1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
96 /* determines whether we collect data for signals sent */
99 struct audit_aux_data
{
100 struct audit_aux_data
*next
;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids
{
110 struct audit_aux_data d
;
111 pid_t target_pid
[AUDIT_AUX_PIDS
];
112 kuid_t target_auid
[AUDIT_AUX_PIDS
];
113 kuid_t target_uid
[AUDIT_AUX_PIDS
];
114 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
115 u32 target_sid
[AUDIT_AUX_PIDS
];
116 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
120 struct audit_aux_data_bprm_fcaps
{
121 struct audit_aux_data d
;
122 struct audit_cap_data fcap
;
123 unsigned int fcap_ver
;
124 struct audit_cap_data old_pcap
;
125 struct audit_cap_data new_pcap
;
128 struct audit_tree_refs
{
129 struct audit_tree_refs
*next
;
130 struct audit_chunk
*c
[31];
133 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
140 switch (audit_classify_syscall(ctx
->arch
, n
)) {
142 if ((mask
& AUDIT_PERM_WRITE
) &&
143 audit_match_class(AUDIT_CLASS_WRITE
, n
))
145 if ((mask
& AUDIT_PERM_READ
) &&
146 audit_match_class(AUDIT_CLASS_READ
, n
))
148 if ((mask
& AUDIT_PERM_ATTR
) &&
149 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
152 case 1: /* 32bit on biarch */
153 if ((mask
& AUDIT_PERM_WRITE
) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
156 if ((mask
& AUDIT_PERM_READ
) &&
157 audit_match_class(AUDIT_CLASS_READ_32
, n
))
159 if ((mask
& AUDIT_PERM_ATTR
) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
164 return mask
& ACC_MODE(ctx
->argv
[1]);
166 return mask
& ACC_MODE(ctx
->argv
[2]);
167 case 4: /* socketcall */
168 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
170 return mask
& AUDIT_PERM_EXEC
;
176 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
178 struct audit_names
*n
;
179 umode_t mode
= (umode_t
)val
;
184 list_for_each_entry(n
, &ctx
->names_list
, list
) {
185 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
186 ((n
->mode
& S_IFMT
) == mode
))
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
203 static void audit_set_auditable(struct audit_context
*ctx
)
207 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
211 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
213 struct audit_tree_refs
*p
= ctx
->trees
;
214 int left
= ctx
->tree_count
;
216 p
->c
[--left
] = chunk
;
217 ctx
->tree_count
= left
;
226 ctx
->tree_count
= 30;
232 static int grow_tree_refs(struct audit_context
*ctx
)
234 struct audit_tree_refs
*p
= ctx
->trees
;
235 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
241 p
->next
= ctx
->trees
;
243 ctx
->first_trees
= ctx
->trees
;
244 ctx
->tree_count
= 31;
248 static void unroll_tree_refs(struct audit_context
*ctx
,
249 struct audit_tree_refs
*p
, int count
)
251 struct audit_tree_refs
*q
;
254 /* we started with empty chain */
255 p
= ctx
->first_trees
;
257 /* if the very first allocation has failed, nothing to do */
262 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
264 audit_put_chunk(q
->c
[n
]);
268 while (n
-- > ctx
->tree_count
) {
269 audit_put_chunk(q
->c
[n
]);
273 ctx
->tree_count
= count
;
276 static void free_tree_refs(struct audit_context
*ctx
)
278 struct audit_tree_refs
*p
, *q
;
279 for (p
= ctx
->first_trees
; p
; p
= q
) {
285 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
287 struct audit_tree_refs
*p
;
292 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
293 for (n
= 0; n
< 31; n
++)
294 if (audit_tree_match(p
->c
[n
], tree
))
299 for (n
= ctx
->tree_count
; n
< 31; n
++)
300 if (audit_tree_match(p
->c
[n
], tree
))
306 static int audit_compare_uid(kuid_t uid
,
307 struct audit_names
*name
,
308 struct audit_field
*f
,
309 struct audit_context
*ctx
)
311 struct audit_names
*n
;
315 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
321 list_for_each_entry(n
, &ctx
->names_list
, list
) {
322 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
330 static int audit_compare_gid(kgid_t gid
,
331 struct audit_names
*name
,
332 struct audit_field
*f
,
333 struct audit_context
*ctx
)
335 struct audit_names
*n
;
339 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
345 list_for_each_entry(n
, &ctx
->names_list
, list
) {
346 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
354 static int audit_field_compare(struct task_struct
*tsk
,
355 const struct cred
*cred
,
356 struct audit_field
*f
,
357 struct audit_context
*ctx
,
358 struct audit_names
*name
)
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
363 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
365 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
367 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
369 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
371 return audit_compare_uid(audit_get_loginuid(tsk
), name
, f
, ctx
);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
373 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
375 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
377 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
379 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID
:
382 return audit_uid_comparator(cred
->uid
, f
->op
,
383 audit_get_loginuid(tsk
));
384 case AUDIT_COMPARE_UID_TO_EUID
:
385 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
386 case AUDIT_COMPARE_UID_TO_SUID
:
387 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
388 case AUDIT_COMPARE_UID_TO_FSUID
:
389 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID
:
392 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
394 case AUDIT_COMPARE_AUID_TO_SUID
:
395 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
397 case AUDIT_COMPARE_AUID_TO_FSUID
:
398 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID
:
402 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
403 case AUDIT_COMPARE_EUID_TO_FSUID
:
404 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID
:
407 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID
:
410 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
411 case AUDIT_COMPARE_GID_TO_SGID
:
412 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
413 case AUDIT_COMPARE_GID_TO_FSGID
:
414 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID
:
417 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
418 case AUDIT_COMPARE_EGID_TO_FSGID
:
419 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID
:
422 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 static int audit_filter_rules(struct task_struct
*tsk
,
439 struct audit_krule
*rule
,
440 struct audit_context
*ctx
,
441 struct audit_names
*name
,
442 enum audit_state
*state
,
445 const struct cred
*cred
;
448 unsigned int sessionid
;
450 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
452 for (i
= 0; i
< rule
->field_count
; i
++) {
453 struct audit_field
*f
= &rule
->fields
[i
];
454 struct audit_names
*n
;
460 pid
= task_tgid_nr(tsk
);
461 result
= audit_comparator(pid
, f
