit this condition while CR2 coincidentally
421 * points to the stack guard page, we'll think we overflowed the
422 * stack. Given that we're going to panic one way or another
423 * if this happens, this isn't necessarily worth fixing.
425 * If necessary, we could improve the test by only diagnosing
426 * a stack overflow if the saved RSP points within 47 bytes of
427 * the bottom of the stack: if RSP == tsk_stack + 48 and we
428 * take an exception, the stack is already aligned and there
429 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
430 * possible error code, so a stack overflow would *not* double
431 * fault. With any less space left, exception delivery could
432 * fail, and, as a practical matter, we've overflowed the
433 * stack even if the actual trigger for the double fault was
437 if ((unsigned long)task_stack_page(tsk
) - 1 - cr2
< PAGE_SIZE
)
438 handle_stack_overflow("kernel stack overflow (double-fault)", regs
, cr2
);
441 #ifdef CONFIG_DOUBLEFAULT
442 df_debug(regs
, error_code
);
445 * This is always a kernel trap and never fixable (and thus must
449 die(str
, regs
, error_code
);
453 dotraplinkage
void do_bounds(struct pt_regs
*regs
, long error_code
)
455 const struct mpx_bndcsr
*bndcsr
;
458 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
459 if (notify_die(DIE_TRAP
, "bounds", regs
, error_code
,
460 X86_TRAP_BR
, SIGSEGV
) == NOTIFY_STOP
)
462 cond_local_irq_enable(regs
);
464 if (!user_mode(regs
))
465 die("bounds", regs
, error_code
);
467 if (!cpu_feature_enabled(X86_FEATURE_MPX
)) {
468 /* The exception is not from Intel MPX */
473 * We need to look at BNDSTATUS to resolve this exception.
474 * A NULL here might mean that it is in its 'init state',
475 * which is all zeros which indicates MPX was not
476 * responsible for the exception.
478 bndcsr
= get_xsave_field_ptr(XFEATURE_MASK_BNDCSR
);
482 trace_bounds_exception_mpx(bndcsr
);
484 * The error code field of the BNDSTATUS register communicates status
485 * information of a bound range exception #BR or operation involving
488 switch (bndcsr
->bndstatus
& MPX_BNDSTA_ERROR_CODE
) {
489 case 2: /* Bound directory has invalid entry. */
490 if (mpx_handle_bd_fault())
492 break; /* Success, it was handled */
493 case 1: /* Bound violation. */
494 info
= mpx_generate_siginfo(regs
);
497 * We failed to decode the MPX instruction. Act as if
498 * the exception was not caused by MPX.
503 * Success, we decoded the instruction and retrieved
504 * an 'info' containing the address being accessed
505 * which caused the exception. This information
506 * allows and application to possibly handle the
507 * #BR exception itself.
509 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, error_code
, info
);
512 case 0: /* No exception caused by Intel MPX operations. */
515 die("bounds", regs
, error_code
);
522 * This path out is for all the cases where we could not
523 * handle the exception in some way (like allocating a
524 * table or telling userspace about it. We will also end
525 * up here if the kernel has MPX turned off at compile
528 do_trap(X86_TRAP_BR
, SIGSEGV
, "bounds", regs
, error_code
, NULL
);
532 do_general_protection(struct pt_regs
*regs
, long error_code
)
534 struct task_struct
*tsk
;
536 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
537 cond_local_irq_enable(regs
);
539 if (v8086_mode(regs
)) {
541 handle_vm86_fault((struct kernel_vm86_regs
*) regs
, error_code
);
546 if (!user_mode(regs
)) {
547 if (fixup_exception(regs
, X86_TRAP_GP
))
550 tsk
->thread
.error_code
= error_code
;
551 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
552 if (notify_die(DIE_GPF
, "general protection fault", regs
, error_code
,
553 X86_TRAP_GP
, SIGSEGV
) != NOTIFY_STOP
)
554 die("general protection fault", regs
, error_code
);
558 tsk
->thread
.error_code
= error_code
;
559 tsk
->thread
.trap_nr
= X86_TRAP_GP
;
561 if (show_unhandled_signals
&& unhandled_signal(tsk
, SIGSEGV
) &&
562 printk_ratelimit()) {
563 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
564 tsk
->comm
, task_pid_nr(tsk
),
565 regs
->ip
, regs
->sp
, error_code
);
566 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
570 force_sig_info(SIGSEGV
, SEND_SIG_PRIV
, tsk
);
572 NOKPROBE_SYMBOL(do_general_protection
);
574 dotraplinkage
void notrace
do_int3(struct pt_regs
*regs
, long error_code
)
576 #ifdef CONFIG_DYNAMIC_FTRACE
578 * ftrace must be first, everything else may cause a recursive crash.
