2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock
);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node
);
79 EXPORT_PER_CPU_SYMBOL(numa_node
);
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
89 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
91 int _node_numa_mem_
[MAX_NUMNODES
];
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy
;
96 EXPORT_SYMBOL(latent_entropy
);
100 * Array of node states.
102 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
103 [N_POSSIBLE
] = NODE_MASK_ALL
,
104 [N_ONLINE
] = { { [0] = 1UL } },
106 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY
] = { { [0] = 1UL } },
113 [N_CPU
] = { { [0] = 1UL } },
116 EXPORT_SYMBOL(node_states
);
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock
);
121 unsigned long totalram_pages __read_mostly
;
122 unsigned long totalreserve_pages __read_mostly
;
123 unsigned long totalcma_pages __read_mostly
;
125 int percpu_pagelist_fraction
;
126 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
136 static inline int get_pcppage_migratetype(struct page
*page
)
141 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
143 page
->index
= migratetype
;
146 #ifdef CONFIG_PM_SLEEP
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
156 static gfp_t saved_gfp_mask
;
158 void pm_restore_gfp_mask(void)
160 WARN_ON(!mutex_is_locked(&pm_mutex
));
161 if (saved_gfp_mask
) {
162 gfp_allowed_mask
= saved_gfp_mask
;
167 void pm_restrict_gfp_mask(void)
169 WARN_ON(!mutex_is_locked(&pm_mutex
));
170 WARN_ON(saved_gfp_mask
);
171 saved_gfp_mask
= gfp_allowed_mask
;
172 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
175 bool pm_suspended_storage(void)
177 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
181 #endif /* CONFIG_PM_SLEEP */
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly
;
187 static void __free_pages_ok(struct page
*page
, unsigned int order
);
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
200 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
201 #ifdef CONFIG_ZONE_DMA
204 #ifdef CONFIG_ZONE_DMA32
207 #ifdef CONFIG_HIGHMEM
213 EXPORT_SYMBOL(totalram_pages
);
215 static char * const zone_names
[MAX_NR_ZONES
] = {
216 #ifdef CONFIG_ZONE_DMA
219 #ifdef CONFIG_ZONE_DMA32
223 #ifdef CONFIG_HIGHMEM
227 #ifdef CONFIG_ZONE_DEVICE
232 char * const migratetype_names
[MIGRATE_TYPES
] = {
240 #ifdef CONFIG_MEMORY_ISOLATION
245 compound_page_dtor
* const compound_page_dtors
[] = {
248 #ifdef CONFIG_HUGETLB_PAGE
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 int min_free_kbytes
= 1024;
257 int user_min_free_kbytes
= -1;
258 int watermark_scale_factor
= 10;
260 static unsigned long __meminitdata nr_kernel_pages
;
261 static unsigned long __meminitdata nr_all_pages
;
262 static unsigned long __meminitdata dma_reserve
;
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
267 static unsigned long __initdata required_kernelcore
;
268 static unsigned long __initdata required_movablecore
;
269 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
270 static bool mirrored_kernelcore
;
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
274 EXPORT_SYMBOL(movable_zone
);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
278 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
279 int nr_online_nodes __read_mostly
= 1;
280 EXPORT_SYMBOL(nr_node_ids
);
281 EXPORT_SYMBOL(nr_online_nodes
);
284 int page_group_by_mobility_disabled __read_mostly
;
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
289 pgdat
->first_deferred_pfn
= ULONG_MAX
;
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
295 int nid
= early_pfn_to_nid(pfn
);
297 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
307 static inline bool update_defer_init(pg_data_t
*pgdat
,
308 unsigned long pfn
, unsigned long zone_end
,
309 unsigned long *nr_initialised
)
311 unsigned long max_initialise
;
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end
< pgdat_end_pfn(pgdat
))
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
320 max_initialise
= max(2UL << (30 - PAGE_SHIFT
),
321 (pgdat
->node_spanned_pages
>> 8));
324 if ((*nr_initialised
> max_initialise
) &&
325 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
326 pgdat
->first_deferred_pfn
= pfn
;
333 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
337 static inline bool early_page_uninitialised(unsigned long pfn
)
342 static inline bool update_defer_init(pg_data_t
*pgdat
,
343 unsigned long pfn
, unsigned long zone_end
,
344 unsigned long *nr_initialised
)
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
354 #ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn
)->pageblock_flags
;
357 return page_zone(page
)->pageblock_flags
;
358 #endif /* CONFIG_SPARSEMEM */
361 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
363 #ifdef CONFIG_SPARSEMEM
364 pfn
&= (PAGES_PER_SECTION
-1);
365 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
367 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
368 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
369 #endif /* CONFIG_SPARSEMEM */
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
379 * Return: pageblock_bits flags
381 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
383 unsigned long end_bitidx
,
386 unsigned long *bitmap
;
387 unsigned long bitidx
, word_bitidx
;
390 bitmap
= get_pageblock_bitmap(page
, pfn
);
391 bitidx
= pfn_to_bitidx(page
, pfn
);
392 word_bitidx
= bitidx
/ BITS_PER_LONG
;
393 bitidx
&= (BITS_PER_LONG
-1);
395 word
= bitmap
[word_bitidx
];
396 bitidx
+= end_bitidx
;
397 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
400 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
401 unsigned long end_bitidx
,
404 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
407 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
409 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
420 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
422 unsigned long end_bitidx
,
425 unsigned long *bitmap
;
426 unsigned long bitidx
, word_bitidx
;
427 unsigned long old_word
, word
;
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
431 bitmap
= get_pageblock_bitmap(page
, pfn
);
432 bitidx
= pfn_to_bitidx(page
, pfn
);
433 word_bitidx
= bitidx
/ BITS_PER_LONG
;
434 bitidx
&= (BITS_PER_LONG
-1);
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
438 bitidx
+= end_bitidx
;
439 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
440 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
442 word
= READ_ONCE(bitmap
[word_bitidx
]);
444 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
445 if (word
== old_word
)
451 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
453 if (unlikely(page_group_by_mobility_disabled
&&
454 migratetype
< MIGRATE_PCPTYPES
))
455 migratetype
= MIGRATE_UNMOVABLE
;
457 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
458 PB_migrate
, PB_migrate_end
);
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
466 unsigned long pfn
= page_to_pfn(page
);
467 unsigned long sp
, start_pfn
;
470 seq
= zone_span_seqbegin(zone
);
471 start_pfn
= zone
->zone_start_pfn
;
472 sp
= zone
->spanned_pages
;
473 if (!zone_spans_pfn(zone
, pfn
))
475 } while (zone_span_seqretry(zone
, seq
));
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn
, zone_to_nid(zone
), zone
->name
,
480 start_pfn
, start_pfn
+ sp
);
485 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
487 if (!pfn_valid_within(page_to_pfn(page
)))
489 if (zone
!= page_zone(page
))
495 * Temporary debugging check for pages not lying within a given zone.
497 static int bad_range(struct zone
*zone
, struct page
*page
)
499 if (page_outside_zone_boundaries(zone
, page
))
501 if (!page_is_consistent(zone
, page
))
507 static inline int bad_range(struct zone
*zone
, struct page
*page
)
513 static void bad_page(struct page
*page
, const char *reason
,
514 unsigned long bad_flags
)
516 static unsigned long resume
;
517 static unsigned long nr_shown
;
518 static unsigned long nr_unshown
;
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
524 if (nr_shown
== 60) {
525 if (time_before(jiffies
, resume
)) {
531 "BUG: Bad page state: %lu messages suppressed\n",
538 resume
= jiffies
+ 60 * HZ
;
540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
541 current
->comm
, page_to_pfn(page
));
542 __dump_page(page
, reason
);
543 bad_flags
&= page
->flags
;
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags
, &bad_flags
);
547 dump_page_owner(page
);
552 /* Leave bad fields for debug, except PageBuddy could make trouble */
553 page_mapcount_reset(page
); /* remove PageBuddy */
554 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
558 * Higher-order pages are called "compound pages". They are structured thusly:
560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
568 * The first tail page's ->compound_order holds the order of allocation.
569 * This usage means that zero-order pages may not be compound.
572 void free_compound_page(struct page
*page
)
574 __free_pages_ok(page
, compound_order(page
));
577 void prep_compound_page(struct page
*page
, unsigned int order
)
580 int nr_pages
= 1 << order
;
582 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
583 set_compound_order(page
, order
);
585 for (i
= 1; i
< nr_pages
; i
++) {
586 struct page
*p
= page
+ i
;
587 set_page_count(p
, 0);
588 p
->mapping
= TAIL_MAPPING
;
589 set_compound_head(p
, page
);
591 atomic_set(compound_mapcount_ptr(page
), -1);
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder
;
596 bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
599 bool _debug_guardpage_enabled __read_mostly
;
601 static int __init
early_debug_pagealloc(char *buf
)
605 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
607 early_param("debug_pagealloc", early_debug_pagealloc
);
609 static bool need_debug_guardpage(void)
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
615 if (!debug_guardpage_minorder())
621 static void init_debug_guardpage(void)
623 if (!debug_pagealloc_enabled())
626 if (!debug_guardpage_minorder())
629 _debug_guardpage_enabled
= true;
632 struct page_ext_operations debug_guardpage_ops
= {
633 .need
= need_debug_guardpage
,
634 .init
= init_debug_guardpage
,
637 static int __init
debug_guardpage_minorder_setup(char *buf
)
641 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
642 pr_err("Bad debug_guardpage_minorder value\n");
645 _debug_guardpage_minorder
= res
;
646 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
651 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
652 unsigned int order
, int migratetype
)
654 struct page_ext
*page_ext
;
656 if (!debug_guardpage_enabled())
659 if (order
>= debug_guardpage_minorder())
662 page_ext
= lookup_page_ext(page
);
663 if (unlikely(!page_ext
))
666 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
668 INIT_LIST_HEAD(&page
->lru
);
669 set_page_private(page
, order
);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
676 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
677 unsigned int order
, int migratetype
)
679 struct page_ext
*page_ext
;
681 if (!debug_guardpage_enabled())
684 page_ext
= lookup_page_ext(page
);
685 if (unlikely(!page_ext
))
688 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
690 set_page_private(page
, 0);
691 if (!is_migrate_isolate(migratetype
))
692 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
695 struct page_ext_operations debug_guardpage_ops
;
696 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
697 unsigned int order
, int migratetype
) { return false; }
698 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
699 unsigned int order
, int migratetype
) {}
702 static inline void set_page_order(struct page
*page
, unsigned int order
)
704 set_page_private(page
, order
);
705 __SetPageBuddy(page
);
708 static inline void rmv_page_order(struct page
*page
)
710 __ClearPageBuddy(page
);
711 set_page_private(page
, 0);
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
717 * (a) the buddy is not in a hole &&
718 * (b) the buddy is in the buddy system &&
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
727 * For recording page's order, we use page_private(page).
729 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
732 if (!pfn_valid_within(page_to_pfn(buddy
)))
735 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
736 if (page_zone_id(page
) != page_zone_id(buddy
))
739 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
744 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
750 if (page_zone_id(page
) != page_zone_id(buddy
))
753 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
761 * Freeing function for a buddy system allocator.
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * So when we are allocating or freeing one, we can derive the state of the
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
779 * If a block is freed, and its buddy is also free, then this
780 * triggers coalescing into a block of larger size.
785 static inline void __free_one_page(struct page
*page
,
787 struct zone
*zone
, unsigned int order
,
790 unsigned long page_idx
;
791 unsigned long combined_idx
;
792 unsigned long uninitialized_var(buddy_idx
);
794 unsigned int max_order
;
796 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
798 VM_BUG_ON(!zone_is_initialized(zone
));
799 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
801 VM_BUG_ON(migratetype
== -1);
802 if (likely(!is_migrate_isolate(migratetype
)))
803 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
805 page_idx
= pfn
& ((1 << MAX_ORDER
) - 1);
807 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
808 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
811 while (order
< max_order
- 1) {
812 buddy_idx
= __find_buddy_index(page_idx
, order
);
813 buddy
= page
+ (buddy_idx
- page_idx
);
814 if (!page_is_buddy(page
, buddy
, order
))
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
820 if (page_is_guard(buddy
)) {
821 clear_page_guard(zone
, buddy
, order
, migratetype
);
823 list_del(&buddy
->lru
);
824 zone
->free_area
[order
].nr_free
--;
825 rmv_page_order(buddy
);
827 combined_idx
= buddy_idx
& page_idx
;
828 page
= page
+ (combined_idx
- page_idx
);
829 page_idx
= combined_idx
;
832 if (max_order
< MAX_ORDER
) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
838 * We don't want to hit this code for the more frequent
841 if (unlikely(has_isolate_pageblock(zone
))) {
844 buddy_idx
= __find_buddy_index(page_idx
, order
);
845 buddy
= page
+ (buddy_idx
- page_idx
);
846 buddy_mt
= get_pageblock_migratetype(buddy
);
848 if (migratetype
!= buddy_mt
849 && (is_migrate_isolate(migratetype
) ||
850 is_migrate_isolate(buddy_mt
)))
854 goto continue_merging
;
858 set_page_order(page
, order
);
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
868 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
869 struct page
*higher_page
, *higher_buddy
;
870 combined_idx
= buddy_idx
& page_idx
;
871 higher_page
= page
+ (combined_idx
- page_idx
);
872 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
873 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
874 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
875 list_add_tail(&page
->lru
,
876 &zone
->free_area
[order
].free_list
[migratetype
]);
881 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
883 zone
->free_area
[order
].nr_free
++;
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
891 static inline bool page_expected_state(struct page
*page
,
892 unsigned long check_flags
)
894 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
897 if (unlikely((unsigned long)page
->mapping
|
898 page_ref_count(page
) |
900 (unsigned long)page
->mem_cgroup
|
902 (page
->flags
& check_flags
)))
908 static void free_pages_check_bad(struct page
*page
)
910 const char *bad_reason
;
911 unsigned long bad_flags
;
916 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
917 bad_reason
= "nonzero mapcount";
918 if (unlikely(page
->mapping
!= NULL
))
919 bad_reason
= "non-NULL mapping";
920 if (unlikely(page_ref_count(page
) != 0))
921 bad_reason
= "nonzero _refcount";
922 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
923 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
927 if (unlikely(page
->mem_cgroup
))
928 bad_reason
= "page still charged to cgroup";
930 bad_page(page
, bad_reason
, bad_flags
);
933 static inline int free_pages_check(struct page
*page
)
935 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page
);
943 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
953 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
957 switch (page
- head_page
) {
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page
))) {
961 bad_page(page
, "nonzero compound_mapcount", 0);
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
972 if (page
->mapping
!= TAIL_MAPPING
) {
973 bad_page(page
, "corrupted mapping in tail page", 0);
978 if (unlikely(!PageTail(page
))) {
979 bad_page(page
, "PageTail not set", 0);
982 if (unlikely(compound_head(page
) != head_page
)) {
983 bad_page(page
, "compound_head not consistent", 0);
988 page
->mapping
= NULL
;
989 clear_compound_head(page
);
993 static __always_inline
bool free_pages_prepare(struct page
*page
,
994 unsigned int order
, bool check_free
)
998 VM_BUG_ON_PAGE(PageTail(page
), page
);
1000 trace_mm_page_free(page
, order
);
1001 kmemcheck_free_shadow(page
, order
);
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1007 if (unlikely(order
)) {
1008 bool compound
= PageCompound(page
);
1011 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1014 ClearPageDoubleMap(page
);
1015 for (i
= 1; i
< (1 << order
); i
++) {
1017 bad
+= free_tail_pages_check(page
, page
+ i
);
1018 if (unlikely(free_pages_check(page
+ i
))) {
1022 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1025 if (PageMappingFlags(page
))
1026 page
->mapping
= NULL
;
1027 if (memcg_kmem_enabled() && PageKmemcg(page
))
1028 memcg_kmem_uncharge(page
, order
);
1030 bad
+= free_pages_check(page
);
1034 page_cpupid_reset_last(page
);
1035 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1036 reset_page_owner(page
, order
);
1038 if (!PageHighMem(page
)) {
1039 debug_check_no_locks_freed(page_address(page
),
1040 PAGE_SIZE
<< order
);
1041 debug_check_no_obj_freed(page_address(page
),
1042 PAGE_SIZE
<< order
);
1044 arch_free_page(page
, order
);
1045 kernel_poison_pages(page
, 1 << order
, 0);
1046 kernel_map_pages(page
, 1 << order
, 0);
1047 kasan_free_pages(page
, order
);
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page
*page
)
1055 return free_pages_prepare(page
, 0, true);
1058 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1063 static bool free_pcp_prepare(struct page
*page
)
1065 return free_pages_prepare(page
, 0, false);
1068 static bool bulkfree_pcp_prepare(struct page
*page
)
1070 return free_pages_check(page
);
1072 #endif /* CONFIG_DEBUG_VM */
1075 * Frees a number of pages from the PCP lists
1076 * Assumes all pages on list are in same zone, and of same order.