->op
, f
->val
);
466 ctx
->ppid
= task_ppid_nr(tsk
);
467 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
471 result
= audit_exe_compare(tsk
, rule
->exe
);
472 if (f
->op
== Audit_not_equal
)
476 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
479 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
482 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
485 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
488 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
489 if (f
->op
== Audit_equal
) {
491 result
= groups_search(cred
->group_info
, f
->gid
);
492 } else if (f
->op
== Audit_not_equal
) {
494 result
= !groups_search(cred
->group_info
, f
->gid
);
498 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
499 if (f
->op
== Audit_equal
) {
501 result
= groups_search(cred
->group_info
, f
->gid
);
502 } else if (f
->op
== Audit_not_equal
) {
504 result
= !groups_search(cred
->group_info
, f
->gid
);
508 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
511 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
513 case AUDIT_SESSIONID
:
514 sessionid
= audit_get_sessionid(tsk
);
515 result
= audit_comparator(sessionid
, f
->op
, f
->val
);
518 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
522 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
526 if (ctx
&& ctx
->return_valid
)
527 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
530 if (ctx
&& ctx
->return_valid
) {
532 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
534 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
539 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
540 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
543 list_for_each_entry(n
, &ctx
->names_list
, list
) {
544 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
545 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
554 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
555 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
558 list_for_each_entry(n
, &ctx
->names_list
, list
) {
559 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
560 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
569 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
571 list_for_each_entry(n
, &ctx
->names_list
, list
) {
572 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
581 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
583 list_for_each_entry(n
, &ctx
->names_list
, list
) {
584 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
593 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
595 list_for_each_entry(n
, &ctx
->names_list
, list
) {
596 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
605 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
609 result
= match_tree_refs(ctx
, rule
->tree
);
612 result
= audit_uid_comparator(audit_get_loginuid(tsk
),
615 case AUDIT_LOGINUID_SET
:
616 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
618 case AUDIT_SUBJ_USER
:
619 case AUDIT_SUBJ_ROLE
:
620 case AUDIT_SUBJ_TYPE
:
623 /* NOTE: this may return negative values indicating
624 a temporary error. We simply treat this as a
625 match for now to avoid losing information that
626 may be wanted. An error message will also be
630 security_task_getsecid(tsk
, &sid
);
633 result
= security_audit_rule_match(sid
, f
->type
,
642 case AUDIT_OBJ_LEV_LOW
:
643 case AUDIT_OBJ_LEV_HIGH
:
644 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
647 /* Find files that match */
649 result
= security_audit_rule_match(
650 name
->osid
, f
->type
, f
->op
,
653 list_for_each_entry(n
, &ctx
->names_list
, list
) {
654 if (security_audit_rule_match(n
->osid
, f
->type
,
662 /* Find ipc objects that match */
663 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
665 if (security_audit_rule_match(ctx
->ipc
.osid
,
676 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
678 case AUDIT_FILTERKEY
:
679 /* ignore this field for filtering */
683 result
= audit_match_perm(ctx
, f
->val
);
686 result
= audit_match_filetype(ctx
, f
->val
);
688 case AUDIT_FIELD_COMPARE
:
689 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
697 if (rule
->prio
<= ctx
->prio
)
699 if (rule
->filterkey
) {
700 kfree(ctx
->filterkey
);
701 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
703 ctx
->prio
= rule
->prio
;
705 switch (rule
->action
) {
707 *state
= AUDIT_DISABLED
;
710 *state
= AUDIT_RECORD_CONTEXT
;
716 /* At process creation time, we can determine if system-call auditing is
717 * completely disabled for this task. Since we only have the task
718 * structure at this point, we can only check uid and gid.
720 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
722 struct audit_entry
*e
;
723 enum audit_state state
;
726 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
727 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
729 if (state
== AUDIT_RECORD_CONTEXT
)
730 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
736 return AUDIT_BUILD_CONTEXT
;
739 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
743 if (val
> 0xffffffff)
746 word
= AUDIT_WORD(val
);
747 if (word
>= AUDIT_BITMASK_SIZE
)
750 bit
= AUDIT_BIT(val
);
752 return rule
->mask
[word
] & bit
;
755 /* At syscall entry and exit time, this filter is called if the
756 * audit_state is not low enough that auditing cannot take place, but is
757 * also not high enough that we already know we have to write an audit
758 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
760 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
761 struct audit_context
*ctx
,
762 struct list_head
*list
)
764 struct audit_entry
*e
;
765 enum audit_state state
;
767 if (auditd_test_task(tsk
))
768 return AUDIT_DISABLED
;
771 if (!list_empty(list
)) {
772 list_for_each_entry_rcu(e
, list
, list
) {
773 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
774 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
777 ctx
->current_state
= state
;
783 return AUDIT_BUILD_CONTEXT
;
787 * Given an audit_name check the inode hash table to see if they match.
788 * Called holding the rcu read lock to protect the use of audit_inode_hash
790 static int audit_filter_inode_name(struct task_struct
*tsk
,
791 struct audit_names
*n
,
792 struct audit_context
*ctx
) {
793 int h
= audit_hash_ino((u32
)n
->ino
);
794 struct list_head
*list
= &audit_inode_hash
[h
];
795 struct audit_entry
*e
;
796 enum audit_state state
;
798 if (list_empty(list
))
801 list_for_each_entry_rcu(e
, list
, list
) {
802 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
803 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
804 ctx
->current_state
= state
;
812 /* At syscall exit time, this filter is called if any audit_names have been
813 * collected during syscall processing. We only check rules in sublists at hash
814 * buckets applicable to the inode numbers in audit_names.
815 * Regarding audit_state, same rules apply as for audit_filter_syscall().
