2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
39 * Cursor allocation zone.
41 kmem_zone_t
*xfs_btree_cur_zone
;
44 * Btree magic numbers.
46 static const uint32_t xfs_magics
[2][XFS_BTNUM_MAX
] = {
47 { XFS_ABTB_MAGIC
, XFS_ABTC_MAGIC
, 0, XFS_BMAP_MAGIC
, XFS_IBT_MAGIC
,
49 { XFS_ABTB_CRC_MAGIC
, XFS_ABTC_CRC_MAGIC
, XFS_RMAP_CRC_MAGIC
,
50 XFS_BMAP_CRC_MAGIC
, XFS_IBT_CRC_MAGIC
, XFS_FIBT_CRC_MAGIC
,
59 uint32_t magic
= xfs_magics
[crc
][btnum
];
61 /* Ensure we asked for crc for crc-only magics. */
66 STATIC
int /* error (0 or EFSCORRUPTED) */
67 xfs_btree_check_lblock(
68 struct xfs_btree_cur
*cur
, /* btree cursor */
69 struct xfs_btree_block
*block
, /* btree long form block pointer */
70 int level
, /* level of the btree block */
71 struct xfs_buf
*bp
) /* buffer for block, if any */
73 int lblock_ok
= 1; /* block passes checks */
74 struct xfs_mount
*mp
; /* file system mount point */
75 xfs_btnum_t btnum
= cur
->bc_btnum
;
79 crc
= xfs_sb_version_hascrc(&mp
->m_sb
);
82 lblock_ok
= lblock_ok
&&
83 uuid_equal(&block
->bb_u
.l
.bb_uuid
,
84 &mp
->m_sb
.sb_meta_uuid
) &&
85 block
->bb_u
.l
.bb_blkno
== cpu_to_be64(
86 bp
? bp
->b_bn
: XFS_BUF_DADDR_NULL
);
89 lblock_ok
= lblock_ok
&&
90 be32_to_cpu(block
->bb_magic
) == xfs_btree_magic(crc
, btnum
) &&
91 be16_to_cpu(block
->bb_level
) == level
&&
92 be16_to_cpu(block
->bb_numrecs
) <=
93 cur
->bc_ops
->get_maxrecs(cur
, level
) &&
94 block
->bb_u
.l
.bb_leftsib
&&
95 (block
->bb_u
.l
.bb_leftsib
== cpu_to_be64(NULLFSBLOCK
) ||
96 XFS_FSB_SANITY_CHECK(mp
,
97 be64_to_cpu(block
->bb_u
.l
.bb_leftsib
))) &&
98 block
->bb_u
.l
.bb_rightsib
&&
99 (block
->bb_u
.l
.bb_rightsib
== cpu_to_be64(NULLFSBLOCK
) ||
100 XFS_FSB_SANITY_CHECK(mp
,
101 be64_to_cpu(block
->bb_u
.l
.bb_rightsib
)));
103 if (unlikely(XFS_TEST_ERROR(!lblock_ok
, mp
,
104 XFS_ERRTAG_BTREE_CHECK_LBLOCK
))) {
106 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
107 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_LOW
, mp
);
108 return -EFSCORRUPTED
;
113 STATIC
int /* error (0 or EFSCORRUPTED) */
114 xfs_btree_check_sblock(
115 struct xfs_btree_cur
*cur
, /* btree cursor */
116 struct xfs_btree_block
*block
, /* btree short form block pointer */
117 int level
, /* level of the btree block */
118 struct xfs_buf
*bp
) /* buffer containing block */
120 struct xfs_mount
*mp
; /* file system mount point */
121 struct xfs_buf
*agbp
; /* buffer for ag. freespace struct */
122 struct xfs_agf
*agf
; /* ag. freespace structure */
123 xfs_agblock_t agflen
; /* native ag. freespace length */
124 int sblock_ok
= 1; /* block passes checks */
125 xfs_btnum_t btnum
= cur
->bc_btnum
;
129 crc
= xfs_sb_version_hascrc(&mp
->m_sb
);
130 agbp
= cur
->bc_private
.a
.agbp
;
131 agf
= XFS_BUF_TO_AGF(agbp
);
132 agflen
= be32_to_cpu(agf
->agf_length
);
135 sblock_ok
= sblock_ok
&&
136 uuid_equal(&block
->bb_u
.s
.bb_uuid
,
137 &mp
->m_sb
.sb_meta_uuid
) &&
138 block
->bb_u
.s
.bb_blkno
== cpu_to_be64(
139 bp
? bp
->b_bn
: XFS_BUF_DADDR_NULL
);
142 sblock_ok
= sblock_ok
&&
143 be32_to_cpu(block
->bb_magic
) == xfs_btree_magic(crc
, btnum
) &&
144 be16_to_cpu(block
->bb_level
) == level
&&
145 be16_to_cpu(block
->bb_numrecs
) <=
146 cur
->bc_ops
->get_maxrecs(cur
, level
) &&
147 (block
->bb_u
.s
.bb_leftsib
== cpu_to_be32(NULLAGBLOCK
) ||
148 be32_to_cpu(block
->bb_u
.s
.bb_leftsib
) < agflen
) &&
149 block
->bb_u
.s
.bb_leftsib
&&
150 (block
->bb_u
.s
.bb_rightsib
== cpu_to_be32(NULLAGBLOCK
) ||
151 be32_to_cpu(block
->bb_u
.s
.bb_rightsib
) < agflen
) &&
152 block
->bb_u
.s
.bb_rightsib
;
154 if (unlikely(XFS_TEST_ERROR(!sblock_ok
, mp
,
155 XFS_ERRTAG_BTREE_CHECK_SBLOCK
))) {
157 trace_xfs_btree_corrupt(bp
, _RET_IP_
);
158 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_LOW
, mp
);
159 return -EFSCORRUPTED
;
165 * Debug routine: check that block header is ok.
168 xfs_btree_check_block(
169 struct xfs_btree_cur
*cur
, /* btree cursor */
170 struct xfs_btree_block
*block
, /* generic btree block pointer */
171 int level
, /* level of the btree block */
172 struct xfs_buf
*bp
) /* buffer containing block, if any */
174 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
175 return xfs_btree_check_lblock(cur
, block
, level
, bp
);
177 return xfs_btree_check_sblock(cur
, block
, level
, bp
);
181 * Check that (long) pointer is ok.
183 int /* error (0 or EFSCORRUPTED) */
184 xfs_btree_check_lptr(
185 struct xfs_btree_cur
*cur
, /* btree cursor */
186 xfs_fsblock_t bno
, /* btree block disk address */
187 int level
) /* btree block level */
189 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
,
191 bno
!= NULLFSBLOCK
&&
192 XFS_FSB_SANITY_CHECK(cur
->bc_mp
, bno
));
198 * Check that (short) pointer is ok.
200 STATIC
int /* error (0 or EFSCORRUPTED) */
201 xfs_btree_check_sptr(
202 struct xfs_btree_cur
*cur
, /* btree cursor */
203 xfs_agblock_t bno
, /* btree block disk address */
204 int level
) /* btree block level */
206 xfs_agblock_t agblocks
= cur
->bc_mp
->m_sb
.sb_agblocks
;
208 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
,
210 bno
!= NULLAGBLOCK
&&
217 * Check that block ptr is ok.
219 STATIC
int /* error (0 or EFSCORRUPTED) */
221 struct xfs_btree_cur
*cur
, /* btree cursor */
222 union xfs_btree_ptr
*ptr
, /* btree block disk address */
223 int index
, /* offset from ptr to check */
224 int level
) /* btree block level */
226 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
227 return xfs_btree_check_lptr(cur
,
228 be64_to_cpu((&ptr
->l
)[index
]), level
);
230 return xfs_btree_check_sptr(cur
,
231 be32_to_cpu((&ptr
->s
)[index
]), level
);
237 * Calculate CRC on the whole btree block and stuff it into the
238 * long-form btree header.
240 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
241 * it into the buffer so recovery knows what the last modification was that made
245 xfs_btree_lblock_calc_crc(
248 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
249 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
251 if (!xfs_sb_version_hascrc(&bp
->b_target
->bt_mount
->m_sb
))
254 block
->bb_u
.l
.bb_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
255 xfs_buf_update_cksum(bp
, XFS_BTREE_LBLOCK_CRC_OFF
);
259 xfs_btree_lblock_verify_crc(
262 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
263 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
265 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
266 if (!xfs_log_check_lsn(mp
, be64_to_cpu(block
->bb_u
.l
.bb_lsn
)))
268 return xfs_buf_verify_cksum(bp
, XFS_BTREE_LBLOCK_CRC_OFF
);
275 * Calculate CRC on the whole btree block and stuff it into the
276 * short-form btree header.
278 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
279 * it into the buffer so recovery knows what the last modification was that made
283 xfs_btree_sblock_calc_crc(
286 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
287 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
289 if (!xfs_sb_version_hascrc(&bp
->b_target
->bt_mount
->m_sb
))
292 block
->bb_u
.s
.bb_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
293 xfs_buf_update_cksum(bp
, XFS_BTREE_SBLOCK_CRC_OFF
);
297 xfs_btree_sblock_verify_crc(
300 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
301 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
303 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
304 if (!xfs_log_check_lsn(mp
, be64_to_cpu(block
->bb_u
.s
.bb_lsn
)))
306 return xfs_buf_verify_cksum(bp
, XFS_BTREE_SBLOCK_CRC_OFF
);
313 xfs_btree_free_block(
314 struct xfs_btree_cur
*cur
,
319 error
= cur
->bc_ops
->free_block(cur
, bp
);
321 xfs_trans_binval(cur
->bc_tp
, bp
);
322 XFS_BTREE_STATS_INC(cur
, free
);
328 * Delete the btree cursor.
331 xfs_btree_del_cursor(
332 xfs_btree_cur_t
*cur
, /* btree cursor */
333 int error
) /* del because of error */
335 int i
; /* btree level */
338 * Clear the buffer pointers, and release the buffers.
339 * If we're doing this in the face of an error, we
340 * need to make sure to inspect all of the entries
341 * in the bc_bufs array for buffers to be unlocked.
342 * This is because some of the btree code works from
343 * level n down to 0, and if we get an error along
344 * the way we won't have initialized all the entries
347 for (i
= 0; i
< cur
->bc_nlevels
; i
++) {
349 xfs_trans_brelse(cur
->bc_tp
, cur
->bc_bufs
[i
]);
354 * Can't free a bmap cursor without having dealt with the
355 * allocated indirect blocks' accounting.
357 ASSERT(cur
->bc_btnum
!= XFS_BTNUM_BMAP
||
358 cur
->bc_private
.b
.allocated
== 0);
362 kmem_zone_free(xfs_btree_cur_zone
, cur
);
366 * Duplicate the btree cursor.
367 * Allocate a new one, copy the record, re-get the buffers.
370 xfs_btree_dup_cursor(
371 xfs_btree_cur_t
*cur
, /* input cursor */
372 xfs_btree_cur_t
**ncur
) /* output cursor */
374 xfs_buf_t
*bp
; /* btree block's buffer pointer */
375 int error
; /* error return value */
376 int i
; /* level number of btree block */
377 xfs_mount_t
*mp
; /* mount structure for filesystem */
378 xfs_btree_cur_t
*new; /* new cursor value */
379 xfs_trans_t
*tp
; /* transaction pointer, can be NULL */
385 * Allocate a new cursor like the old one.
387 new = cur
->bc_ops
->dup_cursor(cur
);
390 * Copy the record currently in the cursor.
392 new->bc_rec
= cur
->bc_rec
;
395 * For each level current, re-get the buffer and copy the ptr value.
397 for (i
= 0; i
< new->bc_nlevels
; i
++) {
398 new->bc_ptrs
[i
] = cur
->bc_ptrs
[i
];
399 new->bc_ra
[i
] = cur
->bc_ra
[i
];
400 bp
= cur
->bc_bufs
[i
];
402 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
403 XFS_BUF_ADDR(bp
), mp
->m_bsize
,
405 cur
->bc_ops
->buf_ops
);
407 xfs_btree_del_cursor(new, error
);
412 new->bc_bufs
[i
] = bp
;
419 * XFS btree block layout and addressing:
421 * There are two types of blocks in the btree: leaf and non-leaf blocks.
423 * The leaf record start with a header then followed by records containing
424 * the values. A non-leaf block also starts with the same header, and
425 * then first contains lookup keys followed by an equal number of pointers
426 * to the btree blocks at the previous level.
428 * +--------+-------+-------+-------+-------+-------+-------+
429 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
430 * +--------+-------+-------+-------+-------+-------+-------+
432 * +--------+-------+-------+-------+-------+-------+-------+
433 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
434 * +--------+-------+-------+-------+-------+-------+-------+
436 * The header is called struct xfs_btree_block for reasons better left unknown
437 * and comes in different versions for short (32bit) and long (64bit) block
438 * pointers. The record and key structures are defined by the btree instances
439 * and opaque to the btree core. The block pointers are simple disk endian
440 * integers, available in a short (32bit) and long (64bit) variant.
442 * The helpers below calculate the offset of a given record, key or pointer
443 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
444 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
445 * inside the btree block is done using indices starting at one, not zero!
447 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
448 * overlapping intervals. In such a tree, records are still sorted lowest to
449 * highest and indexed by the smallest key value that refers to the record.
450 * However, nodes are different: each pointer has two associated keys -- one
451 * indexing the lowest key available in the block(s) below (the same behavior
452 * as the key in a regular btree) and another indexing the highest key
453 * available in the block(s) below. Because records are /not/ sorted by the
454 * highest key, all leaf block updates require us to compute the highest key
455 * that matches any record in the leaf and to recursively update the high keys
456 * in the nodes going further up in the tree, if necessary. Nodes look like
459 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
460 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
461 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
463 * To perform an interval query on an overlapped tree, perform the usual
464 * depth-first search and use the low and high keys to decide if we can skip
465 * that particular node. If a leaf node is reached, return the records that
466 * intersect the interval. Note that an interval query may return numerous
467 * entries. For a non-overlapped tree, simply search for the record associated
468 * with the lowest key and iterate forward until a non-matching record is
469 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
470 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
473 * Why do we care about overlapping intervals? Let's say you have a bunch of
474 * reverse mapping records on a reflink filesystem:
476 * 1: +- file A startblock B offset C length D -----------+
477 * 2: +- file E startblock F offset G length H --------------+
478 * 3: +- file I startblock F offset J length K --+
479 * 4: +- file L... --+
481 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
482 * we'd simply increment the length of record 1. But how do we find the record
483 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
484 * record 3 because the keys are ordered first by startblock. An interval
485 * query would return records 1 and 2 because they both overlap (B+D-1), and
486 * from that we can pick out record 1 as the appropriate left neighbor.
488 * In the non-overlapped case you can do a LE lookup and decrement the cursor
489 * because a record's interval must end before the next record.
493 * Return size of the btree block header for this btree instance.
495 static inline size_t xfs_btree_block_len(struct xfs_btree_cur
*cur
)
497 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
498 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
)
499 return XFS_BTREE_LBLOCK_CRC_LEN
;
500 return XFS_BTREE_LBLOCK_LEN
;
502 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
)
503 return XFS_BTREE_SBLOCK_CRC_LEN
;
504 return XFS_BTREE_SBLOCK_LEN
;
508 * Return size of btree block pointers for this btree instance.
510 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur
*cur
)
512 return (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) ?
513 sizeof(__be64
) : sizeof(__be32
);
517 * Calculate offset of the n-th record in a btree block.
520 xfs_btree_rec_offset(
521 struct xfs_btree_cur
*cur
,
524 return xfs_btree_block_len(cur
) +
525 (n
- 1) * cur
->bc_ops
->rec_len
;
529 * Calculate offset of the n-th key in a btree block.
532 xfs_btree_key_offset(
533 struct xfs_btree_cur
*cur
,
536 return xfs_btree_block_len(cur
) +
537 (n
- 1) * cur
->bc_ops
->key_len
;
541 * Calculate offset of the n-th high key in a btree block.
544 xfs_btree_high_key_offset(
545 struct xfs_btree_cur
*cur
,
548 return xfs_btree_block_len(cur
) +
549 (n
- 1) * cur
->bc_ops
->key_len
+ (cur
->bc_ops
->key_len
/ 2);
553 * Calculate offset of the n-th block pointer in a btree block.
556 xfs_btree_ptr_offset(
557 struct xfs_btree_cur
*cur
,
561 return xfs_btree_block_len(cur
) +
562 cur
->bc_ops
->get_maxrecs(cur
, level
) * cur
->bc_ops
->key_len
+
563 (n
- 1) * xfs_btree_ptr_len(cur
);
567 * Return a pointer to the n-th record in the btree block.
569 union xfs_btree_rec
*
571 struct xfs_btree_cur
*cur
,
573 struct xfs_btree_block
*block
)
575 return (union xfs_btree_rec
*)
576 ((char *)block
+ xfs_btree_rec_offset(cur
, n
));
580 * Return a pointer to the n-th key in the btree block.
582 union xfs_btree_key
*
584 struct xfs_btree_cur
*cur
,
586 struct xfs_btree_block
*block
)
588 return (union xfs_btree_key
*)
589 ((char *)block
+ xfs_btree_key_offset(cur
, n
));
593 * Return a pointer to the n-th high key in the btree block.
595 union xfs_btree_key
*
596 xfs_btree_high_key_addr(
597 struct xfs_btree_cur
*cur
,
599 struct xfs_btree_block
*block
)
601 return (union xfs_btree_key
*)
602 ((char *)block
+ xfs_btree_high_key_offset(cur
, n
));
606 * Return a pointer to the n-th block pointer in the btree block.
608 union xfs_btree_ptr
*
610 struct xfs_btree_cur
*cur
,
612 struct xfs_btree_block
*block
)
614 int level
= xfs_btree_get_level(block
);
616 ASSERT(block
->bb_level
!= 0);
618 return (union xfs_btree_ptr
*)
619 ((char *)block
+ xfs_btree_ptr_offset(cur
, n
, level
));
623 * Get the root block which is stored in the inode.
625 * For now this btree implementation assumes the btree root is always
626 * stored in the if_broot field of an inode fork.
628 STATIC
struct xfs_btree_block
*
630 struct xfs_btree_cur
*cur
)
632 struct xfs_ifork
*ifp
;
634 ifp
= XFS_IFORK_PTR(cur
->bc_private
.b
.ip
, cur
->bc_private
.b
.whichfork
);
635 return (struct xfs_btree_block
*)ifp
->if_broot
;
639 * Retrieve the block pointer from the cursor at the given level.
640 * This may be an inode btree root or from a buffer.