1077 * count is the number of pages to free.
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1085 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1086 struct per_cpu_pages
*pcp
)
1088 int migratetype
= 0;
1090 unsigned long nr_scanned
;
1091 bool isolated_pageblocks
;
1093 spin_lock(&zone
->lock
);
1094 isolated_pageblocks
= has_isolate_pageblock(zone
);
1095 nr_scanned
= node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
);
1097 __mod_node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
, -nr_scanned
);
1101 struct list_head
*list
;
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1112 if (++migratetype
== MIGRATE_PCPTYPES
)
1114 list
= &pcp
->lists
[migratetype
];
1115 } while (list_empty(list
));
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free
== MIGRATE_PCPTYPES
)
1122 int mt
; /* migratetype of the to-be-freed page */
1124 page
= list_last_entry(list
, struct page
, lru
);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page
->lru
);
1128 mt
= get_pcppage_migratetype(page
);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks
))
1133 mt
= get_pageblock_migratetype(page
);
1135 if (bulkfree_pcp_prepare(page
))
1138 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1139 trace_mm_page_pcpu_drain(page
, 0, mt
);
1140 } while (--count
&& --batch_free
&& !list_empty(list
));
1142 spin_unlock(&zone
->lock
);
1145 static void free_one_page(struct zone
*zone
,
1146 struct page
*page
, unsigned long pfn
,
1150 unsigned long nr_scanned
;
1151 spin_lock(&zone
->lock
);
1152 nr_scanned
= node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
);
1154 __mod_node_page_state(zone
->zone_pgdat
, NR_PAGES_SCANNED
, -nr_scanned
);
1156 if (unlikely(has_isolate_pageblock(zone
) ||
1157 is_migrate_isolate(migratetype
))) {
1158 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1160 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1161 spin_unlock(&zone
->lock
);
1164 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1165 unsigned long zone
, int nid
)
1167 set_page_links(page
, zone
, nid
, pfn
);
1168 init_page_count(page
);
1169 page_mapcount_reset(page
);
1170 page_cpupid_reset_last(page
);
1172 INIT_LIST_HEAD(&page
->lru
);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone
))
1176 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1180 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1183 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
);
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn
)
1192 if (!early_page_uninitialised(pfn
))
1195 nid
= early_pfn_to_nid(pfn
);
1196 pgdat
= NODE_DATA(nid
);
1198 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1199 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1201 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1204 __init_single_pfn(pfn
, zid
, nid
);
1207 static inline void init_reserved_page(unsigned long pfn
)
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1218 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1220 unsigned long start_pfn
= PFN_DOWN(start
);
1221 unsigned long end_pfn
= PFN_UP(end
);
1223 for (; start_pfn
< end_pfn
; start_pfn
++) {
1224 if (pfn_valid(start_pfn
)) {
1225 struct page
*page
= pfn_to_page(start_pfn
);
1227 init_reserved_page(start_pfn
);
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page
->lru
);
1232 SetPageReserved(page
);
1237 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1239 unsigned long flags
;
1241 unsigned long pfn
= page_to_pfn(page
);
1243 if (!free_pages_prepare(page
, order
, true))
1246 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1247 local_irq_save(flags
);
1248 __count_vm_events(PGFREE
, 1 << order
);
1249 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1250 local_irq_restore(flags
);
1253 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1255 unsigned int nr_pages
= 1 << order
;
1256 struct page
*p
= page
;
1260 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1262 __ClearPageReserved(p
);
1263 set_page_count(p
, 0);
1265 __ClearPageReserved(p
);
1266 set_page_count(p
, 0);
1268 page_zone(page
)->managed_pages
+= nr_pages
;
1269 set_page_refcounted(page
);
1270 __free_pages(page
, order
);
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1278 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1280 static DEFINE_SPINLOCK(early_pfn_lock
);
1283 spin_lock(&early_pfn_lock
);
1284 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1286 nid
= first_online_node
;
1287 spin_unlock(&early_pfn_lock
);
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1295 struct mminit_pfnnid_cache
*state
)
1299 nid
= __early_pfn_to_nid(pfn
, state
);
1300 if (nid
>= 0 && nid
!= node
)
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1308 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1313 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1317 static inline bool __meminit
meminit_pfn_in_nid(unsigned long pfn
, int node
,
1318 struct mminit_pfnnid_cache
*state
)
1325 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1328 if (early_page_uninitialised(pfn
))
1330 return __free_pages_boot_core(page
, order
);
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1350 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1351 unsigned long end_pfn
, struct zone
*zone
)
1353 struct page
*start_page
;
1354 struct page
*end_page
;
1356 /* end_pfn is one past the range we are checking */
1359 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1362 start_page
= pfn_to_page(start_pfn
);
1364 if (page_zone(start_page
) != zone
)
1367 end_page
= pfn_to_page(end_pfn
);
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1376 void set_zone_contiguous(struct zone
*zone
)
1378 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1379 unsigned long block_end_pfn
;
1381 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1382 for (; block_start_pfn
< zone_end_pfn(zone
);
1383 block_start_pfn
= block_end_pfn
,
1384 block_end_pfn
+= pageblock_nr_pages
) {
1386 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1388 if (!__pageblock_pfn_to_page(block_start_pfn
,
1389 block_end_pfn
, zone
))
1393 /* We confirm that there is no hole */
1394 zone
->contiguous
= true;
1397 void clear_zone_contiguous(struct zone
*zone
)
1399 zone
->contiguous
= false;
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init
deferred_free_range(struct page
*page
,
1404 unsigned long pfn
, int nr_pages
)
1411 /* Free a large naturally-aligned chunk if possible */
1412 if (nr_pages
== pageblock_nr_pages
&&
1413 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1414 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1415 __free_pages_boot_core(page
, pageblock_order
);
1419 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1420 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1421 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1422 __free_pages_boot_core(page
, 0);
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata
;
1428 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1430 static inline void __init
pgdat_init_report_one_done(void)
1432 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1433 complete(&pgdat_init_all_done_comp
);
1436 /* Initialise remaining memory on a node */
1437 static int __init
deferred_init_memmap(void *data
)
1439 pg_data_t
*pgdat
= data
;
1440 int nid
= pgdat
->node_id
;
1441 struct mminit_pfnnid_cache nid_init_state
= { };
1442 unsigned long start
= jiffies
;
1443 unsigned long nr_pages
= 0;
1444 unsigned long walk_start
, walk_end
;
1447 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1448 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1450 if (first_init_pfn
== ULONG_MAX
) {
1451 pgdat_init_report_one_done();
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask
))
1457 set_cpus_allowed_ptr(current
, cpumask
);
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1461 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1462 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1464 /* Only the highest zone is deferred so find it */
1465 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1466 zone
= pgdat
->node_zones
+ zid
;
1467 if (first_init_pfn
< zone_end_pfn(zone
))
1471 for_each_mem_pfn_range(i
, nid
, &walk_start
, &walk_end
, NULL
) {
1472 unsigned long pfn
, end_pfn
;
1473 struct page
*page
= NULL
;
1474 struct page
*free_base_page
= NULL
;
1475 unsigned long free_base_pfn
= 0;
1478 end_pfn
= min(walk_end
, zone_end_pfn(zone
));
1479 pfn
= first_init_pfn
;
1480 if (pfn
< walk_start
)
1482 if (pfn
< zone
->zone_start_pfn
)
1483 pfn
= zone
->zone_start_pfn
;
1485 for (; pfn
< end_pfn
; pfn
++) {
1486 if (!pfn_valid_within(pfn
))
1490 * Ensure pfn_valid is checked every
1491 * pageblock_nr_pages for memory holes
1493 if ((pfn
& (pageblock_nr_pages
- 1)) == 0) {
1494 if (!pfn_valid(pfn
)) {
1500 if (!meminit_pfn_in_nid(pfn
, nid
, &nid_init_state
)) {
1505 /* Minimise pfn page lookups and scheduler checks */
1506 if (page
&& (pfn
& (pageblock_nr_pages
- 1)) != 0) {
1509 nr_pages
+= nr_to_free
;
1510 deferred_free_range(free_base_page
,
1511 free_base_pfn
, nr_to_free
);
1512 free_base_page
= NULL
;
1513 free_base_pfn
= nr_to_free
= 0;
1515 page
= pfn_to_page(pfn
);
1520 VM_BUG_ON(page_zone(page
) != zone
);
1524 __init_single_page(page
, pfn
, zid
, nid
);
1525 if (!free_base_page
) {
1526 free_base_page
= page
;
1527 free_base_pfn
= pfn
;
1532 /* Where possible, batch up pages for a single free */
1535 /* Free the current block of pages to allocator */
1536 nr_pages
+= nr_to_free
;
1537 deferred_free_range(free_base_page
, free_base_pfn
,
1539 free_base_page
= NULL
;
1540 free_base_pfn
= nr_to_free
= 0;
1542 /* Free the last block of pages to allocator */
1543 nr_pages
+= nr_to_free
;
1544 deferred_free_range(free_base_page
, free_base_pfn
, nr_to_free
);
1546 first_init_pfn
= max(end_pfn
, first_init_pfn
);
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1552 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1553 jiffies_to_msecs(jiffies
- start
));
1555 pgdat_init_report_one_done();
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1560 void __init
page_alloc_init_late(void)
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1569 for_each_node_state(nid
, N_MEMORY
) {
1570 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1573 /* Block until all are initialised */
1574 wait_for_completion(&pgdat_init_all_done_comp
);
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
1580 for_each_populated_zone(zone
)
1581 set_zone_contiguous(zone
);
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init
init_cma_reserved_pageblock(struct page
*page
)
1588 unsigned i
= pageblock_nr_pages
;
1589 struct page
*p
= page
;
1592 __ClearPageReserved(p
);
1593 set_page_count(p
, 0);
1596 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1598 if (pageblock_order
>= MAX_ORDER
) {
1599 i
= pageblock_nr_pages
;
1602 set_page_refcounted(p
);
1603 __free_pages(p
, MAX_ORDER
- 1);
1604 p
+= MAX_ORDER_NR_PAGES
;
1605 } while (i
-= MAX_ORDER_NR_PAGES
);
1607 set_page_refcounted(page
);
1608 __free_pages(page
, pageblock_order
);
1611 adjust_managed_page_count(page
, pageblock_nr_pages
);
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1629 static inline void expand(struct zone
*zone
, struct page
*page
,
1630 int low
, int high
, struct free_area
*area
,
1633 unsigned long size
= 1 << high
;
1635 while (high
> low
) {
1639 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1647 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1650 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1652 set_page_order(&page
[size
], high
);
1656 static void check_new_page_bad(struct page
*page
)
1658 const char *bad_reason
= NULL
;
1659 unsigned long bad_flags
= 0;
1661 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1662 bad_reason
= "nonzero mapcount";
1663 if (unlikely(page
->mapping
!= NULL
))
1664 bad_reason
= "non-NULL mapping";
1665 if (unlikely(page_ref_count(page
) != 0))
1666 bad_reason
= "nonzero _count";
1667 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1668 bad_reason
= "HWPoisoned (hardware-corrupted)";
1669 bad_flags
= __PG_HWPOISON
;
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page
); /* remove PageBuddy */
1674 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1675 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1679 if (unlikely(page
->mem_cgroup
))
1680 bad_reason
= "page still charged to cgroup";
1682 bad_page(page
, bad_reason
, bad_flags
);
1686 * This page is about to be returned from the page allocator
1688 static inline int check_new_page(struct page
*page
)
1690 if (likely(page_expected_state(page
,
1691 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1694 check_new_page_bad(page
);
1698 static inline bool free_pages_prezeroed(bool poisoned
)
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1701 page_poisoning_enabled() && poisoned
;
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page
*page
)
1710 static bool check_new_pcp(struct page
*page
)
1712 return check_new_page(page
);
1715 static bool check_pcp_refill(struct page
*page
)
1717 return check_new_page(page
);
1719 static bool check_new_pcp(struct page
*page
)
1723 #endif /* CONFIG_DEBUG_VM */
1725 static bool check_new_pages(struct page
*page
, unsigned int order
)
1728 for (i
= 0; i
< (1 << order
); i
++) {
1729 struct page
*p
= page
+ i
;
1731 if (unlikely(check_new_page(p
)))
1738 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1741 set_page_private(page
, 0);
1742 set_page_refcounted(page
);
1744 arch_alloc_page(page
, order
);
1745 kernel_map_pages(page
, 1 << order
, 1);
1746 kernel_poison_pages(page
, 1 << order
, 1);
1747 kasan_alloc_pages(page
, order
);
1748 set_page_owner(page
, order
, gfp_flags
);
1751 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1752 unsigned int alloc_flags
)
1755 bool poisoned
= true;
1757 for (i
= 0; i
< (1 << order
); i
++) {
1758 struct page
*p
= page
+ i
;
1760 poisoned
&= page_is_poisoned(p
);
1763 post_alloc_hook(page
, order
, gfp_flags
);
1765 if (!free_pages_prezeroed(poisoned
) && (gfp_flags
& __GFP_ZERO
))
1766 for (i
= 0; i
< (1 << order
); i
++)
1767 clear_highpage(page
+ i
);
1769 if (order
&& (gfp_flags
& __GFP_COMP
))
1770 prep_compound_page(page
, order
);
1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1778 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1779 set_page_pfmemalloc(page
);
1781 clear_page_pfmemalloc(page
);
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1789 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1792 unsigned int current_order
;
1793 struct free_area
*area
;
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1798 area
= &(zone
->free_area
[current_order
]);
1799 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1803 list_del(&page
->lru
);
1804 rmv_page_order(page
);
1806 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1807 set_pcppage_migratetype(page
, migratetype
);
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1819 static int fallbacks
[MIGRATE_TYPES
][4] = {
1820 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1821 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1822 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1824 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1832 static struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1835 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1838 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1839 unsigned int order
) { return NULL
; }
1843 * Move the free pages in a range to the free lists of the requested type.