817 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
819 struct audit_names
*n
;
821 if (auditd_test_task(tsk
))
826 list_for_each_entry(n
, &ctx
->names_list
, list
) {
827 if (audit_filter_inode_name(tsk
, n
, ctx
))
833 static inline void audit_proctitle_free(struct audit_context
*context
)
835 kfree(context
->proctitle
.value
);
836 context
->proctitle
.value
= NULL
;
837 context
->proctitle
.len
= 0;
840 static inline void audit_free_names(struct audit_context
*context
)
842 struct audit_names
*n
, *next
;
844 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
851 context
->name_count
= 0;
852 path_put(&context
->pwd
);
853 context
->pwd
.dentry
= NULL
;
854 context
->pwd
.mnt
= NULL
;
857 static inline void audit_free_aux(struct audit_context
*context
)
859 struct audit_aux_data
*aux
;
861 while ((aux
= context
->aux
)) {
862 context
->aux
= aux
->next
;
865 while ((aux
= context
->aux_pids
)) {
866 context
->aux_pids
= aux
->next
;
871 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
873 struct audit_context
*context
;
875 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
878 context
->state
= state
;
879 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
880 INIT_LIST_HEAD(&context
->killed_trees
);
881 INIT_LIST_HEAD(&context
->names_list
);
886 * audit_alloc - allocate an audit context block for a task
889 * Filter on the task information and allocate a per-task audit context
890 * if necessary. Doing so turns on system call auditing for the
891 * specified task. This is called from copy_process, so no lock is
894 int audit_alloc(struct task_struct
*tsk
)
896 struct audit_context
*context
;
897 enum audit_state state
;
900 if (likely(!audit_ever_enabled
))
901 return 0; /* Return if not auditing. */
903 state
= audit_filter_task(tsk
, &key
);
904 if (state
== AUDIT_DISABLED
) {
905 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
909 if (!(context
= audit_alloc_context(state
))) {
911 audit_log_lost("out of memory in audit_alloc");
914 context
->filterkey
= key
;
916 audit_set_context(tsk
, context
);
917 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
921 static inline void audit_free_context(struct audit_context
*context
)
923 audit_free_names(context
);
924 unroll_tree_refs(context
, NULL
, 0);
925 free_tree_refs(context
);
926 audit_free_aux(context
);
927 kfree(context
->filterkey
);
928 kfree(context
->sockaddr
);
929 audit_proctitle_free(context
);
933 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
934 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
937 struct audit_buffer
*ab
;
942 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
946 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
947 from_kuid(&init_user_ns
, auid
),
948 from_kuid(&init_user_ns
, uid
), sessionid
);
950 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
951 audit_log_format(ab
, " obj=(none)");
954 audit_log_format(ab
, " obj=%s", ctx
);
955 security_release_secctx(ctx
, len
);
958 audit_log_format(ab
, " ocomm=");
959 audit_log_untrustedstring(ab
, comm
);
965 static void audit_log_execve_info(struct audit_context
*context
,
966 struct audit_buffer
**ab
)
980 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
982 /* NOTE: this buffer needs to be large enough to hold all the non-arg
983 * data we put in the audit record for this argument (see the
984 * code below) ... at this point in time 96 is plenty */
987 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
988 * current value of 7500 is not as important as the fact that it
989 * is less than 8k, a setting of 7500 gives us plenty of wiggle
990 * room if we go over a little bit in the logging below */
991 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
992 len_max
= MAX_EXECVE_AUDIT_LEN
;
994 /* scratch buffer to hold the userspace args */
995 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
997 audit_panic("out of memory for argv string");
1002 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1007 require_data
= true;
1012 /* NOTE: we don't ever want to trust this value for anything
1013 * serious, but the audit record format insists we
1014 * provide an argument length for really long arguments,
1015 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1016 * to use strncpy_from_user() to obtain this value for
1017 * recording in the log, although we don't use it
1018 * anywhere here to avoid a double-fetch problem */
1020 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1022 /* read more data from userspace */
1024 /* can we make more room in the buffer? */
1025 if (buf
!= buf_head
) {
1026 memmove(buf_head
, buf
, len_buf
);
1030 /* fetch as much as we can of the argument */
1031 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1033 if (len_tmp
== -EFAULT
) {
1034 /* unable to copy from userspace */
1035 send_sig(SIGKILL
, current
, 0);
1037 } else if (len_tmp
== (len_max
- len_buf
)) {
1038 /* buffer is not large enough */
1039 require_data
= true;
1040 /* NOTE: if we are going to span multiple
1041 * buffers force the encoding so we stand
1042 * a chance at a sane len_full value and
1043 * consistent record encoding */
1045 len_full
= len_full
* 2;
1048 require_data
= false;
1050 encode
= audit_string_contains_control(
1052 /* try to use a trusted value for len_full */
1053 if (len_full
< len_max
)
1054 len_full
= (encode
?
1055 len_tmp
* 2 : len_tmp
);
1059 buf_head
[len_buf
] = '\0';
1061 /* length of the buffer in the audit record? */
1062 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1065 /* write as much as we can to the audit log */
1067 /* NOTE: some magic numbers here - basically if we
1068 * can't fit a reasonable amount of data into the
1069 * existing audit buffer, flush it and start with
1071 if ((sizeof(abuf
) + 8) > len_rem
) {
1074 *ab
= audit_log_start(context
,
1075 GFP_KERNEL
, AUDIT_EXECVE
);
1080 /* create the non-arg portion of the arg record */
1082 if (require_data
|| (iter
> 0) ||
1083 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1085 len_tmp
+= snprintf(&abuf
[len_tmp
],
1086 sizeof(abuf
) - len_tmp
,
1090 len_tmp
+= snprintf(&abuf
[len_tmp
],
1091 sizeof(abuf
) - len_tmp
,
1092 " a%d[%d]=", arg
, iter
++);
1094 len_tmp
+= snprintf(&abuf
[len_tmp
],
1095 sizeof(abuf
) - len_tmp
,
1097 WARN_ON(len_tmp
>= sizeof(abuf
));
1098 abuf
[sizeof(abuf
) - 1] = '\0';
1100 /* log the arg in the audit record */
1101 audit_log_format(*ab
, "%s", abuf
);
1105 if (len_abuf
> len_rem
)
1106 len_tmp
= len_rem
/ 2; /* encoding */
1107 audit_log_n_hex(*ab
, buf
, len_tmp
);
1108 len_rem
-= len_tmp
* 2;
1109 len_abuf
-= len_tmp
* 2;
1111 if (len_abuf
> len_rem
)
1112 len_tmp
= len_rem
- 2; /* quotes */
1113 audit_log_n_string(*ab
, buf
, len_tmp
);
1114 len_rem
-= len_tmp
+ 2;
1115 /* don't subtract the "2" because we still need
1116 * to add quotes to the remaining string */
1117 len_abuf
-= len_tmp
;
1123 /* ready to move to the next argument? */
1124 if ((len_buf
== 0) && !require_data
) {
1128 require_data
= true;
1131 } while (arg
< context
->execve
.argc
);
1133 /* NOTE: the caller handles the final audit_log_end() call */
1139 static void show_special(struct audit_context
*context
, int *call_panic
)
1141 struct audit_buffer
*ab
;
1144 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1148 switch (context
->type
) {
1149 case AUDIT_SOCKETCALL
: {
1150 int nargs
= context
->socketcall
.nargs
;
1151 audit_log_format(ab
, "nargs=%d", nargs
);
1152 for (i
= 0; i
< nargs
; i
++)
1153 audit_log_format(ab
, " a%d=%lx", i
,
1154 context
->socketcall
.args
[i
]);
1157 u32 osid
= context
->ipc
.osid
;