579 * See note by declaration of modifying_ftrace_code in ftrace.c
581 if (unlikely(atomic_read(&modifying_ftrace_code
)) &&
582 ftrace_int3_handler(regs
))
585 if (poke_int3_handler(regs
))
589 * Use ist_enter despite the fact that we don't use an IST stack.
590 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
591 * mode or even during context tracking state changes.
593 * This means that we can't schedule. That's okay.
596 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
597 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
598 if (kgdb_ll_trap(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
599 SIGTRAP
) == NOTIFY_STOP
)
601 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
603 #ifdef CONFIG_KPROBES
604 if (kprobe_int3_handler(regs
))
608 if (notify_die(DIE_INT3
, "int3", regs
, error_code
, X86_TRAP_BP
,
609 SIGTRAP
) == NOTIFY_STOP
)
612 cond_local_irq_enable(regs
);
613 do_trap(X86_TRAP_BP
, SIGTRAP
, "int3", regs
, error_code
, NULL
);
614 cond_local_irq_disable(regs
);
619 NOKPROBE_SYMBOL(do_int3
);
623 * Help handler running on a per-cpu (IST or entry trampoline) stack
624 * to switch to the normal thread stack if the interrupted code was in
625 * user mode. The actual stack switch is done in entry_64.S
627 asmlinkage __visible notrace
struct pt_regs
*sync_regs(struct pt_regs
*eregs
)
629 struct pt_regs
*regs
= (struct pt_regs
*)this_cpu_read(cpu_current_top_of_stack
) - 1;
634 NOKPROBE_SYMBOL(sync_regs
);
636 struct bad_iret_stack
{
637 void *error_entry_ret
;
641 asmlinkage __visible notrace
642 struct bad_iret_stack
*fixup_bad_iret(struct bad_iret_stack
*s
)
645 * This is called from entry_64.S early in handling a fault
646 * caused by a bad iret to user mode. To handle the fault
647 * correctly, we want to move our stack frame to where it would
648 * be had we entered directly on the entry stack (rather than
649 * just below the IRET frame) and we want to pretend that the
650 * exception came from the IRET target.
652 struct bad_iret_stack
*new_stack
=
653 (struct bad_iret_stack
*)this_cpu_read(cpu_tss_rw
.x86_tss
.sp0
) - 1;
655 /* Copy the IRET target to the new stack. */
656 memmove(&new_stack
->regs
.ip
, (void *)s
->regs
.sp
, 5*8);
658 /* Copy the remainder of the stack from the current stack. */
659 memmove(new_stack
, s
, offsetof(struct bad_iret_stack
, regs
.ip
));
661 BUG_ON(!user_mode(&new_stack
->regs
));
664 NOKPROBE_SYMBOL(fixup_bad_iret
);
667 static bool is_sysenter_singlestep(struct pt_regs
*regs
)
670 * We don't try for precision here. If we're anywhere in the region of
671 * code that can be single-stepped in the SYSENTER entry path, then
672 * assume that this is a useless single-step trap due to SYSENTER
673 * being invoked with TF set. (We don't know in advance exactly
674 * which instructions will be hit because BTF could plausibly
678 return (regs
->ip
- (unsigned long)__begin_SYSENTER_singlestep_region
) <
679 (unsigned long)__end_SYSENTER_singlestep_region
-
680 (unsigned long)__begin_SYSENTER_singlestep_region
;
681 #elif defined(CONFIG_IA32_EMULATION)
682 return (regs
->ip
- (unsigned long)entry_SYSENTER_compat
) <
683 (unsigned long)__end_entry_SYSENTER_compat
-
684 (unsigned long)entry_SYSENTER_compat
;
691 * Our handling of the processor debug registers is non-trivial.