1844 * Note that start_page and end_pages are not aligned on a pageblock
1845 * boundary. If alignment is required, use move_freepages_block()
1847 int move_freepages(struct zone
*zone
,
1848 struct page
*start_page
, struct page
*end_page
,
1853 int pages_moved
= 0;
1855 #ifndef CONFIG_HOLES_IN_ZONE
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
1861 * grouping pages by mobility
1863 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1866 for (page
= start_page
; page
<= end_page
;) {
1867 if (!pfn_valid_within(page_to_pfn(page
))) {
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1875 if (!PageBuddy(page
)) {
1880 order
= page_order(page
);
1881 list_move(&page
->lru
,
1882 &zone
->free_area
[order
].free_list
[migratetype
]);
1884 pages_moved
+= 1 << order
;
1890 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1893 unsigned long start_pfn
, end_pfn
;
1894 struct page
*start_page
, *end_page
;
1896 start_pfn
= page_to_pfn(page
);
1897 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1898 start_page
= pfn_to_page(start_pfn
);
1899 end_page
= start_page
+ pageblock_nr_pages
- 1;
1900 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone
, start_pfn
))
1905 if (!zone_spans_pfn(zone
, end_pfn
))
1908 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1911 static void change_pageblock_range(struct page
*pageblock_page
,
1912 int start_order
, int migratetype
)
1914 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1916 while (nr_pageblocks
--) {
1917 set_pageblock_migratetype(pageblock_page
, migratetype
);
1918 pageblock_page
+= pageblock_nr_pages
;
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1934 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1943 if (order
>= pageblock_order
)
1946 if (order
>= pageblock_order
/ 2 ||
1947 start_mt
== MIGRATE_RECLAIMABLE
||
1948 start_mt
== MIGRATE_UNMOVABLE
||
1949 page_group_by_mobility_disabled
)
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1962 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1965 unsigned int current_order
= page_order(page
);
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order
>= pageblock_order
) {
1970 change_pageblock_range(page
, current_order
, start_type
);
1974 pages
= move_freepages_block(zone
, page
, start_type
);
1976 /* Claim the whole block if over half of it is free */
1977 if (pages
>= (1 << (pageblock_order
-1)) ||
1978 page_group_by_mobility_disabled
)
1979 set_pageblock_migratetype(page
, start_type
);
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1988 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
1989 int migratetype
, bool only_stealable
, bool *can_steal
)
1994 if (area
->nr_free
== 0)
1999 fallback_mt
= fallbacks
[migratetype
][i
];
2000 if (fallback_mt
== MIGRATE_TYPES
)
2003 if (list_empty(&area
->free_list
[fallback_mt
]))
2006 if (can_steal_fallback(order
, migratetype
))
2009 if (!only_stealable
)
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2023 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2024 unsigned int alloc_order
)
2027 unsigned long max_managed
, flags
;
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2033 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2034 if (zone
->nr_reserved_highatomic
>= max_managed
)
2037 spin_lock_irqsave(&zone
->lock
, flags
);
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone
->nr_reserved_highatomic
>= max_managed
)
2044 mt
= get_pageblock_migratetype(page
);
2045 if (mt
!= MIGRATE_HIGHATOMIC
&&
2046 !is_migrate_isolate(mt
) && !is_migrate_cma(mt
)) {
2047 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2048 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2049 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
);
2053 spin_unlock_irqrestore(&zone
->lock
, flags
);
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2068 struct zonelist
*zonelist
= ac
->zonelist
;
2069 unsigned long flags
;
2076 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2079 * Preserve at least one pageblock unless memory pressure
2082 if (!force
&& zone
->nr_reserved_highatomic
<=
2086 spin_lock_irqsave(&zone
->lock
, flags
);
2087 for (order
= 0; order
< MAX_ORDER
; order
++) {
2088 struct free_area
*area
= &(zone
->free_area
[order
]);
2090 page
= list_first_entry_or_null(
2091 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2103 if (get_pageblock_migratetype(page
) ==
2104 MIGRATE_HIGHATOMIC
) {
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2112 zone
->nr_reserved_highatomic
-= min(
2114 zone
->nr_reserved_highatomic
);
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2126 set_pageblock_migratetype(page
, ac
->migratetype
);
2127 ret
= move_freepages_block(zone
, page
, ac
->migratetype
);
2129 spin_unlock_irqrestore(&zone
->lock
, flags
);
2133 spin_unlock_irqrestore(&zone
->lock
, flags
);
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page
*
2141 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
2143 struct free_area
*area
;
2144 unsigned int current_order
;
2149 /* Find the largest possible block of pages in the other list */
2150 for (current_order
= MAX_ORDER
-1;
2151 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
2153 area
= &(zone
->free_area
[current_order
]);
2154 fallback_mt
= find_suitable_fallback(area
, current_order
,
2155 start_migratetype
, false, &can_steal
);
2156 if (fallback_mt
== -1)
2159 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2162 get_pageblock_migratetype(page
) != MIGRATE_HIGHATOMIC
)
2163 steal_suitable_fallback(zone
, page
, start_migratetype
);
2165 /* Remove the page from the freelists */
2167 list_del(&page
->lru
);
2168 rmv_page_order(page
);
2170 expand(zone
, page
, order
, current_order
, area
,
2173 * The pcppage_migratetype may differ from pageblock's
2174 * migratetype depending on the decisions in
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
2179 set_pcppage_migratetype(page
, start_migratetype
);
2181 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2182 start_migratetype
, fallback_mt
);
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2194 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
2199 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2200 if (unlikely(!page
)) {
2201 if (migratetype
== MIGRATE_MOVABLE
)
2202 page
= __rmqueue_cma_fallback(zone
, order
);
2205 page
= __rmqueue_fallback(zone
, order
, migratetype
);
2208 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2217 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2218 unsigned long count
, struct list_head
*list
,
2219 int migratetype
, bool cold
)
2223 spin_lock(&zone
->lock
);
2224 for (i
= 0; i
< count
; ++i
) {
2225 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2226 if (unlikely(page
== NULL
))
2229 if (unlikely(check_pcp_refill(page
)))
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2242 list_add(&page
->lru
, list
);
2244 list_add_tail(&page
->lru
, list
);
2247 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2248 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2258 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2259 spin_unlock(&zone
->lock
);
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
2272 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2274 unsigned long flags
;
2275 int to_drain
, batch
;
2277 local_irq_save(flags
);
2278 batch
= READ_ONCE(pcp
->batch
);
2279 to_drain
= min(pcp
->count
, batch
);
2281 free_pcppages_bulk(zone
, to_drain
, pcp
);
2282 pcp
->count
-= to_drain
;
2284 local_irq_restore(flags
);
2289 * Drain pcplists of the indicated processor and zone.
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2295 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2297 unsigned long flags
;
2298 struct per_cpu_pageset
*pset
;
2299 struct per_cpu_pages
*pcp
;
2301 local_irq_save(flags
);
2302 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2306 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2309 local_irq_restore(flags
);
2313 * Drain pcplists of all zones on the indicated processor.
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2319 static void drain_pages(unsigned int cpu
)
2323 for_each_populated_zone(zone
) {
2324 drain_pages_zone(cpu
, zone
);
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
2334 void drain_local_pages(struct zone
*zone
)
2336 int cpu
= smp_processor_id();
2339 drain_pages_zone(cpu
, zone
);
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2349 * Note that this code is protected against sending an IPI to an offline
2350 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352 * nothing keeps CPUs from showing up after we populated the cpumask and
2353 * before the call to on_each_cpu_mask().
2355 void drain_all_pages(struct zone
*zone
)
2360 * Allocate in the BSS so we wont require allocation in
2361 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2363 static cpumask_t cpus_with_pcps
;
2366 * We don't care about racing with CPU hotplug event
2367 * as offline notification will cause the notified
2368 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 * disables preemption as part of its processing
2371 for_each_online_cpu(cpu
) {
2372 struct per_cpu_pageset
*pcp
;
2374 bool has_pcps
= false;
2377 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2381 for_each_populated_zone(z
) {
2382 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2383 if (pcp
->pcp
.count
) {
2391 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2393 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2395 on_each_cpu_mask(&cpus_with_pcps
, (smp_call_func_t
) drain_local_pages
,
2399 #ifdef CONFIG_HIBERNATION
2401 void mark_free_pages(struct zone
*zone
)
2403 unsigned long pfn
, max_zone_pfn
;
2404 unsigned long flags
;
2405 unsigned int order
, t
;
2408 if (zone_is_empty(zone
))
2411 spin_lock_irqsave(&zone
->lock
, flags
);
2413 max_zone_pfn
= zone_end_pfn(zone
);
2414 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2415 if (pfn_valid(pfn
)) {
2416 page
= pfn_to_page(pfn
);
2418 if (page_zone(page
) != zone
)
2421 if (!swsusp_page_is_forbidden(page
))
2422 swsusp_unset_page_free(page
);
2425 for_each_migratetype_order(order
, t
) {
2426 list_for_each_entry(page
,
2427 &zone
->free_area
[order
].free_list
[t
], lru
) {
2430 pfn
= page_to_pfn(page
);
2431 for (i
= 0; i
< (1UL << order
); i
++)
2432 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2435 spin_unlock_irqrestore(&zone
->lock
, flags
);
2437 #endif /* CONFIG_PM */
2440 * Free a 0-order page
2441 * cold == true ? free a cold page : free a hot page
2443 void free_hot_cold_page(struct page
*page
, bool cold
)
2445 struct zone
*zone
= page_zone(page
);
2446 struct per_cpu_pages
*pcp
;
2447 unsigned long flags
;
2448 unsigned long pfn
= page_to_pfn(page
);
2451 if (!free_pcp_prepare(page
))
2454 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2455 set_pcppage_migratetype(page
, migratetype
);
2456 local_irq_save(flags
);
2457 __count_vm_event(PGFREE
);
2460 * We only track unmovable, reclaimable and movable on pcp lists.
2461 * Free ISOLATE pages back to the allocator because they are being
2462 * offlined but treat RESERVE as movable pages so we can get those
2463 * areas back if necessary. Otherwise, we may have to free
2464 * excessively into the page allocator
2466 if (migratetype
>= MIGRATE_PCPTYPES
) {
2467 if (unlikely(is_migrate_isolate(migratetype
))) {
2468 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2471 migratetype
= MIGRATE_MOVABLE
;
2474 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2476 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2478 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
2480 if (pcp
->count
>= pcp
->high
) {
2481 unsigned long batch
= READ_ONCE(pcp
->batch
);
2482 free_pcppages_bulk(zone
, batch
, pcp
);
2483 pcp
->count
-= batch
;
2487 local_irq_restore(flags
);
2491 * Free a list of 0-order pages
2493 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
2495 struct page
*page
, *next
;
2497 list_for_each_entry_safe(page
, next
, list
, lru
) {
2498 trace_mm_page_free_batched(page
, cold
);
2499 free_hot_cold_page(page
, cold
);
2504 * split_page takes a non-compound higher-order page, and splits it into
2505 * n (1<<order) sub-pages: page[0..n]
2506 * Each sub-page must be freed individually.
2508 * Note: this is probably too low level an operation for use in drivers.
2509 * Please consult with lkml before using this in your driver.
2511 void split_page(struct page
*page
, unsigned int order
)
2515 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2516 VM_BUG_ON_PAGE(!page_count(page
), page
);
2518 #ifdef CONFIG_KMEMCHECK
2520 * Split shadow pages too, because free(page[0]) would
2521 * otherwise free the whole shadow.
2523 if (kmemcheck_page_is_tracked(page
))
2524 split_page(virt_to_page(page
[0].shadow
), order
);
2527 for (i
= 1; i
< (1 << order
); i
++)
2528 set_page_refcounted(page
+ i
);
2529 split_page_owner(page
, order
);
2531 EXPORT_SYMBOL_GPL(split_page
);
2533 int __isolate_free_page(struct page
*page
, unsigned int order
)
2535 unsigned long watermark
;
2539 BUG_ON(!PageBuddy(page
));
2541 zone
= page_zone(page
);
2542 mt
= get_pageblock_migratetype(page
);
2544 if (!is_migrate_isolate(mt
)) {
2546 * Obey watermarks as if the page was being allocated. We can
2547 * emulate a high-order watermark check with a raised order-0
2548 * watermark, because we already know our high-order page
2551 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2552 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2555 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2558 /* Remove page from free list */
2559 list_del(&page
->lru
);
2560 zone
->free_area
[order
].nr_free
--;
2561 rmv_page_order(page
);
2564 * Set the pageblock if the isolated page is at least half of a
2567 if (order
>= pageblock_order
- 1) {
2568 struct page
*endpage
= page
+ (1 << order
) - 1;
2569 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2570 int mt
= get_pageblock_migratetype(page
);
2571 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2572 && mt
!= MIGRATE_HIGHATOMIC
)
2573 set_pageblock_migratetype(page
,
2579 return 1UL << order
;
2583 * Update NUMA hit/miss statistics
2585 * Must be called with interrupts disabled.
2587 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2590 enum zone_stat_item local_stat
= NUMA_LOCAL
;
2592 if (z
->node
!= numa_node_id())
2593 local_stat
= NUMA_OTHER
;
2595 if (z
->node
== preferred_zone
->node
)
2596 __inc_zone_state(z
, NUMA_HIT
);
2598 __inc_zone_state(z
, NUMA_MISS
);
2599 __inc_zone_state(preferred_zone
, NUMA_FOREIGN
);
2601 __inc_zone_state(z
, local_stat
);
2606 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2609 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
2610 struct zone
*zone
, unsigned int order
,
2611 gfp_t gfp_flags
, unsigned int alloc_flags
,
2614 unsigned long flags
;
2616 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
2618 if (likely(order
== 0)) {
2619 struct per_cpu_pages
*pcp
;
2620 struct list_head
*list
;
2622 local_irq_save(flags
);
2624 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2625 list
= &pcp
->lists
[migratetype
];
2626 if (list_empty(list
)) {
2627 pcp
->count
+= rmqueue_bulk(zone
, 0,
2630 if (unlikely(list_empty(list
)))
2635 page
= list_last_entry(list
, struct page
, lru
);
2637 page
= list_first_entry(list
, struct page
, lru
);
2639 list_del(&page
->lru
);
2642 } while (check_new_pcp(page
));
2645 * We most definitely don't want callers attempting to
2646 * allocate greater than order-1 page units with __GFP_NOFAIL.
2648 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2649 spin_lock_irqsave(&zone
->lock
, flags
);
2653 if (alloc_flags
& ALLOC_HARDER
) {
2654 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2656 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2659 page
= __rmqueue(zone
, order
, migratetype
);
2660 } while (page
&& check_new_pages(page
, order
));
2661 spin_unlock(&zone
->lock
);
2664 __mod_zone_freepage_state(zone
, -(1 << order
),
2665 get_pcppage_migratetype(page
));
2668 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2669 zone_statistics(preferred_zone
, zone
);
2670 local_irq_restore(flags
);
2672 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
2676 local_irq_restore(flags
);
2680 #ifdef CONFIG_FAIL_PAGE_ALLOC
2683 struct fault_attr attr
;
2685 bool ignore_gfp_highmem
;
2686 bool ignore_gfp_reclaim
;
2688 } fail_page_alloc
= {
2689 .attr
= FAULT_ATTR_INITIALIZER
,
2690 .ignore_gfp_reclaim
= true,
2691 .ignore_gfp_highmem
= true,
2695 static int __init
setup_fail_page_alloc(char *str
)
2697 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2699 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2701 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2703 if (order
< fail_page_alloc
.min_order
)
2705 if (gfp_mask
& __GFP_NOFAIL
)
2707 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2709 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2710 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2713 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2716 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2718 static int __init
fail_page_alloc_debugfs(void)
2720 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2723 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2724 &fail_page_alloc
.attr
);
2726 return PTR_ERR(dir
);
2728 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2729 &fail_page_alloc
.ignore_gfp_reclaim
))
2731 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2732 &fail_page_alloc
.ignore_gfp_highmem
))
2734 if (!debugfs_create_u32("min-order", mode
, dir
,
2735 &fail_page_alloc
.min_order
))
2740 debugfs_remove_recursive(dir
);
2745 late_initcall(fail_page_alloc_debugfs
);
2747 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2749 #else /* CONFIG_FAIL_PAGE_ALLOC */
2751 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2756 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2759 * Return true if free base pages are above 'mark'. For high-order checks it
2760 * will return true of the order-0 watermark is reached and there is at least
2761 * one free page of a suitable size. Checking now avoids taking the zone lock
2762 * to check in the allocation paths if no pages are free.
2764 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2765 int classzone_idx
, unsigned int alloc_flags
,
2770 const bool alloc_harder
= (alloc_flags
& ALLOC_HARDER
);
2772 /* free_pages may go negative - that's OK */
2773 free_pages
-= (1 << order
) - 1;
2775 if (alloc_flags
& ALLOC_HIGH
)
2779 * If the caller does not have rights to ALLOC_HARDER then subtract
2780 * the high-atomic reserves. This will over-estimate the size of the
2781 * atomic reserve but it avoids a search.
2783 if (likely(!alloc_harder
))
2784 free_pages
-= z
->nr_reserved_highatomic
;
2789 /* If allocation can't use CMA areas don't use free CMA pages */
2790 if (!(alloc_flags
& ALLOC_CMA
))
2791 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2795 * Check watermarks for an order-0 allocation request. If these
2796 * are not met, then a high-order request also cannot go ahead
2797 * even if a suitable page happened to be free.