1159 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1160 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1161 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1166 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1167 audit_log_format(ab
, " osid=%u", osid
);
1170 audit_log_format(ab
, " obj=%s", ctx
);
1171 security_release_secctx(ctx
, len
);
1174 if (context
->ipc
.has_perm
) {
1176 ab
= audit_log_start(context
, GFP_KERNEL
,
1177 AUDIT_IPC_SET_PERM
);
1180 audit_log_format(ab
,
1181 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1182 context
->ipc
.qbytes
,
1183 context
->ipc
.perm_uid
,
1184 context
->ipc
.perm_gid
,
1185 context
->ipc
.perm_mode
);
1189 audit_log_format(ab
,
1190 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1191 "mq_msgsize=%ld mq_curmsgs=%ld",
1192 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1193 context
->mq_open
.attr
.mq_flags
,
1194 context
->mq_open
.attr
.mq_maxmsg
,
1195 context
->mq_open
.attr
.mq_msgsize
,
1196 context
->mq_open
.attr
.mq_curmsgs
);
1198 case AUDIT_MQ_SENDRECV
:
1199 audit_log_format(ab
,
1200 "mqdes=%d msg_len=%zd msg_prio=%u "
1201 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1202 context
->mq_sendrecv
.mqdes
,
1203 context
->mq_sendrecv
.msg_len
,
1204 context
->mq_sendrecv
.msg_prio
,
1205 (long long) context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1206 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1208 case AUDIT_MQ_NOTIFY
:
1209 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1210 context
->mq_notify
.mqdes
,
1211 context
->mq_notify
.sigev_signo
);
1213 case AUDIT_MQ_GETSETATTR
: {
1214 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1215 audit_log_format(ab
,
1216 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1218 context
->mq_getsetattr
.mqdes
,
1219 attr
->mq_flags
, attr
->mq_maxmsg
,
1220 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1223 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1224 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1225 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1226 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1227 audit_log_cap(ab
, "cap_pa", &context
->capset
.cap
.ambient
);
1230 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1231 context
->mmap
.flags
);
1234 audit_log_execve_info(context
, &ab
);
1236 case AUDIT_KERN_MODULE
:
1237 audit_log_format(ab
, "name=");
1238 if (context
->module
.name
) {
1239 audit_log_untrustedstring(ab
, context
->module
.name
);
1240 kfree(context
->module
.name
);
1242 audit_log_format(ab
, "(null)");
1249 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1251 char *end
= proctitle
+ len
- 1;
1252 while (end
> proctitle
&& !isprint(*end
))
1255 /* catch the case where proctitle is only 1 non-print character */
1256 len
= end
- proctitle
+ 1;
1257 len
-= isprint(proctitle
[len
-1]) == 0;
1261 static void audit_log_proctitle(void)
1265 char *msg
= "(null)";
1266 int len
= strlen(msg
);
1267 struct audit_context
*context
= audit_context();
1268 struct audit_buffer
*ab
;
1270 if (!context
|| context
->dummy
)
1273 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1275 return; /* audit_panic or being filtered */
1277 audit_log_format(ab
, "proctitle=");
1280 if (!context
->proctitle
.value
) {
1281 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1284 /* Historically called this from procfs naming */
1285 res
= get_cmdline(current
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1290 res
= audit_proctitle_rtrim(buf
, res
);
1295 context
->proctitle
.value
= buf
;
1296 context
->proctitle
.len
= res
;
1298 msg
= context
->proctitle
.value
;
1299 len
= context
->proctitle
.len
;
1301 audit_log_n_untrustedstring(ab
, msg
, len
);
1305 static void audit_log_exit(void)
1307 int i
, call_panic
= 0;
1308 struct audit_context
*context
= audit_context();
1309 struct audit_buffer
*ab
;
1310 struct audit_aux_data
*aux
;
1311 struct audit_names
*n
;
1313 context
->personality
= current
->personality
;
1315 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1317 return; /* audit_panic has been called */
1318 audit_log_format(ab
, "arch=%x syscall=%d",
1319 context
->arch
, context
->major
);
1320 if (context
->personality
!= PER_LINUX
)
1321 audit_log_format(ab
, " per=%lx", context
->personality
);
1322 if (context
->return_valid
)
1323 audit_log_format(ab
, " success=%s exit=%ld",
1324 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1325 context
->return_code
);
1327 audit_log_format(ab
,
1328 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1333 context
->name_count
);
1335 audit_log_task_info(ab
);
1336 audit_log_key(ab
, context
->filterkey
);
1339 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1341 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1343 continue; /* audit_panic has been called */
1345 switch (aux
->type
) {
1347 case AUDIT_BPRM_FCAPS
: {
1348 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1349 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1350 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1351 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1352 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1353 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1354 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1355 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1356 audit_log_cap(ab
, "old_pa", &axs
->old_pcap
.ambient
);
1357 audit_log_cap(ab
, "pp", &axs
->new_pcap
.permitted
);
1358 audit_log_cap(ab
, "pi", &axs
->new_pcap
.inheritable
);
1359 audit_log_cap(ab
, "pe", &axs
->new_pcap
.effective
);
1360 audit_log_cap(ab
, "pa", &axs
->new_pcap
.ambient
);
1368 show_special(context
, &call_panic
);
1370 if (context
->fds
[0] >= 0) {
1371 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1373 audit_log_format(ab
, "fd0=%d fd1=%d",
1374 context
->fds
[0], context
->fds
[1]);
1379 if (context
->sockaddr_len
) {
1380 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1382 audit_log_format(ab
, "saddr=");
1383 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1384 context
->sockaddr_len
);
1389 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1390 struct audit_aux_data_pids
*axs
= (void *)aux
;
1392 for (i
= 0; i
< axs
->pid_count
; i
++)
1393 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1394 axs
->target_auid
[i
],
1396 axs
->target_sessionid
[i
],
1398 axs
->target_comm
[i
]))
1402 if (context
->target_pid
&&
1403 audit_log_pid_context(context
, context
->target_pid
,
1404 context
->target_auid
, context
->target_uid
,
1405 context
->target_sessionid
,
1406 context
->target_sid
, context
->target_comm
))
1409 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1410 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1412 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1418 list_for_each_entry(n
, &context
->names_list
, list
) {
1421 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1424 audit_log_proctitle();
1426 /* Send end of event record to help user space know we are finished */
1427 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1431 audit_panic("error converting sid to string");
1435 * __audit_free - free a per-task audit context
1436 * @tsk: task whose audit context block to free
1438 * Called from copy_process and do_exit
1440 void __audit_free(struct task_struct
*tsk
)
1442 struct audit_context
*context
= tsk
->audit_context
;
1447 /* We are called either by do_exit() or the fork() error handling code;
1448 * in the former case tsk == current and in the latter tsk is a
1449 * random task_struct that doesn't doesn't have any meaningful data we
1450 * need to log via audit_log_exit().
