mm: fix exec activate_mm vs TLB shootdown and lazy tlb switching race
[linux/fpc-iii.git] / arch / x86 / kernel / traps.c
blobed8d78fd4f8cf381196890e5257de5f90d4ff21c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
9 /*
10 * Handle hardware traps and faults.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/context_tracking.h>
16 #include <linux/interrupt.h>
17 #include <linux/kallsyms.h>
18 #include <linux/spinlock.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kgdb.h>
23 #include <linux/kernel.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/string.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/kexec.h>
31 #include <linux/sched.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/timer.h>
34 #include <linux/init.h>
35 #include <linux/bug.h>
36 #include <linux/nmi.h>
37 #include <linux/mm.h>
38 #include <linux/smp.h>
39 #include <linux/io.h>
41 #if defined(CONFIG_EDAC)
42 #include <linux/edac.h>
43 #endif
45 #include <asm/stacktrace.h>
46 #include <asm/processor.h>
47 #include <asm/debugreg.h>
48 #include <linux/atomic.h>
49 #include <asm/text-patching.h>
50 #include <asm/ftrace.h>
51 #include <asm/traps.h>
52 #include <asm/desc.h>
53 #include <asm/fpu/internal.h>
54 #include <asm/cpu_entry_area.h>
55 #include <asm/mce.h>
56 #include <asm/fixmap.h>
57 #include <asm/mach_traps.h>
58 #include <asm/alternative.h>
59 #include <asm/fpu/xstate.h>
60 #include <asm/trace/mpx.h>
61 #include <asm/mpx.h>
62 #include <asm/vm86.h>
64 #ifdef CONFIG_X86_64
65 #include <asm/x86_init.h>
66 #include <asm/pgalloc.h>
67 #include <asm/proto.h>
68 #else
69 #include <asm/processor-flags.h>
70 #include <asm/setup.h>
71 #include <asm/proto.h>
72 #endif
74 DECLARE_BITMAP(used_vectors, NR_VECTORS);
76 static inline void cond_local_irq_enable(struct pt_regs *regs)
78 if (regs->flags & X86_EFLAGS_IF)
79 local_irq_enable();
82 static inline void cond_local_irq_disable(struct pt_regs *regs)
84 if (regs->flags & X86_EFLAGS_IF)
85 local_irq_disable();
89 * In IST context, we explicitly disable preemption. This serves two
90 * purposes: it makes it much less likely that we would accidentally
91 * schedule in IST context and it will force a warning if we somehow
92 * manage to schedule by accident.
94 void ist_enter(struct pt_regs *regs)
96 if (user_mode(regs)) {
97 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
98 } else {
100 * We might have interrupted pretty much anything. In
101 * fact, if we're a machine check, we can even interrupt
102 * NMI processing. We don't want in_nmi() to return true,
103 * but we need to notify RCU.
105 rcu_nmi_enter();
108 preempt_disable();
110 /* This code is a bit fragile. Test it. */
111 RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
114 void ist_exit(struct pt_regs *regs)
116 preempt_enable_no_resched();
118 if (!user_mode(regs))
119 rcu_nmi_exit();
123 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
124 * @regs: regs passed to the IST exception handler
126 * IST exception handlers normally cannot schedule. As a special
127 * exception, if the exception interrupted userspace code (i.e.
128 * user_mode(regs) would return true) and the exception was not
129 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
130 * begins a non-atomic section within an ist_enter()/ist_exit() region.
131 * Callers are responsible for enabling interrupts themselves inside
132 * the non-atomic section, and callers must call ist_end_non_atomic()
133 * before ist_exit().
135 void ist_begin_non_atomic(struct pt_regs *regs)
137 BUG_ON(!user_mode(regs));
140 * Sanity check: we need to be on the normal thread stack. This
141 * will catch asm bugs and any attempt to use ist_preempt_enable
142 * from double_fault.
144 BUG_ON(!on_thread_stack());
146 preempt_enable_no_resched();
150 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
152 * Ends a non-atomic section started with ist_begin_non_atomic().