642 struct xfs_btree_block
* /* generic btree block pointer */
644 struct xfs_btree_cur
*cur
, /* btree cursor */
645 int level
, /* level in btree */
646 struct xfs_buf
**bpp
) /* buffer containing the block */
648 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
649 (level
== cur
->bc_nlevels
- 1)) {
651 return xfs_btree_get_iroot(cur
);
654 *bpp
= cur
->bc_bufs
[level
];
655 return XFS_BUF_TO_BLOCK(*bpp
);
659 * Get a buffer for the block, return it with no data read.
660 * Long-form addressing.
662 xfs_buf_t
* /* buffer for fsbno */
664 xfs_mount_t
*mp
, /* file system mount point */
665 xfs_trans_t
*tp
, /* transaction pointer */
666 xfs_fsblock_t fsbno
, /* file system block number */
667 uint lock
) /* lock flags for get_buf */
669 xfs_daddr_t d
; /* real disk block address */
671 ASSERT(fsbno
!= NULLFSBLOCK
);
672 d
= XFS_FSB_TO_DADDR(mp
, fsbno
);
673 return xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
, mp
->m_bsize
, lock
);
677 * Get a buffer for the block, return it with no data read.
678 * Short-form addressing.
680 xfs_buf_t
* /* buffer for agno/agbno */
682 xfs_mount_t
*mp
, /* file system mount point */
683 xfs_trans_t
*tp
, /* transaction pointer */
684 xfs_agnumber_t agno
, /* allocation group number */
685 xfs_agblock_t agbno
, /* allocation group block number */
686 uint lock
) /* lock flags for get_buf */
688 xfs_daddr_t d
; /* real disk block address */
690 ASSERT(agno
!= NULLAGNUMBER
);
691 ASSERT(agbno
!= NULLAGBLOCK
);
692 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
693 return xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
, mp
->m_bsize
, lock
);
697 * Check for the cursor referring to the last block at the given level.
699 int /* 1=is last block, 0=not last block */
700 xfs_btree_islastblock(
701 xfs_btree_cur_t
*cur
, /* btree cursor */
702 int level
) /* level to check */
704 struct xfs_btree_block
*block
; /* generic btree block pointer */
705 xfs_buf_t
*bp
; /* buffer containing block */
707 block
= xfs_btree_get_block(cur
, level
, &bp
);
708 xfs_btree_check_block(cur
, block
, level
, bp
);
709 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
710 return block
->bb_u
.l
.bb_rightsib
== cpu_to_be64(NULLFSBLOCK
);
712 return block
->bb_u
.s
.bb_rightsib
== cpu_to_be32(NULLAGBLOCK
);
716 * Change the cursor to point to the first record at the given level.
717 * Other levels are unaffected.
719 STATIC
int /* success=1, failure=0 */
721 xfs_btree_cur_t
*cur
, /* btree cursor */
722 int level
) /* level to change */
724 struct xfs_btree_block
*block
; /* generic btree block pointer */
725 xfs_buf_t
*bp
; /* buffer containing block */
728 * Get the block pointer for this level.
730 block
= xfs_btree_get_block(cur
, level
, &bp
);
731 if (xfs_btree_check_block(cur
, block
, level
, bp
))
734 * It's empty, there is no such record.
736 if (!block
->bb_numrecs
)
739 * Set the ptr value to 1, that's the first record/key.
741 cur
->bc_ptrs
[level
] = 1;
746 * Change the cursor to point to the last record in the current block
747 * at the given level. Other levels are unaffected.
749 STATIC
int /* success=1, failure=0 */
751 xfs_btree_cur_t
*cur
, /* btree cursor */
752 int level
) /* level to change */
754 struct xfs_btree_block
*block
; /* generic btree block pointer */
755 xfs_buf_t
*bp
; /* buffer containing block */
758 * Get the block pointer for this level.
760 block
= xfs_btree_get_block(cur
, level
, &bp
);
761 if (xfs_btree_check_block(cur
, block
, level
, bp
))
764 * It's empty, there is no such record.
766 if (!block
->bb_numrecs
)
769 * Set the ptr value to numrecs, that's the last record/key.
771 cur
->bc_ptrs
[level
] = be16_to_cpu(block
->bb_numrecs
);
776 * Compute first and last byte offsets for the fields given.
777 * Interprets the offsets table, which contains struct field offsets.
781 int64_t fields
, /* bitmask of fields */
782 const short *offsets
, /* table of field offsets */
783 int nbits
, /* number of bits to inspect */
784 int *first
, /* output: first byte offset */
785 int *last
) /* output: last byte offset */
787 int i
; /* current bit number */
788 int64_t imask
; /* mask for current bit number */
792 * Find the lowest bit, so the first byte offset.
794 for (i
= 0, imask
= 1LL; ; i
++, imask
<<= 1) {
795 if (imask
& fields
) {
801 * Find the highest bit, so the last byte offset.
803 for (i
= nbits
- 1, imask
= 1LL << i
; ; i
--, imask
>>= 1) {
804 if (imask
& fields
) {
805 *last
= offsets
[i
+ 1] - 1;
812 * Get a buffer for the block, return it read in.
813 * Long-form addressing.
817 struct xfs_mount
*mp
, /* file system mount point */
818 struct xfs_trans
*tp
, /* transaction pointer */
819 xfs_fsblock_t fsbno
, /* file system block number */
820 uint lock
, /* lock flags for read_buf */
821 struct xfs_buf
**bpp
, /* buffer for fsbno */
822 int refval
, /* ref count value for buffer */
823 const struct xfs_buf_ops
*ops
)
825 struct xfs_buf
*bp
; /* return value */
826 xfs_daddr_t d
; /* real disk block address */
829 if (!XFS_FSB_SANITY_CHECK(mp
, fsbno
))
830 return -EFSCORRUPTED
;
831 d
= XFS_FSB_TO_DADDR(mp
, fsbno
);
832 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, d
,
833 mp
->m_bsize
, lock
, &bp
, ops
);
837 xfs_buf_set_ref(bp
, refval
);
843 * Read-ahead the block, don't wait for it, don't return a buffer.
844 * Long-form addressing.
848 xfs_btree_reada_bufl(
849 struct xfs_mount
*mp
, /* file system mount point */
850 xfs_fsblock_t fsbno
, /* file system block number */
851 xfs_extlen_t count
, /* count of filesystem blocks */
852 const struct xfs_buf_ops
*ops
)
856 ASSERT(fsbno
!= NULLFSBLOCK
);
857 d
= XFS_FSB_TO_DADDR(mp
, fsbno
);
858 xfs_buf_readahead(mp
->m_ddev_targp
, d
, mp
->m_bsize
* count
, ops
);
862 * Read-ahead the block, don't wait for it, don't return a buffer.
863 * Short-form addressing.
867 xfs_btree_reada_bufs(
868 struct xfs_mount
*mp
, /* file system mount point */
869 xfs_agnumber_t agno
, /* allocation group number */
870 xfs_agblock_t agbno
, /* allocation group block number */
871 xfs_extlen_t count
, /* count of filesystem blocks */
872 const struct xfs_buf_ops
*ops
)
876 ASSERT(agno
!= NULLAGNUMBER
);
877 ASSERT(agbno
!= NULLAGBLOCK
);
878 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
879 xfs_buf_readahead(mp
->m_ddev_targp
, d
, mp
->m_bsize
* count
, ops
);
883 xfs_btree_readahead_lblock(
884 struct xfs_btree_cur
*cur
,
886 struct xfs_btree_block
*block
)
889 xfs_fsblock_t left
= be64_to_cpu(block
->bb_u
.l
.bb_leftsib
);
890 xfs_fsblock_t right
= be64_to_cpu(block
->bb_u
.l
.bb_rightsib
);
892 if ((lr
& XFS_BTCUR_LEFTRA
) && left
!= NULLFSBLOCK
) {
893 xfs_btree_reada_bufl(cur
->bc_mp
, left
, 1,
894 cur
->bc_ops
->buf_ops
);
898 if ((lr
& XFS_BTCUR_RIGHTRA
) && right
!= NULLFSBLOCK
) {
899 xfs_btree_reada_bufl(cur
->bc_mp
, right
, 1,
900 cur
->bc_ops
->buf_ops
);
908 xfs_btree_readahead_sblock(
909 struct xfs_btree_cur
*cur
,
911 struct xfs_btree_block
*block
)
914 xfs_agblock_t left
= be32_to_cpu(block
->bb_u
.s
.bb_leftsib
);
915 xfs_agblock_t right
= be32_to_cpu(block
->bb_u
.s
.bb_rightsib
);
918 if ((lr
& XFS_BTCUR_LEFTRA
) && left
!= NULLAGBLOCK
) {
919 xfs_btree_reada_bufs(cur
->bc_mp
, cur
->bc_private
.a
.agno
,
920 left
, 1, cur
->bc_ops
->buf_ops
);
924 if ((lr
& XFS_BTCUR_RIGHTRA
) && right
!= NULLAGBLOCK
) {
925 xfs_btree_reada_bufs(cur
->bc_mp
, cur
->bc_private
.a
.agno
,
926 right
, 1, cur
->bc_ops
->buf_ops
);
934 * Read-ahead btree blocks, at the given level.
935 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
939 struct xfs_btree_cur
*cur
, /* btree cursor */
940 int lev
, /* level in btree */
941 int lr
) /* left/right bits */
943 struct xfs_btree_block
*block
;
946 * No readahead needed if we are at the root level and the
947 * btree root is stored in the inode.
949 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
950 (lev
== cur
->bc_nlevels
- 1))
953 if ((cur
->bc_ra
[lev
] | lr
) == cur
->bc_ra
[lev
])
956 cur
->bc_ra
[lev
] |= lr
;
957 block
= XFS_BUF_TO_BLOCK(cur
->bc_bufs
[lev
]);
959 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
960 return xfs_btree_readahead_lblock(cur
, lr
, block
);
961 return xfs_btree_readahead_sblock(cur
, lr
, block
);
965 xfs_btree_ptr_to_daddr(
966 struct xfs_btree_cur
*cur
,
967 union xfs_btree_ptr
*ptr
)
969 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
970 ASSERT(ptr
->l
!= cpu_to_be64(NULLFSBLOCK
));
972 return XFS_FSB_TO_DADDR(cur
->bc_mp
, be64_to_cpu(ptr
->l
));
974 ASSERT(cur
->bc_private
.a
.agno
!= NULLAGNUMBER
);
975 ASSERT(ptr
->s
!= cpu_to_be32(NULLAGBLOCK
));
977 return XFS_AGB_TO_DADDR(cur
->bc_mp
, cur
->bc_private
.a
.agno
,
978 be32_to_cpu(ptr
->s
));
983 * Readahead @count btree blocks at the given @ptr location.
985 * We don't need to care about long or short form btrees here as we have a
986 * method of converting the ptr directly to a daddr available to us.
989 xfs_btree_readahead_ptr(
990 struct xfs_btree_cur
*cur
,
991 union xfs_btree_ptr
*ptr
,
994 xfs_buf_readahead(cur
->bc_mp
->m_ddev_targp
,
995 xfs_btree_ptr_to_daddr(cur
, ptr
),
996 cur
->bc_mp
->m_bsize
* count
, cur
->bc_ops
->buf_ops
);
1000 * Set the buffer for level "lev" in the cursor to bp, releasing
1001 * any previous buffer.
1005 xfs_btree_cur_t
*cur
, /* btree cursor */
1006 int lev
, /* level in btree */
1007 xfs_buf_t
*bp
) /* new buffer to set */
1009 struct xfs_btree_block
*b
; /* btree block */
1011 if (cur
->bc_bufs
[lev
])
1012 xfs_trans_brelse(cur
->bc_tp
, cur
->bc_bufs
[lev
]);
1013 cur
->bc_bufs
[lev
] = bp
;
1014 cur
->bc_ra
[lev
] = 0;
1016 b
= XFS_BUF_TO_BLOCK(bp
);
1017 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
1018 if (b
->bb_u
.l
.bb_leftsib
== cpu_to_be64(NULLFSBLOCK
))
1019 cur
->bc_ra
[lev
] |= XFS_BTCUR_LEFTRA
;
1020 if (b
->bb_u
.l
.bb_rightsib
== cpu_to_be64(NULLFSBLOCK
))
1021 cur
->bc_ra
[lev
] |= XFS_BTCUR_RIGHTRA
;
1023 if (b
->bb_u
.s
.bb_leftsib
== cpu_to_be32(NULLAGBLOCK
))
1024 cur
->bc_ra
[lev
] |= XFS_BTCUR_LEFTRA
;
1025 if (b
->bb_u
.s
.bb_rightsib
== cpu_to_be32(NULLAGBLOCK
))
1026 cur
->bc_ra
[lev
] |= XFS_BTCUR_RIGHTRA
;
1031 xfs_btree_ptr_is_null(
1032 struct xfs_btree_cur
*cur
,
1033 union xfs_btree_ptr
*ptr
)
1035 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1036 return ptr
->l
== cpu_to_be64(NULLFSBLOCK
);
1038 return ptr
->s
== cpu_to_be32(NULLAGBLOCK
);
1042 xfs_btree_set_ptr_null(
1043 struct xfs_btree_cur
*cur
,
1044 union xfs_btree_ptr
*ptr
)
1046 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1047 ptr
->l
= cpu_to_be64(NULLFSBLOCK
);
1049 ptr
->s
= cpu_to_be32(NULLAGBLOCK
);
1053 * Get/set/init sibling pointers
1056 xfs_btree_get_sibling(
1057 struct xfs_btree_cur
*cur
,
1058 struct xfs_btree_block
*block
,
1059 union xfs_btree_ptr
*ptr
,
1062 ASSERT(lr
== XFS_BB_LEFTSIB
|| lr
== XFS_BB_RIGHTSIB
);
1064 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
1065 if (lr
== XFS_BB_RIGHTSIB
)
1066 ptr
->l
= block
->bb_u
.l
.bb_rightsib
;
1068 ptr
->l
= block
->bb_u
.l
.bb_leftsib
;
1070 if (lr
== XFS_BB_RIGHTSIB
)
1071 ptr
->s
= block
->bb_u
.s
.bb_rightsib
;
1073 ptr
->s
= block
->bb_u
.s
.bb_leftsib
;
1078 xfs_btree_set_sibling(
1079 struct xfs_btree_cur
*cur
,
1080 struct xfs_btree_block
*block
,
1081 union xfs_btree_ptr
*ptr
,
1084 ASSERT(lr
== XFS_BB_LEFTSIB
|| lr
== XFS_BB_RIGHTSIB
);
1086 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
1087 if (lr
== XFS_BB_RIGHTSIB
)
1088 block
->bb_u
.l
.bb_rightsib
= ptr
->l
;
1090 block
->bb_u
.l
.bb_leftsib
= ptr
->l
;
1092 if (lr
== XFS_BB_RIGHTSIB
)
1093 block
->bb_u
.s
.bb_rightsib
= ptr
->s
;
1095 block
->bb_u
.s
.bb_leftsib
= ptr
->s
;
1100 xfs_btree_init_block_int(
1101 struct xfs_mount
*mp
,
1102 struct xfs_btree_block
*buf
,
1110 int crc
= xfs_sb_version_hascrc(&mp
->m_sb
);
1111 __u32 magic
= xfs_btree_magic(crc
, btnum
);
1113 buf
->bb_magic
= cpu_to_be32(magic
);
1114 buf
->bb_level
= cpu_to_be16(level
);
1115 buf
->bb_numrecs
= cpu_to_be16(numrecs
);
1117 if (flags
& XFS_BTREE_LONG_PTRS
) {
1118 buf
->bb_u
.l
.bb_leftsib
= cpu_to_be64(NULLFSBLOCK
);
1119 buf
->bb_u
.l
.bb_rightsib
= cpu_to_be64(NULLFSBLOCK
);
1121 buf
->bb_u
.l
.bb_blkno
= cpu_to_be64(blkno
);
1122 buf
->bb_u
.l
.bb_owner
= cpu_to_be64(owner
);
1123 uuid_copy(&buf
->bb_u
.l
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
);
1124 buf
->bb_u
.l
.bb_pad
= 0;
1125 buf
->bb_u
.l
.bb_lsn
= 0;
1128 /* owner is a 32 bit value on short blocks */
1129 __u32 __owner
= (__u32
)owner
;
1131 buf
->bb_u
.s
.bb_leftsib
= cpu_to_be32(NULLAGBLOCK
);
1132 buf
->bb_u
.s
.bb_rightsib
= cpu_to_be32(NULLAGBLOCK
);
1134 buf
->bb_u
.s
.bb_blkno
= cpu_to_be64(blkno
);
1135 buf
->bb_u
.s
.bb_owner
= cpu_to_be32(__owner
);
1136 uuid_copy(&buf
->bb_u
.s
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
);
1137 buf
->bb_u
.s
.bb_lsn
= 0;
1143 xfs_btree_init_block(
1144 struct xfs_mount
*mp
,
1152 xfs_btree_init_block_int(mp
, XFS_BUF_TO_BLOCK(bp
), bp
->b_bn
,
1153 btnum
, level
, numrecs
, owner
, flags
);
1157 xfs_btree_init_block_cur(
1158 struct xfs_btree_cur
*cur
,
1166 * we can pull the owner from the cursor right now as the different
1167 * owners align directly with the pointer size of the btree. This may
1168 * change in future, but is safe for current users of the generic btree
1171 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1172 owner
= cur
->bc_private
.b
.ip
->i_ino
;
1174 owner
= cur
->bc_private
.a
.agno
;
1176 xfs_btree_init_block_int(cur
->bc_mp
, XFS_BUF_TO_BLOCK(bp
), bp
->b_bn
,
1177 cur
->bc_btnum
, level
, numrecs
,
1178 owner
, cur
->bc_flags
);
1182 * Return true if ptr is the last record in the btree and
1183 * we need to track updates to this record. The decision
1184 * will be further refined in the update_lastrec method.