1452 if (tsk
== current
&& !context
->dummy
&& context
->in_syscall
) {
1453 context
->return_valid
= 0;
1454 context
->return_code
= 0;
1456 audit_filter_syscall(tsk
, context
,
1457 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1458 audit_filter_inodes(tsk
, context
);
1459 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1463 if (!list_empty(&context
->killed_trees
))
1464 audit_kill_trees(&context
->killed_trees
);
1466 audit_set_context(tsk
, NULL
);
1467 audit_free_context(context
);
1471 * __audit_syscall_entry - fill in an audit record at syscall entry
1472 * @major: major syscall type (function)
1473 * @a1: additional syscall register 1
1474 * @a2: additional syscall register 2
1475 * @a3: additional syscall register 3
1476 * @a4: additional syscall register 4
1478 * Fill in audit context at syscall entry. This only happens if the
1479 * audit context was created when the task was created and the state or
1480 * filters demand the audit context be built. If the state from the
1481 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1482 * then the record will be written at syscall exit time (otherwise, it
1483 * will only be written if another part of the kernel requests that it
1486 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
1487 unsigned long a3
, unsigned long a4
)
1489 struct audit_context
*context
= audit_context();
1490 enum audit_state state
;
1492 if (!audit_enabled
|| !context
)
1495 BUG_ON(context
->in_syscall
|| context
->name_count
);
1497 state
= context
->state
;
1498 if (state
== AUDIT_DISABLED
)
1501 context
->dummy
= !audit_n_rules
;
1502 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1504 if (auditd_test_task(current
))
1508 context
->arch
= syscall_get_arch();
1509 context
->major
= major
;
1510 context
->argv
[0] = a1
;
1511 context
->argv
[1] = a2
;
1512 context
->argv
[2] = a3
;
1513 context
->argv
[3] = a4
;
1514 context
->serial
= 0;
1515 context
->in_syscall
= 1;
1516 context
->current_state
= state
;
1518 ktime_get_coarse_real_ts64(&context
->ctime
);
1522 * __audit_syscall_exit - deallocate audit context after a system call
1523 * @success: success value of the syscall
1524 * @return_code: return value of the syscall
1526 * Tear down after system call. If the audit context has been marked as
1527 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1528 * filtering, or because some other part of the kernel wrote an audit
1529 * message), then write out the syscall information. In call cases,
1530 * free the names stored from getname().
1532 void __audit_syscall_exit(int success
, long return_code
)
1534 struct audit_context
*context
;
1536 context
= audit_context();
1540 if (!context
->dummy
&& context
->in_syscall
) {
1542 context
->return_valid
= AUDITSC_SUCCESS
;
1544 context
->return_valid
= AUDITSC_FAILURE
;
1547 * we need to fix up the return code in the audit logs if the
1548 * actual return codes are later going to be fixed up by the
1549 * arch specific signal handlers
1551 * This is actually a test for:
1552 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1553 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1555 * but is faster than a bunch of ||
1557 if (unlikely(return_code
<= -ERESTARTSYS
) &&
1558 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
1559 (return_code
!= -ENOIOCTLCMD
))
1560 context
->return_code
= -EINTR
;
1562 context
->return_code
= return_code
;
1564 audit_filter_syscall(current
, context
,
1565 &audit_filter_list
[AUDIT_FILTER_EXIT
]);
1566 audit_filter_inodes(current
, context
);
1567 if (context
->current_state
== AUDIT_RECORD_CONTEXT
)
1571 context
->in_syscall
= 0;
1572 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1574 if (!list_empty(&context
->killed_trees
))
1575 audit_kill_trees(&context
->killed_trees
);
1577 audit_free_names(context
);
1578 unroll_tree_refs(context
, NULL
, 0);
1579 audit_free_aux(context
);
1580 context
->aux
= NULL
;
1581 context
->aux_pids
= NULL
;
1582 context
->target_pid
= 0;
1583 context
->target_sid
= 0;
1584 context
->sockaddr_len
= 0;
1586 context
->fds
[0] = -1;
1587 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1588 kfree(context
->filterkey
);
1589 context
->filterkey
= NULL
;
1593 static inline void handle_one(const struct inode
*inode
)
1595 struct audit_context
*context
;
1596 struct audit_tree_refs
*p
;
1597 struct audit_chunk
*chunk
;
1599 if (likely(!inode
->i_fsnotify_marks
))
1601 context
= audit_context();
1603 count
= context
->tree_count
;
1605 chunk
= audit_tree_lookup(inode
);
1609 if (likely(put_tree_ref(context
, chunk
)))
1611 if (unlikely(!grow_tree_refs(context
))) {
1612 pr_warn("out of memory, audit has lost a tree reference\n");
1613 audit_set_auditable(context
);
1614 audit_put_chunk(chunk
);
1615 unroll_tree_refs(context
, p
, count
);
1618 put_tree_ref(context
, chunk
);
1621 static void handle_path(const struct dentry
*dentry
)
1623 struct audit_context
*context
;
1624 struct audit_tree_refs
*p
;
1625 const struct dentry
*d
, *parent
;
1626 struct audit_chunk
*drop
;
1630 context
= audit_context();
1632 count
= context
->tree_count
;
1637 seq
= read_seqbegin(&rename_lock
);
1639 struct inode
*inode
= d_backing_inode(d
);
1640 if (inode
&& unlikely(inode
->i_fsnotify_marks
)) {
1641 struct audit_chunk
*chunk
;
1642 chunk
= audit_tree_lookup(inode
);
1644 if (unlikely(!put_tree_ref(context
, chunk
))) {
1650 parent
= d
->d_parent
;
1655 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1658 /* just a race with rename */
1659 unroll_tree_refs(context
, p
, count
);
1662 audit_put_chunk(drop
);
1663 if (grow_tree_refs(context
)) {
1664 /* OK, got more space */
1665 unroll_tree_refs(context
, p
, count
);
1669 pr_warn("out of memory, audit has lost a tree reference\n");
1670 unroll_tree_refs(context
, p
, count
);
1671 audit_set_auditable(context
);
1677 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1680 struct audit_names
*aname
;
1682 if (context
->name_count
< AUDIT_NAMES
) {
1683 aname
= &context
->preallocated_names
[context
->name_count
];
1684 memset(aname
, 0, sizeof(*aname
));
1686 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1689 aname
->should_free
= true;
1692 aname
->ino
= AUDIT_INO_UNSET
;
1694 list_add_tail(&aname
->list
, &context
->names_list
);
1696 context
->name_count
++;
1701 * __audit_reusename - fill out filename with info from existing entry
1702 * @uptr: userland ptr to pathname
1704 * Search the audit_names list for the current audit context. If there is an
1705 * existing entry with a matching "uptr" then return the filename
1706 * associated with that audit_name. If not, return NULL.
