2 * Suspend support specific for i386/x86-64.
4 * Distribute under GPLv2
6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
11 #include <linux/suspend.h>
12 #include <linux/export.h>
13 #include <linux/smp.h>
14 #include <linux/perf_event.h>
15 #include <linux/tboot.h>
16 #include <linux/dmi.h>
18 #include <asm/pgtable.h>
19 #include <asm/proto.h>
23 #include <asm/suspend.h>
24 #include <asm/fpu/internal.h>
25 #include <asm/debugreg.h>
27 #include <asm/mmu_context.h>
28 #include <asm/cpu_device_id.h>
31 __visible
unsigned long saved_context_ebx
;
32 __visible
unsigned long saved_context_esp
, saved_context_ebp
;
33 __visible
unsigned long saved_context_esi
, saved_context_edi
;
34 __visible
unsigned long saved_context_eflags
;
36 struct saved_context saved_context
;
38 static void msr_save_context(struct saved_context
*ctxt
)
40 struct saved_msr
*msr
= ctxt
->saved_msrs
.array
;
41 struct saved_msr
*end
= msr
+ ctxt
->saved_msrs
.num
;
44 msr
->valid
= !rdmsrl_safe(msr
->info
.msr_no
, &msr
->info
.reg
.q
);
49 static void msr_restore_context(struct saved_context
*ctxt
)
51 struct saved_msr
*msr
= ctxt
->saved_msrs
.array
;
52 struct saved_msr
*end
= msr
+ ctxt
->saved_msrs
.num
;
56 wrmsrl(msr
->info
.msr_no
, msr
->info
.reg
.q
);
62 * __save_processor_state - save CPU registers before creating a
63 * hibernation image and before restoring the memory state from it
64 * @ctxt - structure to store the registers contents in
66 * NOTE: If there is a CPU register the modification of which by the
67 * boot kernel (ie. the kernel used for loading the hibernation image)
68 * might affect the operations of the restored target kernel (ie. the one
69 * saved in the hibernation image), then its contents must be saved by this
70 * function. In other words, if kernel A is hibernated and different
71 * kernel B is used for loading the hibernation image into memory, the
72 * kernel A's __save_processor_state() function must save all registers
73 * needed by kernel A, so that it can operate correctly after the resume
74 * regardless of what kernel B does in the meantime.
76 static void __save_processor_state(struct saved_context
*ctxt
)
79 mtrr_save_fixed_ranges(NULL
);
86 store_idt(&ctxt
->idt
);
89 * We save it here, but restore it only in the hibernate case.
90 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
91 * mode in "secondary_startup_64". In 32-bit mode it is done via
92 * 'pmode_gdt' in wakeup_start.
94 ctxt
->gdt_desc
.size
= GDT_SIZE
- 1;
95 ctxt
->gdt_desc
.address
= (unsigned long)get_cpu_gdt_rw(smp_processor_id());
99 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
103 #ifdef CONFIG_X86_32_LAZY_GS
104 savesegment(gs
, ctxt
->gs
);
107 savesegment(gs
, ctxt
->gs
);
108 savesegment(fs
, ctxt
->fs
);
109 savesegment(ds
, ctxt
->ds
);
110 savesegment(es
, ctxt
->es
);
112 rdmsrl(MSR_FS_BASE
, ctxt
->fs_base
);
113 rdmsrl(MSR_GS_BASE
, ctxt
->kernelmode_gs_base
);
114 rdmsrl(MSR_KERNEL_GS_BASE
, ctxt
->usermode_gs_base
);
115 mtrr_save_fixed_ranges(NULL
);
117 rdmsrl(MSR_EFER
, ctxt
->efer
);
123 ctxt
->cr0
= read_cr0();
124 ctxt
->cr2
= read_cr2();
125 ctxt
->cr3
= __read_cr3();
126 ctxt
->cr4
= __read_cr4();
128 ctxt
->cr8
= read_cr8();
130 ctxt
->misc_enable_saved
= !rdmsrl_safe(MSR_IA32_MISC_ENABLE
,
132 msr_save_context(ctxt
);
135 /* Needed by apm.c */
136 void save_processor_state(void)
138 __save_processor_state(&saved_context
);
139 x86_platform
.save_sched_clock_state();
142 EXPORT_SYMBOL(save_processor_state
);
145 static void do_fpu_end(void)
148 * Restore FPU regs if necessary.
153 static void fix_processor_context(void)
155 int cpu
= smp_processor_id();
157 struct desc_struct
*desc
= get_cpu_gdt_rw(cpu
);
162 * We need to reload TR, which requires that we change the
163 * GDT entry to indicate "available" first.