1187 xfs_btree_is_lastrec(
1188 struct xfs_btree_cur
*cur
,
1189 struct xfs_btree_block
*block
,
1192 union xfs_btree_ptr ptr
;
1196 if (!(cur
->bc_flags
& XFS_BTREE_LASTREC_UPDATE
))
1199 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
1200 if (!xfs_btree_ptr_is_null(cur
, &ptr
))
1206 xfs_btree_buf_to_ptr(
1207 struct xfs_btree_cur
*cur
,
1209 union xfs_btree_ptr
*ptr
)
1211 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
1212 ptr
->l
= cpu_to_be64(XFS_DADDR_TO_FSB(cur
->bc_mp
,
1215 ptr
->s
= cpu_to_be32(xfs_daddr_to_agbno(cur
->bc_mp
,
1222 struct xfs_btree_cur
*cur
,
1225 switch (cur
->bc_btnum
) {
1228 xfs_buf_set_ref(bp
, XFS_ALLOC_BTREE_REF
);
1231 case XFS_BTNUM_FINO
:
1232 xfs_buf_set_ref(bp
, XFS_INO_BTREE_REF
);
1234 case XFS_BTNUM_BMAP
:
1235 xfs_buf_set_ref(bp
, XFS_BMAP_BTREE_REF
);
1237 case XFS_BTNUM_RMAP
:
1238 xfs_buf_set_ref(bp
, XFS_RMAP_BTREE_REF
);
1240 case XFS_BTNUM_REFC
:
1241 xfs_buf_set_ref(bp
, XFS_REFC_BTREE_REF
);
1249 xfs_btree_get_buf_block(
1250 struct xfs_btree_cur
*cur
,
1251 union xfs_btree_ptr
*ptr
,
1253 struct xfs_btree_block
**block
,
1254 struct xfs_buf
**bpp
)
1256 struct xfs_mount
*mp
= cur
->bc_mp
;
1259 /* need to sort out how callers deal with failures first */
1260 ASSERT(!(flags
& XBF_TRYLOCK
));
1262 d
= xfs_btree_ptr_to_daddr(cur
, ptr
);
1263 *bpp
= xfs_trans_get_buf(cur
->bc_tp
, mp
->m_ddev_targp
, d
,
1264 mp
->m_bsize
, flags
);
1269 (*bpp
)->b_ops
= cur
->bc_ops
->buf_ops
;
1270 *block
= XFS_BUF_TO_BLOCK(*bpp
);
1275 * Read in the buffer at the given ptr and return the buffer and
1276 * the block pointer within the buffer.
1279 xfs_btree_read_buf_block(
1280 struct xfs_btree_cur
*cur
,
1281 union xfs_btree_ptr
*ptr
,
1283 struct xfs_btree_block
**block
,
1284 struct xfs_buf
**bpp
)
1286 struct xfs_mount
*mp
= cur
->bc_mp
;
1290 /* need to sort out how callers deal with failures first */
1291 ASSERT(!(flags
& XBF_TRYLOCK
));
1293 d
= xfs_btree_ptr_to_daddr(cur
, ptr
);
1294 error
= xfs_trans_read_buf(mp
, cur
->bc_tp
, mp
->m_ddev_targp
, d
,
1295 mp
->m_bsize
, flags
, bpp
,
1296 cur
->bc_ops
->buf_ops
);
1300 xfs_btree_set_refs(cur
, *bpp
);
1301 *block
= XFS_BUF_TO_BLOCK(*bpp
);
1306 * Copy keys from one btree block to another.
1309 xfs_btree_copy_keys(
1310 struct xfs_btree_cur
*cur
,
1311 union xfs_btree_key
*dst_key
,
1312 union xfs_btree_key
*src_key
,
1315 ASSERT(numkeys
>= 0);
1316 memcpy(dst_key
, src_key
, numkeys
* cur
->bc_ops
->key_len
);
1320 * Copy records from one btree block to another.
1323 xfs_btree_copy_recs(
1324 struct xfs_btree_cur
*cur
,
1325 union xfs_btree_rec
*dst_rec
,
1326 union xfs_btree_rec
*src_rec
,
1329 ASSERT(numrecs
>= 0);
1330 memcpy(dst_rec
, src_rec
, numrecs
* cur
->bc_ops
->rec_len
);
1334 * Copy block pointers from one btree block to another.
1337 xfs_btree_copy_ptrs(
1338 struct xfs_btree_cur
*cur
,
1339 union xfs_btree_ptr
*dst_ptr
,
1340 union xfs_btree_ptr
*src_ptr
,
1343 ASSERT(numptrs
>= 0);
1344 memcpy(dst_ptr
, src_ptr
, numptrs
* xfs_btree_ptr_len(cur
));
1348 * Shift keys one index left/right inside a single btree block.
1351 xfs_btree_shift_keys(
1352 struct xfs_btree_cur
*cur
,
1353 union xfs_btree_key
*key
,
1359 ASSERT(numkeys
>= 0);
1360 ASSERT(dir
== 1 || dir
== -1);
1362 dst_key
= (char *)key
+ (dir
* cur
->bc_ops
->key_len
);
1363 memmove(dst_key
, key
, numkeys
* cur
->bc_ops
->key_len
);
1367 * Shift records one index left/right inside a single btree block.
1370 xfs_btree_shift_recs(
1371 struct xfs_btree_cur
*cur
,
1372 union xfs_btree_rec
*rec
,
1378 ASSERT(numrecs
>= 0);
1379 ASSERT(dir
== 1 || dir
== -1);
1381 dst_rec
= (char *)rec
+ (dir
* cur
->bc_ops
->rec_len
);
1382 memmove(dst_rec
, rec
, numrecs
* cur
->bc_ops
->rec_len
);
1386 * Shift block pointers one index left/right inside a single btree block.
1389 xfs_btree_shift_ptrs(
1390 struct xfs_btree_cur
*cur
,
1391 union xfs_btree_ptr
*ptr
,
1397 ASSERT(numptrs
>= 0);
1398 ASSERT(dir
== 1 || dir
== -1);
1400 dst_ptr
= (char *)ptr
+ (dir
* xfs_btree_ptr_len(cur
));
1401 memmove(dst_ptr
, ptr
, numptrs
* xfs_btree_ptr_len(cur
));
1405 * Log key values from the btree block.
1409 struct xfs_btree_cur
*cur
,
1414 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
1415 XFS_BTREE_TRACE_ARGBII(cur
, bp
, first
, last
);
1418 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1419 xfs_trans_log_buf(cur
->bc_tp
, bp
,
1420 xfs_btree_key_offset(cur
, first
),
1421 xfs_btree_key_offset(cur
, last
+ 1) - 1);
1423 xfs_trans_log_inode(cur
->bc_tp
, cur
->bc_private
.b
.ip
,
1424 xfs_ilog_fbroot(cur
->bc_private
.b
.whichfork
));
1427 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1431 * Log record values from the btree block.
1435 struct xfs_btree_cur
*cur
,
1440 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
1441 XFS_BTREE_TRACE_ARGBII(cur
, bp
, first
, last
);
1443 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1444 xfs_trans_log_buf(cur
->bc_tp
, bp
,
1445 xfs_btree_rec_offset(cur
, first
),
1446 xfs_btree_rec_offset(cur
, last
+ 1) - 1);
1448 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1452 * Log block pointer fields from a btree block (nonleaf).
1456 struct xfs_btree_cur
*cur
, /* btree cursor */
1457 struct xfs_buf
*bp
, /* buffer containing btree block */
1458 int first
, /* index of first pointer to log */
1459 int last
) /* index of last pointer to log */
1461 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
1462 XFS_BTREE_TRACE_ARGBII(cur
, bp
, first
, last
);
1465 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
1466 int level
= xfs_btree_get_level(block
);
1468 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1469 xfs_trans_log_buf(cur
->bc_tp
, bp
,
1470 xfs_btree_ptr_offset(cur
, first
, level
),
1471 xfs_btree_ptr_offset(cur
, last
+ 1, level
) - 1);
1473 xfs_trans_log_inode(cur
->bc_tp
, cur
->bc_private
.b
.ip
,
1474 xfs_ilog_fbroot(cur
->bc_private
.b
.whichfork
));
1477 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1481 * Log fields from a btree block header.
1484 xfs_btree_log_block(
1485 struct xfs_btree_cur
*cur
, /* btree cursor */
1486 struct xfs_buf
*bp
, /* buffer containing btree block */
1487 int fields
) /* mask of fields: XFS_BB_... */
1489 int first
; /* first byte offset logged */
1490 int last
; /* last byte offset logged */
1491 static const short soffsets
[] = { /* table of offsets (short) */
1492 offsetof(struct xfs_btree_block
, bb_magic
),
1493 offsetof(struct xfs_btree_block
, bb_level
),
1494 offsetof(struct xfs_btree_block
, bb_numrecs
),
1495 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_leftsib
),
1496 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_rightsib
),
1497 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_blkno
),
1498 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_lsn
),
1499 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_uuid
),
1500 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_owner
),
1501 offsetof(struct xfs_btree_block
, bb_u
.s
.bb_crc
),
1502 XFS_BTREE_SBLOCK_CRC_LEN
1504 static const short loffsets
[] = { /* table of offsets (long) */
1505 offsetof(struct xfs_btree_block
, bb_magic
),
1506 offsetof(struct xfs_btree_block
, bb_level
),
1507 offsetof(struct xfs_btree_block
, bb_numrecs
),
1508 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_leftsib
),
1509 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_rightsib
),
1510 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_blkno
),
1511 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_lsn
),
1512 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_uuid
),
1513 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_owner
),
1514 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_crc
),
1515 offsetof(struct xfs_btree_block
, bb_u
.l
.bb_pad
),
1516 XFS_BTREE_LBLOCK_CRC_LEN
1519 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
1520 XFS_BTREE_TRACE_ARGBI(cur
, bp
, fields
);
1525 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
) {
1527 * We don't log the CRC when updating a btree
1528 * block but instead recreate it during log
1529 * recovery. As the log buffers have checksums
1530 * of their own this is safe and avoids logging a crc
1531 * update in a lot of places.
1533 if (fields
== XFS_BB_ALL_BITS
)
1534 fields
= XFS_BB_ALL_BITS_CRC
;
1535 nbits
= XFS_BB_NUM_BITS_CRC
;
1537 nbits
= XFS_BB_NUM_BITS
;
1539 xfs_btree_offsets(fields
,
1540 (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) ?
1541 loffsets
: soffsets
,
1542 nbits
, &first
, &last
);
1543 xfs_trans_buf_set_type(cur
->bc_tp
, bp
, XFS_BLFT_BTREE_BUF
);
1544 xfs_trans_log_buf(cur
->bc_tp
, bp
, first
, last
);
1546 xfs_trans_log_inode(cur
->bc_tp
, cur
->bc_private
.b
.ip
,
1547 xfs_ilog_fbroot(cur
->bc_private
.b
.whichfork
));
1550 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1554 * Increment cursor by one record at the level.
1555 * For nonzero levels the leaf-ward information is untouched.
1558 xfs_btree_increment(
1559 struct xfs_btree_cur
*cur
,
1561 int *stat
) /* success/failure */
1563 struct xfs_btree_block
*block
;
1564 union xfs_btree_ptr ptr
;
1566 int error
; /* error return value */
1569 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
1570 XFS_BTREE_TRACE_ARGI(cur
, level
);
1572 ASSERT(level
< cur
->bc_nlevels
);
1574 /* Read-ahead to the right at this level. */
1575 xfs_btree_readahead(cur
, level
, XFS_BTCUR_RIGHTRA
);
1577 /* Get a pointer to the btree block. */
1578 block
= xfs_btree_get_block(cur
, level
, &bp
);
1581 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
1586 /* We're done if we remain in the block after the increment. */
1587 if (++cur
->bc_ptrs
[level
] <= xfs_btree_get_numrecs(block
))
1590 /* Fail if we just went off the right edge of the tree. */
1591 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
1592 if (xfs_btree_ptr_is_null(cur
, &ptr
))
1595 XFS_BTREE_STATS_INC(cur
, increment
);
1598 * March up the tree incrementing pointers.
1599 * Stop when we don't go off the right edge of a block.
1601 for (lev
= level
+ 1; lev
< cur
->bc_nlevels
; lev
++) {
1602 block
= xfs_btree_get_block(cur
, lev
, &bp
);
1605 error
= xfs_btree_check_block(cur
, block
, lev
, bp
);
1610 if (++cur
->bc_ptrs
[lev
] <= xfs_btree_get_numrecs(block
))
1613 /* Read-ahead the right block for the next loop. */
1614 xfs_btree_readahead(cur
, lev
, XFS_BTCUR_RIGHTRA
);
1618 * If we went off the root then we are either seriously
1619 * confused or have the tree root in an inode.
1621 if (lev
== cur
->bc_nlevels
) {
1622 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
)
1625 error
= -EFSCORRUPTED
;
1628 ASSERT(lev
< cur
->bc_nlevels
);
1631 * Now walk back down the tree, fixing up the cursor's buffer
1632 * pointers and key numbers.
1634 for (block
= xfs_btree_get_block(cur
, lev
, &bp
); lev
> level
; ) {
1635 union xfs_btree_ptr
*ptrp
;
1637 ptrp
= xfs_btree_ptr_addr(cur
, cur
->bc_ptrs
[lev
], block
);
1639 error
= xfs_btree_read_buf_block(cur
, ptrp
, 0, &block
, &bp
);
1643 xfs_btree_setbuf(cur
, lev
, bp
);
1644 cur
->bc_ptrs
[lev
] = 1;
1647 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1652 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1657 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
1662 * Decrement cursor by one record at the level.
1663 * For nonzero levels the leaf-ward information is untouched.
1666 xfs_btree_decrement(
1667 struct xfs_btree_cur
*cur
,
1669 int *stat
) /* success/failure */
1671 struct xfs_btree_block
*block
;
1673 int error
; /* error return value */
1675 union xfs_btree_ptr ptr
;
1677 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
1678 XFS_BTREE_TRACE_ARGI(cur
, level
);
1680 ASSERT(level
< cur
->bc_nlevels
);
1682 /* Read-ahead to the left at this level. */
1683 xfs_btree_readahead(cur
, level
, XFS_BTCUR_LEFTRA
);
1685 /* We're done if we remain in the block after the decrement. */
1686 if (--cur
->bc_ptrs
[level
] > 0)
1689 /* Get a pointer to the btree block. */
1690 block
= xfs_btree_get_block(cur
, level
, &bp
);
1693 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
1698 /* Fail if we just went off the left edge of the tree. */
1699 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_LEFTSIB
);
1700 if (xfs_btree_ptr_is_null(cur
, &ptr
))
1703 XFS_BTREE_STATS_INC(cur
, decrement
);
1706 * March up the tree decrementing pointers.
1707 * Stop when we don't go off the left edge of a block.
1709 for (lev
= level
+ 1; lev
< cur
->bc_nlevels
; lev
++) {
1710 if (--cur
->bc_ptrs
[lev
] > 0)
1712 /* Read-ahead the left block for the next loop. */
1713 xfs_btree_readahead(cur
, lev
, XFS_BTCUR_LEFTRA
);
1717 * If we went off the root then we are seriously confused.
1718 * or the root of the tree is in an inode.
1720 if (lev
== cur
->bc_nlevels
) {
1721 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
)
1724 error
= -EFSCORRUPTED
;
1727 ASSERT(lev
< cur
->bc_nlevels
);
1730 * Now walk back down the tree, fixing up the cursor's buffer
1731 * pointers and key numbers.
1733 for (block
= xfs_btree_get_block(cur
, lev
, &bp
); lev
> level
; ) {
1734 union xfs_btree_ptr
*ptrp
;
1736 ptrp
= xfs_btree_ptr_addr(cur
, cur
->bc_ptrs
[lev
], block
);
1738 error
= xfs_btree_read_buf_block(cur
, ptrp
, 0, &block
, &bp
);
1741 xfs_btree_setbuf(cur
, lev
, bp
);
1742 cur
->bc_ptrs
[lev
] = xfs_btree_get_numrecs(block
);
1745 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1750 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1755 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
1760 xfs_btree_lookup_get_block(
1761 struct xfs_btree_cur
*cur
, /* btree cursor */
1762 int level
, /* level in the btree */
1763 union xfs_btree_ptr
*pp
, /* ptr to btree block */
1764 struct xfs_btree_block
**blkp
) /* return btree block */
1766 struct xfs_buf
*bp
; /* buffer pointer for btree block */
1769 /* special case the root block if in an inode */
1770 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
1771 (level
== cur
->bc_nlevels
- 1)) {
1772 *blkp
= xfs_btree_get_iroot(cur
);
1777 * If the old buffer at this level for the disk address we are
1778 * looking for re-use it.
1780 * Otherwise throw it away and get a new one.
1782 bp
= cur
->bc_bufs
[level
];
1783 if (bp
&& XFS_BUF_ADDR(bp
) == xfs_btree_ptr_to_daddr(cur
, pp
)) {
1784 *blkp
= XFS_BUF_TO_BLOCK(bp
);
1788 error
= xfs_btree_read_buf_block(cur
, pp
, 0, blkp
, &bp
);
1792 /* Check the inode owner since the verifiers don't. */
1793 if (xfs_sb_version_hascrc(&cur
->bc_mp
->m_sb
) &&
1794 !(cur
->bc_private
.b
.flags
& XFS_BTCUR_BPRV_INVALID_OWNER
) &&
1795 (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) &&
1796 be64_to_cpu((*blkp
)->bb_u
.l
.bb_owner
) !=
1797 cur
->bc_private
.b
.ip
->i_ino
)
1800 /* Did we get the level we were looking for? */
1801 if (be16_to_cpu((*blkp
)->bb_level
) != level
)
1804 /* Check that internal nodes have at least one record. */
1805 if (level
!= 0 && be16_to_cpu((*blkp
)->bb_numrecs
) == 0)
1808 xfs_btree_setbuf(cur
, level
, bp
);
1813 xfs_trans_brelse(cur
->bc_tp
, bp
);
1814 return -EFSCORRUPTED
;
1818 * Get current search key. For level 0 we don't actually have a key
1819 * structure so we make one up from the record. For all other levels
1820 * we just return the right key.
1822 STATIC
union xfs_btree_key
*
1823 xfs_lookup_get_search_key(
1824 struct xfs_btree_cur
*cur
,
1827 struct xfs_btree_block
*block
,
1828 union xfs_btree_key
*kp
)
1831 cur
->bc_ops
->init_key_from_rec(kp
,
1832 xfs_btree_rec_addr(cur
, keyno
, block
));
1836 return xfs_btree_key_addr(cur
, keyno
, block
);
1840 * Lookup the record. The cursor is made to point to it, based on dir.
1841 * stat is set to 0 if can't find any such record, 1 for success.
1845 struct xfs_btree_cur
*cur
, /* btree cursor */
1846 xfs_lookup_t dir
, /* <=, ==, or >= */
1847 int *stat
) /* success/failure */
1849 struct xfs_btree_block
*block
; /* current btree block */
1850 int64_t diff
; /* difference for the current key */
1851 int error
; /* error return value */
1852 int keyno
; /* current key number */
1853 int level
; /* level in the btree */
1854 union xfs_btree_ptr
*pp
; /* ptr to btree block */
1855 union xfs_btree_ptr ptr
; /* ptr to btree block */
1857 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
1858 XFS_BTREE_TRACE_ARGI(cur
, dir
);
1860 XFS_BTREE_STATS_INC(cur
, lookup
);
1862 /* No such thing as a zero-level tree. */
1863 if (cur
->bc_nlevels
== 0)
1864 return -EFSCORRUPTED
;
1869 /* initialise start pointer from cursor */
1870 cur
->bc_ops
->init_ptr_from_cur(cur
, &ptr
);
1874 * Iterate over each level in the btree, starting at the root.