154 void ist_end_non_atomic(void)
156 preempt_disable();
159 int is_valid_bugaddr(unsigned long addr)
161 unsigned short ud;
163 if (addr < TASK_SIZE_MAX)
164 return 0;
166 if (probe_kernel_address((unsigned short *)addr, ud))
167 return 0;
169 return ud == INSN_UD0 || ud == INSN_UD2;
172 int fixup_bug(struct pt_regs *regs, int trapnr)
174 if (trapnr != X86_TRAP_UD)
175 return 0;
177 switch (report_bug(regs->ip, regs)) {
178 case BUG_TRAP_TYPE_NONE:
179 case BUG_TRAP_TYPE_BUG:
180 break;
182 case BUG_TRAP_TYPE_WARN:
183 regs->ip += LEN_UD2;
184 return 1;
187 return 0;
190 static nokprobe_inline int
191 do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
192 struct pt_regs *regs, long error_code)
194 if (v8086_mode(regs)) {
196 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
197 * On nmi (interrupt 2), do_trap should not be called.
199 if (trapnr < X86_TRAP_UD) {
200 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
201 error_code, trapnr))
202 return 0;
204 return -1;
207 if (!user_mode(regs)) {
208 if (fixup_exception(regs, trapnr))
209 return 0;
211 tsk->thread.error_code = error_code;
212 tsk->thread.trap_nr = trapnr;
213 die(str, regs, error_code);
216 return -1;
219 static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
220 siginfo_t *info)
222 unsigned long siaddr;
223 int sicode;
225 switch (trapnr) {
226 default:
227 return SEND_SIG_PRIV;
229 case X86_TRAP_DE:
230 sicode = FPE_INTDIV;
231 siaddr = uprobe_get_trap_addr(regs);
232 break;
233 case X86_TRAP_UD:
234 sicode = ILL_ILLOPN;
235 siaddr = uprobe_get_trap_addr(regs);
236 break;
237 case X86_TRAP_AC:
238 sicode = BUS_ADRALN;
239 siaddr = 0;
240 break;
243 info->si_signo = signr;
244 info->si_errno = 0;
245 info->si_code = sicode;
246 info->si_addr = (void __user *)siaddr;
247 return info;
250 static void
251 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
252 long error_code, siginfo_t *info)
254 struct task_struct *tsk = current;
257 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
258 return;
260 * We want error_code and trap_nr set for userspace faults and
261 * kernelspace faults which result in die(), but not
262 * kernelspace faults which are fixed up. die() gives the
263 * process no chance to handle the signal and notice the
264 * kernel fault information, so that won't result in polluting
265 * the information about previously queued, but not yet
266 * delivered, faults. See also do_general_protection below.
268 tsk->thread.error_code = error_code;
269 tsk->thread.trap_nr = trapnr;
271 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
272 printk_ratelimit()) {
273 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
274 tsk->comm, tsk->pid, str,
275 regs->ip, regs->sp, error_code);
276 print_vma_addr(KERN_CONT " in ", regs->ip);
277 pr_cont("\n");
280 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
282 NOKPROBE_SYMBOL(do_trap);
284 static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
285 unsigned long trapnr, int signr)
287 siginfo_t info;
289 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
292 * WARN*()s end up here; fix them up before we call the
293 * notifier chain.
295 if (!user_mode(regs) && fixup_bug(regs, trapnr))
296 return;
298 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
299 NOTIFY_STOP) {
300 cond_local_irq_enable(regs);
301 do_trap(trapnr, signr, str, regs, error_code,
302 fill_trap_info(regs, signr, trapnr, &info));
306 #define DO_ERROR(trapnr, signr, str, name) \
307 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
309 do_error_trap(regs, error_code, str, trapnr, signr); \
312 DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
313 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
314 DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
315 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
316 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
317 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
318 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
319 DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
321 #ifdef CONFIG_VMAP_STACK
322 __visible void __noreturn handle_stack_overflow(const char *message,
323 struct pt_regs *regs,
324 unsigned long fault_address)
326 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
327 (void *)fault_address, current->stack,
328 (char *)current->stack + THREAD_SIZE - 1);
329 die(message, regs, 0);
331 /* Be absolutely certain we don't return. */
332 panic(message);
334 #endif
336 #ifdef CONFIG_X86_64
337 /* Runs on IST stack */
338 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
340 static const char str[] = "double fault";
341 struct task_struct *tsk = current;
342 #ifdef CONFIG_VMAP_STACK
343 unsigned long cr2;
344 #endif
346 #ifdef CONFIG_X86_ESPFIX64
347 extern unsigned char native_irq_return_iret[];
350 * If IRET takes a non-IST fault on the espfix64 stack, then we
351 * end up promoting it to a doublefault. In that case, take
352 * advantage of the fact that we're not using the normal (TSS.sp0)
353 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
354 * and then modify our own IRET frame so that, when we return,
355 * we land directly at the #GP(0) vector with the stack already
356 * set up according to its expectations.