2799 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
2802 /* If this is an order-0 request then the watermark is fine */
2806 /* For a high-order request, check at least one suitable page is free */
2807 for (o
= order
; o
< MAX_ORDER
; o
++) {
2808 struct free_area
*area
= &z
->free_area
[o
];
2817 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
2818 if (!list_empty(&area
->free_list
[mt
]))
2823 if ((alloc_flags
& ALLOC_CMA
) &&
2824 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
2832 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
2833 int classzone_idx
, unsigned int alloc_flags
)
2835 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2836 zone_page_state(z
, NR_FREE_PAGES
));
2839 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
2840 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
2842 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2846 /* If allocation can't use CMA areas don't use free CMA pages */
2847 if (!(alloc_flags
& ALLOC_CMA
))
2848 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
2852 * Fast check for order-0 only. If this fails then the reserves
2853 * need to be calculated. There is a corner case where the check
2854 * passes but only the high-order atomic reserve are free. If
2855 * the caller is !atomic then it'll uselessly search the free
2856 * list. That corner case is then slower but it is harmless.
2858 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
2861 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
2865 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
2866 unsigned long mark
, int classzone_idx
)
2868 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
2870 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
2871 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
2873 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
2878 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2880 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
2883 #else /* CONFIG_NUMA */
2884 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
2888 #endif /* CONFIG_NUMA */
2891 * get_page_from_freelist goes through the zonelist trying to allocate
2894 static struct page
*
2895 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
2896 const struct alloc_context
*ac
)
2898 struct zoneref
*z
= ac
->preferred_zoneref
;
2900 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
2903 * Scan zonelist, looking for a zone with enough free.
2904 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2906 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
2911 if (cpusets_enabled() &&
2912 (alloc_flags
& ALLOC_CPUSET
) &&
2913 !__cpuset_zone_allowed(zone
, gfp_mask
))
2916 * When allocating a page cache page for writing, we
2917 * want to get it from a node that is within its dirty
2918 * limit, such that no single node holds more than its
2919 * proportional share of globally allowed dirty pages.
2920 * The dirty limits take into account the node's
2921 * lowmem reserves and high watermark so that kswapd
2922 * should be able to balance it without having to
2923 * write pages from its LRU list.
2925 * XXX: For now, allow allocations to potentially
2926 * exceed the per-node dirty limit in the slowpath
2927 * (spread_dirty_pages unset) before going into reclaim,
2928 * which is important when on a NUMA setup the allowed
2929 * nodes are together not big enough to reach the
2930 * global limit. The proper fix for these situations
2931 * will require awareness of nodes in the
2932 * dirty-throttling and the flusher threads.
2934 if (ac
->spread_dirty_pages
) {
2935 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
2938 if (!node_dirty_ok(zone
->zone_pgdat
)) {
2939 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
2944 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2945 if (!zone_watermark_fast(zone
, order
, mark
,
2946 ac_classzone_idx(ac
), alloc_flags
)) {
2949 /* Checked here to keep the fast path fast */
2950 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2951 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2954 if (node_reclaim_mode
== 0 ||
2955 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
2958 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
2960 case NODE_RECLAIM_NOSCAN
:
2963 case NODE_RECLAIM_FULL
:
2964 /* scanned but unreclaimable */
2967 /* did we reclaim enough */
2968 if (zone_watermark_ok(zone
, order
, mark
,
2969 ac_classzone_idx(ac
), alloc_flags
))
2977 page
= buffered_rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
2978 gfp_mask
, alloc_flags
, ac
->migratetype
);
2980 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
2983 * If this is a high-order atomic allocation then check
2984 * if the pageblock should be reserved for the future
2986 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
2987 reserve_highatomic_pageblock(page
, zone
, order
);
2997 * Large machines with many possible nodes should not always dump per-node
2998 * meminfo in irq context.
3000 static inline bool should_suppress_show_mem(void)
3005 ret
= in_interrupt();
3010 static DEFINE_RATELIMIT_STATE(nopage_rs
,
3011 DEFAULT_RATELIMIT_INTERVAL
,
3012 DEFAULT_RATELIMIT_BURST
);
3014 void warn_alloc(gfp_t gfp_mask
, const char *fmt
, ...)
3016 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3017 struct va_format vaf
;
3020 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
3021 debug_guardpage_minorder() > 0)
3025 * This documents exceptions given to allocations in certain
3026 * contexts that are allowed to allocate outside current's set
3029 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3030 if (test_thread_flag(TIF_MEMDIE
) ||
3031 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3032 filter
&= ~SHOW_MEM_FILTER_NODES
;
3033 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3034 filter
&= ~SHOW_MEM_FILTER_NODES
;
3036 pr_warn("%s: ", current
->comm
);
3038 va_start(args
, fmt
);
3041 pr_cont("%pV", &vaf
);
3044 pr_cont(", mode:%#x(%pGg)\n", gfp_mask
, &gfp_mask
);
3047 if (!should_suppress_show_mem())
3051 static inline struct page
*
3052 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3053 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3055 struct oom_control oc
= {
3056 .zonelist
= ac
->zonelist
,
3057 .nodemask
= ac
->nodemask
,
3059 .gfp_mask
= gfp_mask
,
3064 *did_some_progress
= 0;
3067 * Acquire the oom lock. If that fails, somebody else is
3068 * making progress for us.
3070 if (!mutex_trylock(&oom_lock
)) {
3071 *did_some_progress
= 1;
3072 schedule_timeout_uninterruptible(1);
3077 * Go through the zonelist yet one more time, keep very high watermark
3078 * here, this is only to catch a parallel oom killing, we must fail if
3079 * we're still under heavy pressure.
3081 page
= get_page_from_freelist(gfp_mask
| __GFP_HARDWALL
, order
,
3082 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3086 if (!(gfp_mask
& __GFP_NOFAIL
)) {
3087 /* Coredumps can quickly deplete all memory reserves */
3088 if (current
->flags
& PF_DUMPCORE
)
3090 /* The OOM killer will not help higher order allocs */
3091 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3093 /* The OOM killer does not needlessly kill tasks for lowmem */
3094 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3096 if (pm_suspended_storage())
3099 * XXX: GFP_NOFS allocations should rather fail than rely on
3100 * other request to make a forward progress.
3101 * We are in an unfortunate situation where out_of_memory cannot
3102 * do much for this context but let's try it to at least get
3103 * access to memory reserved if the current task is killed (see
3104 * out_of_memory). Once filesystems are ready to handle allocation
3105 * failures more gracefully we should just bail out here.
3108 /* The OOM killer may not free memory on a specific node */
3109 if (gfp_mask
& __GFP_THISNODE
)
3112 /* Exhausted what can be done so it's blamo time */
3113 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3114 *did_some_progress
= 1;
3116 if (gfp_mask
& __GFP_NOFAIL
) {
3117 page
= get_page_from_freelist(gfp_mask
, order
,
3118 ALLOC_NO_WATERMARKS
|ALLOC_CPUSET
, ac
);
3120 * fallback to ignore cpuset restriction if our nodes
3124 page
= get_page_from_freelist(gfp_mask
, order
,
3125 ALLOC_NO_WATERMARKS
, ac
);
3129 mutex_unlock(&oom_lock
);
3134 * Maximum number of compaction retries wit a progress before OOM
3135 * killer is consider as the only way to move forward.
3137 #define MAX_COMPACT_RETRIES 16
3139 #ifdef CONFIG_COMPACTION
3140 /* Try memory compaction for high-order allocations before reclaim */
3141 static struct page
*
3142 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3143 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3144 enum compact_priority prio
, enum compact_result
*compact_result
)
3151 current
->flags
|= PF_MEMALLOC
;
3152 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3154 current
->flags
&= ~PF_MEMALLOC
;
3156 if (*compact_result
<= COMPACT_INACTIVE
)
3160 * At least in one zone compaction wasn't deferred or skipped, so let's
3161 * count a compaction stall
3163 count_vm_event(COMPACTSTALL
);
3165 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3168 struct zone
*zone
= page_zone(page
);
3170 zone
->compact_blockskip_flush
= false;
3171 compaction_defer_reset(zone
, order
, true);
3172 count_vm_event(COMPACTSUCCESS
);
3177 * It's bad if compaction run occurs and fails. The most likely reason
3178 * is that pages exist, but not enough to satisfy watermarks.
3180 count_vm_event(COMPACTFAIL
);
3188 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3189 enum compact_result compact_result
,
3190 enum compact_priority
*compact_priority
,
3191 int *compaction_retries
)
3193 int max_retries
= MAX_COMPACT_RETRIES
;
3199 if (compaction_made_progress(compact_result
))
3200 (*compaction_retries
)++;
3203 * compaction considers all the zone as desperately out of memory
3204 * so it doesn't really make much sense to retry except when the
3205 * failure could be caused by insufficient priority
3207 if (compaction_failed(compact_result
))
3208 goto check_priority
;
3211 * make sure the compaction wasn't deferred or didn't bail out early
3212 * due to locks contention before we declare that we should give up.
3213 * But do not retry if the given zonelist is not suitable for
3216 if (compaction_withdrawn(compact_result
))
3217 return compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3220 * !costly requests are much more important than __GFP_REPEAT
3221 * costly ones because they are de facto nofail and invoke OOM
3222 * killer to move on while costly can fail and users are ready
3223 * to cope with that. 1/4 retries is rather arbitrary but we
3224 * would need much more detailed feedback from compaction to
3225 * make a better decision.
3227 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3229 if (*compaction_retries
<= max_retries
)
3233 * Make sure there are attempts at the highest priority if we exhausted
3234 * all retries or failed at the lower priorities.
3237 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3238 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3239 if (*compact_priority
> min_priority
) {
3240 (*compact_priority
)--;
3241 *compaction_retries
= 0;
3247 static inline struct page
*
3248 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3249 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3250 enum compact_priority prio
, enum compact_result
*compact_result
)
3252 *compact_result
= COMPACT_SKIPPED
;
3257 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3258 enum compact_result compact_result
,
3259 enum compact_priority
*compact_priority
,
3260 int *compaction_retries
)
3265 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3269 * There are setups with compaction disabled which would prefer to loop
3270 * inside the allocator rather than hit the oom killer prematurely.
3271 * Let's give them a good hope and keep retrying while the order-0
3272 * watermarks are OK.
3274 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3276 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3277 ac_classzone_idx(ac
), alloc_flags
))
3282 #endif /* CONFIG_COMPACTION */
3284 /* Perform direct synchronous page reclaim */
3286 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3287 const struct alloc_context
*ac
)
3289 struct reclaim_state reclaim_state
;
3294 /* We now go into synchronous reclaim */
3295 cpuset_memory_pressure_bump();
3296 current
->flags
|= PF_MEMALLOC
;
3297 lockdep_set_current_reclaim_state(gfp_mask
);
3298 reclaim_state
.reclaimed_slab
= 0;
3299 current
->reclaim_state
= &reclaim_state
;
3301 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3304 current
->reclaim_state
= NULL
;
3305 lockdep_clear_current_reclaim_state();
3306 current
->flags
&= ~PF_MEMALLOC
;
3313 /* The really slow allocator path where we enter direct reclaim */
3314 static inline struct page
*
3315 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3316 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3317 unsigned long *did_some_progress
)
3319 struct page
*page
= NULL
;
3320 bool drained
= false;
3322 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3323 if (unlikely(!(*did_some_progress
)))
3327 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3330 * If an allocation failed after direct reclaim, it could be because
3331 * pages are pinned on the per-cpu lists or in high alloc reserves.
3332 * Shrink them them and try again
3334 if (!page
&& !drained
) {
3335 unreserve_highatomic_pageblock(ac
, false);
3336 drain_all_pages(NULL
);
3344 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3348 pg_data_t
*last_pgdat
= NULL
;
3350 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3351 ac
->high_zoneidx
, ac
->nodemask
) {
3352 if (last_pgdat
!= zone
->zone_pgdat
)
3353 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3354 last_pgdat
= zone
->zone_pgdat
;
3358 static inline unsigned int
3359 gfp_to_alloc_flags(gfp_t gfp_mask
)
3361 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3363 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3364 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3367 * The caller may dip into page reserves a bit more if the caller
3368 * cannot run direct reclaim, or if the caller has realtime scheduling
3369 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3370 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3372 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3374 if (gfp_mask
& __GFP_ATOMIC
) {
3376 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3377 * if it can't schedule.
3379 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3380 alloc_flags
|= ALLOC_HARDER
;
3382 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3383 * comment for __cpuset_node_allowed().
3385 alloc_flags
&= ~ALLOC_CPUSET
;
3386 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3387 alloc_flags
|= ALLOC_HARDER
;
3390 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3391 alloc_flags
|= ALLOC_CMA
;
3396 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3398 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3401 if (gfp_mask
& __GFP_MEMALLOC
)
3403 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3405 if (!in_interrupt() &&
3406 ((current
->flags
& PF_MEMALLOC
) ||
3407 unlikely(test_thread_flag(TIF_MEMDIE
))))
3414 * Maximum number of reclaim retries without any progress before OOM killer
3415 * is consider as the only way to move forward.
3417 #define MAX_RECLAIM_RETRIES 16
3420 * Checks whether it makes sense to retry the reclaim to make a forward progress
3421 * for the given allocation request.
3422 * The reclaim feedback represented by did_some_progress (any progress during
3423 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3424 * any progress in a row) is considered as well as the reclaimable pages on the
3425 * applicable zone list (with a backoff mechanism which is a function of
3426 * no_progress_loops).
3428 * Returns true if a retry is viable or false to enter the oom path.
3431 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3432 struct alloc_context
*ac
, int alloc_flags
,
3433 bool did_some_progress
, int *no_progress_loops
)
3439 * Costly allocations might have made a progress but this doesn't mean
3440 * their order will become available due to high fragmentation so
3441 * always increment the no progress counter for them
3443 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3444 *no_progress_loops
= 0;
3446 (*no_progress_loops
)++;
3449 * Make sure we converge to OOM if we cannot make any progress
3450 * several times in the row.
3452 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3453 /* Before OOM, exhaust highatomic_reserve */
3454 return unreserve_highatomic_pageblock(ac
, true);
3458 * Keep reclaiming pages while there is a chance this will lead
3459 * somewhere. If none of the target zones can satisfy our allocation
3460 * request even if all reclaimable pages are considered then we are
3461 * screwed and have to go OOM.
3463 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3465 unsigned long available
;
3466 unsigned long reclaimable
;
3468 available
= reclaimable
= zone_reclaimable_pages(zone
);
3469 available
-= DIV_ROUND_UP((*no_progress_loops
) * available
,
3470 MAX_RECLAIM_RETRIES
);
3471 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3474 * Would the allocation succeed if we reclaimed the whole
3477 if (__zone_watermark_ok(zone
, order
, min_wmark_pages(zone
),
3478 ac_classzone_idx(ac
), alloc_flags
, available
)) {
3480 * If we didn't make any progress and have a lot of
3481 * dirty + writeback pages then we should wait for
3482 * an IO to complete to slow down the reclaim and
3483 * prevent from pre mature OOM
3485 if (!did_some_progress
) {
3486 unsigned long write_pending
;
3488 write_pending
= zone_page_state_snapshot(zone
,
3489 NR_ZONE_WRITE_PENDING
);
3491 if (2 * write_pending
> reclaimable
) {
3492 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3498 * Memory allocation/reclaim might be called from a WQ
3499 * context and the current implementation of the WQ
3500 * concurrency control doesn't recognize that
3501 * a particular WQ is congested if the worker thread is
3502 * looping without ever sleeping. Therefore we have to
3503 * do a short sleep here rather than calling
3506 if (current
->flags
& PF_WQ_WORKER
)
3507 schedule_timeout_uninterruptible(1);
3518 static inline struct page
*
3519 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3520 struct alloc_context
*ac
)
3522 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3523 struct page
*page
= NULL
;
3524 unsigned int alloc_flags
;
3525 unsigned long did_some_progress
;
3526 enum compact_priority compact_priority
;
3527 enum compact_result compact_result
;
3528 int compaction_retries
;
3529 int no_progress_loops
;
3530 unsigned long alloc_start
= jiffies
;
3531 unsigned int stall_timeout
= 10 * HZ
;
3532 unsigned int cpuset_mems_cookie
;
3535 * In the slowpath, we sanity check order to avoid ever trying to
3536 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3537 * be using allocators in order of preference for an area that is
3540 if (order
>= MAX_ORDER
) {
3541 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3546 * We also sanity check to catch abuse of atomic reserves being used by
3547 * callers that are not in atomic context.