1875 * For each level above the leaves, find the key we need, based
1876 * on the lookup record, then follow the corresponding block
1877 * pointer down to the next level.
1879 for (level
= cur
->bc_nlevels
- 1, diff
= 1; level
>= 0; level
--) {
1880 /* Get the block we need to do the lookup on. */
1881 error
= xfs_btree_lookup_get_block(cur
, level
, pp
, &block
);
1887 * If we already had a key match at a higher level, we
1888 * know we need to use the first entry in this block.
1892 /* Otherwise search this block. Do a binary search. */
1894 int high
; /* high entry number */
1895 int low
; /* low entry number */
1897 /* Set low and high entry numbers, 1-based. */
1899 high
= xfs_btree_get_numrecs(block
);
1901 /* Block is empty, must be an empty leaf. */
1902 ASSERT(level
== 0 && cur
->bc_nlevels
== 1);
1904 cur
->bc_ptrs
[0] = dir
!= XFS_LOOKUP_LE
;
1905 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1910 /* Binary search the block. */
1911 while (low
<= high
) {
1912 union xfs_btree_key key
;
1913 union xfs_btree_key
*kp
;
1915 XFS_BTREE_STATS_INC(cur
, compare
);
1917 /* keyno is average of low and high. */
1918 keyno
= (low
+ high
) >> 1;
1920 /* Get current search key */
1921 kp
= xfs_lookup_get_search_key(cur
, level
,
1922 keyno
, block
, &key
);
1925 * Compute difference to get next direction:
1926 * - less than, move right
1927 * - greater than, move left
1928 * - equal, we're done
1930 diff
= cur
->bc_ops
->key_diff(cur
, kp
);
1941 * If there are more levels, set up for the next level
1942 * by getting the block number and filling in the cursor.
1946 * If we moved left, need the previous key number,
1947 * unless there isn't one.
1949 if (diff
> 0 && --keyno
< 1)
1951 pp
= xfs_btree_ptr_addr(cur
, keyno
, block
);
1954 error
= xfs_btree_check_ptr(cur
, pp
, 0, level
);
1958 cur
->bc_ptrs
[level
] = keyno
;
1962 /* Done with the search. See if we need to adjust the results. */
1963 if (dir
!= XFS_LOOKUP_LE
&& diff
< 0) {
1966 * If ge search and we went off the end of the block, but it's
1967 * not the last block, we're in the wrong block.
1969 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
1970 if (dir
== XFS_LOOKUP_GE
&&
1971 keyno
> xfs_btree_get_numrecs(block
) &&
1972 !xfs_btree_ptr_is_null(cur
, &ptr
)) {
1975 cur
->bc_ptrs
[0] = keyno
;
1976 error
= xfs_btree_increment(cur
, 0, &i
);
1979 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1980 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1984 } else if (dir
== XFS_LOOKUP_LE
&& diff
> 0)
1986 cur
->bc_ptrs
[0] = keyno
;
1988 /* Return if we succeeded or not. */
1989 if (keyno
== 0 || keyno
> xfs_btree_get_numrecs(block
))
1991 else if (dir
!= XFS_LOOKUP_EQ
|| diff
== 0)
1995 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
1999 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
2003 /* Find the high key storage area from a regular key. */
2004 STATIC
union xfs_btree_key
*
2005 xfs_btree_high_key_from_key(
2006 struct xfs_btree_cur
*cur
,
2007 union xfs_btree_key
*key
)
2009 ASSERT(cur
->bc_flags
& XFS_BTREE_OVERLAPPING
);
2010 return (union xfs_btree_key
*)((char *)key
+
2011 (cur
->bc_ops
->key_len
/ 2));
2014 /* Determine the low (and high if overlapped) keys of a leaf block */
2016 xfs_btree_get_leaf_keys(
2017 struct xfs_btree_cur
*cur
,
2018 struct xfs_btree_block
*block
,
2019 union xfs_btree_key
*key
)
2021 union xfs_btree_key max_hkey
;
2022 union xfs_btree_key hkey
;
2023 union xfs_btree_rec
*rec
;
2024 union xfs_btree_key
*high
;
2027 rec
= xfs_btree_rec_addr(cur
, 1, block
);
2028 cur
->bc_ops
->init_key_from_rec(key
, rec
);
2030 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2032 cur
->bc_ops
->init_high_key_from_rec(&max_hkey
, rec
);
2033 for (n
= 2; n
<= xfs_btree_get_numrecs(block
); n
++) {
2034 rec
= xfs_btree_rec_addr(cur
, n
, block
);
2035 cur
->bc_ops
->init_high_key_from_rec(&hkey
, rec
);
2036 if (cur
->bc_ops
->diff_two_keys(cur
, &hkey
, &max_hkey
)
2041 high
= xfs_btree_high_key_from_key(cur
, key
);
2042 memcpy(high
, &max_hkey
, cur
->bc_ops
->key_len
/ 2);
2046 /* Determine the low (and high if overlapped) keys of a node block */
2048 xfs_btree_get_node_keys(
2049 struct xfs_btree_cur
*cur
,
2050 struct xfs_btree_block
*block
,
2051 union xfs_btree_key
*key
)
2053 union xfs_btree_key
*hkey
;
2054 union xfs_btree_key
*max_hkey
;
2055 union xfs_btree_key
*high
;
2058 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2059 memcpy(key
, xfs_btree_key_addr(cur
, 1, block
),
2060 cur
->bc_ops
->key_len
/ 2);
2062 max_hkey
= xfs_btree_high_key_addr(cur
, 1, block
);
2063 for (n
= 2; n
<= xfs_btree_get_numrecs(block
); n
++) {
2064 hkey
= xfs_btree_high_key_addr(cur
, n
, block
);
2065 if (cur
->bc_ops
->diff_two_keys(cur
, hkey
, max_hkey
) > 0)
2069 high
= xfs_btree_high_key_from_key(cur
, key
);
2070 memcpy(high
, max_hkey
, cur
->bc_ops
->key_len
/ 2);
2072 memcpy(key
, xfs_btree_key_addr(cur
, 1, block
),
2073 cur
->bc_ops
->key_len
);
2077 /* Derive the keys for any btree block. */
2080 struct xfs_btree_cur
*cur
,
2081 struct xfs_btree_block
*block
,
2082 union xfs_btree_key
*key
)
2084 if (be16_to_cpu(block
->bb_level
) == 0)
2085 xfs_btree_get_leaf_keys(cur
, block
, key
);
2087 xfs_btree_get_node_keys(cur
, block
, key
);
2091 * Decide if we need to update the parent keys of a btree block. For
2092 * a standard btree this is only necessary if we're updating the first
2093 * record/key. For an overlapping btree, we must always update the
2094 * keys because the highest key can be in any of the records or keys
2098 xfs_btree_needs_key_update(
2099 struct xfs_btree_cur
*cur
,
2102 return (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) || ptr
== 1;
2106 * Update the low and high parent keys of the given level, progressing
2107 * towards the root. If force_all is false, stop if the keys for a given
2108 * level do not need updating.
2111 __xfs_btree_updkeys(
2112 struct xfs_btree_cur
*cur
,
2114 struct xfs_btree_block
*block
,
2115 struct xfs_buf
*bp0
,
2118 union xfs_btree_key key
; /* keys from current level */
2119 union xfs_btree_key
*lkey
; /* keys from the next level up */
2120 union xfs_btree_key
*hkey
;
2121 union xfs_btree_key
*nlkey
; /* keys from the next level up */
2122 union xfs_btree_key
*nhkey
;
2126 ASSERT(cur
->bc_flags
& XFS_BTREE_OVERLAPPING
);
2128 /* Exit if there aren't any parent levels to update. */
2129 if (level
+ 1 >= cur
->bc_nlevels
)
2132 trace_xfs_btree_updkeys(cur
, level
, bp0
);
2135 hkey
= xfs_btree_high_key_from_key(cur
, lkey
);
2136 xfs_btree_get_keys(cur
, block
, lkey
);
2137 for (level
++; level
< cur
->bc_nlevels
; level
++) {
2141 block
= xfs_btree_get_block(cur
, level
, &bp
);
2142 trace_xfs_btree_updkeys(cur
, level
, bp
);
2144 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
2146 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
2150 ptr
= cur
->bc_ptrs
[level
];
2151 nlkey
= xfs_btree_key_addr(cur
, ptr
, block
);
2152 nhkey
= xfs_btree_high_key_addr(cur
, ptr
, block
);
2154 !(cur
->bc_ops
->diff_two_keys(cur
, nlkey
, lkey
) != 0 ||
2155 cur
->bc_ops
->diff_two_keys(cur
, nhkey
, hkey
) != 0))
2157 xfs_btree_copy_keys(cur
, nlkey
, lkey
, 1);
2158 xfs_btree_log_keys(cur
, bp
, ptr
, ptr
);
2159 if (level
+ 1 >= cur
->bc_nlevels
)
2161 xfs_btree_get_node_keys(cur
, block
, lkey
);
2167 /* Update all the keys from some level in cursor back to the root. */
2169 xfs_btree_updkeys_force(
2170 struct xfs_btree_cur
*cur
,
2174 struct xfs_btree_block
*block
;
2176 block
= xfs_btree_get_block(cur
, level
, &bp
);
2177 return __xfs_btree_updkeys(cur
, level
, block
, bp
, true);
2181 * Update the parent keys of the given level, progressing towards the root.
2184 xfs_btree_update_keys(
2185 struct xfs_btree_cur
*cur
,
2188 struct xfs_btree_block
*block
;
2190 union xfs_btree_key
*kp
;
2191 union xfs_btree_key key
;
2196 block
= xfs_btree_get_block(cur
, level
, &bp
);
2197 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
)
2198 return __xfs_btree_updkeys(cur
, level
, block
, bp
, false);
2200 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
2201 XFS_BTREE_TRACE_ARGIK(cur
, level
, keyp
);
2204 * Go up the tree from this level toward the root.
2205 * At each level, update the key value to the value input.
2206 * Stop when we reach a level where the cursor isn't pointing
2207 * at the first entry in the block.
2209 xfs_btree_get_keys(cur
, block
, &key
);
2210 for (level
++, ptr
= 1; ptr
== 1 && level
< cur
->bc_nlevels
; level
++) {
2214 block
= xfs_btree_get_block(cur
, level
, &bp
);
2216 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
2218 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
2222 ptr
= cur
->bc_ptrs
[level
];
2223 kp
= xfs_btree_key_addr(cur
, ptr
, block
);
2224 xfs_btree_copy_keys(cur
, kp
, &key
, 1);
2225 xfs_btree_log_keys(cur
, bp
, ptr
, ptr
);
2228 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2233 * Update the record referred to by cur to the value in the
2234 * given record. This either works (return 0) or gets an
2235 * EFSCORRUPTED error.
2239 struct xfs_btree_cur
*cur
,
2240 union xfs_btree_rec
*rec
)
2242 struct xfs_btree_block
*block
;
2246 union xfs_btree_rec
*rp
;
2248 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
2249 XFS_BTREE_TRACE_ARGR(cur
, rec
);
2251 /* Pick up the current block. */
2252 block
= xfs_btree_get_block(cur
, 0, &bp
);
2255 error
= xfs_btree_check_block(cur
, block
, 0, bp
);
2259 /* Get the address of the rec to be updated. */
2260 ptr
= cur
->bc_ptrs
[0];
2261 rp
= xfs_btree_rec_addr(cur
, ptr
, block
);
2263 /* Fill in the new contents and log them. */
2264 xfs_btree_copy_recs(cur
, rp
, rec
, 1);
2265 xfs_btree_log_recs(cur
, bp
, ptr
, ptr
);
2268 * If we are tracking the last record in the tree and
2269 * we are at the far right edge of the tree, update it.
2271 if (xfs_btree_is_lastrec(cur
, block
, 0)) {
2272 cur
->bc_ops
->update_lastrec(cur
, block
, rec
,
2273 ptr
, LASTREC_UPDATE
);
2276 /* Pass new key value up to our parent. */
2277 if (xfs_btree_needs_key_update(cur
, ptr
)) {
2278 error
= xfs_btree_update_keys(cur
, 0);
2283 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2287 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
2292 * Move 1 record left from cur/level if possible.
2293 * Update cur to reflect the new path.
2295 STATIC
int /* error */
2297 struct xfs_btree_cur
*cur
,
2299 int *stat
) /* success/failure */
2301 struct xfs_buf
*lbp
; /* left buffer pointer */
2302 struct xfs_btree_block
*left
; /* left btree block */
2303 int lrecs
; /* left record count */
2304 struct xfs_buf
*rbp
; /* right buffer pointer */
2305 struct xfs_btree_block
*right
; /* right btree block */
2306 struct xfs_btree_cur
*tcur
; /* temporary btree cursor */
2307 int rrecs
; /* right record count */
2308 union xfs_btree_ptr lptr
; /* left btree pointer */
2309 union xfs_btree_key
*rkp
= NULL
; /* right btree key */
2310 union xfs_btree_ptr
*rpp
= NULL
; /* right address pointer */
2311 union xfs_btree_rec
*rrp
= NULL
; /* right record pointer */
2312 int error
; /* error return value */
2315 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
2316 XFS_BTREE_TRACE_ARGI(cur
, level
);
2318 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
2319 level
== cur
->bc_nlevels
- 1)
2322 /* Set up variables for this block as "right". */
2323 right
= xfs_btree_get_block(cur
, level
, &rbp
);
2326 error
= xfs_btree_check_block(cur
, right
, level
, rbp
);
2331 /* If we've got no left sibling then we can't shift an entry left. */
2332 xfs_btree_get_sibling(cur
, right
, &lptr
, XFS_BB_LEFTSIB
);
2333 if (xfs_btree_ptr_is_null(cur
, &lptr
))
2337 * If the cursor entry is the one that would be moved, don't
2338 * do it... it's too complicated.
2340 if (cur
->bc_ptrs
[level
] <= 1)
2343 /* Set up the left neighbor as "left". */
2344 error
= xfs_btree_read_buf_block(cur
, &lptr
, 0, &left
, &lbp
);
2348 /* If it's full, it can't take another entry. */
2349 lrecs
= xfs_btree_get_numrecs(left
);
2350 if (lrecs
== cur
->bc_ops
->get_maxrecs(cur
, level
))
2353 rrecs
= xfs_btree_get_numrecs(right
);
2356 * We add one entry to the left side and remove one for the right side.
2357 * Account for it here, the changes will be updated on disk and logged
2363 XFS_BTREE_STATS_INC(cur
, lshift
);
2364 XFS_BTREE_STATS_ADD(cur
, moves
, 1);
2367 * If non-leaf, copy a key and a ptr to the left block.
2368 * Log the changes to the left block.
2371 /* It's a non-leaf. Move keys and pointers. */
2372 union xfs_btree_key
*lkp
; /* left btree key */
2373 union xfs_btree_ptr
*lpp
; /* left address pointer */
2375 lkp
= xfs_btree_key_addr(cur
, lrecs
, left
);
2376 rkp
= xfs_btree_key_addr(cur
, 1, right
);
2378 lpp
= xfs_btree_ptr_addr(cur
, lrecs
, left
);
2379 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
2381 error
= xfs_btree_check_ptr(cur
, rpp
, 0, level
);
2385 xfs_btree_copy_keys(cur
, lkp
, rkp
, 1);
2386 xfs_btree_copy_ptrs(cur
, lpp
, rpp
, 1);
2388 xfs_btree_log_keys(cur
, lbp
, lrecs
, lrecs
);
2389 xfs_btree_log_ptrs(cur
, lbp
, lrecs
, lrecs
);
2391 ASSERT(cur
->bc_ops
->keys_inorder(cur
,
2392 xfs_btree_key_addr(cur
, lrecs
- 1, left
), lkp
));
2394 /* It's a leaf. Move records. */
2395 union xfs_btree_rec
*lrp
; /* left record pointer */
2397 lrp
= xfs_btree_rec_addr(cur
, lrecs
, left
);
2398 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
2400 xfs_btree_copy_recs(cur
, lrp
, rrp
, 1);
2401 xfs_btree_log_recs(cur
, lbp
, lrecs
, lrecs
);
2403 ASSERT(cur
->bc_ops
->recs_inorder(cur
,
2404 xfs_btree_rec_addr(cur
, lrecs
- 1, left
), lrp
));
2407 xfs_btree_set_numrecs(left
, lrecs
);
2408 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
);
2410 xfs_btree_set_numrecs(right
, rrecs
);
2411 xfs_btree_log_block(cur
, rbp
, XFS_BB_NUMRECS
);
2414 * Slide the contents of right down one entry.
2416 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
- 1);
2418 /* It's a nonleaf. operate on keys and ptrs */
2420 int i
; /* loop index */
2422 for (i
= 0; i
< rrecs
; i
++) {
2423 error
= xfs_btree_check_ptr(cur
, rpp
, i
+ 1, level
);
2428 xfs_btree_shift_keys(cur
,
2429 xfs_btree_key_addr(cur
, 2, right
),
2431 xfs_btree_shift_ptrs(cur
,
2432 xfs_btree_ptr_addr(cur
, 2, right
),
2435 xfs_btree_log_keys(cur
, rbp
, 1, rrecs
);
2436 xfs_btree_log_ptrs(cur
, rbp
, 1, rrecs
);
2438 /* It's a leaf. operate on records */
2439 xfs_btree_shift_recs(cur
,
2440 xfs_btree_rec_addr(cur
, 2, right
),
2442 xfs_btree_log_recs(cur
, rbp
, 1, rrecs
);
2446 * Using a temporary cursor, update the parent key values of the
2447 * block on the left.
2449 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2450 error
= xfs_btree_dup_cursor(cur
, &tcur
);
2453 i
= xfs_btree_firstrec(tcur
, level
);
2454 XFS_WANT_CORRUPTED_GOTO(tcur
->bc_mp
, i
== 1, error0
);
2456 error
= xfs_btree_decrement(tcur
, level
, &i
);
2460 /* Update the parent high keys of the left block, if needed. */
2461 error
= xfs_btree_update_keys(tcur
, level
);
2465 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
2468 /* Update the parent keys of the right block. */
2469 error
= xfs_btree_update_keys(cur
, level
);
2473 /* Slide the cursor value left one. */
2474 cur
->bc_ptrs
[level
]--;
2476 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2481 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2486 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
2490 XFS_BTREE_TRACE_CURSOR(tcur
, XBT_ERROR
);
2491 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
2496 * Move 1 record right from cur/level if possible.