358 * The net result is that our #GP handler will think that we
359 * entered from usermode with the bad user context.
361 * No need for ist_enter here because we don't use RCU.
363 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
364 regs->cs == __KERNEL_CS &&
365 regs->ip == (unsigned long)native_irq_return_iret)
367 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
370 * regs->sp points to the failing IRET frame on the
371 * ESPFIX64 stack. Copy it to the entry stack. This fills
372 * in gpregs->ss through gpregs->ip.
375 memmove(&gpregs->ip, (void *)regs->sp, 5*8);
376 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
379 * Adjust our frame so that we return straight to the #GP
380 * vector with the expected RSP value. This is safe because
381 * we won't enable interupts or schedule before we invoke
382 * general_protection, so nothing will clobber the stack
383 * frame we just set up.
385 regs->ip = (unsigned long)general_protection;
386 regs->sp = (unsigned long)&gpregs->orig_ax;
388 return;
390 #endif
392 ist_enter(regs);
393 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
395 tsk->thread.error_code = error_code;
396 tsk->thread.trap_nr = X86_TRAP_DF;
398 #ifdef CONFIG_VMAP_STACK
400 * If we overflow the stack into a guard page, the CPU will fail
401 * to deliver #PF and will send #DF instead. Similarly, if we
402 * take any non-IST exception while too close to the bottom of
403 * the stack, the processor will get a page fault while
404 * delivering the exception and will generate a double fault.
406 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
407 * Page-Fault Exception (#PF):
409 * Processors update CR2 whenever a page fault is detected. If a
410 * second page fault occurs while an earlier page fault is being
411 * delivered, the faulting linear address of the second fault will
412 * overwrite the contents of CR2 (replacing the previous
413 * address). These updates to CR2 occur even if the page fault
414 * results in a double fault or occurs during the delivery of a
415 * double fault.
417 * The logic below has a small possibility of incorrectly diagnosing
418 * some errors as stack overflows. For example, if the IDT or GDT
419 * gets corrupted such that #GP delivery fails due to a bad descriptor
420 * causing #GP and we hit this condition while CR2 coincidentally
421 * points to the stack guard page, we'll think we overflowed the
422 * stack. Given that we're going to panic one way or another
423 * if this happens, this isn't necessarily worth fixing.
425 * If necessary, we could improve the test by only diagnosing
426 * a stack overflow if the saved RSP points within 47 bytes of
427 * the bottom of the stack: if RSP == tsk_stack + 48 and we
428 * take an exception, the stack is already aligned and there
429 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
430 * possible error code, so a stack overflow would *not* double
431 * fault. With any less space left, exception delivery could
432 * fail, and, as a practical matter, we've overflowed the
433 * stack even if the actual trigger for the double fault was
434 * something else.
436 cr2 = read_cr2();
437 if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE)
438 handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2);
439 #endif
441 #ifdef CONFIG_DOUBLEFAULT
442 df_debug(regs, error_code);
443 #endif
445 * This is always a kernel trap and never fixable (and thus must
446 * never return).
448 for (;;)
449 die(str, regs, error_code);
451 #endif
453 dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
455 const struct mpx_bndcsr *bndcsr;
456 siginfo_t *info;
458 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
459 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
460 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
461 return;
462 cond_local_irq_enable(regs);
464 if (!user_mode(regs))
465 die("bounds", regs, error_code);
467 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
468 /* The exception is not from Intel MPX */
469 goto exit_trap;
473 * We need to look at BNDSTATUS to resolve this exception.
474 * A NULL here might mean that it is in its 'init state',
475 * which is all zeros which indicates MPX was not
476 * responsible for the exception.