165 * XXX: This could probably all be replaced by a call to
168 set_tss_desc(cpu
, &get_cpu_entry_area(cpu
)->tss
.x86_tss
);
171 memcpy(&tss
, &desc
[GDT_ENTRY_TSS
], sizeof(tss_desc
));
172 tss
.type
= 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
173 write_gdt_entry(desc
, GDT_ENTRY_TSS
, &tss
, DESC_TSS
);
175 syscall_init(); /* This sets MSR_*STAR and related */
177 if (boot_cpu_has(X86_FEATURE_SEP
))
180 load_TR_desc(); /* This does ltr */
181 load_mm_ldt(current
->active_mm
); /* This does lldt */
182 initialize_tlbstate_and_flush();
186 /* The processor is back on the direct GDT, load back the fixmap */
187 load_fixmap_gdt(cpu
);
191 * __restore_processor_state - restore the contents of CPU registers saved
192 * by __save_processor_state()
193 * @ctxt - structure to load the registers contents from
195 * The asm code that gets us here will have restored a usable GDT, although
196 * it will be pointing to the wrong alias.
198 static void notrace
__restore_processor_state(struct saved_context
*ctxt
)
200 if (ctxt
->misc_enable_saved
)
201 wrmsrl(MSR_IA32_MISC_ENABLE
, ctxt
->misc_enable
);
205 /* cr4 was introduced in the Pentium CPU */
208 __write_cr4(ctxt
->cr4
);
211 wrmsrl(MSR_EFER
, ctxt
->efer
);
212 write_cr8(ctxt
->cr8
);
213 __write_cr4(ctxt
->cr4
);
215 write_cr3(ctxt
->cr3
);
216 write_cr2(ctxt
->cr2
);
217 write_cr0(ctxt
->cr0
);
219 /* Restore the IDT. */
220 load_idt(&ctxt
->idt
);
223 * Just in case the asm code got us here with the SS, DS, or ES
224 * out of sync with the GDT, update them.
226 loadsegment(ss
, __KERNEL_DS
);
227 loadsegment(ds
, __USER_DS
);
228 loadsegment(es
, __USER_DS
);
231 * Restore percpu access. Percpu access can happen in exception
232 * handlers or in complicated helpers like load_gs_index().
235 wrmsrl(MSR_GS_BASE
, ctxt
->kernelmode_gs_base
);
237 loadsegment(fs
, __KERNEL_PERCPU
);
238 loadsegment(gs
, __KERNEL_STACK_CANARY
);
241 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
242 fix_processor_context();
245 * Now that we have descriptor tables fully restored and working
246 * exception handling, restore the usermode segments.
249 loadsegment(ds
, ctxt
->es
);
250 loadsegment(es
, ctxt
->es
);
251 loadsegment(fs
, ctxt
->fs
);
252 load_gs_index(ctxt
->gs
);
255 * Restore FSBASE and GSBASE after restoring the selectors, since
256 * restoring the selectors clobbers the bases. Keep in mind
257 * that MSR_KERNEL_GS_BASE is horribly misnamed.
259 wrmsrl(MSR_FS_BASE
, ctxt
->fs_base
);
260 wrmsrl(MSR_KERNEL_GS_BASE
, ctxt
->usermode_gs_base
);
261 #elif defined(CONFIG_X86_32_LAZY_GS)
262 loadsegment(gs
, ctxt
->gs
);
266 tsc_verify_tsc_adjust(true);
267 x86_platform
.restore_sched_clock_state();
269 perf_restore_debug_store();
270 msr_restore_context(ctxt
);
273 /* Needed by apm.c */
274 void notrace
restore_processor_state(void)
276 __restore_processor_state(&saved_context
);
279 EXPORT_SYMBOL(restore_processor_state
);
282 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
283 static void resume_play_dead(void)
286 tboot_shutdown(TB_SHUTDOWN_WFS
);
290 int hibernate_resume_nonboot_cpu_disable(void)
292 void (*play_dead
)(void) = smp_ops
.play_dead
;
296 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
297 * during hibernate image restoration, because it is likely that the
298 * monitored address will be actually written to at that time and then
299 * the "dead" CPU will attempt to execute instructions again, but the
300 * address in its instruction pointer may not be possible to resolve
301 * any more at that point (the page tables used by it previously may
302 * have been overwritten by hibernate image data).
304 * First, make sure that we wake up all the potentially disabled SMT
305 * threads which have been initially brought up and then put into
306 * mwait/cpuidle sleep.
307 * Those will be put to proper (not interfering with hibernation
308 * resume) sleep afterwards, and the resumed kernel will decide itself
309 * what to do with them.
311 ret
= cpuhp_smt_enable();
314 smp_ops
.play_dead
= resume_play_dead
;
315 ret
= disable_nonboot_cpus();
316 smp_ops
.play_dead
= play_dead
;
322 * When bsp_check() is called in hibernate and suspend, cpu hotplug
323 * is disabled already. So it's unnessary to handle race condition between
324 * cpumask query and cpu hotplug.
326 static int bsp_check(void)
328 if (cpumask_first(cpu_online_mask
) != 0) {
329 pr_warn("CPU0 is offline.\n");
336 static int bsp_pm_callback(struct notifier_block
*nb
, unsigned long action
,
342 case PM_SUSPEND_PREPARE
:
343 case PM_HIBERNATION_PREPARE
:
346 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
347 case PM_RESTORE_PREPARE
:
349 * When system resumes from hibernation, online CPU0 because
350 * 1. it's required for resume and
351 * 2. the CPU was online before hibernation
354 _debug_hotplug_cpu(0, 1);
356 case PM_POST_RESTORE
:
358 * When a resume really happens, this code won't be called.