1709 __audit_reusename(const __user
char *uptr
)
1711 struct audit_context
*context
= audit_context();
1712 struct audit_names
*n
;
1714 list_for_each_entry(n
, &context
->names_list
, list
) {
1717 if (n
->name
->uptr
== uptr
) {
1726 * __audit_getname - add a name to the list
1727 * @name: name to add
1729 * Add a name to the list of audit names for this context.
1730 * Called from fs/namei.c:getname().
1732 void __audit_getname(struct filename
*name
)
1734 struct audit_context
*context
= audit_context();
1735 struct audit_names
*n
;
1737 if (!context
->in_syscall
)
1740 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1745 n
->name_len
= AUDIT_NAME_FULL
;
1749 if (!context
->pwd
.dentry
)
1750 get_fs_pwd(current
->fs
, &context
->pwd
);
1754 * __audit_inode - store the inode and device from a lookup
1755 * @name: name being audited
1756 * @dentry: dentry being audited
1757 * @flags: attributes for this particular entry
1759 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1762 struct audit_context
*context
= audit_context();
1763 struct inode
*inode
= d_backing_inode(dentry
);
1764 struct audit_names
*n
;
1765 bool parent
= flags
& AUDIT_INODE_PARENT
;
1767 if (!context
->in_syscall
)
1774 * If we have a pointer to an audit_names entry already, then we can
1775 * just use it directly if the type is correct.
1780 if (n
->type
== AUDIT_TYPE_PARENT
||
1781 n
->type
== AUDIT_TYPE_UNKNOWN
)
1784 if (n
->type
!= AUDIT_TYPE_PARENT
)
1789 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1791 /* valid inode number, use that for the comparison */
1792 if (n
->ino
!= inode
->i_ino
||
1793 n
->dev
!= inode
->i_sb
->s_dev
)
1795 } else if (n
->name
) {
1796 /* inode number has not been set, check the name */
1797 if (strcmp(n
->name
->name
, name
->name
))
1800 /* no inode and no name (?!) ... this is odd ... */
1803 /* match the correct record type */
1805 if (n
->type
== AUDIT_TYPE_PARENT
||
1806 n
->type
== AUDIT_TYPE_UNKNOWN
)
1809 if (n
->type
!= AUDIT_TYPE_PARENT
)
1815 /* unable to find an entry with both a matching name and type */
1816 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1826 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1827 n
->type
= AUDIT_TYPE_PARENT
;
1828 if (flags
& AUDIT_INODE_HIDDEN
)
1831 n
->name_len
= AUDIT_NAME_FULL
;
1832 n
->type
= AUDIT_TYPE_NORMAL
;
1834 handle_path(dentry
);
1835 audit_copy_inode(n
, dentry
, inode
);
1838 void __audit_file(const struct file
*file
)
1840 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
1844 * __audit_inode_child - collect inode info for created/removed objects
1845 * @parent: inode of dentry parent
1846 * @dentry: dentry being audited
1847 * @type: AUDIT_TYPE_* value that we're looking for
1849 * For syscalls that create or remove filesystem objects, audit_inode
1850 * can only collect information for the filesystem object's parent.
1851 * This call updates the audit context with the child's information.
1852 * Syscalls that create a new filesystem object must be hooked after
1853 * the object is created. Syscalls that remove a filesystem object
1854 * must be hooked prior, in order to capture the target inode during
1855 * unsuccessful attempts.
1857 void __audit_inode_child(struct inode
*parent
,
1858 const struct dentry
*dentry
,
1859 const unsigned char type
)
1861 struct audit_context
*context
= audit_context();
1862 struct inode
*inode
= d_backing_inode(dentry
);
1863 const char *dname
= dentry
->d_name
.name
;
1864 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1865 struct audit_entry
*e
;
1866 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
1869 if (!context
->in_syscall
)
1873 if (!list_empty(list
)) {
1874 list_for_each_entry_rcu(e
, list
, list
) {
1875 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
1876 struct audit_field
*f
= &e
->rule
.fields
[i
];
1878 if (f
->type
== AUDIT_FSTYPE
) {
1879 if (audit_comparator(parent
->i_sb
->s_magic
,
1881 if (e
->rule
.action
== AUDIT_NEVER
) {
1895 /* look for a parent entry first */
1896 list_for_each_entry(n
, &context
->names_list
, list
) {
1898 (n
->type
!= AUDIT_TYPE_PARENT
&&
1899 n
->type
!= AUDIT_TYPE_UNKNOWN
))
1902 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
1903 !audit_compare_dname_path(dname
,
1904 n
->name
->name
, n
->name_len
)) {
1905 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1906 n
->type
= AUDIT_TYPE_PARENT
;
1912 /* is there a matching child entry? */
1913 list_for_each_entry(n
, &context
->names_list
, list
) {
1914 /* can only match entries that have a name */
1916 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
1919 if (!strcmp(dname
, n
->name
->name
) ||
1920 !audit_compare_dname_path(dname
, n
->name
->name
,
1922 found_parent
->name_len
:
1924 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
1931 if (!found_parent
) {
1932 /* create a new, "anonymous" parent record */
1933 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1936 audit_copy_inode(n
, NULL
, parent
);
1940 found_child
= audit_alloc_name(context
, type
);
1944 /* Re-use the name belonging to the slot for a matching parent
1945 * directory. All names for this context are relinquished in
1946 * audit_free_names() */
1948 found_child
->name
= found_parent
->name
;
1949 found_child
->name_len
= AUDIT_NAME_FULL
;
1950 found_child
->name
->refcnt
++;
1955 audit_copy_inode(found_child
, dentry
, inode
);
1957 found_child
->ino
= AUDIT_INO_UNSET
;
1959 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1962 * auditsc_get_stamp - get local copies of audit_context values
1963 * @ctx: audit_context for the task
1964 * @t: timespec64 to store time recorded in the audit_context
1965 * @serial: serial value that is recorded in the audit_context
1967 * Also sets the context as auditable.