3549 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3550 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3551 gfp_mask
&= ~__GFP_ATOMIC
;
3554 compaction_retries
= 0;
3555 no_progress_loops
= 0;
3556 compact_priority
= DEF_COMPACT_PRIORITY
;
3557 cpuset_mems_cookie
= read_mems_allowed_begin();
3559 * We need to recalculate the starting point for the zonelist iterator
3560 * because we might have used different nodemask in the fast path, or
3561 * there was a cpuset modification and we are retrying - otherwise we
3562 * could end up iterating over non-eligible zones endlessly.
3564 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3565 ac
->high_zoneidx
, ac
->nodemask
);
3566 if (!ac
->preferred_zoneref
->zone
)
3571 * The fast path uses conservative alloc_flags to succeed only until
3572 * kswapd needs to be woken up, and to avoid the cost of setting up
3573 * alloc_flags precisely. So we do that now.
3575 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3577 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3578 wake_all_kswapds(order
, ac
);
3581 * The adjusted alloc_flags might result in immediate success, so try
3584 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3589 * For costly allocations, try direct compaction first, as it's likely
3590 * that we have enough base pages and don't need to reclaim. Don't try
3591 * that for allocations that are allowed to ignore watermarks, as the
3592 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3594 if (can_direct_reclaim
&& order
> PAGE_ALLOC_COSTLY_ORDER
&&
3595 !gfp_pfmemalloc_allowed(gfp_mask
)) {
3596 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3598 INIT_COMPACT_PRIORITY
,
3604 * Checks for costly allocations with __GFP_NORETRY, which
3605 * includes THP page fault allocations
3607 if (gfp_mask
& __GFP_NORETRY
) {
3609 * If compaction is deferred for high-order allocations,
3610 * it is because sync compaction recently failed. If
3611 * this is the case and the caller requested a THP
3612 * allocation, we do not want to heavily disrupt the
3613 * system, so we fail the allocation instead of entering
3616 if (compact_result
== COMPACT_DEFERRED
)
3620 * Looks like reclaim/compaction is worth trying, but
3621 * sync compaction could be very expensive, so keep
3622 * using async compaction.
3624 compact_priority
= INIT_COMPACT_PRIORITY
;
3629 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3630 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3631 wake_all_kswapds(order
, ac
);
3633 if (gfp_pfmemalloc_allowed(gfp_mask
))
3634 alloc_flags
= ALLOC_NO_WATERMARKS
;
3637 * Reset the zonelist iterators if memory policies can be ignored.
3638 * These allocations are high priority and system rather than user
3641 if (!(alloc_flags
& ALLOC_CPUSET
) || (alloc_flags
& ALLOC_NO_WATERMARKS
)) {
3642 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
3643 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3644 ac
->high_zoneidx
, ac
->nodemask
);
3647 /* Attempt with potentially adjusted zonelist and alloc_flags */
3648 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3652 /* Caller is not willing to reclaim, we can't balance anything */
3653 if (!can_direct_reclaim
) {
3655 * All existing users of the __GFP_NOFAIL are blockable, so warn
3656 * of any new users that actually allow this type of allocation
3659 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
3663 /* Avoid recursion of direct reclaim */
3664 if (current
->flags
& PF_MEMALLOC
) {
3666 * __GFP_NOFAIL request from this context is rather bizarre
3667 * because we cannot reclaim anything and only can loop waiting
3668 * for somebody to do a work for us.
3670 if (WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3677 /* Avoid allocations with no watermarks from looping endlessly */
3678 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
3682 /* Try direct reclaim and then allocating */
3683 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
3684 &did_some_progress
);
3688 /* Try direct compaction and then allocating */
3689 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
3690 compact_priority
, &compact_result
);
3694 /* Do not loop if specifically requested */
3695 if (gfp_mask
& __GFP_NORETRY
)
3699 * Do not retry costly high order allocations unless they are
3702 if (order
> PAGE_ALLOC_COSTLY_ORDER
&& !(gfp_mask
& __GFP_REPEAT
))
3705 /* Make sure we know about allocations which stall for too long */
3706 if (time_after(jiffies
, alloc_start
+ stall_timeout
)) {
3707 warn_alloc(gfp_mask
,
3708 "page allocation stalls for %ums, order:%u",
3709 jiffies_to_msecs(jiffies
-alloc_start
), order
);
3710 stall_timeout
+= 10 * HZ
;
3713 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
3714 did_some_progress
> 0, &no_progress_loops
))
3718 * It doesn't make any sense to retry for the compaction if the order-0
3719 * reclaim is not able to make any progress because the current
3720 * implementation of the compaction depends on the sufficient amount
3721 * of free memory (see __compaction_suitable)
3723 if (did_some_progress
> 0 &&
3724 should_compact_retry(ac
, order
, alloc_flags
,
3725 compact_result
, &compact_priority
,
3726 &compaction_retries
))
3730 * It's possible we raced with cpuset update so the OOM would be
3731 * premature (see below the nopage: label for full explanation).
3733 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3736 /* Reclaim has failed us, start killing things */
3737 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
3741 /* Retry as long as the OOM killer is making progress */
3742 if (did_some_progress
) {
3743 no_progress_loops
= 0;
3749 * When updating a task's mems_allowed or mempolicy nodemask, it is
3750 * possible to race with parallel threads in such a way that our
3751 * allocation can fail while the mask is being updated. If we are about
3752 * to fail, check if the cpuset changed during allocation and if so,
3755 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3758 warn_alloc(gfp_mask
,
3759 "page allocation failure: order:%u", order
);
3765 * This is the 'heart' of the zoned buddy allocator.
3768 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
3769 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
3772 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
3773 gfp_t alloc_mask
= gfp_mask
; /* The gfp_t that was actually used for allocation */
3774 struct alloc_context ac
= {
3775 .high_zoneidx
= gfp_zone(gfp_mask
),
3776 .zonelist
= zonelist
,
3777 .nodemask
= nodemask
,
3778 .migratetype
= gfpflags_to_migratetype(gfp_mask
),
3781 if (cpusets_enabled()) {
3782 alloc_mask
|= __GFP_HARDWALL
;
3783 alloc_flags
|= ALLOC_CPUSET
;
3785 ac
.nodemask
= &cpuset_current_mems_allowed
;
3788 gfp_mask
&= gfp_allowed_mask
;
3790 lockdep_trace_alloc(gfp_mask
);
3792 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
3794 if (should_fail_alloc_page(gfp_mask
, order
))
3798 * Check the zones suitable for the gfp_mask contain at least one
3799 * valid zone. It's possible to have an empty zonelist as a result
3800 * of __GFP_THISNODE and a memoryless node
3802 if (unlikely(!zonelist
->_zonerefs
->zone
))
3805 if (IS_ENABLED(CONFIG_CMA
) && ac
.migratetype
== MIGRATE_MOVABLE
)
3806 alloc_flags
|= ALLOC_CMA
;
3808 /* Dirty zone balancing only done in the fast path */
3809 ac
.spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
3812 * The preferred zone is used for statistics but crucially it is
3813 * also used as the starting point for the zonelist iterator. It
3814 * may get reset for allocations that ignore memory policies.
3816 ac
.preferred_zoneref
= first_zones_zonelist(ac
.zonelist
,
3817 ac
.high_zoneidx
, ac
.nodemask
);
3818 if (!ac
.preferred_zoneref
->zone
) {
3821 * This might be due to race with cpuset_current_mems_allowed
3822 * update, so make sure we retry with original nodemask in the
3828 /* First allocation attempt */
3829 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
3835 * Runtime PM, block IO and its error handling path can deadlock
3836 * because I/O on the device might not complete.
3838 alloc_mask
= memalloc_noio_flags(gfp_mask
);
3839 ac
.spread_dirty_pages
= false;
3842 * Restore the original nodemask if it was potentially replaced with
3843 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3845 if (unlikely(ac
.nodemask
!= nodemask
))
3846 ac
.nodemask
= nodemask
;
3848 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
3851 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
3852 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
3853 __free_pages(page
, order
);
3857 if (kmemcheck_enabled
&& page
)
3858 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
3860 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
3864 EXPORT_SYMBOL(__alloc_pages_nodemask
);
3867 * Common helper functions.
3869 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
3874 * __get_free_pages() returns a 32-bit address, which cannot represent
3877 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
3879 page
= alloc_pages(gfp_mask
, order
);
3882 return (unsigned long) page_address(page
);
3884 EXPORT_SYMBOL(__get_free_pages
);
3886 unsigned long get_zeroed_page(gfp_t gfp_mask
)
3888 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
3890 EXPORT_SYMBOL(get_zeroed_page
);
3892 void __free_pages(struct page
*page
, unsigned int order
)
3894 if (put_page_testzero(page
)) {
3896 free_hot_cold_page(page
, false);
3898 __free_pages_ok(page
, order
);
3902 EXPORT_SYMBOL(__free_pages
);
3904 void free_pages(unsigned long addr
, unsigned int order
)
3907 VM_BUG_ON(!virt_addr_valid((void *)addr
));
3908 __free_pages(virt_to_page((void *)addr
), order
);
3912 EXPORT_SYMBOL(free_pages
);
3916 * An arbitrary-length arbitrary-offset area of memory which resides
3917 * within a 0 or higher order page. Multiple fragments within that page
3918 * are individually refcounted, in the page's reference counter.
3920 * The page_frag functions below provide a simple allocation framework for
3921 * page fragments. This is used by the network stack and network device
3922 * drivers to provide a backing region of memory for use as either an
3923 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3925 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
3928 struct page
*page
= NULL
;
3929 gfp_t gfp
= gfp_mask
;
3931 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3932 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
3934 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
3935 PAGE_FRAG_CACHE_MAX_ORDER
);
3936 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
3938 if (unlikely(!page
))
3939 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
3941 nc
->va
= page
? page_address(page
) : NULL
;
3946 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
3948 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
3950 if (page_ref_sub_and_test(page
, count
)) {
3951 unsigned int order
= compound_order(page
);
3954 free_hot_cold_page(page
, false);
3956 __free_pages_ok(page
, order
);
3959 EXPORT_SYMBOL(__page_frag_cache_drain
);
3961 void *page_frag_alloc(struct page_frag_cache
*nc
,
3962 unsigned int fragsz
, gfp_t gfp_mask
)
3964 unsigned int size
= PAGE_SIZE
;
3968 if (unlikely(!nc
->va
)) {
3970 page
= __page_frag_cache_refill(nc
, gfp_mask
);
3974 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3975 /* if size can vary use size else just use PAGE_SIZE */
3978 /* Even if we own the page, we do not use atomic_set().
3979 * This would break get_page_unless_zero() users.
3981 page_ref_add(page
, size
- 1);
3983 /* reset page count bias and offset to start of new frag */
3984 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
3985 nc
->pagecnt_bias
= size
;
3989 offset
= nc
->offset
- fragsz
;
3990 if (unlikely(offset
< 0)) {
3991 page
= virt_to_page(nc
->va
);
3993 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
3996 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3997 /* if size can vary use size else just use PAGE_SIZE */
4000 /* OK, page count is 0, we can safely set it */
4001 set_page_count(page
, size
);
4003 /* reset page count bias and offset to start of new frag */
4004 nc
->pagecnt_bias
= size
;
4005 offset
= size
- fragsz
;
4009 nc
->offset
= offset
;
4011 return nc
->va
+ offset
;
4013 EXPORT_SYMBOL(page_frag_alloc
);
4016 * Frees a page fragment allocated out of either a compound or order 0 page.
4018 void page_frag_free(void *addr
)
4020 struct page
*page
= virt_to_head_page(addr
);
4022 if (unlikely(put_page_testzero(page
)))
4023 __free_pages_ok(page
, compound_order(page
));
4025 EXPORT_SYMBOL(page_frag_free
);
4027 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4031 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4032 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4034 split_page(virt_to_page((void *)addr
), order
);
4035 while (used
< alloc_end
) {
4040 return (void *)addr
;
4044 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4045 * @size: the number of bytes to allocate
4046 * @gfp_mask: GFP flags for the allocation
4048 * This function is similar to alloc_pages(), except that it allocates the
4049 * minimum number of pages to satisfy the request. alloc_pages() can only
4050 * allocate memory in power-of-two pages.
4052 * This function is also limited by MAX_ORDER.
4054 * Memory allocated by this function must be released by free_pages_exact().
4056 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4058 unsigned int order
= get_order(size
);
4061 addr
= __get_free_pages(gfp_mask
, order
);
4062 return make_alloc_exact(addr
, order
, size
);
4064 EXPORT_SYMBOL(alloc_pages_exact
);
4067 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4069 * @nid: the preferred node ID where memory should be allocated
4070 * @size: the number of bytes to allocate
4071 * @gfp_mask: GFP flags for the allocation
4073 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4076 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4078 unsigned int order
= get_order(size
);
4079 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4082 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4086 * free_pages_exact - release memory allocated via alloc_pages_exact()
4087 * @virt: the value returned by alloc_pages_exact.
4088 * @size: size of allocation, same value as passed to alloc_pages_exact().
4090 * Release the memory allocated by a previous call to alloc_pages_exact.
4092 void free_pages_exact(void *virt
, size_t size
)
4094 unsigned long addr
= (unsigned long)virt
;
4095 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4097 while (addr
< end
) {
4102 EXPORT_SYMBOL(free_pages_exact
);
4105 * nr_free_zone_pages - count number of pages beyond high watermark
4106 * @offset: The zone index of the highest zone
4108 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4109 * high watermark within all zones at or below a given zone index. For each
4110 * zone, the number of pages is calculated as:
4111 * managed_pages - high_pages
4113 static unsigned long nr_free_zone_pages(int offset
)
4118 /* Just pick one node, since fallback list is circular */
4119 unsigned long sum
= 0;
4121 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4123 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4124 unsigned long size
= zone
->managed_pages
;
4125 unsigned long high
= high_wmark_pages(zone
);
4134 * nr_free_buffer_pages - count number of pages beyond high watermark
4136 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4137 * watermark within ZONE_DMA and ZONE_NORMAL.
4139 unsigned long nr_free_buffer_pages(void)
4141 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4143 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4146 * nr_free_pagecache_pages - count number of pages beyond high watermark
4148 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4149 * high watermark within all zones.
4151 unsigned long nr_free_pagecache_pages(void)
4153 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4156 static inline void show_node(struct zone
*zone
)
4158 if (IS_ENABLED(CONFIG_NUMA
))
4159 printk("Node %d ", zone_to_nid(zone
));
4162 long si_mem_available(void)
4165 unsigned long pagecache
;
4166 unsigned long wmark_low
= 0;
4167 unsigned long pages
[NR_LRU_LISTS
];
4171 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4172 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4175 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4178 * Estimate the amount of memory available for userspace allocations,
4179 * without causing swapping.
4181 available
= global_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4184 * Not all the page cache can be freed, otherwise the system will
4185 * start swapping. Assume at least half of the page cache, or the
4186 * low watermark worth of cache, needs to stay.
4188 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4189 pagecache
-= min(pagecache
/ 2, wmark_low
);
4190 available
+= pagecache
;
4193 * Part of the reclaimable slab consists of items that are in use,
4194 * and cannot be freed. Cap this estimate at the low watermark.