360 * This code is called only when user space hibernation software
361 * prepares for snapshot device during boot time. So we just
362 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
363 * preparing the snapshot device.
365 * This works for normal boot case in our CPU0 hotplug debug
366 * mode, i.e. CPU0 is offline and user mode hibernation
367 * software initializes during boot time.
369 * If CPU0 is online and user application accesses snapshot
370 * device after boot time, this will offline CPU0 and user may
371 * see different CPU0 state before and after accessing
372 * the snapshot device. But hopefully this is not a case when
373 * user debugging CPU0 hotplug. Even if users hit this case,
374 * they can easily online CPU0 back.
376 * To simplify this debug code, we only consider normal boot
377 * case. Otherwise we need to remember CPU0's state and restore
378 * to that state and resolve racy conditions etc.
380 _debug_hotplug_cpu(0, 0);
386 return notifier_from_errno(ret
);
389 static int __init
bsp_pm_check_init(void)
392 * Set this bsp_pm_callback as lower priority than
393 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
394 * earlier to disable cpu hotplug before bsp online check.
396 pm_notifier(bsp_pm_callback
, -INT_MAX
);
400 core_initcall(bsp_pm_check_init
);
402 static int msr_build_context(const u32
*msr_id
, const int num
)
404 struct saved_msrs
*saved_msrs
= &saved_context
.saved_msrs
;
405 struct saved_msr
*msr_array
;
409 total_num
= saved_msrs
->num
+ num
;
411 msr_array
= kmalloc_array(total_num
, sizeof(struct saved_msr
), GFP_KERNEL
);
413 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
417 if (saved_msrs
->array
) {
419 * Multiple callbacks can invoke this function, so copy any
420 * MSR save requests from previous invocations.
422 memcpy(msr_array
, saved_msrs
->array
,
423 sizeof(struct saved_msr
) * saved_msrs
->num
);
425 kfree(saved_msrs
->array
);
428 for (i
= saved_msrs
->num
, j
= 0; i
< total_num
; i
++, j
++) {
429 msr_array
[i
].info
.msr_no
= msr_id
[j
];
430 msr_array
[i
].valid
= false;
431 msr_array
[i
].info
.reg
.q
= 0;
433 saved_msrs
->num
= total_num
;
434 saved_msrs
->array
= msr_array
;
440 * The following sections are a quirk framework for problematic BIOSen:
441 * Sometimes MSRs are modified by the BIOSen after suspended to
442 * RAM, this might cause unexpected behavior after wakeup.
443 * Thus we save/restore these specified MSRs across suspend/resume
444 * in order to work around it.
446 * For any further problematic BIOSen/platforms,
447 * please add your own function similar to msr_initialize_bdw.
449 static int msr_initialize_bdw(const struct dmi_system_id
*d
)
451 /* Add any extra MSR ids into this array. */
452 u32 bdw_msr_id
[] = { MSR_IA32_THERM_CONTROL
};
454 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d
->ident
);
455 return msr_build_context(bdw_msr_id
, ARRAY_SIZE(bdw_msr_id
));
458 static const struct dmi_system_id msr_save_dmi_table
[] = {
460 .callback
= msr_initialize_bdw
,
461 .ident
= "BROADWELL BDX_EP",
463 DMI_MATCH(DMI_PRODUCT_NAME
, "GRANTLEY"),
464 DMI_MATCH(DMI_PRODUCT_VERSION
, "E63448-400"),
470 static int msr_save_cpuid_features(const struct x86_cpu_id
*c
)
472 u32 cpuid_msr_id
[] = {
473 MSR_AMD64_CPUID_FN_1
,
476 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
479 return msr_build_context(cpuid_msr_id
, ARRAY_SIZE(cpuid_msr_id
));
482 static const struct x86_cpu_id msr_save_cpu_table
[] = {
484 .vendor
= X86_VENDOR_AMD
,
486 .model
= X86_MODEL_ANY
,
487 .feature
= X86_FEATURE_ANY
,
488 .driver_data
= (kernel_ulong_t
)msr_save_cpuid_features
,
491 .vendor
= X86_VENDOR_AMD
,
493 .model
= X86_MODEL_ANY
,
494 .feature
= X86_FEATURE_ANY
,
495 .driver_data
= (kernel_ulong_t
)msr_save_cpuid_features
,
500 typedef int (*pm_cpu_match_t
)(const struct x86_cpu_id
*);
501 static int pm_cpu_check(const struct x86_cpu_id
*c
)
503 const struct x86_cpu_id
*m
;
506 m
= x86_match_cpu(msr_save_cpu_table
);
510 fn
= (pm_cpu_match_t
)m
->driver_data
;
517 static int pm_check_save_msr(void)
519 dmi_check_system(msr_save_dmi_table
);
520 pm_cpu_check(msr_save_cpu_table
);
525 device_initcall(pm_check_save_msr
);