692 * We do not clear them on entry and exit from the kernel. Therefore
693 * it is possible to get a watchpoint trap here from inside the kernel.
694 * However, the code in ./ptrace.c has ensured that the user can
695 * only set watchpoints on userspace addresses. Therefore the in-kernel
696 * watchpoint trap can only occur in code which is reading/writing
697 * from user space. Such code must not hold kernel locks (since it
698 * can equally take a page fault), therefore it is safe to call
699 * force_sig_info even though that claims and releases locks.
701 * Code in ./signal.c ensures that the debug control register
702 * is restored before we deliver any signal, and therefore that
703 * user code runs with the correct debug control register even though
706 * Being careful here means that we don't have to be as careful in a
707 * lot of more complicated places (task switching can be a bit lazy
708 * about restoring all the debug state, and ptrace doesn't have to
709 * find every occurrence of the TF bit that could be saved away even
712 * May run on IST stack.
714 dotraplinkage
void do_debug(struct pt_regs
*regs
, long error_code
)
716 struct task_struct
*tsk
= current
;
723 get_debugreg(dr6
, 6);
725 * The Intel SDM says:
727 * Certain debug exceptions may clear bits 0-3. The remaining
728 * contents of the DR6 register are never cleared by the
729 * processor. To avoid confusion in identifying debug
730 * exceptions, debug handlers should clear the register before
731 * returning to the interrupted task.
733 * Keep it simple: clear DR6 immediately.
737 /* Filter out all the reserved bits which are preset to 1 */
738 dr6
&= ~DR6_RESERVED
;
741 * The SDM says "The processor clears the BTF flag when it
742 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
743 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
745 clear_tsk_thread_flag(tsk
, TIF_BLOCKSTEP
);
747 if (unlikely(!user_mode(regs
) && (dr6
& DR_STEP
) &&
748 is_sysenter_singlestep(regs
))) {
753 * else we might have gotten a single-step trap and hit a
754 * watchpoint at the same time, in which case we should fall
755 * through and handle the watchpoint.
760 * If dr6 has no reason to give us about the origin of this trap,
761 * then it's very likely the result of an icebp/int01 trap.
762 * User wants a sigtrap for that.
764 if (!dr6
&& user_mode(regs
))
767 /* Store the virtualized DR6 value */
768 tsk
->thread
.debugreg6
= dr6
;
770 #ifdef CONFIG_KPROBES
771 if (kprobe_debug_handler(regs
))
775 if (notify_die(DIE_DEBUG
, "debug", regs
, (long)&dr6
, error_code
,
776 SIGTRAP
) == NOTIFY_STOP
)
780 * Let others (NMI) know that the debug stack is in use
781 * as we may switch to the interrupt stack.
783 debug_stack_usage_inc();
785 /* It's safe to allow irq's after DR6 has been saved */
786 cond_local_irq_enable(regs
);
788 if (v8086_mode(regs
)) {
789 handle_vm86_trap((struct kernel_vm86_regs
*) regs
, error_code
,
791 cond_local_irq_disable(regs
);
792 debug_stack_usage_dec();
796 if (WARN_ON_ONCE((dr6
& DR_STEP
) && !user_mode(regs
))) {
798 * Historical junk that used to handle SYSENTER single-stepping.