1969 int auditsc_get_stamp(struct audit_context
*ctx
,
1970 struct timespec64
*t
, unsigned int *serial
)
1972 if (!ctx
->in_syscall
)
1975 ctx
->serial
= audit_serial();
1976 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1977 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1978 *serial
= ctx
->serial
;
1981 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
1986 /* global counter which is incremented every time something logs in */
1987 static atomic_t session_id
= ATOMIC_INIT(0);
1989 static int audit_set_loginuid_perm(kuid_t loginuid
)
1991 /* if we are unset, we don't need privs */
1992 if (!audit_loginuid_set(current
))
1994 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1995 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
1997 /* it is set, you need permission */
1998 if (!capable(CAP_AUDIT_CONTROL
))
2000 /* reject if this is not an unset and we don't allow that */
2001 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
2006 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
2007 unsigned int oldsessionid
, unsigned int sessionid
,
2010 struct audit_buffer
*ab
;
2011 uid_t uid
, oldloginuid
, loginuid
;
2012 struct tty_struct
*tty
;
2017 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2021 uid
= from_kuid(&init_user_ns
, task_uid(current
));
2022 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
2023 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
2024 tty
= audit_get_tty();
2026 audit_log_format(ab
, "pid=%d uid=%u", task_tgid_nr(current
), uid
);
2027 audit_log_task_context(ab
);
2028 audit_log_format(ab
, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2029 oldloginuid
, loginuid
, tty
? tty_name(tty
) : "(none)",
2030 oldsessionid
, sessionid
, !rc
);
2036 * audit_set_loginuid - set current task's audit_context loginuid
2037 * @loginuid: loginuid value
2041 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2043 int audit_set_loginuid(kuid_t loginuid
)
2045 unsigned int oldsessionid
, sessionid
= AUDIT_SID_UNSET
;
2049 oldloginuid
= audit_get_loginuid(current
);
2050 oldsessionid
= audit_get_sessionid(current
);
2052 rc
= audit_set_loginuid_perm(loginuid
);
2056 /* are we setting or clearing? */
2057 if (uid_valid(loginuid
)) {
2058 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2059 if (unlikely(sessionid
== AUDIT_SID_UNSET
))
2060 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2063 current
->sessionid
= sessionid
;
2064 current
->loginuid
= loginuid
;
2066 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2071 * __audit_mq_open - record audit data for a POSIX MQ open
2074 * @attr: queue attributes
2077 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2079 struct audit_context
*context
= audit_context();
2082 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2084 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2086 context
->mq_open
.oflag
= oflag
;
2087 context
->mq_open
.mode
= mode
;
2089 context
->type
= AUDIT_MQ_OPEN
;
2093 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2094 * @mqdes: MQ descriptor
2095 * @msg_len: Message length
2096 * @msg_prio: Message priority
2097 * @abs_timeout: Message timeout in absolute time
2100 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2101 const struct timespec64
*abs_timeout
)
2103 struct audit_context
*context
= audit_context();
2104 struct timespec64
*p
= &context
->mq_sendrecv
.abs_timeout
;
2107 memcpy(p
, abs_timeout
, sizeof(*p
));
2109 memset(p
, 0, sizeof(*p
));
2111 context
->mq_sendrecv
.mqdes
= mqdes
;
2112 context
->mq_sendrecv
.msg_len
= msg_len
;
2113 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2115 context
->type
= AUDIT_MQ_SENDRECV
;
2119 * __audit_mq_notify - record audit data for a POSIX MQ notify
2120 * @mqdes: MQ descriptor
2121 * @notification: Notification event
2125 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2127 struct audit_context
*context
= audit_context();
2130 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2132 context
->mq_notify
.sigev_signo
= 0;
2134 context
->mq_notify
.mqdes
= mqdes
;
2135 context
->type
= AUDIT_MQ_NOTIFY
;
2139 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2140 * @mqdes: MQ descriptor
2144 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2146 struct audit_context
*context
= audit_context();
2147 context
->mq_getsetattr
.mqdes
= mqdes
;
2148 context
->mq_getsetattr
.mqstat
= *mqstat
;
2149 context
->type
= AUDIT_MQ_GETSETATTR
;
2153 * __audit_ipc_obj - record audit data for ipc object
2154 * @ipcp: ipc permissions
2157 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2159 struct audit_context
*context
= audit_context();
2160 context
->ipc
.uid
= ipcp
->uid
;
2161 context
->ipc
.gid
= ipcp
->gid
;
2162 context
->ipc
.mode
= ipcp
->mode
;
2163 context
->ipc
.has_perm
= 0;
2164 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2165 context
->type
= AUDIT_IPC
;
2169 * __audit_ipc_set_perm - record audit data for new ipc permissions
2170 * @qbytes: msgq bytes
2171 * @uid: msgq user id
2172 * @gid: msgq group id
2173 * @mode: msgq mode (permissions)
2175 * Called only after audit_ipc_obj().
2177 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2179 struct audit_context
*context
= audit_context();
2181 context
->ipc
.qbytes
= qbytes
;
2182 context
->ipc
.perm_uid
= uid
;
2183 context
->ipc
.perm_gid
= gid
;
2184 context
->ipc
.perm_mode
= mode
;
2185 context
->ipc
.has_perm
= 1;
2188 void __audit_bprm(struct linux_binprm
*bprm
)
2190 struct audit_context
*context
= audit_context();
2192 context
->type
= AUDIT_EXECVE
;
2193 context
->execve
.argc
= bprm
->argc
;
2198 * __audit_socketcall - record audit data for sys_socketcall
2199 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2203 int __audit_socketcall(int nargs
, unsigned long *args
)
2205 struct audit_context
*context
= audit_context();
2207 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2209 context
->type
= AUDIT_SOCKETCALL
;
2210 context
->socketcall
.nargs
= nargs
;
2211 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2216 * __audit_fd_pair - record audit data for pipe and socketpair
2217 * @fd1: the first file descriptor
2218 * @fd2: the second file descriptor
2221 void __audit_fd_pair(int fd1
, int fd2
)
2223 struct audit_context
*context
= audit_context();
2224 context
->fds
[0] = fd1
;
2225 context
->fds
[1] = fd2
;
2229 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2230 * @len: data length in user space
2231 * @a: data address in kernel space
2233 * Returns 0 for success or NULL context or < 0 on error.
2235 int __audit_sockaddr(int len
, void *a
)
2237 struct audit_context
*context
= audit_context();
2239 if (!context
->sockaddr
) {
2240 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2243 context
->sockaddr
= p
;
2246 context
->sockaddr_len
= len
;
2247 memcpy(context
->sockaddr
, a
, len
);
2251 void __audit_ptrace(struct task_struct
*t
)
2253 struct audit_context
*context
= audit_context();
2255 context
->target_pid
= task_tgid_nr(t
);
2256 context
->target_auid
= audit_get_loginuid(t
);
2257 context
->target_uid
= task_uid(t
);
2258 context
->target_sessionid
= audit_get_sessionid(t
);
2259 security_task_getsecid(t
, &context
->target_sid
);
2260 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2264 * audit_signal_info - record signal info for shutting down audit subsystem
2265 * @sig: signal value
2266 * @t: task being signaled
2268 * If the audit subsystem is being terminated, record the task (pid)
2269 * and uid that is doing that.