2497 * Update cur to reflect the new path.
2499 STATIC
int /* error */
2501 struct xfs_btree_cur
*cur
,
2503 int *stat
) /* success/failure */
2505 struct xfs_buf
*lbp
; /* left buffer pointer */
2506 struct xfs_btree_block
*left
; /* left btree block */
2507 struct xfs_buf
*rbp
; /* right buffer pointer */
2508 struct xfs_btree_block
*right
; /* right btree block */
2509 struct xfs_btree_cur
*tcur
; /* temporary btree cursor */
2510 union xfs_btree_ptr rptr
; /* right block pointer */
2511 union xfs_btree_key
*rkp
; /* right btree key */
2512 int rrecs
; /* right record count */
2513 int lrecs
; /* left record count */
2514 int error
; /* error return value */
2515 int i
; /* loop counter */
2517 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
2518 XFS_BTREE_TRACE_ARGI(cur
, level
);
2520 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
2521 (level
== cur
->bc_nlevels
- 1))
2524 /* Set up variables for this block as "left". */
2525 left
= xfs_btree_get_block(cur
, level
, &lbp
);
2528 error
= xfs_btree_check_block(cur
, left
, level
, lbp
);
2533 /* If we've got no right sibling then we can't shift an entry right. */
2534 xfs_btree_get_sibling(cur
, left
, &rptr
, XFS_BB_RIGHTSIB
);
2535 if (xfs_btree_ptr_is_null(cur
, &rptr
))
2539 * If the cursor entry is the one that would be moved, don't
2540 * do it... it's too complicated.
2542 lrecs
= xfs_btree_get_numrecs(left
);
2543 if (cur
->bc_ptrs
[level
] >= lrecs
)
2546 /* Set up the right neighbor as "right". */
2547 error
= xfs_btree_read_buf_block(cur
, &rptr
, 0, &right
, &rbp
);
2551 /* If it's full, it can't take another entry. */
2552 rrecs
= xfs_btree_get_numrecs(right
);
2553 if (rrecs
== cur
->bc_ops
->get_maxrecs(cur
, level
))
2556 XFS_BTREE_STATS_INC(cur
, rshift
);
2557 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
);
2560 * Make a hole at the start of the right neighbor block, then
2561 * copy the last left block entry to the hole.
2564 /* It's a nonleaf. make a hole in the keys and ptrs */
2565 union xfs_btree_key
*lkp
;
2566 union xfs_btree_ptr
*lpp
;
2567 union xfs_btree_ptr
*rpp
;
2569 lkp
= xfs_btree_key_addr(cur
, lrecs
, left
);
2570 lpp
= xfs_btree_ptr_addr(cur
, lrecs
, left
);
2571 rkp
= xfs_btree_key_addr(cur
, 1, right
);
2572 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
2575 for (i
= rrecs
- 1; i
>= 0; i
--) {
2576 error
= xfs_btree_check_ptr(cur
, rpp
, i
, level
);
2582 xfs_btree_shift_keys(cur
, rkp
, 1, rrecs
);
2583 xfs_btree_shift_ptrs(cur
, rpp
, 1, rrecs
);
2586 error
= xfs_btree_check_ptr(cur
, lpp
, 0, level
);
2591 /* Now put the new data in, and log it. */
2592 xfs_btree_copy_keys(cur
, rkp
, lkp
, 1);
2593 xfs_btree_copy_ptrs(cur
, rpp
, lpp
, 1);
2595 xfs_btree_log_keys(cur
, rbp
, 1, rrecs
+ 1);
2596 xfs_btree_log_ptrs(cur
, rbp
, 1, rrecs
+ 1);
2598 ASSERT(cur
->bc_ops
->keys_inorder(cur
, rkp
,
2599 xfs_btree_key_addr(cur
, 2, right
)));
2601 /* It's a leaf. make a hole in the records */
2602 union xfs_btree_rec
*lrp
;
2603 union xfs_btree_rec
*rrp
;
2605 lrp
= xfs_btree_rec_addr(cur
, lrecs
, left
);
2606 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
2608 xfs_btree_shift_recs(cur
, rrp
, 1, rrecs
);
2610 /* Now put the new data in, and log it. */
2611 xfs_btree_copy_recs(cur
, rrp
, lrp
, 1);
2612 xfs_btree_log_recs(cur
, rbp
, 1, rrecs
+ 1);
2616 * Decrement and log left's numrecs, bump and log right's numrecs.
2618 xfs_btree_set_numrecs(left
, --lrecs
);
2619 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
);
2621 xfs_btree_set_numrecs(right
, ++rrecs
);
2622 xfs_btree_log_block(cur
, rbp
, XFS_BB_NUMRECS
);
2625 * Using a temporary cursor, update the parent key values of the
2626 * block on the right.
2628 error
= xfs_btree_dup_cursor(cur
, &tcur
);
2631 i
= xfs_btree_lastrec(tcur
, level
);
2632 XFS_WANT_CORRUPTED_GOTO(tcur
->bc_mp
, i
== 1, error0
);
2634 error
= xfs_btree_increment(tcur
, level
, &i
);
2638 /* Update the parent high keys of the left block, if needed. */
2639 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2640 error
= xfs_btree_update_keys(cur
, level
);
2645 /* Update the parent keys of the right block. */
2646 error
= xfs_btree_update_keys(tcur
, level
);
2650 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
2652 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2657 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2662 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
2666 XFS_BTREE_TRACE_CURSOR(tcur
, XBT_ERROR
);
2667 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
2672 * Split cur/level block in half.
2673 * Return new block number and the key to its first
2674 * record (to be inserted into parent).
2676 STATIC
int /* error */
2678 struct xfs_btree_cur
*cur
,
2680 union xfs_btree_ptr
*ptrp
,
2681 union xfs_btree_key
*key
,
2682 struct xfs_btree_cur
**curp
,
2683 int *stat
) /* success/failure */
2685 union xfs_btree_ptr lptr
; /* left sibling block ptr */
2686 struct xfs_buf
*lbp
; /* left buffer pointer */
2687 struct xfs_btree_block
*left
; /* left btree block */
2688 union xfs_btree_ptr rptr
; /* right sibling block ptr */
2689 struct xfs_buf
*rbp
; /* right buffer pointer */
2690 struct xfs_btree_block
*right
; /* right btree block */
2691 union xfs_btree_ptr rrptr
; /* right-right sibling ptr */
2692 struct xfs_buf
*rrbp
; /* right-right buffer pointer */
2693 struct xfs_btree_block
*rrblock
; /* right-right btree block */
2697 int error
; /* error return value */
2702 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
2703 XFS_BTREE_TRACE_ARGIPK(cur
, level
, *ptrp
, key
);
2705 XFS_BTREE_STATS_INC(cur
, split
);
2707 /* Set up left block (current one). */
2708 left
= xfs_btree_get_block(cur
, level
, &lbp
);
2711 error
= xfs_btree_check_block(cur
, left
, level
, lbp
);
2716 xfs_btree_buf_to_ptr(cur
, lbp
, &lptr
);
2718 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2719 error
= cur
->bc_ops
->alloc_block(cur
, &lptr
, &rptr
, stat
);
2724 XFS_BTREE_STATS_INC(cur
, alloc
);
2726 /* Set up the new block as "right". */
2727 error
= xfs_btree_get_buf_block(cur
, &rptr
, 0, &right
, &rbp
);
2731 /* Fill in the btree header for the new right block. */
2732 xfs_btree_init_block_cur(cur
, rbp
, xfs_btree_get_level(left
), 0);
2735 * Split the entries between the old and the new block evenly.
2736 * Make sure that if there's an odd number of entries now, that
2737 * each new block will have the same number of entries.
2739 lrecs
= xfs_btree_get_numrecs(left
);
2741 if ((lrecs
& 1) && cur
->bc_ptrs
[level
] <= rrecs
+ 1)
2743 src_index
= (lrecs
- rrecs
+ 1);
2745 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
);
2747 /* Adjust numrecs for the later get_*_keys() calls. */
2749 xfs_btree_set_numrecs(left
, lrecs
);
2750 xfs_btree_set_numrecs(right
, xfs_btree_get_numrecs(right
) + rrecs
);
2753 * Copy btree block entries from the left block over to the
2754 * new block, the right. Update the right block and log the
2758 /* It's a non-leaf. Move keys and pointers. */
2759 union xfs_btree_key
*lkp
; /* left btree key */
2760 union xfs_btree_ptr
*lpp
; /* left address pointer */
2761 union xfs_btree_key
*rkp
; /* right btree key */
2762 union xfs_btree_ptr
*rpp
; /* right address pointer */
2764 lkp
= xfs_btree_key_addr(cur
, src_index
, left
);
2765 lpp
= xfs_btree_ptr_addr(cur
, src_index
, left
);
2766 rkp
= xfs_btree_key_addr(cur
, 1, right
);
2767 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
2770 for (i
= src_index
; i
< rrecs
; i
++) {
2771 error
= xfs_btree_check_ptr(cur
, lpp
, i
, level
);
2777 /* Copy the keys & pointers to the new block. */
2778 xfs_btree_copy_keys(cur
, rkp
, lkp
, rrecs
);
2779 xfs_btree_copy_ptrs(cur
, rpp
, lpp
, rrecs
);
2781 xfs_btree_log_keys(cur
, rbp
, 1, rrecs
);
2782 xfs_btree_log_ptrs(cur
, rbp
, 1, rrecs
);
2784 /* Stash the keys of the new block for later insertion. */
2785 xfs_btree_get_node_keys(cur
, right
, key
);
2787 /* It's a leaf. Move records. */
2788 union xfs_btree_rec
*lrp
; /* left record pointer */
2789 union xfs_btree_rec
*rrp
; /* right record pointer */
2791 lrp
= xfs_btree_rec_addr(cur
, src_index
, left
);
2792 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
2794 /* Copy records to the new block. */
2795 xfs_btree_copy_recs(cur
, rrp
, lrp
, rrecs
);
2796 xfs_btree_log_recs(cur
, rbp
, 1, rrecs
);
2798 /* Stash the keys of the new block for later insertion. */
2799 xfs_btree_get_leaf_keys(cur
, right
, key
);
2803 * Find the left block number by looking in the buffer.
2804 * Adjust sibling pointers.
2806 xfs_btree_get_sibling(cur
, left
, &rrptr
, XFS_BB_RIGHTSIB
);
2807 xfs_btree_set_sibling(cur
, right
, &rrptr
, XFS_BB_RIGHTSIB
);
2808 xfs_btree_set_sibling(cur
, right
, &lptr
, XFS_BB_LEFTSIB
);
2809 xfs_btree_set_sibling(cur
, left
, &rptr
, XFS_BB_RIGHTSIB
);
2811 xfs_btree_log_block(cur
, rbp
, XFS_BB_ALL_BITS
);
2812 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
| XFS_BB_RIGHTSIB
);
2815 * If there's a block to the new block's right, make that block
2816 * point back to right instead of to left.
2818 if (!xfs_btree_ptr_is_null(cur
, &rrptr
)) {
2819 error
= xfs_btree_read_buf_block(cur
, &rrptr
,
2820 0, &rrblock
, &rrbp
);
2823 xfs_btree_set_sibling(cur
, rrblock
, &rptr
, XFS_BB_LEFTSIB
);
2824 xfs_btree_log_block(cur
, rrbp
, XFS_BB_LEFTSIB
);
2827 /* Update the parent high keys of the left block, if needed. */
2828 if (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
) {
2829 error
= xfs_btree_update_keys(cur
, level
);
2835 * If the cursor is really in the right block, move it there.
2836 * If it's just pointing past the last entry in left, then we'll
2837 * insert there, so don't change anything in that case.
2839 if (cur
->bc_ptrs
[level
] > lrecs
+ 1) {
2840 xfs_btree_setbuf(cur
, level
, rbp
);
2841 cur
->bc_ptrs
[level
] -= lrecs
;
2844 * If there are more levels, we'll need another cursor which refers
2845 * the right block, no matter where this cursor was.
2847 if (level
+ 1 < cur
->bc_nlevels
) {
2848 error
= xfs_btree_dup_cursor(cur
, curp
);
2851 (*curp
)->bc_ptrs
[level
+ 1]++;
2854 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2858 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2863 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
2867 struct xfs_btree_split_args
{
2868 struct xfs_btree_cur
*cur
;
2870 union xfs_btree_ptr
*ptrp
;
2871 union xfs_btree_key
*key
;
2872 struct xfs_btree_cur
**curp
;
2873 int *stat
; /* success/failure */
2875 bool kswapd
; /* allocation in kswapd context */
2876 struct completion
*done
;
2877 struct work_struct work
;
2881 * Stack switching interfaces for allocation
2884 xfs_btree_split_worker(
2885 struct work_struct
*work
)
2887 struct xfs_btree_split_args
*args
= container_of(work
,
2888 struct xfs_btree_split_args
, work
);
2889 unsigned long pflags
;
2890 unsigned long new_pflags
= PF_MEMALLOC_NOFS
;
2893 * we are in a transaction context here, but may also be doing work
2894 * in kswapd context, and hence we may need to inherit that state
2895 * temporarily to ensure that we don't block waiting for memory reclaim
2899 new_pflags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2901 current_set_flags_nested(&pflags
, new_pflags
);
2903 args
->result
= __xfs_btree_split(args
->cur
, args
->level
, args
->ptrp
,
2904 args
->key
, args
->curp
, args
->stat
);
2905 complete(args
->done
);
2907 current_restore_flags_nested(&pflags
, new_pflags
);
2911 * BMBT split requests often come in with little stack to work on. Push
2912 * them off to a worker thread so there is lots of stack to use. For the other
2913 * btree types, just call directly to avoid the context switch overhead here.
2915 STATIC
int /* error */
2917 struct xfs_btree_cur
*cur
,
2919 union xfs_btree_ptr
*ptrp
,
2920 union xfs_btree_key
*key
,
2921 struct xfs_btree_cur
**curp
,
2922 int *stat
) /* success/failure */
2924 struct xfs_btree_split_args args
;
2925 DECLARE_COMPLETION_ONSTACK(done
);
2927 if (cur
->bc_btnum
!= XFS_BTNUM_BMAP
)
2928 return __xfs_btree_split(cur
, level
, ptrp
, key
, curp
, stat
);
2937 args
.kswapd
= current_is_kswapd();
2938 INIT_WORK_ONSTACK(&args
.work
, xfs_btree_split_worker
);
2939 queue_work(xfs_alloc_wq
, &args
.work
);
2940 wait_for_completion(&done
);
2941 destroy_work_on_stack(&args
.work
);
2947 * Copy the old inode root contents into a real block and make the
2948 * broot point to it.
2951 xfs_btree_new_iroot(
2952 struct xfs_btree_cur
*cur
, /* btree cursor */
2953 int *logflags
, /* logging flags for inode */
2954 int *stat
) /* return status - 0 fail */
2956 struct xfs_buf
*cbp
; /* buffer for cblock */
2957 struct xfs_btree_block
*block
; /* btree block */
2958 struct xfs_btree_block
*cblock
; /* child btree block */
2959 union xfs_btree_key
*ckp
; /* child key pointer */
2960 union xfs_btree_ptr
*cpp
; /* child ptr pointer */
2961 union xfs_btree_key
*kp
; /* pointer to btree key */
2962 union xfs_btree_ptr
*pp
; /* pointer to block addr */
2963 union xfs_btree_ptr nptr
; /* new block addr */
2964 int level
; /* btree level */
2965 int error
; /* error return code */
2967 int i
; /* loop counter */
2970 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
2971 XFS_BTREE_STATS_INC(cur
, newroot
);
2973 ASSERT(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
);
2975 level
= cur
->bc_nlevels
- 1;
2977 block
= xfs_btree_get_iroot(cur
);
2978 pp
= xfs_btree_ptr_addr(cur
, 1, block
);
2980 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2981 error
= cur
->bc_ops
->alloc_block(cur
, pp
, &nptr
, stat
);
2985 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
2988 XFS_BTREE_STATS_INC(cur
, alloc
);
2990 /* Copy the root into a real block. */
2991 error
= xfs_btree_get_buf_block(cur
, &nptr
, 0, &cblock
, &cbp
);
2996 * we can't just memcpy() the root in for CRC enabled btree blocks.
2997 * In that case have to also ensure the blkno remains correct
2999 memcpy(cblock
, block
, xfs_btree_block_len(cur
));
3000 if (cur
->bc_flags
& XFS_BTREE_CRC_BLOCKS
) {
3001 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
)
3002 cblock
->bb_u
.l
.bb_blkno
= cpu_to_be64(cbp
->b_bn
);
3004 cblock
->bb_u
.s
.bb_blkno
= cpu_to_be64(cbp
->b_bn
);
3007 be16_add_cpu(&block
->bb_level
, 1);
3008 xfs_btree_set_numrecs(block
, 1);
3010 cur
->bc_ptrs
[level
+ 1] = 1;
3012 kp
= xfs_btree_key_addr(cur
, 1, block
);
3013 ckp
= xfs_btree_key_addr(cur
, 1, cblock
);
3014 xfs_btree_copy_keys(cur
, ckp
, kp
, xfs_btree_get_numrecs(cblock
));
3016 cpp
= xfs_btree_ptr_addr(cur
, 1, cblock
);
3018 for (i
= 0; i
< be16_to_cpu(cblock
->bb_numrecs
); i
++) {
3019 error
= xfs_btree_check_ptr(cur
, pp
, i
, level
);
3024 xfs_btree_copy_ptrs(cur
, cpp
, pp
, xfs_btree_get_numrecs(cblock
));
3027 error
= xfs_btree_check_ptr(cur
, &nptr
, 0, level
);
3031 xfs_btree_copy_ptrs(cur
, pp
, &nptr
, 1);
3033 xfs_iroot_realloc(cur
->bc_private
.b
.ip
,
3034 1 - xfs_btree_get_numrecs(cblock
),
3035 cur
->bc_private
.b
.whichfork
);
3037 xfs_btree_setbuf(cur
, level
, cbp
);
3040 * Do all this logging at the end so that
3041 * the root is at the right level.
3043 xfs_btree_log_block(cur
, cbp
, XFS_BB_ALL_BITS
);
3044 xfs_btree_log_keys(cur
, cbp
, 1, be16_to_cpu(cblock
->bb_numrecs
));
3045 xfs_btree_log_ptrs(cur
, cbp
, 1, be16_to_cpu(cblock
->bb_numrecs
));
3048 XFS_ILOG_CORE
| xfs_ilog_fbroot(cur
->bc_private
.b
.whichfork
);
3050 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3053 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
3058 * Allocate a new root block, fill it in.