4196 available
+= global_page_state(NR_SLAB_RECLAIMABLE
) -
4197 min(global_page_state(NR_SLAB_RECLAIMABLE
) / 2, wmark_low
);
4203 EXPORT_SYMBOL_GPL(si_mem_available
);
4205 void si_meminfo(struct sysinfo
*val
)
4207 val
->totalram
= totalram_pages
;
4208 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4209 val
->freeram
= global_page_state(NR_FREE_PAGES
);
4210 val
->bufferram
= nr_blockdev_pages();
4211 val
->totalhigh
= totalhigh_pages
;
4212 val
->freehigh
= nr_free_highpages();
4213 val
->mem_unit
= PAGE_SIZE
;
4216 EXPORT_SYMBOL(si_meminfo
);
4219 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4221 int zone_type
; /* needs to be signed */
4222 unsigned long managed_pages
= 0;
4223 unsigned long managed_highpages
= 0;
4224 unsigned long free_highpages
= 0;
4225 pg_data_t
*pgdat
= NODE_DATA(nid
);
4227 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4228 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4229 val
->totalram
= managed_pages
;
4230 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4231 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4232 #ifdef CONFIG_HIGHMEM
4233 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4234 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4236 if (is_highmem(zone
)) {
4237 managed_highpages
+= zone
->managed_pages
;
4238 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4241 val
->totalhigh
= managed_highpages
;
4242 val
->freehigh
= free_highpages
;
4244 val
->totalhigh
= managed_highpages
;
4245 val
->freehigh
= free_highpages
;
4247 val
->mem_unit
= PAGE_SIZE
;
4252 * Determine whether the node should be displayed or not, depending on whether
4253 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4255 bool skip_free_areas_node(unsigned int flags
, int nid
)
4258 unsigned int cpuset_mems_cookie
;
4260 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4264 cpuset_mems_cookie
= read_mems_allowed_begin();
4265 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
4266 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
4271 #define K(x) ((x) << (PAGE_SHIFT-10))
4273 static void show_migration_types(unsigned char type
)
4275 static const char types
[MIGRATE_TYPES
] = {
4276 [MIGRATE_UNMOVABLE
] = 'U',
4277 [MIGRATE_MOVABLE
] = 'M',
4278 [MIGRATE_RECLAIMABLE
] = 'E',
4279 [MIGRATE_HIGHATOMIC
] = 'H',
4281 [MIGRATE_CMA
] = 'C',
4283 #ifdef CONFIG_MEMORY_ISOLATION
4284 [MIGRATE_ISOLATE
] = 'I',
4287 char tmp
[MIGRATE_TYPES
+ 1];
4291 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4292 if (type
& (1 << i
))
4297 printk(KERN_CONT
"(%s) ", tmp
);
4301 * Show free area list (used inside shift_scroll-lock stuff)
4302 * We also calculate the percentage fragmentation. We do this by counting the
4303 * memory on each free list with the exception of the first item on the list.
4306 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4309 void show_free_areas(unsigned int filter
)
4311 unsigned long free_pcp
= 0;
4316 for_each_populated_zone(zone
) {
4317 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4320 for_each_online_cpu(cpu
)
4321 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4324 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4325 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4326 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4327 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4328 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4329 " free:%lu free_pcp:%lu free_cma:%lu\n",
4330 global_node_page_state(NR_ACTIVE_ANON
),
4331 global_node_page_state(NR_INACTIVE_ANON
),
4332 global_node_page_state(NR_ISOLATED_ANON
),
4333 global_node_page_state(NR_ACTIVE_FILE
),
4334 global_node_page_state(NR_INACTIVE_FILE
),
4335 global_node_page_state(NR_ISOLATED_FILE
),
4336 global_node_page_state(NR_UNEVICTABLE
),
4337 global_node_page_state(NR_FILE_DIRTY
),
4338 global_node_page_state(NR_WRITEBACK
),
4339 global_node_page_state(NR_UNSTABLE_NFS
),
4340 global_page_state(NR_SLAB_RECLAIMABLE
),
4341 global_page_state(NR_SLAB_UNRECLAIMABLE
),
4342 global_node_page_state(NR_FILE_MAPPED
),
4343 global_node_page_state(NR_SHMEM
),
4344 global_page_state(NR_PAGETABLE
),
4345 global_page_state(NR_BOUNCE
),
4346 global_page_state(NR_FREE_PAGES
),
4348 global_page_state(NR_FREE_CMA_PAGES
));
4350 for_each_online_pgdat(pgdat
) {
4352 " active_anon:%lukB"
4353 " inactive_anon:%lukB"
4354 " active_file:%lukB"
4355 " inactive_file:%lukB"
4356 " unevictable:%lukB"
4357 " isolated(anon):%lukB"
4358 " isolated(file):%lukB"
4363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4365 " shmem_pmdmapped: %lukB"
4368 " writeback_tmp:%lukB"
4370 " pages_scanned:%lu"
4371 " all_unreclaimable? %s"
4374 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4375 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4376 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4377 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4378 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4379 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4380 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4381 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4382 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4383 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4384 K(node_page_state(pgdat
, NR_SHMEM
)),
4385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4386 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4387 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4389 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4391 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4392 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4393 node_page_state(pgdat
, NR_PAGES_SCANNED
),
4394 !pgdat_reclaimable(pgdat
) ? "yes" : "no");
4397 for_each_populated_zone(zone
) {
4400 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4404 for_each_online_cpu(cpu
)
4405 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4414 " active_anon:%lukB"
4415 " inactive_anon:%lukB"
4416 " active_file:%lukB"
4417 " inactive_file:%lukB"
4418 " unevictable:%lukB"
4419 " writepending:%lukB"
4423 " slab_reclaimable:%lukB"
4424 " slab_unreclaimable:%lukB"
4425 " kernel_stack:%lukB"
4433 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4434 K(min_wmark_pages(zone
)),
4435 K(low_wmark_pages(zone
)),
4436 K(high_wmark_pages(zone
)),
4437 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4438 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4439 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4440 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4441 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4442 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4443 K(zone
->present_pages
),
4444 K(zone
->managed_pages
),
4445 K(zone_page_state(zone
, NR_MLOCK
)),
4446 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
4447 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
4448 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4449 K(zone_page_state(zone
, NR_PAGETABLE
)),
4450 K(zone_page_state(zone
, NR_BOUNCE
)),
4452 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4453 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4454 printk("lowmem_reserve[]:");
4455 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4456 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4457 printk(KERN_CONT
"\n");
4460 for_each_populated_zone(zone
) {
4462 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4463 unsigned char types
[MAX_ORDER
];
4465 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
4468 printk(KERN_CONT
"%s: ", zone
->name
);
4470 spin_lock_irqsave(&zone
->lock
, flags
);
4471 for (order
= 0; order
< MAX_ORDER
; order
++) {
4472 struct free_area
*area
= &zone
->free_area
[order
];
4475 nr
[order
] = area
->nr_free
;
4476 total
+= nr
[order
] << order
;
4479 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4480 if (!list_empty(&area
->free_list
[type
]))
4481 types
[order
] |= 1 << type
;
4484 spin_unlock_irqrestore(&zone
->lock
, flags
);
4485 for (order
= 0; order
< MAX_ORDER
; order
++) {
4486 printk(KERN_CONT
"%lu*%lukB ",
4487 nr
[order
], K(1UL) << order
);
4489 show_migration_types(types
[order
]);
4491 printk(KERN_CONT
"= %lukB\n", K(total
));
4494 hugetlb_show_meminfo();
4496 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4498 show_swap_cache_info();
4501 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4503 zoneref
->zone
= zone
;
4504 zoneref
->zone_idx
= zone_idx(zone
);
4508 * Builds allocation fallback zone lists.
4510 * Add all populated zones of a node to the zonelist.
4512 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
4516 enum zone_type zone_type
= MAX_NR_ZONES
;
4520 zone
= pgdat
->node_zones
+ zone_type
;
4521 if (managed_zone(zone
)) {
4522 zoneref_set_zone(zone
,
4523 &zonelist
->_zonerefs
[nr_zones
++]);
4524 check_highest_zone(zone_type
);
4526 } while (zone_type
);
4534 * 0 = automatic detection of better ordering.
4535 * 1 = order by ([node] distance, -zonetype)
4536 * 2 = order by (-zonetype, [node] distance)
4538 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4539 * the same zonelist. So only NUMA can configure this param.
4541 #define ZONELIST_ORDER_DEFAULT 0
4542 #define ZONELIST_ORDER_NODE 1
4543 #define ZONELIST_ORDER_ZONE 2
4545 /* zonelist order in the kernel.
4546 * set_zonelist_order() will set this to NODE or ZONE.
4548 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4549 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
4553 /* The value user specified ....changed by config */
4554 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4555 /* string for sysctl */
4556 #define NUMA_ZONELIST_ORDER_LEN 16
4557 char numa_zonelist_order
[16] = "default";
4560 * interface for configure zonelist ordering.
4561 * command line option "numa_zonelist_order"
4562 * = "[dD]efault - default, automatic configuration.
4563 * = "[nN]ode - order by node locality, then by zone within node
4564 * = "[zZ]one - order by zone, then by locality within zone
4567 static int __parse_numa_zonelist_order(char *s
)
4569 if (*s
== 'd' || *s
== 'D') {
4570 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
4571 } else if (*s
== 'n' || *s
== 'N') {
4572 user_zonelist_order
= ZONELIST_ORDER_NODE
;
4573 } else if (*s
== 'z' || *s
== 'Z') {
4574 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
4576 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s
);
4582 static __init
int setup_numa_zonelist_order(char *s
)
4589 ret
= __parse_numa_zonelist_order(s
);
4591 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
4595 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4598 * sysctl handler for numa_zonelist_order
4600 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4601 void __user
*buffer
, size_t *length
,
4604 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
4606 static DEFINE_MUTEX(zl_order_mutex
);
4608 mutex_lock(&zl_order_mutex
);
4610 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
4614 strcpy(saved_string
, (char *)table
->data
);
4616 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
4620 int oldval
= user_zonelist_order
;
4622 ret
= __parse_numa_zonelist_order((char *)table
->data
);
4625 * bogus value. restore saved string
4627 strncpy((char *)table
->data
, saved_string
,
4628 NUMA_ZONELIST_ORDER_LEN
);
4629 user_zonelist_order
= oldval
;
4630 } else if (oldval
!= user_zonelist_order
) {
4631 mutex_lock(&zonelists_mutex
);
4632 build_all_zonelists(NULL
, NULL
);
4633 mutex_unlock(&zonelists_mutex
);
4637 mutex_unlock(&zl_order_mutex
);
4642 #define MAX_NODE_LOAD (nr_online_nodes)
4643 static int node_load
[MAX_NUMNODES
];
4646 * find_next_best_node - find the next node that should appear in a given node's fallback list
4647 * @node: node whose fallback list we're appending
4648 * @used_node_mask: nodemask_t of already used nodes
4650 * We use a number of factors to determine which is the next node that should
4651 * appear on a given node's fallback list. The node should not have appeared
4652 * already in @node's fallback list, and it should be the next closest node
4653 * according to the distance array (which contains arbitrary distance values
4654 * from each node to each node in the system), and should also prefer nodes
4655 * with no CPUs, since presumably they'll have very little allocation pressure
4656 * on them otherwise.
4657 * It returns -1 if no node is found.
4659 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
4662 int min_val
= INT_MAX
;
4663 int best_node
= NUMA_NO_NODE
;
4664 const struct cpumask
*tmp
= cpumask_of_node(0);
4666 /* Use the local node if we haven't already */
4667 if (!node_isset(node
, *used_node_mask
)) {
4668 node_set(node
, *used_node_mask
);
4672 for_each_node_state(n
, N_MEMORY
) {
4674 /* Don't want a node to appear more than once */
4675 if (node_isset(n
, *used_node_mask
))
4678 /* Use the distance array to find the distance */
4679 val
= node_distance(node
, n
);
4681 /* Penalize nodes under us ("prefer the next node") */
4684 /* Give preference to headless and unused nodes */
4685 tmp
= cpumask_of_node(n
);
4686 if (!cpumask_empty(tmp
))
4687 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
4689 /* Slight preference for less loaded node */
4690 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
4691 val
+= node_load
[n
];
4693 if (val
< min_val
) {
4700 node_set(best_node
, *used_node_mask
);
4707 * Build zonelists ordered by node and zones within node.
4708 * This results in maximum locality--normal zone overflows into local
4709 * DMA zone, if any--but risks exhausting DMA zone.
4711 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
4714 struct zonelist
*zonelist
;
4716 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4717 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
4719 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4720 zonelist
->_zonerefs
[j
].zone
= NULL
;
4721 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4725 * Build gfp_thisnode zonelists
4727 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
4730 struct zonelist
*zonelist
;
4732 zonelist
= &pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
];
4733 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4734 zonelist
->_zonerefs
[j
].zone
= NULL
;
4735 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4739 * Build zonelists ordered by zone and nodes within zones.
4740 * This results in conserving DMA zone[s] until all Normal memory is
4741 * exhausted, but results in overflowing to remote node while memory
4742 * may still exist in local DMA zone.
4744 static int node_order
[MAX_NUMNODES
];
4746 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
4749 int zone_type
; /* needs to be signed */
4751 struct zonelist
*zonelist
;
4753 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4755 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
4756 for (j
= 0; j
< nr_nodes
; j
++) {
4757 node
= node_order
[j
];
4758 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
4759 if (managed_zone(z
)) {
4761 &zonelist
->_zonerefs
[pos
++]);
4762 check_highest_zone(zone_type
);
4766 zonelist
->_zonerefs
[pos
].zone
= NULL
;
4767 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
4770 #if defined(CONFIG_64BIT)
4772 * Devices that require DMA32/DMA are relatively rare and do not justify a
4773 * penalty to every machine in case the specialised case applies. Default
4774 * to Node-ordering on 64-bit NUMA machines
4776 static int default_zonelist_order(void)
4778 return ZONELIST_ORDER_NODE
;
4782 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4783 * by the kernel. If processes running on node 0 deplete the low memory zone
4784 * then reclaim will occur more frequency increasing stalls and potentially
4785 * be easier to OOM if a large percentage of the zone is under writeback or
4786 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4787 * Hence, default to zone ordering on 32-bit.
4789 static int default_zonelist_order(void)
4791 return ZONELIST_ORDER_ZONE
;
4793 #endif /* CONFIG_64BIT */
4795 static void set_zonelist_order(void)
4797 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
4798 current_zonelist_order
= default_zonelist_order();
4800 current_zonelist_order
= user_zonelist_order
;
4803 static void build_zonelists(pg_data_t
*pgdat
)
4806 nodemask_t used_mask
;
4807 int local_node
, prev_node
;
4808 struct zonelist
*zonelist
;
4809 unsigned int order
= current_zonelist_order
;
4811 /* initialize zonelists */
4812 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
4813 zonelist
= pgdat
->node_zonelists
+ i
;
4814 zonelist
->_zonerefs
[0].zone
= NULL
;
4815 zonelist
->_zonerefs
[0].zone_idx
= 0;
4818 /* NUMA-aware ordering of nodes */
4819 local_node
= pgdat
->node_id
;
4820 load
= nr_online_nodes
;
4821 prev_node
= local_node
;
4822 nodes_clear(used_mask
);
4824 memset(node_order
, 0, sizeof(node_order
));
4827 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
4829 * We don't want to pressure a particular node.
4830 * So adding penalty to the first node in same
4831 * distance group to make it round-robin.
4833 if (node_distance(local_node
, node
) !=
4834 node_distance(local_node
, prev_node
))
4835 node_load
[node
] = load
;
4839 if (order
== ZONELIST_ORDER_NODE
)
4840 build_zonelists_in_node_order(pgdat
, node
);
4842 node_order
[i
++] = node
; /* remember order */
4845 if (order
== ZONELIST_ORDER_ZONE
) {
4846 /* calculate node order -- i.e., DMA last! */
4847 build_zonelists_in_zone_order(pgdat
, i
);
4850 build_thisnode_zonelists(pgdat
);
4853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4855 * Return node id of node used for "local" allocations.
4856 * I.e., first node id of first zone in arg node's generic zonelist.
4857 * Used for initializing percpu 'numa_mem', which is used primarily
4858 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4860 int local_memory_node(int node
)
4864 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
4865 gfp_zone(GFP_KERNEL
),
4867 return z
->zone
->node
;
4871 static void setup_min_unmapped_ratio(void);
4872 static void setup_min_slab_ratio(void);
4873 #else /* CONFIG_NUMA */
4875 static void set_zonelist_order(void)
4877 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
4880 static void build_zonelists(pg_data_t
*pgdat
)
4882 int node
, local_node
;
4884 struct zonelist
*zonelist
;
4886 local_node
= pgdat
->node_id
;
4888 zonelist
= &pgdat
->node_zonelists
[ZONELIST_FALLBACK
];
4889 j
= build_zonelists_node(pgdat
, zonelist
, 0);
4892 * Now we build the zonelist so that it contains the zones
4893 * of all the other nodes.