478 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
479 if (!bndcsr)
480 goto exit_trap;
482 trace_bounds_exception_mpx(bndcsr);
484 * The error code field of the BNDSTATUS register communicates status
485 * information of a bound range exception #BR or operation involving
486 * bound directory.
488 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
489 case 2: /* Bound directory has invalid entry. */
490 if (mpx_handle_bd_fault())
491 goto exit_trap;
492 break; /* Success, it was handled */
493 case 1: /* Bound violation. */
494 info = mpx_generate_siginfo(regs);
495 if (IS_ERR(info)) {
497 * We failed to decode the MPX instruction. Act as if
498 * the exception was not caused by MPX.
500 goto exit_trap;
503 * Success, we decoded the instruction and retrieved
504 * an 'info' containing the address being accessed
505 * which caused the exception. This information
506 * allows and application to possibly handle the
507 * #BR exception itself.
509 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
510 kfree(info);
511 break;
512 case 0: /* No exception caused by Intel MPX operations. */
513 goto exit_trap;
514 default:
515 die("bounds", regs, error_code);
518 return;
520 exit_trap:
522 * This path out is for all the cases where we could not
523 * handle the exception in some way (like allocating a
524 * table or telling userspace about it. We will also end
525 * up here if the kernel has MPX turned off at compile
526 * time..
528 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
531 dotraplinkage void
532 do_general_protection(struct pt_regs *regs, long error_code)
534 struct task_struct *tsk;
536 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
537 cond_local_irq_enable(regs);
539 if (v8086_mode(regs)) {
540 local_irq_enable();
541 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
542 return;
545 tsk = current;
546 if (!user_mode(regs)) {
547 if (fixup_exception(regs, X86_TRAP_GP))
548 return;
550 tsk->thread.error_code = error_code;
551 tsk->thread.trap_nr = X86_TRAP_GP;
552 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
553 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
554 die("general protection fault", regs, error_code);
555 return;
558 tsk->thread.error_code = error_code;
559 tsk->thread.trap_nr = X86_TRAP_GP;
561 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
562 printk_ratelimit()) {
563 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
564 tsk->comm, task_pid_nr(tsk),
565 regs->ip, regs->sp, error_code);
566 print_vma_addr(KERN_CONT " in ", regs->ip);
567 pr_cont("\n");
570 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
572 NOKPROBE_SYMBOL(do_general_protection);
574 dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
576 #ifdef CONFIG_DYNAMIC_FTRACE
578 * ftrace must be first, everything else may cause a recursive crash.
579 * See note by declaration of modifying_ftrace_code in ftrace.c
581 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
582 ftrace_int3_handler(regs))
583 return;
584 #endif
585 if (poke_int3_handler(regs))
586 return;
589 * Use ist_enter despite the fact that we don't use an IST stack.
590 * We can be called from a kprobe in non-CONTEXT_KERNEL kernel
591 * mode or even during context tracking state changes.
593 * This means that we can't schedule. That's okay.
595 ist_enter(regs);
596 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
597 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
598 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
599 SIGTRAP) == NOTIFY_STOP)
600 goto exit;
601 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
603 #ifdef CONFIG_KPROBES
604 if (kprobe_int3_handler(regs))
605 goto exit;
606 #endif
608 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
609 SIGTRAP) == NOTIFY_STOP)
610 goto exit;
612 cond_local_irq_enable(regs);
613 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
614 cond_local_irq_disable(regs);
616 exit:
617 ist_exit(regs);
619 NOKPROBE_SYMBOL(do_int3);
621 #ifdef CONFIG_X86_64
623 * Help handler running on a per-cpu (IST or entry trampoline) stack
624 * to switch to the normal thread stack if the interrupted code was in
625 * user mode. The actual stack switch is done in entry_64.S
627 asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
629 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
630 if (regs != eregs)
631 *regs = *eregs;
632 return regs;
634 NOKPROBE_SYMBOL(sync_regs);
636 struct bad_iret_stack {
637 void *error_entry_ret;
638 struct pt_regs regs;
641 asmlinkage __visible notrace
642 struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
645 * This is called from entry_64.S early in handling a fault
646 * caused by a bad iret to user mode. To handle the fault
647 * correctly, we want to move our stack frame to where it would
648 * be had we entered directly on the entry stack (rather than
649 * just below the IRET frame) and we want to pretend that the
650 * exception came from the IRET target.