3060 STATIC
int /* error */
3062 struct xfs_btree_cur
*cur
, /* btree cursor */
3063 int *stat
) /* success/failure */
3065 struct xfs_btree_block
*block
; /* one half of the old root block */
3066 struct xfs_buf
*bp
; /* buffer containing block */
3067 int error
; /* error return value */
3068 struct xfs_buf
*lbp
; /* left buffer pointer */
3069 struct xfs_btree_block
*left
; /* left btree block */
3070 struct xfs_buf
*nbp
; /* new (root) buffer */
3071 struct xfs_btree_block
*new; /* new (root) btree block */
3072 int nptr
; /* new value for key index, 1 or 2 */
3073 struct xfs_buf
*rbp
; /* right buffer pointer */
3074 struct xfs_btree_block
*right
; /* right btree block */
3075 union xfs_btree_ptr rptr
;
3076 union xfs_btree_ptr lptr
;
3078 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
3079 XFS_BTREE_STATS_INC(cur
, newroot
);
3081 /* initialise our start point from the cursor */
3082 cur
->bc_ops
->init_ptr_from_cur(cur
, &rptr
);
3084 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3085 error
= cur
->bc_ops
->alloc_block(cur
, &rptr
, &lptr
, stat
);
3090 XFS_BTREE_STATS_INC(cur
, alloc
);
3092 /* Set up the new block. */
3093 error
= xfs_btree_get_buf_block(cur
, &lptr
, 0, &new, &nbp
);
3097 /* Set the root in the holding structure increasing the level by 1. */
3098 cur
->bc_ops
->set_root(cur
, &lptr
, 1);
3101 * At the previous root level there are now two blocks: the old root,
3102 * and the new block generated when it was split. We don't know which
3103 * one the cursor is pointing at, so we set up variables "left" and
3104 * "right" for each case.
3106 block
= xfs_btree_get_block(cur
, cur
->bc_nlevels
- 1, &bp
);
3109 error
= xfs_btree_check_block(cur
, block
, cur
->bc_nlevels
- 1, bp
);
3114 xfs_btree_get_sibling(cur
, block
, &rptr
, XFS_BB_RIGHTSIB
);
3115 if (!xfs_btree_ptr_is_null(cur
, &rptr
)) {
3116 /* Our block is left, pick up the right block. */
3118 xfs_btree_buf_to_ptr(cur
, lbp
, &lptr
);
3120 error
= xfs_btree_read_buf_block(cur
, &rptr
, 0, &right
, &rbp
);
3126 /* Our block is right, pick up the left block. */
3128 xfs_btree_buf_to_ptr(cur
, rbp
, &rptr
);
3130 xfs_btree_get_sibling(cur
, right
, &lptr
, XFS_BB_LEFTSIB
);
3131 error
= xfs_btree_read_buf_block(cur
, &lptr
, 0, &left
, &lbp
);
3138 /* Fill in the new block's btree header and log it. */
3139 xfs_btree_init_block_cur(cur
, nbp
, cur
->bc_nlevels
, 2);
3140 xfs_btree_log_block(cur
, nbp
, XFS_BB_ALL_BITS
);
3141 ASSERT(!xfs_btree_ptr_is_null(cur
, &lptr
) &&
3142 !xfs_btree_ptr_is_null(cur
, &rptr
));
3144 /* Fill in the key data in the new root. */
3145 if (xfs_btree_get_level(left
) > 0) {
3147 * Get the keys for the left block's keys and put them directly
3148 * in the parent block. Do the same for the right block.
3150 xfs_btree_get_node_keys(cur
, left
,
3151 xfs_btree_key_addr(cur
, 1, new));
3152 xfs_btree_get_node_keys(cur
, right
,
3153 xfs_btree_key_addr(cur
, 2, new));
3156 * Get the keys for the left block's records and put them
3157 * directly in the parent block. Do the same for the right
3160 xfs_btree_get_leaf_keys(cur
, left
,
3161 xfs_btree_key_addr(cur
, 1, new));
3162 xfs_btree_get_leaf_keys(cur
, right
,
3163 xfs_btree_key_addr(cur
, 2, new));
3165 xfs_btree_log_keys(cur
, nbp
, 1, 2);
3167 /* Fill in the pointer data in the new root. */
3168 xfs_btree_copy_ptrs(cur
,
3169 xfs_btree_ptr_addr(cur
, 1, new), &lptr
, 1);
3170 xfs_btree_copy_ptrs(cur
,
3171 xfs_btree_ptr_addr(cur
, 2, new), &rptr
, 1);
3172 xfs_btree_log_ptrs(cur
, nbp
, 1, 2);
3174 /* Fix up the cursor. */
3175 xfs_btree_setbuf(cur
, cur
->bc_nlevels
, nbp
);
3176 cur
->bc_ptrs
[cur
->bc_nlevels
] = nptr
;
3178 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3182 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
3185 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3191 xfs_btree_make_block_unfull(
3192 struct xfs_btree_cur
*cur
, /* btree cursor */
3193 int level
, /* btree level */
3194 int numrecs
,/* # of recs in block */
3195 int *oindex
,/* old tree index */
3196 int *index
, /* new tree index */
3197 union xfs_btree_ptr
*nptr
, /* new btree ptr */
3198 struct xfs_btree_cur
**ncur
, /* new btree cursor */
3199 union xfs_btree_key
*key
, /* key of new block */
3204 if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
3205 level
== cur
->bc_nlevels
- 1) {
3206 struct xfs_inode
*ip
= cur
->bc_private
.b
.ip
;
3208 if (numrecs
< cur
->bc_ops
->get_dmaxrecs(cur
, level
)) {
3209 /* A root block that can be made bigger. */
3210 xfs_iroot_realloc(ip
, 1, cur
->bc_private
.b
.whichfork
);
3213 /* A root block that needs replacing */
3216 error
= xfs_btree_new_iroot(cur
, &logflags
, stat
);
3217 if (error
|| *stat
== 0)
3220 xfs_trans_log_inode(cur
->bc_tp
, ip
, logflags
);
3226 /* First, try shifting an entry to the right neighbor. */
3227 error
= xfs_btree_rshift(cur
, level
, stat
);
3231 /* Next, try shifting an entry to the left neighbor. */
3232 error
= xfs_btree_lshift(cur
, level
, stat
);
3237 *oindex
= *index
= cur
->bc_ptrs
[level
];
3242 * Next, try splitting the current block in half.
3244 * If this works we have to re-set our variables because we
3245 * could be in a different block now.
3247 error
= xfs_btree_split(cur
, level
, nptr
, key
, ncur
, stat
);
3248 if (error
|| *stat
== 0)
3252 *index
= cur
->bc_ptrs
[level
];
3257 * Insert one record/level. Return information to the caller
3258 * allowing the next level up to proceed if necessary.
3262 struct xfs_btree_cur
*cur
, /* btree cursor */
3263 int level
, /* level to insert record at */
3264 union xfs_btree_ptr
*ptrp
, /* i/o: block number inserted */
3265 union xfs_btree_rec
*rec
, /* record to insert */
3266 union xfs_btree_key
*key
, /* i/o: block key for ptrp */
3267 struct xfs_btree_cur
**curp
, /* output: new cursor replacing cur */
3268 int *stat
) /* success/failure */
3270 struct xfs_btree_block
*block
; /* btree block */
3271 struct xfs_buf
*bp
; /* buffer for block */
3272 union xfs_btree_ptr nptr
; /* new block ptr */
3273 struct xfs_btree_cur
*ncur
; /* new btree cursor */
3274 union xfs_btree_key nkey
; /* new block key */
3275 union xfs_btree_key
*lkey
;
3276 int optr
; /* old key/record index */
3277 int ptr
; /* key/record index */
3278 int numrecs
;/* number of records */
3279 int error
; /* error return value */
3285 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
3286 XFS_BTREE_TRACE_ARGIPR(cur
, level
, *ptrp
, &rec
);
3292 * If we have an external root pointer, and we've made it to the
3293 * root level, allocate a new root block and we're done.
3295 if (!(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) &&
3296 (level
>= cur
->bc_nlevels
)) {
3297 error
= xfs_btree_new_root(cur
, stat
);
3298 xfs_btree_set_ptr_null(cur
, ptrp
);
3300 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3304 /* If we're off the left edge, return failure. */
3305 ptr
= cur
->bc_ptrs
[level
];
3307 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3314 XFS_BTREE_STATS_INC(cur
, insrec
);
3316 /* Get pointers to the btree buffer and block. */
3317 block
= xfs_btree_get_block(cur
, level
, &bp
);
3318 old_bn
= bp
? bp
->b_bn
: XFS_BUF_DADDR_NULL
;
3319 numrecs
= xfs_btree_get_numrecs(block
);
3322 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
3326 /* Check that the new entry is being inserted in the right place. */
3327 if (ptr
<= numrecs
) {
3329 ASSERT(cur
->bc_ops
->recs_inorder(cur
, rec
,
3330 xfs_btree_rec_addr(cur
, ptr
, block
)));
3332 ASSERT(cur
->bc_ops
->keys_inorder(cur
, key
,
3333 xfs_btree_key_addr(cur
, ptr
, block
)));
3339 * If the block is full, we can't insert the new entry until we
3340 * make the block un-full.
3342 xfs_btree_set_ptr_null(cur
, &nptr
);
3343 if (numrecs
== cur
->bc_ops
->get_maxrecs(cur
, level
)) {
3344 error
= xfs_btree_make_block_unfull(cur
, level
, numrecs
,
3345 &optr
, &ptr
, &nptr
, &ncur
, lkey
, stat
);
3346 if (error
|| *stat
== 0)
3351 * The current block may have changed if the block was
3352 * previously full and we have just made space in it.
3354 block
= xfs_btree_get_block(cur
, level
, &bp
);
3355 numrecs
= xfs_btree_get_numrecs(block
);
3358 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
3364 * At this point we know there's room for our new entry in the block
3365 * we're pointing at.
3367 XFS_BTREE_STATS_ADD(cur
, moves
, numrecs
- ptr
+ 1);
3370 /* It's a nonleaf. make a hole in the keys and ptrs */
3371 union xfs_btree_key
*kp
;
3372 union xfs_btree_ptr
*pp
;
3374 kp
= xfs_btree_key_addr(cur
, ptr
, block
);
3375 pp
= xfs_btree_ptr_addr(cur
, ptr
, block
);
3378 for (i
= numrecs
- ptr
; i
>= 0; i
--) {
3379 error
= xfs_btree_check_ptr(cur
, pp
, i
, level
);
3385 xfs_btree_shift_keys(cur
, kp
, 1, numrecs
- ptr
+ 1);
3386 xfs_btree_shift_ptrs(cur
, pp
, 1, numrecs
- ptr
+ 1);
3389 error
= xfs_btree_check_ptr(cur
, ptrp
, 0, level
);
3394 /* Now put the new data in, bump numrecs and log it. */
3395 xfs_btree_copy_keys(cur
, kp
, key
, 1);
3396 xfs_btree_copy_ptrs(cur
, pp
, ptrp
, 1);
3398 xfs_btree_set_numrecs(block
, numrecs
);
3399 xfs_btree_log_ptrs(cur
, bp
, ptr
, numrecs
);
3400 xfs_btree_log_keys(cur
, bp
, ptr
, numrecs
);
3402 if (ptr
< numrecs
) {
3403 ASSERT(cur
->bc_ops
->keys_inorder(cur
, kp
,
3404 xfs_btree_key_addr(cur
, ptr
+ 1, block
)));
3408 /* It's a leaf. make a hole in the records */
3409 union xfs_btree_rec
*rp
;
3411 rp
= xfs_btree_rec_addr(cur
, ptr
, block
);
3413 xfs_btree_shift_recs(cur
, rp
, 1, numrecs
- ptr
+ 1);
3415 /* Now put the new data in, bump numrecs and log it. */
3416 xfs_btree_copy_recs(cur
, rp
, rec
, 1);
3417 xfs_btree_set_numrecs(block
, ++numrecs
);
3418 xfs_btree_log_recs(cur
, bp
, ptr
, numrecs
);
3420 if (ptr
< numrecs
) {
3421 ASSERT(cur
->bc_ops
->recs_inorder(cur
, rp
,
3422 xfs_btree_rec_addr(cur
, ptr
+ 1, block
)));
3427 /* Log the new number of records in the btree header. */
3428 xfs_btree_log_block(cur
, bp
, XFS_BB_NUMRECS
);
3431 * If we just inserted into a new tree block, we have to
3432 * recalculate nkey here because nkey is out of date.
3434 * Otherwise we're just updating an existing block (having shoved
3435 * some records into the new tree block), so use the regular key
3438 if (bp
&& bp
->b_bn
!= old_bn
) {
3439 xfs_btree_get_keys(cur
, block
, lkey
);
3440 } else if (xfs_btree_needs_key_update(cur
, optr
)) {
3441 error
= xfs_btree_update_keys(cur
, level
);
3447 * If we are tracking the last record in the tree and
3448 * we are at the far right edge of the tree, update it.
3450 if (xfs_btree_is_lastrec(cur
, block
, level
)) {
3451 cur
->bc_ops
->update_lastrec(cur
, block
, rec
,
3452 ptr
, LASTREC_INSREC
);
3456 * Return the new block number, if any.
3457 * If there is one, give back a record value and a cursor too.
3460 if (!xfs_btree_ptr_is_null(cur
, &nptr
)) {
3461 xfs_btree_copy_keys(cur
, key
, lkey
, 1);
3465 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3470 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
3475 * Insert the record at the point referenced by cur.
3477 * A multi-level split of the tree on insert will invalidate the original
3478 * cursor. All callers of this function should assume that the cursor is
3479 * no longer valid and revalidate it.
3483 struct xfs_btree_cur
*cur
,
3486 int error
; /* error return value */
3487 int i
; /* result value, 0 for failure */
3488 int level
; /* current level number in btree */
3489 union xfs_btree_ptr nptr
; /* new block number (split result) */
3490 struct xfs_btree_cur
*ncur
; /* new cursor (split result) */
3491 struct xfs_btree_cur
*pcur
; /* previous level's cursor */
3492 union xfs_btree_key bkey
; /* key of block to insert */
3493 union xfs_btree_key
*key
;
3494 union xfs_btree_rec rec
; /* record to insert */
3501 xfs_btree_set_ptr_null(cur
, &nptr
);
3503 /* Make a key out of the record data to be inserted, and save it. */
3504 cur
->bc_ops
->init_rec_from_cur(cur
, &rec
);
3505 cur
->bc_ops
->init_key_from_rec(key
, &rec
);
3508 * Loop going up the tree, starting at the leaf level.
3509 * Stop when we don't get a split block, that must mean that
3510 * the insert is finished with this level.
3514 * Insert nrec/nptr into this level of the tree.
3515 * Note if we fail, nptr will be null.
3517 error
= xfs_btree_insrec(pcur
, level
, &nptr
, &rec
, key
,
3521 xfs_btree_del_cursor(pcur
, XFS_BTREE_ERROR
);
3525 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
3529 * See if the cursor we just used is trash.
3530 * Can't trash the caller's cursor, but otherwise we should
3531 * if ncur is a new cursor or we're about to be done.
3534 (ncur
|| xfs_btree_ptr_is_null(cur
, &nptr
))) {
3535 /* Save the state from the cursor before we trash it */
3536 if (cur
->bc_ops
->update_cursor
)
3537 cur
->bc_ops
->update_cursor(pcur
, cur
);
3538 cur
->bc_nlevels
= pcur
->bc_nlevels
;
3539 xfs_btree_del_cursor(pcur
, XFS_BTREE_NOERROR
);
3541 /* If we got a new cursor, switch to it. */
3546 } while (!xfs_btree_ptr_is_null(cur
, &nptr
));
3548 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3552 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
3557 * Try to merge a non-leaf block back into the inode root.
3559 * Note: the killroot names comes from the fact that we're effectively
3560 * killing the old root block. But because we can't just delete the
3561 * inode we have to copy the single block it was pointing to into the
3565 xfs_btree_kill_iroot(
3566 struct xfs_btree_cur
*cur
)
3568 int whichfork
= cur
->bc_private
.b
.whichfork
;
3569 struct xfs_inode
*ip
= cur
->bc_private
.b
.ip
;
3570 struct xfs_ifork
*ifp
= XFS_IFORK_PTR(ip
, whichfork
);
3571 struct xfs_btree_block
*block
;
3572 struct xfs_btree_block
*cblock
;
3573 union xfs_btree_key
*kp
;
3574 union xfs_btree_key
*ckp
;
3575 union xfs_btree_ptr
*pp
;
3576 union xfs_btree_ptr
*cpp
;
3577 struct xfs_buf
*cbp
;
3583 union xfs_btree_ptr ptr
;
3587 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
3589 ASSERT(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
);
3590 ASSERT(cur
->bc_nlevels
> 1);
3593 * Don't deal with the root block needs to be a leaf case.
3594 * We're just going to turn the thing back into extents anyway.
3596 level
= cur
->bc_nlevels
- 1;
3601 * Give up if the root has multiple children.
3603 block
= xfs_btree_get_iroot(cur
);
3604 if (xfs_btree_get_numrecs(block
) != 1)
3607 cblock
= xfs_btree_get_block(cur
, level
- 1, &cbp
);
3608 numrecs
= xfs_btree_get_numrecs(cblock
);
3611 * Only do this if the next level will fit.
3612 * Then the data must be copied up to the inode,
3613 * instead of freeing the root you free the next level.
3615 if (numrecs
> cur
->bc_ops
->get_dmaxrecs(cur
, level
))
3618 XFS_BTREE_STATS_INC(cur
, killroot
);
3621 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_LEFTSIB
);
3622 ASSERT(xfs_btree_ptr_is_null(cur
, &ptr
));
3623 xfs_btree_get_sibling(cur
, block
, &ptr
, XFS_BB_RIGHTSIB
);
3624 ASSERT(xfs_btree_ptr_is_null(cur
, &ptr
));
3627 index
= numrecs
- cur
->bc_ops
->get_maxrecs(cur
, level
);
3629 xfs_iroot_realloc(cur
->bc_private
.b
.ip
, index
,
3630 cur
->bc_private
.b
.whichfork
);
3631 block
= ifp
->if_broot
;
3634 be16_add_cpu(&block
->bb_numrecs
, index
);
3635 ASSERT(block
->bb_numrecs
== cblock
->bb_numrecs
);
3637 kp
= xfs_btree_key_addr(cur
, 1, block
);
3638 ckp
= xfs_btree_key_addr(cur
, 1, cblock
);
3639 xfs_btree_copy_keys(cur
, kp
, ckp
, numrecs
);
3641 pp
= xfs_btree_ptr_addr(cur
, 1, block
);
3642 cpp
= xfs_btree_ptr_addr(cur
, 1, cblock
);
3644 for (i
= 0; i
< numrecs
; i
++) {
3645 error
= xfs_btree_check_ptr(cur
, cpp
, i
, level
- 1);
3647 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
3652 xfs_btree_copy_ptrs(cur
, pp
, cpp
, numrecs
);
3654 error
= xfs_btree_free_block(cur
, cbp
);
3656 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
3660 cur
->bc_bufs
[level
- 1] = NULL
;
3661 be16_add_cpu(&block
->bb_level
, -1);
3662 xfs_trans_log_inode(cur
->bc_tp
, ip
,
3663 XFS_ILOG_CORE
| xfs_ilog_fbroot(cur
->bc_private
.b
.whichfork
));
3666 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3671 * Kill the current root node, and replace it with it's only child node.