4894 * We don't want to pressure a particular node, so when
4895 * building the zones for node N, we make sure that the
4896 * zones coming right after the local ones are those from
4897 * node N+1 (modulo N)
4899 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
4900 if (!node_online(node
))
4902 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4904 for (node
= 0; node
< local_node
; node
++) {
4905 if (!node_online(node
))
4907 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
4910 zonelist
->_zonerefs
[j
].zone
= NULL
;
4911 zonelist
->_zonerefs
[j
].zone_idx
= 0;
4914 #endif /* CONFIG_NUMA */
4917 * Boot pageset table. One per cpu which is going to be used for all
4918 * zones and all nodes. The parameters will be set in such a way
4919 * that an item put on a list will immediately be handed over to
4920 * the buddy list. This is safe since pageset manipulation is done
4921 * with interrupts disabled.
4923 * The boot_pagesets must be kept even after bootup is complete for
4924 * unused processors and/or zones. They do play a role for bootstrapping
4925 * hotplugged processors.
4927 * zoneinfo_show() and maybe other functions do
4928 * not check if the processor is online before following the pageset pointer.
4929 * Other parts of the kernel may not check if the zone is available.
4931 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
4932 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
4933 static void setup_zone_pageset(struct zone
*zone
);
4936 * Global mutex to protect against size modification of zonelists
4937 * as well as to serialize pageset setup for the new populated zone.
4939 DEFINE_MUTEX(zonelists_mutex
);
4941 /* return values int ....just for stop_machine() */
4942 static int __build_all_zonelists(void *data
)
4946 pg_data_t
*self
= data
;
4949 memset(node_load
, 0, sizeof(node_load
));
4952 if (self
&& !node_online(self
->node_id
)) {
4953 build_zonelists(self
);
4956 for_each_online_node(nid
) {
4957 pg_data_t
*pgdat
= NODE_DATA(nid
);
4959 build_zonelists(pgdat
);
4963 * Initialize the boot_pagesets that are going to be used
4964 * for bootstrapping processors. The real pagesets for
4965 * each zone will be allocated later when the per cpu
4966 * allocator is available.
4968 * boot_pagesets are used also for bootstrapping offline
4969 * cpus if the system is already booted because the pagesets
4970 * are needed to initialize allocators on a specific cpu too.
4971 * F.e. the percpu allocator needs the page allocator which
4972 * needs the percpu allocator in order to allocate its pagesets
4973 * (a chicken-egg dilemma).
4975 for_each_possible_cpu(cpu
) {
4976 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
4978 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4980 * We now know the "local memory node" for each node--
4981 * i.e., the node of the first zone in the generic zonelist.
4982 * Set up numa_mem percpu variable for on-line cpus. During
4983 * boot, only the boot cpu should be on-line; we'll init the
4984 * secondary cpus' numa_mem as they come on-line. During
4985 * node/memory hotplug, we'll fixup all on-line cpus.
4987 if (cpu_online(cpu
))
4988 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
4995 static noinline
void __init
4996 build_all_zonelists_init(void)
4998 __build_all_zonelists(NULL
);
4999 mminit_verify_zonelist();
5000 cpuset_init_current_mems_allowed();
5004 * Called with zonelists_mutex held always
5005 * unless system_state == SYSTEM_BOOTING.
5007 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5008 * [we're only called with non-NULL zone through __meminit paths] and
5009 * (2) call of __init annotated helper build_all_zonelists_init
5010 * [protected by SYSTEM_BOOTING].
5012 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
5014 set_zonelist_order();
5016 if (system_state
== SYSTEM_BOOTING
) {
5017 build_all_zonelists_init();
5019 #ifdef CONFIG_MEMORY_HOTPLUG
5021 setup_zone_pageset(zone
);
5023 /* we have to stop all cpus to guarantee there is no user
5025 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
5026 /* cpuset refresh routine should be here */
5028 vm_total_pages
= nr_free_pagecache_pages();
5030 * Disable grouping by mobility if the number of pages in the
5031 * system is too low to allow the mechanism to work. It would be
5032 * more accurate, but expensive to check per-zone. This check is
5033 * made on memory-hotadd so a system can start with mobility
5034 * disabled and enable it later
5036 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5037 page_group_by_mobility_disabled
= 1;
5039 page_group_by_mobility_disabled
= 0;
5041 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5043 zonelist_order_name
[current_zonelist_order
],
5044 page_group_by_mobility_disabled
? "off" : "on",
5047 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5052 * Initially all pages are reserved - free ones are freed
5053 * up by free_all_bootmem() once the early boot process is
5054 * done. Non-atomic initialization, single-pass.
5056 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5057 unsigned long start_pfn
, enum memmap_context context
)
5059 struct vmem_altmap
*altmap
= to_vmem_altmap(__pfn_to_phys(start_pfn
));
5060 unsigned long end_pfn
= start_pfn
+ size
;
5061 pg_data_t
*pgdat
= NODE_DATA(nid
);
5063 unsigned long nr_initialised
= 0;
5064 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5065 struct memblock_region
*r
= NULL
, *tmp
;
5068 if (highest_memmap_pfn
< end_pfn
- 1)
5069 highest_memmap_pfn
= end_pfn
- 1;
5072 * Honor reservation requested by the driver for this ZONE_DEVICE
5075 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5076 start_pfn
+= altmap
->reserve
;
5078 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5080 * There can be holes in boot-time mem_map[]s handed to this
5081 * function. They do not exist on hotplugged memory.
5083 if (context
!= MEMMAP_EARLY
)
5086 if (!early_pfn_valid(pfn
))
5088 if (!early_pfn_in_nid(pfn
, nid
))
5090 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5093 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5095 * Check given memblock attribute by firmware which can affect
5096 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5097 * mirrored, it's an overlapped memmap init. skip it.
5099 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5100 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5101 for_each_memblock(memory
, tmp
)
5102 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5106 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5107 memblock_is_mirror(r
)) {
5108 /* already initialized as NORMAL */
5109 pfn
= memblock_region_memory_end_pfn(r
);
5117 * Mark the block movable so that blocks are reserved for
5118 * movable at startup. This will force kernel allocations
5119 * to reserve their blocks rather than leaking throughout
5120 * the address space during boot when many long-lived
5121 * kernel allocations are made.
5123 * bitmap is created for zone's valid pfn range. but memmap
5124 * can be created for invalid pages (for alignment)
5125 * check here not to call set_pageblock_migratetype() against
5128 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5129 struct page
*page
= pfn_to_page(pfn
);
5131 __init_single_page(page
, pfn
, zone
, nid
);
5132 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5134 __init_single_pfn(pfn
, zone
, nid
);
5139 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5141 unsigned int order
, t
;
5142 for_each_migratetype_order(order
, t
) {
5143 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5144 zone
->free_area
[order
].nr_free
= 0;
5148 #ifndef __HAVE_ARCH_MEMMAP_INIT
5149 #define memmap_init(size, nid, zone, start_pfn) \
5150 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5153 static int zone_batchsize(struct zone
*zone
)
5159 * The per-cpu-pages pools are set to around 1000th of the
5160 * size of the zone. But no more than 1/2 of a meg.
5162 * OK, so we don't know how big the cache is. So guess.
5164 batch
= zone
->managed_pages
/ 1024;
5165 if (batch
* PAGE_SIZE
> 512 * 1024)
5166 batch
= (512 * 1024) / PAGE_SIZE
;
5167 batch
/= 4; /* We effectively *= 4 below */
5172 * Clamp the batch to a 2^n - 1 value. Having a power
5173 * of 2 value was found to be more likely to have
5174 * suboptimal cache aliasing properties in some cases.
5176 * For example if 2 tasks are alternately allocating
5177 * batches of pages, one task can end up with a lot
5178 * of pages of one half of the possible page colors
5179 * and the other with pages of the other colors.
5181 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5186 /* The deferral and batching of frees should be suppressed under NOMMU
5189 * The problem is that NOMMU needs to be able to allocate large chunks
5190 * of contiguous memory as there's no hardware page translation to
5191 * assemble apparent contiguous memory from discontiguous pages.
5193 * Queueing large contiguous runs of pages for batching, however,
5194 * causes the pages to actually be freed in smaller chunks. As there
5195 * can be a significant delay between the individual batches being
5196 * recycled, this leads to the once large chunks of space being
5197 * fragmented and becoming unavailable for high-order allocations.
5204 * pcp->high and pcp->batch values are related and dependent on one another:
5205 * ->batch must never be higher then ->high.
5206 * The following function updates them in a safe manner without read side
5209 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5210 * those fields changing asynchronously (acording the the above rule).
5212 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5213 * outside of boot time (or some other assurance that no concurrent updaters
5216 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5217 unsigned long batch
)
5219 /* start with a fail safe value for batch */
5223 /* Update high, then batch, in order */
5230 /* a companion to pageset_set_high() */
5231 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5233 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5236 static void pageset_init(struct per_cpu_pageset
*p
)
5238 struct per_cpu_pages
*pcp
;
5241 memset(p
, 0, sizeof(*p
));
5245 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5246 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5249 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5252 pageset_set_batch(p
, batch
);
5256 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5257 * to the value high for the pageset p.
5259 static void pageset_set_high(struct per_cpu_pageset
*p
,
5262 unsigned long batch
= max(1UL, high
/ 4);
5263 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5264 batch
= PAGE_SHIFT
* 8;
5266 pageset_update(&p
->pcp
, high
, batch
);
5269 static void pageset_set_high_and_batch(struct zone
*zone
,
5270 struct per_cpu_pageset
*pcp
)
5272 if (percpu_pagelist_fraction
)
5273 pageset_set_high(pcp
,
5274 (zone
->managed_pages
/
5275 percpu_pagelist_fraction
));
5277 pageset_set_batch(pcp
, zone_batchsize(zone
));
5280 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5282 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5285 pageset_set_high_and_batch(zone
, pcp
);
5288 static void __meminit
setup_zone_pageset(struct zone
*zone
)
5291 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5292 for_each_possible_cpu(cpu
)
5293 zone_pageset_init(zone
, cpu
);
5297 * Allocate per cpu pagesets and initialize them.
5298 * Before this call only boot pagesets were available.
5300 void __init
setup_per_cpu_pageset(void)
5302 struct pglist_data
*pgdat
;
5305 for_each_populated_zone(zone
)
5306 setup_zone_pageset(zone
);
5308 for_each_online_pgdat(pgdat
)
5309 pgdat
->per_cpu_nodestats
=
5310 alloc_percpu(struct per_cpu_nodestat
);
5313 static __meminit
void zone_pcp_init(struct zone
*zone
)
5316 * per cpu subsystem is not up at this point. The following code
5317 * relies on the ability of the linker to provide the
5318 * offset of a (static) per cpu variable into the per cpu area.
5320 zone
->pageset
= &boot_pageset
;
5322 if (populated_zone(zone
))
5323 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5324 zone
->name
, zone
->present_pages
,
5325 zone_batchsize(zone
));
5328 int __meminit
init_currently_empty_zone(struct zone
*zone
,
5329 unsigned long zone_start_pfn
,
5332 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5334 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5336 zone
->zone_start_pfn
= zone_start_pfn
;
5338 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5339 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5341 (unsigned long)zone_idx(zone
),
5342 zone_start_pfn
, (zone_start_pfn
+ size
));
5344 zone_init_free_lists(zone
);
5345 zone
->initialized
= 1;
5350 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5354 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5356 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5357 struct mminit_pfnnid_cache
*state
)
5359 unsigned long start_pfn
, end_pfn
;
5362 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5363 return state
->last_nid
;
5365 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5367 state
->last_start
= start_pfn
;
5368 state
->last_end
= end_pfn
;
5369 state
->last_nid
= nid
;
5374 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5377 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5378 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5379 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5381 * If an architecture guarantees that all ranges registered contain no holes
5382 * and may be freed, this this function may be used instead of calling
5383 * memblock_free_early_nid() manually.
5385 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5387 unsigned long start_pfn
, end_pfn
;
5390 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5391 start_pfn
= min(start_pfn
, max_low_pfn
);
5392 end_pfn
= min(end_pfn
, max_low_pfn
);
5394 if (start_pfn
< end_pfn
)
5395 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5396 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5402 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5403 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5405 * If an architecture guarantees that all ranges registered contain no holes and may
5406 * be freed, this function may be used instead of calling memory_present() manually.
5408 void __init
sparse_memory_present_with_active_regions(int nid
)
5410 unsigned long start_pfn
, end_pfn
;
5413 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5414 memory_present(this_nid
, start_pfn
, end_pfn
);
5418 * get_pfn_range_for_nid - Return the start and end page frames for a node
5419 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5420 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5421 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5423 * It returns the start and end page frame of a node based on information
5424 * provided by memblock_set_node(). If called for a node
5425 * with no available memory, a warning is printed and the start and end
5428 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5429 unsigned long *start_pfn
, unsigned long *end_pfn
)
5431 unsigned long this_start_pfn
, this_end_pfn
;
5437 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5438 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5439 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5442 if (*start_pfn
== -1UL)
5447 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5448 * assumption is made that zones within a node are ordered in monotonic
5449 * increasing memory addresses so that the "highest" populated zone is used
5451 static void __init
find_usable_zone_for_movable(void)
5454 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5455 if (zone_index
== ZONE_MOVABLE
)
5458 if (arch_zone_highest_possible_pfn
[zone_index
] >
5459 arch_zone_lowest_possible_pfn
[zone_index
])
5463 VM_BUG_ON(zone_index
== -1);
5464 movable_zone
= zone_index
;
5468 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5469 * because it is sized independent of architecture. Unlike the other zones,
5470 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5471 * in each node depending on the size of each node and how evenly kernelcore
5472 * is distributed. This helper function adjusts the zone ranges
5473 * provided by the architecture for a given node by using the end of the
5474 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5475 * zones within a node are in order of monotonic increases memory addresses
5477 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5478 unsigned long zone_type
,
5479 unsigned long node_start_pfn
,
5480 unsigned long node_end_pfn
,
5481 unsigned long *zone_start_pfn
,
5482 unsigned long *zone_end_pfn
)
5484 /* Only adjust if ZONE_MOVABLE is on this node */
5485 if (zone_movable_pfn
[nid
]) {
5486 /* Size ZONE_MOVABLE */
5487 if (zone_type
== ZONE_MOVABLE
) {
5488 *zone_start_pfn
= zone_movable_pfn
[nid
];
5489 *zone_end_pfn
= min(node_end_pfn
,
5490 arch_zone_highest_possible_pfn
[movable_zone
]);
5492 /* Adjust for ZONE_MOVABLE starting within this range */
5493 } else if (!mirrored_kernelcore
&&
5494 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5495 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5496 *zone_end_pfn
= zone_movable_pfn
[nid
];
5498 /* Check if this whole range is within ZONE_MOVABLE */
5499 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5500 *zone_start_pfn
= *zone_end_pfn
;
5505 * Return the number of pages a zone spans in a node, including holes
5506 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5508 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5509 unsigned long zone_type
,
5510 unsigned long node_start_pfn
,
5511 unsigned long node_end_pfn
,
5512 unsigned long *zone_start_pfn
,
5513 unsigned long *zone_end_pfn
,
5514 unsigned long *ignored
)
5516 /* When hotadd a new node from cpu_up(), the node should be empty */
5517 if (!node_start_pfn
&& !node_end_pfn
)
5520 /* Get the start and end of the zone */
5521 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5522 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5523 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5524 node_start_pfn
, node_end_pfn
,
5525 zone_start_pfn
, zone_end_pfn
);
5527 /* Check that this node has pages within the zone's required range */
5528 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5531 /* Move the zone boundaries inside the node if necessary */
5532 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5533 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5535 /* Return the spanned pages */
5536 return *zone_end_pfn
- *zone_start_pfn
;
5540 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5541 * then all holes in the requested range will be accounted for.
5543 unsigned long __meminit
__absent_pages_in_range(int nid
,
5544 unsigned long range_start_pfn
,
5545 unsigned long range_end_pfn
)
5547 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5548 unsigned long start_pfn
, end_pfn
;
5551 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5552 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5553 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5554 nr_absent
-= end_pfn
- start_pfn
;
5560 * absent_pages_in_range - Return number of page frames in holes within a range
5561 * @start_pfn: The start PFN to start searching for holes
5562 * @end_pfn: The end PFN to stop searching for holes
5564 * It returns the number of pages frames in memory holes within a range.