652 struct bad_iret_stack *new_stack =
653 (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
655 /* Copy the IRET target to the new stack. */
656 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
658 /* Copy the remainder of the stack from the current stack. */
659 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
661 BUG_ON(!user_mode(&new_stack->regs));
662 return new_stack;
664 NOKPROBE_SYMBOL(fixup_bad_iret);
665 #endif
667 static bool is_sysenter_singlestep(struct pt_regs *regs)
670 * We don't try for precision here. If we're anywhere in the region of
671 * code that can be single-stepped in the SYSENTER entry path, then
672 * assume that this is a useless single-step trap due to SYSENTER
673 * being invoked with TF set. (We don't know in advance exactly
674 * which instructions will be hit because BTF could plausibly
675 * be set.)
677 #ifdef CONFIG_X86_32
678 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
679 (unsigned long)__end_SYSENTER_singlestep_region -
680 (unsigned long)__begin_SYSENTER_singlestep_region;
681 #elif defined(CONFIG_IA32_EMULATION)
682 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
683 (unsigned long)__end_entry_SYSENTER_compat -
684 (unsigned long)entry_SYSENTER_compat;
685 #else
686 return false;
687 #endif
691 * Our handling of the processor debug registers is non-trivial.
692 * We do not clear them on entry and exit from the kernel. Therefore
693 * it is possible to get a watchpoint trap here from inside the kernel.
694 * However, the code in ./ptrace.c has ensured that the user can
695 * only set watchpoints on userspace addresses. Therefore the in-kernel
696 * watchpoint trap can only occur in code which is reading/writing
697 * from user space. Such code must not hold kernel locks (since it
698 * can equally take a page fault), therefore it is safe to call
699 * force_sig_info even though that claims and releases locks.
701 * Code in ./signal.c ensures that the debug control register
702 * is restored before we deliver any signal, and therefore that
703 * user code runs with the correct debug control register even though
704 * we clear it here.
706 * Being careful here means that we don't have to be as careful in a
707 * lot of more complicated places (task switching can be a bit lazy
708 * about restoring all the debug state, and ptrace doesn't have to
709 * find every occurrence of the TF bit that could be saved away even
710 * by user code)
712 * May run on IST stack.
714 dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
716 struct task_struct *tsk = current;
717 int user_icebp = 0;
718 unsigned long dr6;
719 int si_code;
721 ist_enter(regs);
723 get_debugreg(dr6, 6);
725 * The Intel SDM says:
727 * Certain debug exceptions may clear bits 0-3. The remaining
728 * contents of the DR6 register are never cleared by the
729 * processor. To avoid confusion in identifying debug
730 * exceptions, debug handlers should clear the register before
731 * returning to the interrupted task.
733 * Keep it simple: clear DR6 immediately.
735 set_debugreg(0, 6);
737 /* Filter out all the reserved bits which are preset to 1 */
738 dr6 &= ~DR6_RESERVED;
741 * The SDM says "The processor clears the BTF flag when it
742 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
743 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
745 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
747 if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
748 is_sysenter_singlestep(regs))) {
749 dr6 &= ~DR_STEP;
750 if (!dr6)
751 goto exit;
753 * else we might have gotten a single-step trap and hit a
754 * watchpoint at the same time, in which case we should fall
755 * through and handle the watchpoint.
760 * If dr6 has no reason to give us about the origin of this trap,
761 * then it's very likely the result of an icebp/int01 trap.
762 * User wants a sigtrap for that.
764 if (!dr6 && user_mode(regs))
765 user_icebp = 1;
767 /* Store the virtualized DR6 value */
768 tsk->thread.debugreg6 = dr6;
770 #ifdef CONFIG_KPROBES
771 if (kprobe_debug_handler(regs))
772 goto exit;
773 #endif
775 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
776 SIGTRAP) == NOTIFY_STOP)
777 goto exit;
780 * Let others (NMI) know that the debug stack is in use
781 * as we may switch to the interrupt stack.
783 debug_stack_usage_inc();
785 /* It's safe to allow irq's after DR6 has been saved */
786 cond_local_irq_enable(regs);
788 if (v8086_mode(regs)) {
789 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
790 X86_TRAP_DB);
791 cond_local_irq_disable(regs);
792 debug_stack_usage_dec();
793 goto exit;
796 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
798 * Historical junk that used to handle SYSENTER single-stepping.