3674 xfs_btree_kill_root(
3675 struct xfs_btree_cur
*cur
,
3678 union xfs_btree_ptr
*newroot
)
3682 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
3683 XFS_BTREE_STATS_INC(cur
, killroot
);
3686 * Update the root pointer, decreasing the level by 1 and then
3687 * free the old root.
3689 cur
->bc_ops
->set_root(cur
, newroot
, -1);
3691 error
= xfs_btree_free_block(cur
, bp
);
3693 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
3697 cur
->bc_bufs
[level
] = NULL
;
3698 cur
->bc_ra
[level
] = 0;
3701 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3706 xfs_btree_dec_cursor(
3707 struct xfs_btree_cur
*cur
,
3715 error
= xfs_btree_decrement(cur
, level
, &i
);
3720 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3726 * Single level of the btree record deletion routine.
3727 * Delete record pointed to by cur/level.
3728 * Remove the record from its block then rebalance the tree.
3729 * Return 0 for error, 1 for done, 2 to go on to the next level.
3731 STATIC
int /* error */
3733 struct xfs_btree_cur
*cur
, /* btree cursor */
3734 int level
, /* level removing record from */
3735 int *stat
) /* fail/done/go-on */
3737 struct xfs_btree_block
*block
; /* btree block */
3738 union xfs_btree_ptr cptr
; /* current block ptr */
3739 struct xfs_buf
*bp
; /* buffer for block */
3740 int error
; /* error return value */
3741 int i
; /* loop counter */
3742 union xfs_btree_ptr lptr
; /* left sibling block ptr */
3743 struct xfs_buf
*lbp
; /* left buffer pointer */
3744 struct xfs_btree_block
*left
; /* left btree block */
3745 int lrecs
= 0; /* left record count */
3746 int ptr
; /* key/record index */
3747 union xfs_btree_ptr rptr
; /* right sibling block ptr */
3748 struct xfs_buf
*rbp
; /* right buffer pointer */
3749 struct xfs_btree_block
*right
; /* right btree block */
3750 struct xfs_btree_block
*rrblock
; /* right-right btree block */
3751 struct xfs_buf
*rrbp
; /* right-right buffer pointer */
3752 int rrecs
= 0; /* right record count */
3753 struct xfs_btree_cur
*tcur
; /* temporary btree cursor */
3754 int numrecs
; /* temporary numrec count */
3756 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
3757 XFS_BTREE_TRACE_ARGI(cur
, level
);
3761 /* Get the index of the entry being deleted, check for nothing there. */
3762 ptr
= cur
->bc_ptrs
[level
];
3764 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3769 /* Get the buffer & block containing the record or key/ptr. */
3770 block
= xfs_btree_get_block(cur
, level
, &bp
);
3771 numrecs
= xfs_btree_get_numrecs(block
);
3774 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
3779 /* Fail if we're off the end of the block. */
3780 if (ptr
> numrecs
) {
3781 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
3786 XFS_BTREE_STATS_INC(cur
, delrec
);
3787 XFS_BTREE_STATS_ADD(cur
, moves
, numrecs
- ptr
);
3789 /* Excise the entries being deleted. */
3791 /* It's a nonleaf. operate on keys and ptrs */
3792 union xfs_btree_key
*lkp
;
3793 union xfs_btree_ptr
*lpp
;
3795 lkp
= xfs_btree_key_addr(cur
, ptr
+ 1, block
);
3796 lpp
= xfs_btree_ptr_addr(cur
, ptr
+ 1, block
);
3799 for (i
= 0; i
< numrecs
- ptr
; i
++) {
3800 error
= xfs_btree_check_ptr(cur
, lpp
, i
, level
);
3806 if (ptr
< numrecs
) {
3807 xfs_btree_shift_keys(cur
, lkp
, -1, numrecs
- ptr
);
3808 xfs_btree_shift_ptrs(cur
, lpp
, -1, numrecs
- ptr
);
3809 xfs_btree_log_keys(cur
, bp
, ptr
, numrecs
- 1);
3810 xfs_btree_log_ptrs(cur
, bp
, ptr
, numrecs
- 1);
3813 /* It's a leaf. operate on records */
3814 if (ptr
< numrecs
) {
3815 xfs_btree_shift_recs(cur
,
3816 xfs_btree_rec_addr(cur
, ptr
+ 1, block
),
3818 xfs_btree_log_recs(cur
, bp
, ptr
, numrecs
- 1);
3823 * Decrement and log the number of entries in the block.
3825 xfs_btree_set_numrecs(block
, --numrecs
);
3826 xfs_btree_log_block(cur
, bp
, XFS_BB_NUMRECS
);
3829 * If we are tracking the last record in the tree and
3830 * we are at the far right edge of the tree, update it.
3832 if (xfs_btree_is_lastrec(cur
, block
, level
)) {
3833 cur
->bc_ops
->update_lastrec(cur
, block
, NULL
,
3834 ptr
, LASTREC_DELREC
);
3838 * We're at the root level. First, shrink the root block in-memory.
3839 * Try to get rid of the next level down. If we can't then there's
3840 * nothing left to do.
3842 if (level
== cur
->bc_nlevels
- 1) {
3843 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) {
3844 xfs_iroot_realloc(cur
->bc_private
.b
.ip
, -1,
3845 cur
->bc_private
.b
.whichfork
);
3847 error
= xfs_btree_kill_iroot(cur
);
3851 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3859 * If this is the root level, and there's only one entry left,
3860 * and it's NOT the leaf level, then we can get rid of this
3863 if (numrecs
== 1 && level
> 0) {
3864 union xfs_btree_ptr
*pp
;
3866 * pp is still set to the first pointer in the block.
3867 * Make it the new root of the btree.
3869 pp
= xfs_btree_ptr_addr(cur
, 1, block
);
3870 error
= xfs_btree_kill_root(cur
, bp
, level
, pp
);
3873 } else if (level
> 0) {
3874 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3883 * If we deleted the leftmost entry in the block, update the
3884 * key values above us in the tree.
3886 if (xfs_btree_needs_key_update(cur
, ptr
)) {
3887 error
= xfs_btree_update_keys(cur
, level
);
3893 * If the number of records remaining in the block is at least
3894 * the minimum, we're done.
3896 if (numrecs
>= cur
->bc_ops
->get_minrecs(cur
, level
)) {
3897 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3904 * Otherwise, we have to move some records around to keep the
3905 * tree balanced. Look at the left and right sibling blocks to
3906 * see if we can re-balance by moving only one record.
3908 xfs_btree_get_sibling(cur
, block
, &rptr
, XFS_BB_RIGHTSIB
);
3909 xfs_btree_get_sibling(cur
, block
, &lptr
, XFS_BB_LEFTSIB
);
3911 if (cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) {
3913 * One child of root, need to get a chance to copy its contents
3914 * into the root and delete it. Can't go up to next level,
3915 * there's nothing to delete there.
3917 if (xfs_btree_ptr_is_null(cur
, &rptr
) &&
3918 xfs_btree_ptr_is_null(cur
, &lptr
) &&
3919 level
== cur
->bc_nlevels
- 2) {
3920 error
= xfs_btree_kill_iroot(cur
);
3922 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3929 ASSERT(!xfs_btree_ptr_is_null(cur
, &rptr
) ||
3930 !xfs_btree_ptr_is_null(cur
, &lptr
));
3933 * Duplicate the cursor so our btree manipulations here won't
3934 * disrupt the next level up.
3936 error
= xfs_btree_dup_cursor(cur
, &tcur
);
3941 * If there's a right sibling, see if it's ok to shift an entry
3944 if (!xfs_btree_ptr_is_null(cur
, &rptr
)) {
3946 * Move the temp cursor to the last entry in the next block.
3947 * Actually any entry but the first would suffice.
3949 i
= xfs_btree_lastrec(tcur
, level
);
3950 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
3952 error
= xfs_btree_increment(tcur
, level
, &i
);
3955 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
3957 i
= xfs_btree_lastrec(tcur
, level
);
3958 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
3960 /* Grab a pointer to the block. */
3961 right
= xfs_btree_get_block(tcur
, level
, &rbp
);
3963 error
= xfs_btree_check_block(tcur
, right
, level
, rbp
);
3967 /* Grab the current block number, for future use. */
3968 xfs_btree_get_sibling(tcur
, right
, &cptr
, XFS_BB_LEFTSIB
);
3971 * If right block is full enough so that removing one entry
3972 * won't make it too empty, and left-shifting an entry out
3973 * of right to us works, we're done.
3975 if (xfs_btree_get_numrecs(right
) - 1 >=
3976 cur
->bc_ops
->get_minrecs(tcur
, level
)) {
3977 error
= xfs_btree_lshift(tcur
, level
, &i
);
3981 ASSERT(xfs_btree_get_numrecs(block
) >=
3982 cur
->bc_ops
->get_minrecs(tcur
, level
));
3984 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
3987 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
3995 * Otherwise, grab the number of records in right for
3996 * future reference, and fix up the temp cursor to point
3997 * to our block again (last record).
3999 rrecs
= xfs_btree_get_numrecs(right
);
4000 if (!xfs_btree_ptr_is_null(cur
, &lptr
)) {
4001 i
= xfs_btree_firstrec(tcur
, level
);
4002 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
4004 error
= xfs_btree_decrement(tcur
, level
, &i
);
4007 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
4012 * If there's a left sibling, see if it's ok to shift an entry
4015 if (!xfs_btree_ptr_is_null(cur
, &lptr
)) {
4017 * Move the temp cursor to the first entry in the
4020 i
= xfs_btree_firstrec(tcur
, level
);
4021 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
4023 error
= xfs_btree_decrement(tcur
, level
, &i
);
4026 i
= xfs_btree_firstrec(tcur
, level
);
4027 XFS_WANT_CORRUPTED_GOTO(cur
->bc_mp
, i
== 1, error0
);
4029 /* Grab a pointer to the block. */
4030 left
= xfs_btree_get_block(tcur
, level
, &lbp
);
4032 error
= xfs_btree_check_block(cur
, left
, level
, lbp
);
4036 /* Grab the current block number, for future use. */
4037 xfs_btree_get_sibling(tcur
, left
, &cptr
, XFS_BB_RIGHTSIB
);
4040 * If left block is full enough so that removing one entry
4041 * won't make it too empty, and right-shifting an entry out
4042 * of left to us works, we're done.
4044 if (xfs_btree_get_numrecs(left
) - 1 >=
4045 cur
->bc_ops
->get_minrecs(tcur
, level
)) {
4046 error
= xfs_btree_rshift(tcur
, level
, &i
);
4050 ASSERT(xfs_btree_get_numrecs(block
) >=
4051 cur
->bc_ops
->get_minrecs(tcur
, level
));
4052 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
4056 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
4063 * Otherwise, grab the number of records in right for
4066 lrecs
= xfs_btree_get_numrecs(left
);
4069 /* Delete the temp cursor, we're done with it. */
4070 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
4073 /* If here, we need to do a join to keep the tree balanced. */
4074 ASSERT(!xfs_btree_ptr_is_null(cur
, &cptr
));
4076 if (!xfs_btree_ptr_is_null(cur
, &lptr
) &&
4077 lrecs
+ xfs_btree_get_numrecs(block
) <=
4078 cur
->bc_ops
->get_maxrecs(cur
, level
)) {
4080 * Set "right" to be the starting block,
4081 * "left" to be the left neighbor.
4086 error
= xfs_btree_read_buf_block(cur
, &lptr
, 0, &left
, &lbp
);
4091 * If that won't work, see if we can join with the right neighbor block.
4093 } else if (!xfs_btree_ptr_is_null(cur
, &rptr
) &&
4094 rrecs
+ xfs_btree_get_numrecs(block
) <=
4095 cur
->bc_ops
->get_maxrecs(cur
, level
)) {
4097 * Set "left" to be the starting block,
4098 * "right" to be the right neighbor.
4103 error
= xfs_btree_read_buf_block(cur
, &rptr
, 0, &right
, &rbp
);
4108 * Otherwise, we can't fix the imbalance.
4109 * Just return. This is probably a logic error, but it's not fatal.
4112 error
= xfs_btree_dec_cursor(cur
, level
, stat
);
4118 rrecs
= xfs_btree_get_numrecs(right
);
4119 lrecs
= xfs_btree_get_numrecs(left
);
4122 * We're now going to join "left" and "right" by moving all the stuff
4123 * in "right" to "left" and deleting "right".
4125 XFS_BTREE_STATS_ADD(cur
, moves
, rrecs
);
4127 /* It's a non-leaf. Move keys and pointers. */
4128 union xfs_btree_key
*lkp
; /* left btree key */
4129 union xfs_btree_ptr
*lpp
; /* left address pointer */
4130 union xfs_btree_key
*rkp
; /* right btree key */
4131 union xfs_btree_ptr
*rpp
; /* right address pointer */
4133 lkp
= xfs_btree_key_addr(cur
, lrecs
+ 1, left
);
4134 lpp
= xfs_btree_ptr_addr(cur
, lrecs
+ 1, left
);
4135 rkp
= xfs_btree_key_addr(cur
, 1, right
);
4136 rpp
= xfs_btree_ptr_addr(cur
, 1, right
);
4138 for (i
= 1; i
< rrecs
; i
++) {
4139 error
= xfs_btree_check_ptr(cur
, rpp
, i
, level
);
4144 xfs_btree_copy_keys(cur
, lkp
, rkp
, rrecs
);
4145 xfs_btree_copy_ptrs(cur
, lpp
, rpp
, rrecs
);
4147 xfs_btree_log_keys(cur
, lbp
, lrecs
+ 1, lrecs
+ rrecs
);
4148 xfs_btree_log_ptrs(cur
, lbp
, lrecs
+ 1, lrecs
+ rrecs
);
4150 /* It's a leaf. Move records. */
4151 union xfs_btree_rec
*lrp
; /* left record pointer */
4152 union xfs_btree_rec
*rrp
; /* right record pointer */
4154 lrp
= xfs_btree_rec_addr(cur
, lrecs
+ 1, left
);
4155 rrp
= xfs_btree_rec_addr(cur
, 1, right
);
4157 xfs_btree_copy_recs(cur
, lrp
, rrp
, rrecs
);
4158 xfs_btree_log_recs(cur
, lbp
, lrecs
+ 1, lrecs
+ rrecs
);
4161 XFS_BTREE_STATS_INC(cur
, join
);
4164 * Fix up the number of records and right block pointer in the
4165 * surviving block, and log it.
4167 xfs_btree_set_numrecs(left
, lrecs
+ rrecs
);
4168 xfs_btree_get_sibling(cur
, right
, &cptr
, XFS_BB_RIGHTSIB
),
4169 xfs_btree_set_sibling(cur
, left
, &cptr
, XFS_BB_RIGHTSIB
);
4170 xfs_btree_log_block(cur
, lbp
, XFS_BB_NUMRECS
| XFS_BB_RIGHTSIB
);
4172 /* If there is a right sibling, point it to the remaining block. */
4173 xfs_btree_get_sibling(cur
, left
, &cptr
, XFS_BB_RIGHTSIB
);
4174 if (!xfs_btree_ptr_is_null(cur
, &cptr
)) {
4175 error
= xfs_btree_read_buf_block(cur
, &cptr
, 0, &rrblock
, &rrbp
);
4178 xfs_btree_set_sibling(cur
, rrblock
, &lptr
, XFS_BB_LEFTSIB
);
4179 xfs_btree_log_block(cur
, rrbp
, XFS_BB_LEFTSIB
);
4182 /* Free the deleted block. */
4183 error
= xfs_btree_free_block(cur
, rbp
);
4188 * If we joined with the left neighbor, set the buffer in the
4189 * cursor to the left block, and fix up the index.
4192 cur
->bc_bufs
[level
] = lbp
;
4193 cur
->bc_ptrs
[level
] += lrecs
;
4194 cur
->bc_ra
[level
] = 0;
4197 * If we joined with the right neighbor and there's a level above
4198 * us, increment the cursor at that level.
4200 else if ((cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
) ||
4201 (level
+ 1 < cur
->bc_nlevels
)) {
4202 error
= xfs_btree_increment(cur
, level
+ 1, &i
);
4208 * Readjust the ptr at this level if it's not a leaf, since it's
4209 * still pointing at the deletion point, which makes the cursor
4210 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4211 * We can't use decrement because it would change the next level up.
4214 cur
->bc_ptrs
[level
]--;
4217 * We combined blocks, so we have to update the parent keys if the
4218 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4219 * points to the old block so that the caller knows which record to
4220 * delete. Therefore, the caller must be savvy enough to call updkeys
4221 * for us if we return stat == 2. The other exit points from this
4222 * function don't require deletions further up the tree, so they can
4223 * call updkeys directly.
4226 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
4227 /* Return value means the next level up has something to do. */
4232 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
4234 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
4239 * Delete the record pointed to by cur.
4240 * The cursor refers to the place where the record was (could be inserted)
4241 * when the operation returns.
4245 struct xfs_btree_cur
*cur
,
4246 int *stat
) /* success/failure */
4248 int error
; /* error return value */
4251 bool joined
= false;
4253 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ENTRY
);
4256 * Go up the tree, starting at leaf level.
4258 * If 2 is returned then a join was done; go to the next level.
4259 * Otherwise we are done.
4261 for (level
= 0, i
= 2; i
== 2; level
++) {
4262 error
= xfs_btree_delrec(cur
, level
, &i
);
4270 * If we combined blocks as part of deleting the record, delrec won't
4271 * have updated the parent high keys so we have to do that here.
4273 if (joined
&& (cur
->bc_flags
& XFS_BTREE_OVERLAPPING
)) {
4274 error
= xfs_btree_updkeys_force(cur
, 0);
4280 for (level
= 1; level
< cur
->bc_nlevels
; level
++) {
4281 if (cur
->bc_ptrs
[level
] == 0) {
4282 error
= xfs_btree_decrement(cur
, level
, &i
);
4290 XFS_BTREE_TRACE_CURSOR(cur
, XBT_EXIT
);
4294 XFS_BTREE_TRACE_CURSOR(cur
, XBT_ERROR
);
4299 * Get the data from the pointed-to record.