799 * This should be unreachable now. If we survive for a while
800 * without anyone hitting this warning, we'll turn this into
803 tsk
->thread
.debugreg6
&= ~DR_STEP
;
804 set_tsk_thread_flag(tsk
, TIF_SINGLESTEP
);
805 regs
->flags
&= ~X86_EFLAGS_TF
;
807 si_code
= get_si_code(tsk
->thread
.debugreg6
);
808 if (tsk
->thread
.debugreg6
& (DR_STEP
| DR_TRAP_BITS
) || user_icebp
)
809 send_sigtrap(tsk
, regs
, error_code
, si_code
);
810 cond_local_irq_disable(regs
);
811 debug_stack_usage_dec();
816 NOKPROBE_SYMBOL(do_debug
);
819 * Note that we play around with the 'TS' bit in an attempt to get
820 * the correct behaviour even in the presence of the asynchronous
823 static void math_error(struct pt_regs
*regs
, int error_code
, int trapnr
)
825 struct task_struct
*task
= current
;
826 struct fpu
*fpu
= &task
->thread
.fpu
;
828 char *str
= (trapnr
== X86_TRAP_MF
) ? "fpu exception" :
831 cond_local_irq_enable(regs
);
833 if (!user_mode(regs
)) {
834 if (fixup_exception(regs
, trapnr
))
837 task
->thread
.error_code
= error_code
;
838 task
->thread
.trap_nr
= trapnr
;
840 if (notify_die(DIE_TRAP
, str
, regs
, error_code
,
841 trapnr
, SIGFPE
) != NOTIFY_STOP
)
842 die(str
, regs
, error_code
);
847 * Save the info for the exception handler and clear the error.
851 task
->thread
.trap_nr
= trapnr
;
852 task
->thread
.error_code
= error_code
;
853 info
.si_signo
= SIGFPE
;
855 info
.si_addr
= (void __user
*)uprobe_get_trap_addr(regs
);
857 info
.si_code
= fpu__exception_code(fpu
, trapnr
);
859 /* Retry when we get spurious exceptions: */
863 force_sig_info(SIGFPE
, &info
, task
);
866 dotraplinkage
void do_coprocessor_error(struct pt_regs
*regs
, long error_code
)
868 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
869 math_error(regs
, error_code
, X86_TRAP_MF
);
873 do_simd_coprocessor_error(struct pt_regs
*regs
, long error_code
)
875 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
876 math_error(regs
, error_code
, X86_TRAP_XF
);
880 do_spurious_interrupt_bug(struct pt_regs
*regs
, long error_code
)
882 cond_local_irq_enable(regs
);
886 do_device_not_available(struct pt_regs
*regs
, long error_code
)
890 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
892 #ifdef CONFIG_MATH_EMULATION
893 if (!boot_cpu_has(X86_FEATURE_FPU
) && (read_cr0() & X86_CR0_EM
)) {
894 struct math_emu_info info
= { };
896 cond_local_irq_enable(regs
);
904 /* This should not happen. */
906 if (WARN(cr0
& X86_CR0_TS
, "CR0.TS was set")) {
907 /* Try to fix it up and carry on. */
908 write_cr0(cr0
& ~X86_CR0_TS
);
911 * Something terrible happened, and we're better off trying
912 * to kill the task than getting stuck in a never-ending
913 * loop of #NM faults.
915 die("unexpected #NM exception", regs
, error_code
);
918 NOKPROBE_SYMBOL(do_device_not_available
);
921 dotraplinkage
void do_iret_error(struct pt_regs
*regs
, long error_code
)
925 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
928 info
.si_signo
= SIGILL
;
930 info
.si_code
= ILL_BADSTK
;
932 if (notify_die(DIE_TRAP
, "iret exception", regs
, error_code
,
933 X86_TRAP_IRET
, SIGILL
) != NOTIFY_STOP
) {
934 do_trap(X86_TRAP_IRET
, SIGILL
, "iret exception", regs
, error_code
,
940 void __init
trap_init(void)
942 /* Init cpu_entry_area before IST entries are set up */
943 setup_cpu_entry_areas();
948 * Set the IDT descriptor to a fixed read-only location, so that the
949 * "sidt" instruction will not leak the location of the kernel, and
950 * to defend the IDT against arbitrary memory write vulnerabilities.
951 * It will be reloaded in cpu_init() */
952 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR
, __pa_symbol(idt_table
),
954 idt_descr
.address
= CPU_ENTRY_AREA_RO_IDT
;
957 * Should be a barrier for any external CPU state:
961 idt_setup_ist_traps();
963 x86_init
.irqs
.trap_init();
965 idt_setup_debugidt_traps();