2271 int audit_signal_info(int sig
, struct task_struct
*t
)
2273 struct audit_aux_data_pids
*axp
;
2274 struct audit_context
*ctx
= audit_context();
2275 kuid_t uid
= current_uid(), auid
, t_uid
= task_uid(t
);
2277 if (auditd_test_task(t
) &&
2278 (sig
== SIGTERM
|| sig
== SIGHUP
||
2279 sig
== SIGUSR1
|| sig
== SIGUSR2
)) {
2280 audit_sig_pid
= task_tgid_nr(current
);
2281 auid
= audit_get_loginuid(current
);
2282 if (uid_valid(auid
))
2283 audit_sig_uid
= auid
;
2285 audit_sig_uid
= uid
;
2286 security_task_getsecid(current
, &audit_sig_sid
);
2289 if (!audit_signals
|| audit_dummy_context())
2292 /* optimize the common case by putting first signal recipient directly
2293 * in audit_context */
2294 if (!ctx
->target_pid
) {
2295 ctx
->target_pid
= task_tgid_nr(t
);
2296 ctx
->target_auid
= audit_get_loginuid(t
);
2297 ctx
->target_uid
= t_uid
;
2298 ctx
->target_sessionid
= audit_get_sessionid(t
);
2299 security_task_getsecid(t
, &ctx
->target_sid
);
2300 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2304 axp
= (void *)ctx
->aux_pids
;
2305 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2306 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2310 axp
->d
.type
= AUDIT_OBJ_PID
;
2311 axp
->d
.next
= ctx
->aux_pids
;
2312 ctx
->aux_pids
= (void *)axp
;
2314 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2316 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2317 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2318 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2319 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2320 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2321 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2328 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2329 * @bprm: pointer to the bprm being processed
2330 * @new: the proposed new credentials
2331 * @old: the old credentials
2333 * Simply check if the proc already has the caps given by the file and if not
2334 * store the priv escalation info for later auditing at the end of the syscall
2338 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2339 const struct cred
*new, const struct cred
*old
)
2341 struct audit_aux_data_bprm_fcaps
*ax
;
2342 struct audit_context
*context
= audit_context();
2343 struct cpu_vfs_cap_data vcaps
;
2345 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2349 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2350 ax
->d
.next
= context
->aux
;
2351 context
->aux
= (void *)ax
;
2353 get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
2355 ax
->fcap
.permitted
= vcaps
.permitted
;
2356 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2357 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2358 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2360 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2361 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2362 ax
->old_pcap
.effective
= old
->cap_effective
;
2363 ax
->old_pcap
.ambient
= old
->cap_ambient
;
2365 ax
->new_pcap
.permitted
= new->cap_permitted
;
2366 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2367 ax
->new_pcap
.effective
= new->cap_effective
;
2368 ax
->new_pcap
.ambient
= new->cap_ambient
;
2373 * __audit_log_capset - store information about the arguments to the capset syscall
2374 * @new: the new credentials
2375 * @old: the old (current) credentials
2377 * Record the arguments userspace sent to sys_capset for later printing by the
2378 * audit system if applicable
2380 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2382 struct audit_context
*context
= audit_context();
2383 context
->capset
.pid
= task_tgid_nr(current
);
2384 context
->capset
.cap
.effective
= new->cap_effective
;
2385 context
->capset
.cap
.inheritable
= new->cap_effective
;
2386 context
->capset
.cap
.permitted
= new->cap_permitted
;
2387 context
->capset
.cap
.ambient
= new->cap_ambient
;
2388 context
->type
= AUDIT_CAPSET
;
2391 void __audit_mmap_fd(int fd
, int flags
)
2393 struct audit_context
*context
= audit_context();
2394 context
->mmap
.fd
= fd
;
2395 context
->mmap
.flags
= flags
;
2396 context
->type
= AUDIT_MMAP
;
2399 void __audit_log_kern_module(char *name
)
2401 struct audit_context
*context
= audit_context();
2403 context
->module
.name
= kstrdup(name
, GFP_KERNEL
);
2404 if (!context
->module
.name
)
2405 audit_log_lost("out of memory in __audit_log_kern_module");
2406 context
->type
= AUDIT_KERN_MODULE
;
2409 void __audit_fanotify(unsigned int response
)
2411 audit_log(audit_context(), GFP_KERNEL
,
2412 AUDIT_FANOTIFY
, "resp=%u", response
);
2415 static void audit_log_task(struct audit_buffer
*ab
)
2419 unsigned int sessionid
;
2420 char comm
[sizeof(current
->comm
)];
2422 auid
= audit_get_loginuid(current
);
2423 sessionid
= audit_get_sessionid(current
);
2424 current_uid_gid(&uid
, &gid
);
2426 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2427 from_kuid(&init_user_ns
, auid
),
2428 from_kuid(&init_user_ns
, uid
),
2429 from_kgid(&init_user_ns
, gid
),
2431 audit_log_task_context(ab
);
2432 audit_log_format(ab
, " pid=%d comm=", task_tgid_nr(current
));
2433 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2434 audit_log_d_path_exe(ab
, current
->mm
);
2438 * audit_core_dumps - record information about processes that end abnormally
2439 * @signr: signal value
2441 * If a process ends with a core dump, something fishy is going on and we
2442 * should record the event for investigation.
2444 void audit_core_dumps(long signr
)
2446 struct audit_buffer
*ab
;
2451 if (signr
== SIGQUIT
) /* don't care for those */
2454 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2458 audit_log_format(ab
, " sig=%ld res=1", signr
);
2463 * audit_seccomp - record information about a seccomp action
2464 * @syscall: syscall number
2465 * @signr: signal value
2466 * @code: the seccomp action
2468 * Record the information associated with a seccomp action. Event filtering for
2469 * seccomp actions that are not to be logged is done in seccomp_log().
2470 * Therefore, this function forces auditing independent of the audit_enabled
2471 * and dummy context state because seccomp actions should be logged even when
2472 * audit is not in use.
2474 void audit_seccomp(unsigned long syscall
, long signr
, int code
)
2476 struct audit_buffer
*ab
;
2478 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_SECCOMP
);
2482 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2483 signr
, syscall_get_arch(), syscall
,
2484 in_compat_syscall(), KSTK_EIP(current
), code
);
2488 void audit_seccomp_actions_logged(const char *names
, const char *old_names
,
2491 struct audit_buffer
*ab
;
2496 ab
= audit_log_start(audit_context(), GFP_KERNEL
,
2497 AUDIT_CONFIG_CHANGE
);
2501 audit_log_format(ab
,
2502 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2503 names
, old_names
, res
);
2507 struct list_head
*audit_killed_trees(void)
2509 struct audit_context
*ctx
= audit_context();
2510 if (likely(!ctx
|| !ctx
->in_syscall
))
2512 return &ctx
->killed_trees
;