4303 struct xfs_btree_cur
*cur
, /* btree cursor */
4304 union xfs_btree_rec
**recp
, /* output: btree record */
4305 int *stat
) /* output: success/failure */
4307 struct xfs_btree_block
*block
; /* btree block */
4308 struct xfs_buf
*bp
; /* buffer pointer */
4309 int ptr
; /* record number */
4311 int error
; /* error return value */
4314 ptr
= cur
->bc_ptrs
[0];
4315 block
= xfs_btree_get_block(cur
, 0, &bp
);
4318 error
= xfs_btree_check_block(cur
, block
, 0, bp
);
4324 * Off the right end or left end, return failure.
4326 if (ptr
> xfs_btree_get_numrecs(block
) || ptr
<= 0) {
4332 * Point to the record and extract its data.
4334 *recp
= xfs_btree_rec_addr(cur
, ptr
, block
);
4339 /* Visit a block in a btree. */
4341 xfs_btree_visit_block(
4342 struct xfs_btree_cur
*cur
,
4344 xfs_btree_visit_blocks_fn fn
,
4347 struct xfs_btree_block
*block
;
4349 union xfs_btree_ptr rptr
;
4352 /* do right sibling readahead */
4353 xfs_btree_readahead(cur
, level
, XFS_BTCUR_RIGHTRA
);
4354 block
= xfs_btree_get_block(cur
, level
, &bp
);
4356 /* process the block */
4357 error
= fn(cur
, level
, data
);
4361 /* now read rh sibling block for next iteration */
4362 xfs_btree_get_sibling(cur
, block
, &rptr
, XFS_BB_RIGHTSIB
);
4363 if (xfs_btree_ptr_is_null(cur
, &rptr
))
4366 return xfs_btree_lookup_get_block(cur
, level
, &rptr
, &block
);
4370 /* Visit every block in a btree. */
4372 xfs_btree_visit_blocks(
4373 struct xfs_btree_cur
*cur
,
4374 xfs_btree_visit_blocks_fn fn
,
4377 union xfs_btree_ptr lptr
;
4379 struct xfs_btree_block
*block
= NULL
;
4382 cur
->bc_ops
->init_ptr_from_cur(cur
, &lptr
);
4384 /* for each level */
4385 for (level
= cur
->bc_nlevels
- 1; level
>= 0; level
--) {
4386 /* grab the left hand block */
4387 error
= xfs_btree_lookup_get_block(cur
, level
, &lptr
, &block
);
4391 /* readahead the left most block for the next level down */
4393 union xfs_btree_ptr
*ptr
;
4395 ptr
= xfs_btree_ptr_addr(cur
, 1, block
);
4396 xfs_btree_readahead_ptr(cur
, ptr
, 1);
4398 /* save for the next iteration of the loop */
4399 xfs_btree_copy_ptrs(cur
, &lptr
, ptr
, 1);
4402 /* for each buffer in the level */
4404 error
= xfs_btree_visit_block(cur
, level
, fn
, data
);
4407 if (error
!= -ENOENT
)
4415 * Change the owner of a btree.
4417 * The mechanism we use here is ordered buffer logging. Because we don't know
4418 * how many buffers were are going to need to modify, we don't really want to
4419 * have to make transaction reservations for the worst case of every buffer in a
4420 * full size btree as that may be more space that we can fit in the log....
4422 * We do the btree walk in the most optimal manner possible - we have sibling
4423 * pointers so we can just walk all the blocks on each level from left to right
4424 * in a single pass, and then move to the next level and do the same. We can
4425 * also do readahead on the sibling pointers to get IO moving more quickly,
4426 * though for slow disks this is unlikely to make much difference to performance
4427 * as the amount of CPU work we have to do before moving to the next block is
4430 * For each btree block that we load, modify the owner appropriately, set the
4431 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4432 * we mark the region we change dirty so that if the buffer is relogged in
4433 * a subsequent transaction the changes we make here as an ordered buffer are
4434 * correctly relogged in that transaction. If we are in recovery context, then
4435 * just queue the modified buffer as delayed write buffer so the transaction
4436 * recovery completion writes the changes to disk.
4438 struct xfs_btree_block_change_owner_info
{
4440 struct list_head
*buffer_list
;
4444 xfs_btree_block_change_owner(
4445 struct xfs_btree_cur
*cur
,
4449 struct xfs_btree_block_change_owner_info
*bbcoi
= data
;
4450 struct xfs_btree_block
*block
;
4453 /* modify the owner */
4454 block
= xfs_btree_get_block(cur
, level
, &bp
);
4455 if (cur
->bc_flags
& XFS_BTREE_LONG_PTRS
) {
4456 if (block
->bb_u
.l
.bb_owner
== cpu_to_be64(bbcoi
->new_owner
))
4458 block
->bb_u
.l
.bb_owner
= cpu_to_be64(bbcoi
->new_owner
);
4460 if (block
->bb_u
.s
.bb_owner
== cpu_to_be32(bbcoi
->new_owner
))
4462 block
->bb_u
.s
.bb_owner
= cpu_to_be32(bbcoi
->new_owner
);
4466 * If the block is a root block hosted in an inode, we might not have a
4467 * buffer pointer here and we shouldn't attempt to log the change as the
4468 * information is already held in the inode and discarded when the root
4469 * block is formatted into the on-disk inode fork. We still change it,
4470 * though, so everything is consistent in memory.
4473 ASSERT(cur
->bc_flags
& XFS_BTREE_ROOT_IN_INODE
);
4474 ASSERT(level
== cur
->bc_nlevels
- 1);
4479 if (!xfs_trans_ordered_buf(cur
->bc_tp
, bp
)) {
4480 xfs_btree_log_block(cur
, bp
, XFS_BB_OWNER
);
4484 xfs_buf_delwri_queue(bp
, bbcoi
->buffer_list
);
4491 xfs_btree_change_owner(
4492 struct xfs_btree_cur
*cur
,
4494 struct list_head
*buffer_list
)
4496 struct xfs_btree_block_change_owner_info bbcoi
;
4498 bbcoi
.new_owner
= new_owner
;
4499 bbcoi
.buffer_list
= buffer_list
;
4501 return xfs_btree_visit_blocks(cur
, xfs_btree_block_change_owner
,
4506 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4509 * @bp: buffer containing the btree block
4510 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4511 * @pag_max_level: pointer to the per-ag max level field
4514 xfs_btree_sblock_v5hdr_verify(
4517 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
4518 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
4519 struct xfs_perag
*pag
= bp
->b_pag
;
4521 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
4523 if (!uuid_equal(&block
->bb_u
.s
.bb_uuid
, &mp
->m_sb
.sb_meta_uuid
))
4525 if (block
->bb_u
.s
.bb_blkno
!= cpu_to_be64(bp
->b_bn
))
4527 if (pag
&& be32_to_cpu(block
->bb_u
.s
.bb_owner
) != pag
->pag_agno
)
4533 * xfs_btree_sblock_verify() -- verify a short-format btree block
4535 * @bp: buffer containing the btree block
4536 * @max_recs: maximum records allowed in this btree node
4539 xfs_btree_sblock_verify(
4541 unsigned int max_recs
)
4543 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
4544 struct xfs_btree_block
*block
= XFS_BUF_TO_BLOCK(bp
);
4546 /* numrecs verification */
4547 if (be16_to_cpu(block
->bb_numrecs
) > max_recs
)
4550 /* sibling pointer verification */
4551 if (!block
->bb_u
.s
.bb_leftsib
||
4552 (be32_to_cpu(block
->bb_u
.s
.bb_leftsib
) >= mp
->m_sb
.sb_agblocks
&&
4553 block
->bb_u
.s
.bb_leftsib
!= cpu_to_be32(NULLAGBLOCK
)))
4555 if (!block
->bb_u
.s
.bb_rightsib
||
4556 (be32_to_cpu(block
->bb_u
.s
.bb_rightsib
) >= mp
->m_sb
.sb_agblocks
&&
4557 block
->bb_u
.s
.bb_rightsib
!= cpu_to_be32(NULLAGBLOCK
)))
4564 * Calculate the number of btree levels needed to store a given number of
4565 * records in a short-format btree.
4568 xfs_btree_compute_maxlevels(
4569 struct xfs_mount
*mp
,
4574 unsigned long maxblocks
;
4576 maxblocks
= (len
+ limits
[0] - 1) / limits
[0];
4577 for (level
= 1; maxblocks
> 1; level
++)
4578 maxblocks
= (maxblocks
+ limits
[1] - 1) / limits
[1];
4583 * Query a regular btree for all records overlapping a given interval.
4584 * Start with a LE lookup of the key of low_rec and return all records
4585 * until we find a record with a key greater than the key of high_rec.
4588 xfs_btree_simple_query_range(
4589 struct xfs_btree_cur
*cur
,
4590 union xfs_btree_key
*low_key
,
4591 union xfs_btree_key
*high_key
,
4592 xfs_btree_query_range_fn fn
,
4595 union xfs_btree_rec
*recp
;
4596 union xfs_btree_key rec_key
;
4599 bool firstrec
= true;
4602 ASSERT(cur
->bc_ops
->init_high_key_from_rec
);
4603 ASSERT(cur
->bc_ops
->diff_two_keys
);
4606 * Find the leftmost record. The btree cursor must be set
4607 * to the low record used to generate low_key.
4610 error
= xfs_btree_lookup(cur
, XFS_LOOKUP_LE
, &stat
);
4614 /* Nothing? See if there's anything to the right. */
4616 error
= xfs_btree_increment(cur
, 0, &stat
);
4622 /* Find the record. */
4623 error
= xfs_btree_get_rec(cur
, &recp
, &stat
);
4627 /* Skip if high_key(rec) < low_key. */
4629 cur
->bc_ops
->init_high_key_from_rec(&rec_key
, recp
);
4631 diff
= cur
->bc_ops
->diff_two_keys(cur
, low_key
,
4637 /* Stop if high_key < low_key(rec). */
4638 cur
->bc_ops
->init_key_from_rec(&rec_key
, recp
);
4639 diff
= cur
->bc_ops
->diff_two_keys(cur
, &rec_key
, high_key
);
4644 error
= fn(cur
, recp
, priv
);
4645 if (error
< 0 || error
== XFS_BTREE_QUERY_RANGE_ABORT
)
4649 /* Move on to the next record. */
4650 error
= xfs_btree_increment(cur
, 0, &stat
);
4660 * Query an overlapped interval btree for all records overlapping a given
4661 * interval. This function roughly follows the algorithm given in
4662 * "Interval Trees" of _Introduction to Algorithms_, which is section
4663 * 14.3 in the 2nd and 3rd editions.
4665 * First, generate keys for the low and high records passed in.
4667 * For any leaf node, generate the high and low keys for the record.
4668 * If the record keys overlap with the query low/high keys, pass the
4669 * record to the function iterator.
4671 * For any internal node, compare the low and high keys of each
4672 * pointer against the query low/high keys. If there's an overlap,
4673 * follow the pointer.
4675 * As an optimization, we stop scanning a block when we find a low key
4676 * that is greater than the query's high key.
4679 xfs_btree_overlapped_query_range(
4680 struct xfs_btree_cur
*cur
,
4681 union xfs_btree_key
*low_key
,
4682 union xfs_btree_key
*high_key
,
4683 xfs_btree_query_range_fn fn
,
4686 union xfs_btree_ptr ptr
;
4687 union xfs_btree_ptr
*pp
;
4688 union xfs_btree_key rec_key
;
4689 union xfs_btree_key rec_hkey
;
4690 union xfs_btree_key
*lkp
;
4691 union xfs_btree_key
*hkp
;
4692 union xfs_btree_rec
*recp
;
4693 struct xfs_btree_block
*block
;
4701 /* Load the root of the btree. */
4702 level
= cur
->bc_nlevels
- 1;
4703 cur
->bc_ops
->init_ptr_from_cur(cur
, &ptr
);
4704 error
= xfs_btree_lookup_get_block(cur
, level
, &ptr
, &block
);
4707 xfs_btree_get_block(cur
, level
, &bp
);
4708 trace_xfs_btree_overlapped_query_range(cur
, level
, bp
);
4710 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
4714 cur
->bc_ptrs
[level
] = 1;
4716 while (level
< cur
->bc_nlevels
) {
4717 block
= xfs_btree_get_block(cur
, level
, &bp
);
4719 /* End of node, pop back towards the root. */
4720 if (cur
->bc_ptrs
[level
] > be16_to_cpu(block
->bb_numrecs
)) {
4722 if (level
< cur
->bc_nlevels
- 1)
4723 cur
->bc_ptrs
[level
+ 1]++;
4729 /* Handle a leaf node. */
4730 recp
= xfs_btree_rec_addr(cur
, cur
->bc_ptrs
[0], block
);
4732 cur
->bc_ops
->init_high_key_from_rec(&rec_hkey
, recp
);
4733 ldiff
= cur
->bc_ops
->diff_two_keys(cur
, &rec_hkey
,
4736 cur
->bc_ops
->init_key_from_rec(&rec_key
, recp
);
4737 hdiff
= cur
->bc_ops
->diff_two_keys(cur
, high_key
,
4741 * If (record's high key >= query's low key) and
4742 * (query's high key >= record's low key), then
4743 * this record overlaps the query range; callback.
4745 if (ldiff
>= 0 && hdiff
>= 0) {
4746 error
= fn(cur
, recp
, priv
);
4748 error
== XFS_BTREE_QUERY_RANGE_ABORT
)
4750 } else if (hdiff
< 0) {
4751 /* Record is larger than high key; pop. */
4754 cur
->bc_ptrs
[level
]++;
4758 /* Handle an internal node. */
4759 lkp
= xfs_btree_key_addr(cur
, cur
->bc_ptrs
[level
], block
);
4760 hkp
= xfs_btree_high_key_addr(cur
, cur
->bc_ptrs
[level
], block
);
4761 pp
= xfs_btree_ptr_addr(cur
, cur
->bc_ptrs
[level
], block
);
4763 ldiff
= cur
->bc_ops
->diff_two_keys(cur
, hkp
, low_key
);
4764 hdiff
= cur
->bc_ops
->diff_two_keys(cur
, high_key
, lkp
);
4767 * If (pointer's high key >= query's low key) and
4768 * (query's high key >= pointer's low key), then
4769 * this record overlaps the query range; follow pointer.
4771 if (ldiff
>= 0 && hdiff
>= 0) {
4773 error
= xfs_btree_lookup_get_block(cur
, level
, pp
,
4777 xfs_btree_get_block(cur
, level
, &bp
);
4778 trace_xfs_btree_overlapped_query_range(cur
, level
, bp
);
4780 error
= xfs_btree_check_block(cur
, block
, level
, bp
);
4784 cur
->bc_ptrs
[level
] = 1;
4786 } else if (hdiff
< 0) {
4787 /* The low key is larger than the upper range; pop. */
4790 cur
->bc_ptrs
[level
]++;
4795 * If we don't end this function with the cursor pointing at a record
4796 * block, a subsequent non-error cursor deletion will not release
4797 * node-level buffers, causing a buffer leak. This is quite possible
4798 * with a zero-results range query, so release the buffers if we
4799 * failed to return any results.
4801 if (cur
->bc_bufs
[0] == NULL
) {
4802 for (i
= 0; i
< cur
->bc_nlevels
; i
++) {
4803 if (cur
->bc_bufs
[i
]) {
4804 xfs_trans_brelse(cur
->bc_tp
, cur
->bc_bufs
[i
]);
4805 cur
->bc_bufs
[i
] = NULL
;
4806 cur
->bc_ptrs
[i
] = 0;
4816 * Query a btree for all records overlapping a given interval of keys. The
4817 * supplied function will be called with each record found; return one of the
4818 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4819 * code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4820 * negative error code.
4823 xfs_btree_query_range(
4824 struct xfs_btree_cur
*cur
,
4825 union xfs_btree_irec
*low_rec
,
4826 union xfs_btree_irec
*high_rec
,
4827 xfs_btree_query_range_fn fn
,
4830 union xfs_btree_rec rec
;
4831 union xfs_btree_key low_key
;
4832 union xfs_btree_key high_key
;
4834 /* Find the keys of both ends of the interval. */
4835 cur
->bc_rec
= *high_rec
;
4836 cur
->bc_ops
->init_rec_from_cur(cur
, &rec
);
4837 cur
->bc_ops
->init_key_from_rec(&high_key
, &rec
);
4839 cur
->bc_rec
= *low_rec
;
4840 cur
->bc_ops
->init_rec_from_cur(cur
, &rec
);
4841 cur
->bc_ops
->init_key_from_rec(&low_key
, &rec
);
4843 /* Enforce low key < high key. */
4844 if (cur
->bc_ops
->diff_two_keys(cur
, &low_key
, &high_key
) > 0)
4847 if (!(cur
->bc_flags
& XFS_BTREE_OVERLAPPING
))
4848 return xfs_btree_simple_query_range(cur
, &low_key
,
4849 &high_key
, fn
, priv
);
4850 return xfs_btree_overlapped_query_range(cur
, &low_key
, &high_key
,
4854 /* Query a btree for all records. */
4856 xfs_btree_query_all(
4857 struct xfs_btree_cur
*cur
,
4858 xfs_btree_query_range_fn fn
,
4861 union xfs_btree_key low_key
;
4862 union xfs_btree_key high_key
;
4864 memset(&cur
->bc_rec
, 0, sizeof(cur
->bc_rec
));
4865 memset(&low_key
, 0, sizeof(low_key
));
4866 memset(&high_key
, 0xFF, sizeof(high_key
));
4868 return xfs_btree_simple_query_range(cur
, &low_key
, &high_key
, fn
, priv
);
4872 * Calculate the number of blocks needed to store a given number of records
4873 * in a short-format (per-AG metadata) btree.
4876 xfs_btree_calc_size(
4877 struct xfs_mount
*mp
,
4879 unsigned long long len
)
4885 maxrecs
= limits
[0];
4886 for (level
= 0, rval
= 0; len
> 1; level
++) {
4888 do_div(len
, maxrecs
);
4889 maxrecs
= limits
[1];
4896 xfs_btree_count_blocks_helper(
4897 struct xfs_btree_cur
*cur
,
4901 xfs_extlen_t
*blocks
= data
;
4907 /* Count the blocks in a btree and return the result in *blocks. */
4909 xfs_btree_count_blocks(
4910 struct xfs_btree_cur
*cur
,
4911 xfs_extlen_t
*blocks
)
4914 return xfs_btree_visit_blocks(cur
, xfs_btree_count_blocks_helper
,