799 * This should be unreachable now. If we survive for a while
800 * without anyone hitting this warning, we'll turn this into
801 * an oops.
803 tsk->thread.debugreg6 &= ~DR_STEP;
804 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
805 regs->flags &= ~X86_EFLAGS_TF;
807 si_code = get_si_code(tsk->thread.debugreg6);
808 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
809 send_sigtrap(tsk, regs, error_code, si_code);
810 cond_local_irq_disable(regs);
811 debug_stack_usage_dec();
813 exit:
814 ist_exit(regs);
816 NOKPROBE_SYMBOL(do_debug);
819 * Note that we play around with the 'TS' bit in an attempt to get
820 * the correct behaviour even in the presence of the asynchronous
821 * IRQ13 behaviour
823 static void math_error(struct pt_regs *regs, int error_code, int trapnr)
825 struct task_struct *task = current;
826 struct fpu *fpu = &task->thread.fpu;
827 siginfo_t info;
828 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
829 "simd exception";
831 cond_local_irq_enable(regs);
833 if (!user_mode(regs)) {
834 if (fixup_exception(regs, trapnr))
835 return;
837 task->thread.error_code = error_code;
838 task->thread.trap_nr = trapnr;
840 if (notify_die(DIE_TRAP, str, regs, error_code,
841 trapnr, SIGFPE) != NOTIFY_STOP)
842 die(str, regs, error_code);
843 return;
847 * Save the info for the exception handler and clear the error.
849 fpu__save(fpu);
851 task->thread.trap_nr = trapnr;
852 task->thread.error_code = error_code;
853 info.si_signo = SIGFPE;
854 info.si_errno = 0;
855 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
857 info.si_code = fpu__exception_code(fpu, trapnr);
859 /* Retry when we get spurious exceptions: */
860 if (!info.si_code)
861 return;
863 force_sig_info(SIGFPE, &info, task);
866 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
868 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
869 math_error(regs, error_code, X86_TRAP_MF);
872 dotraplinkage void
873 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
875 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
876 math_error(regs, error_code, X86_TRAP_XF);
879 dotraplinkage void
880 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
882 cond_local_irq_enable(regs);
885 dotraplinkage void
886 do_device_not_available(struct pt_regs *regs, long error_code)
888 unsigned long cr0;
890 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
892 #ifdef CONFIG_MATH_EMULATION
893 if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
894 struct math_emu_info info = { };
896 cond_local_irq_enable(regs);
898 info.regs = regs;
899 math_emulate(&info);
900 return;
902 #endif
904 /* This should not happen. */
905 cr0 = read_cr0();
906 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
907 /* Try to fix it up and carry on. */
908 write_cr0(cr0 & ~X86_CR0_TS);
909 } else {
911 * Something terrible happened, and we're better off trying
912 * to kill the task than getting stuck in a never-ending
913 * loop of #NM faults.
915 die("unexpected #NM exception", regs, error_code);
918 NOKPROBE_SYMBOL(do_device_not_available);
920 #ifdef CONFIG_X86_32
921 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
923 siginfo_t info;
925 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
926 local_irq_enable();
928 info.si_signo = SIGILL;
929 info.si_errno = 0;
930 info.si_code = ILL_BADSTK;
931 info.si_addr = NULL;
932 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
933 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
934 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
935 &info);
938 #endif
940 void __init trap_init(void)
942 /* Init cpu_entry_area before IST entries are set up */
943 setup_cpu_entry_areas();
945 idt_setup_traps();
948 * Set the IDT descriptor to a fixed read-only location, so that the
949 * "sidt" instruction will not leak the location of the kernel, and
950 * to defend the IDT against arbitrary memory write vulnerabilities.
951 * It will be reloaded in cpu_init() */
952 cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table),
953 PAGE_KERNEL_RO);
954 idt_descr.address = CPU_ENTRY_AREA_RO_IDT;
957 * Should be a barrier for any external CPU state:
959 cpu_init();
961 idt_setup_ist_traps();
963 x86_init.irqs.trap_init();
965 idt_setup_debugidt_traps();