5566 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5567 unsigned long end_pfn
)
5569 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5572 /* Return the number of page frames in holes in a zone on a node */
5573 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5574 unsigned long zone_type
,
5575 unsigned long node_start_pfn
,
5576 unsigned long node_end_pfn
,
5577 unsigned long *ignored
)
5579 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5580 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5581 unsigned long zone_start_pfn
, zone_end_pfn
;
5582 unsigned long nr_absent
;
5584 /* When hotadd a new node from cpu_up(), the node should be empty */
5585 if (!node_start_pfn
&& !node_end_pfn
)
5588 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5589 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5591 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5592 node_start_pfn
, node_end_pfn
,
5593 &zone_start_pfn
, &zone_end_pfn
);
5594 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5597 * ZONE_MOVABLE handling.
5598 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5601 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5602 unsigned long start_pfn
, end_pfn
;
5603 struct memblock_region
*r
;
5605 for_each_memblock(memory
, r
) {
5606 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5607 zone_start_pfn
, zone_end_pfn
);
5608 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5609 zone_start_pfn
, zone_end_pfn
);
5611 if (zone_type
== ZONE_MOVABLE
&&
5612 memblock_is_mirror(r
))
5613 nr_absent
+= end_pfn
- start_pfn
;
5615 if (zone_type
== ZONE_NORMAL
&&
5616 !memblock_is_mirror(r
))
5617 nr_absent
+= end_pfn
- start_pfn
;
5624 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5625 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5626 unsigned long zone_type
,
5627 unsigned long node_start_pfn
,
5628 unsigned long node_end_pfn
,
5629 unsigned long *zone_start_pfn
,
5630 unsigned long *zone_end_pfn
,
5631 unsigned long *zones_size
)
5635 *zone_start_pfn
= node_start_pfn
;
5636 for (zone
= 0; zone
< zone_type
; zone
++)
5637 *zone_start_pfn
+= zones_size
[zone
];
5639 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5641 return zones_size
[zone_type
];
5644 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5645 unsigned long zone_type
,
5646 unsigned long node_start_pfn
,
5647 unsigned long node_end_pfn
,
5648 unsigned long *zholes_size
)
5653 return zholes_size
[zone_type
];
5656 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5658 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5659 unsigned long node_start_pfn
,
5660 unsigned long node_end_pfn
,
5661 unsigned long *zones_size
,
5662 unsigned long *zholes_size
)
5664 unsigned long realtotalpages
= 0, totalpages
= 0;
5667 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5668 struct zone
*zone
= pgdat
->node_zones
+ i
;
5669 unsigned long zone_start_pfn
, zone_end_pfn
;
5670 unsigned long size
, real_size
;
5672 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5678 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5679 node_start_pfn
, node_end_pfn
,
5682 zone
->zone_start_pfn
= zone_start_pfn
;
5684 zone
->zone_start_pfn
= 0;
5685 zone
->spanned_pages
= size
;
5686 zone
->present_pages
= real_size
;
5689 realtotalpages
+= real_size
;
5692 pgdat
->node_spanned_pages
= totalpages
;
5693 pgdat
->node_present_pages
= realtotalpages
;
5694 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5698 #ifndef CONFIG_SPARSEMEM
5700 * Calculate the size of the zone->blockflags rounded to an unsigned long
5701 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5702 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5703 * round what is now in bits to nearest long in bits, then return it in
5706 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5708 unsigned long usemapsize
;
5710 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5711 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5712 usemapsize
= usemapsize
>> pageblock_order
;
5713 usemapsize
*= NR_PAGEBLOCK_BITS
;
5714 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5716 return usemapsize
/ 8;
5719 static void __init
setup_usemap(struct pglist_data
*pgdat
,
5721 unsigned long zone_start_pfn
,
5722 unsigned long zonesize
)
5724 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
5725 zone
->pageblock_flags
= NULL
;
5727 zone
->pageblock_flags
=
5728 memblock_virt_alloc_node_nopanic(usemapsize
,
5732 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
5733 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
5734 #endif /* CONFIG_SPARSEMEM */
5736 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5738 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5739 void __paginginit
set_pageblock_order(void)
5743 /* Check that pageblock_nr_pages has not already been setup */
5744 if (pageblock_order
)
5747 if (HPAGE_SHIFT
> PAGE_SHIFT
)
5748 order
= HUGETLB_PAGE_ORDER
;
5750 order
= MAX_ORDER
- 1;
5753 * Assume the largest contiguous order of interest is a huge page.
5754 * This value may be variable depending on boot parameters on IA64 and
5757 pageblock_order
= order
;
5759 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5762 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5763 * is unused as pageblock_order is set at compile-time. See
5764 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5767 void __paginginit
set_pageblock_order(void)
5771 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5773 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
5774 unsigned long present_pages
)
5776 unsigned long pages
= spanned_pages
;
5779 * Provide a more accurate estimation if there are holes within
5780 * the zone and SPARSEMEM is in use. If there are holes within the
5781 * zone, each populated memory region may cost us one or two extra
5782 * memmap pages due to alignment because memmap pages for each
5783 * populated regions may not naturally algined on page boundary.
5784 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5786 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
5787 IS_ENABLED(CONFIG_SPARSEMEM
))
5788 pages
= present_pages
;
5790 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
5794 * Set up the zone data structures:
5795 * - mark all pages reserved
5796 * - mark all memory queues empty
5797 * - clear the memory bitmaps
5799 * NOTE: pgdat should get zeroed by caller.
5801 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
5804 int nid
= pgdat
->node_id
;
5807 pgdat_resize_init(pgdat
);
5808 #ifdef CONFIG_NUMA_BALANCING
5809 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
5810 pgdat
->numabalancing_migrate_nr_pages
= 0;
5811 pgdat
->numabalancing_migrate_next_window
= jiffies
;
5813 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5814 spin_lock_init(&pgdat
->split_queue_lock
);
5815 INIT_LIST_HEAD(&pgdat
->split_queue
);
5816 pgdat
->split_queue_len
= 0;
5818 init_waitqueue_head(&pgdat
->kswapd_wait
);
5819 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
5820 #ifdef CONFIG_COMPACTION
5821 init_waitqueue_head(&pgdat
->kcompactd_wait
);
5823 pgdat_page_ext_init(pgdat
);
5824 spin_lock_init(&pgdat
->lru_lock
);
5825 lruvec_init(node_lruvec(pgdat
));
5827 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5828 struct zone
*zone
= pgdat
->node_zones
+ j
;
5829 unsigned long size
, realsize
, freesize
, memmap_pages
;
5830 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
5832 size
= zone
->spanned_pages
;
5833 realsize
= freesize
= zone
->present_pages
;
5836 * Adjust freesize so that it accounts for how much memory
5837 * is used by this zone for memmap. This affects the watermark
5838 * and per-cpu initialisations
5840 memmap_pages
= calc_memmap_size(size
, realsize
);
5841 if (!is_highmem_idx(j
)) {
5842 if (freesize
>= memmap_pages
) {
5843 freesize
-= memmap_pages
;
5846 " %s zone: %lu pages used for memmap\n",
5847 zone_names
[j
], memmap_pages
);
5849 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5850 zone_names
[j
], memmap_pages
, freesize
);
5853 /* Account for reserved pages */
5854 if (j
== 0 && freesize
> dma_reserve
) {
5855 freesize
-= dma_reserve
;
5856 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
5857 zone_names
[0], dma_reserve
);
5860 if (!is_highmem_idx(j
))
5861 nr_kernel_pages
+= freesize
;
5862 /* Charge for highmem memmap if there are enough kernel pages */
5863 else if (nr_kernel_pages
> memmap_pages
* 2)
5864 nr_kernel_pages
-= memmap_pages
;
5865 nr_all_pages
+= freesize
;
5868 * Set an approximate value for lowmem here, it will be adjusted
5869 * when the bootmem allocator frees pages into the buddy system.
5870 * And all highmem pages will be managed by the buddy system.
5872 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
5876 zone
->name
= zone_names
[j
];
5877 zone
->zone_pgdat
= pgdat
;
5878 spin_lock_init(&zone
->lock
);
5879 zone_seqlock_init(zone
);
5880 zone_pcp_init(zone
);
5885 set_pageblock_order();
5886 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
5887 ret
= init_currently_empty_zone(zone
, zone_start_pfn
, size
);
5889 memmap_init(size
, nid
, j
, zone_start_pfn
);
5893 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
5895 unsigned long __maybe_unused start
= 0;
5896 unsigned long __maybe_unused offset
= 0;
5898 /* Skip empty nodes */
5899 if (!pgdat
->node_spanned_pages
)
5902 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5903 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
5904 offset
= pgdat
->node_start_pfn
- start
;
5905 /* ia64 gets its own node_mem_map, before this, without bootmem */
5906 if (!pgdat
->node_mem_map
) {
5907 unsigned long size
, end
;
5911 * The zone's endpoints aren't required to be MAX_ORDER
5912 * aligned but the node_mem_map endpoints must be in order
5913 * for the buddy allocator to function correctly.
5915 end
= pgdat_end_pfn(pgdat
);
5916 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
5917 size
= (end
- start
) * sizeof(struct page
);
5918 map
= alloc_remap(pgdat
->node_id
, size
);
5920 map
= memblock_virt_alloc_node_nopanic(size
,
5922 pgdat
->node_mem_map
= map
+ offset
;
5924 #ifndef CONFIG_NEED_MULTIPLE_NODES
5926 * With no DISCONTIG, the global mem_map is just set as node 0's
5928 if (pgdat
== NODE_DATA(0)) {
5929 mem_map
= NODE_DATA(0)->node_mem_map
;
5930 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5931 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
5933 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5936 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5939 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
5940 unsigned long node_start_pfn
, unsigned long *zholes_size
)
5942 pg_data_t
*pgdat
= NODE_DATA(nid
);
5943 unsigned long start_pfn
= 0;
5944 unsigned long end_pfn
= 0;
5946 /* pg_data_t should be reset to zero when it's allocated */
5947 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
5949 reset_deferred_meminit(pgdat
);
5950 pgdat
->node_id
= nid
;
5951 pgdat
->node_start_pfn
= node_start_pfn
;
5952 pgdat
->per_cpu_nodestats
= NULL
;
5953 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5954 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
5955 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
5956 (u64
)start_pfn
<< PAGE_SHIFT
,
5957 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
5959 start_pfn
= node_start_pfn
;
5961 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
5962 zones_size
, zholes_size
);
5964 alloc_node_mem_map(pgdat
);
5965 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5966 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5967 nid
, (unsigned long)pgdat
,
5968 (unsigned long)pgdat
->node_mem_map
);
5971 free_area_init_core(pgdat
);
5974 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5976 #if MAX_NUMNODES > 1
5978 * Figure out the number of possible node ids.
5980 void __init
setup_nr_node_ids(void)
5982 unsigned int highest
;
5984 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
5985 nr_node_ids
= highest
+ 1;
5990 * node_map_pfn_alignment - determine the maximum internode alignment
5992 * This function should be called after node map is populated and sorted.
5993 * It calculates the maximum power of two alignment which can distinguish
5996 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5997 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5998 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5999 * shifted, 1GiB is enough and this function will indicate so.
6001 * This is used to test whether pfn -> nid mapping of the chosen memory
6002 * model has fine enough granularity to avoid incorrect mapping for the
6003 * populated node map.
6005 * Returns the determined alignment in pfn's. 0 if there is no alignment
6006 * requirement (single node).
6008 unsigned long __init
node_map_pfn_alignment(void)
6010 unsigned long accl_mask
= 0, last_end
= 0;
6011 unsigned long start
, end
, mask
;
6015 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6016 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6023 * Start with a mask granular enough to pin-point to the
6024 * start pfn and tick off bits one-by-one until it becomes
6025 * too coarse to separate the current node from the last.
6027 mask
= ~((1 << __ffs(start
)) - 1);
6028 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6031 /* accumulate all internode masks */
6035 /* convert mask to number of pages */
6036 return ~accl_mask
+ 1;
6039 /* Find the lowest pfn for a node */
6040 static unsigned long __init
find_min_pfn_for_node(int nid
)
6042 unsigned long min_pfn
= ULONG_MAX
;
6043 unsigned long start_pfn
;
6046 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6047 min_pfn
= min(min_pfn
, start_pfn
);
6049 if (min_pfn
== ULONG_MAX
) {
6050 pr_warn("Could not find start_pfn for node %d\n", nid
);
6058 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6060 * It returns the minimum PFN based on information provided via
6061 * memblock_set_node().
6063 unsigned long __init
find_min_pfn_with_active_regions(void)
6065 return find_min_pfn_for_node(MAX_NUMNODES
);
6069 * early_calculate_totalpages()
6070 * Sum pages in active regions for movable zone.
6071 * Populate N_MEMORY for calculating usable_nodes.
6073 static unsigned long __init
early_calculate_totalpages(void)
6075 unsigned long totalpages
= 0;
6076 unsigned long start_pfn
, end_pfn
;
6079 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6080 unsigned long pages
= end_pfn
- start_pfn
;
6082 totalpages
+= pages
;
6084 node_set_state(nid
, N_MEMORY
);
6090 * Find the PFN the Movable zone begins in each node. Kernel memory
6091 * is spread evenly between nodes as long as the nodes have enough
6092 * memory. When they don't, some nodes will have more kernelcore than
6095 static void __init
find_zone_movable_pfns_for_nodes(void)
6098 unsigned long usable_startpfn
;
6099 unsigned long kernelcore_node
, kernelcore_remaining
;
6100 /* save the state before borrow the nodemask */
6101 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6102 unsigned long totalpages
= early_calculate_totalpages();
6103 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6104 struct memblock_region
*r
;
6106 /* Need to find movable_zone earlier when movable_node is specified. */
6107 find_usable_zone_for_movable();
6110 * If movable_node is specified, ignore kernelcore and movablecore
6113 if (movable_node_is_enabled()) {
6114 for_each_memblock(memory
, r
) {
6115 if (!memblock_is_hotpluggable(r
))
6120 usable_startpfn
= PFN_DOWN(r
->base
);
6121 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6122 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6130 * If kernelcore=mirror is specified, ignore movablecore option
6132 if (mirrored_kernelcore
) {
6133 bool mem_below_4gb_not_mirrored
= false;
6135 for_each_memblock(memory
, r
) {
6136 if (memblock_is_mirror(r
))
6141 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6143 if (usable_startpfn
< 0x100000) {
6144 mem_below_4gb_not_mirrored
= true;
6148 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6149 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6153 if (mem_below_4gb_not_mirrored
)
6154 pr_warn("This configuration results in unmirrored kernel memory.");
6160 * If movablecore=nn[KMG] was specified, calculate what size of
6161 * kernelcore that corresponds so that memory usable for
6162 * any allocation type is evenly spread. If both kernelcore
6163 * and movablecore are specified, then the value of kernelcore
6164 * will be used for required_kernelcore if it's greater than
6165 * what movablecore would have allowed.
6167 if (required_movablecore
) {
6168 unsigned long corepages
;
6171 * Round-up so that ZONE_MOVABLE is at least as large as what
6172 * was requested by the user
6174 required_movablecore
=
6175 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6176 required_movablecore
= min(totalpages
, required_movablecore
);
6177 corepages
= totalpages
- required_movablecore
;
6179 required_kernelcore
= max(required_kernelcore
, corepages
);
6183 * If kernelcore was not specified or kernelcore size is larger
6184 * than totalpages, there is no ZONE_MOVABLE.
6186 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6189 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6190 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6193 /* Spread kernelcore memory as evenly as possible throughout nodes */
6194 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6195 for_each_node_state(nid
, N_MEMORY
) {
6196 unsigned long start_pfn
, end_pfn
;
6199 * Recalculate kernelcore_node if the division per node
6200 * now exceeds what is necessary to satisfy the requested
6201 * amount of memory for the kernel
6203 if (required_kernelcore
< kernelcore_node
)
6204 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6207 * As the map is walked, we track how much memory is usable
6208 * by the kernel using kernelcore_remaining. When it is
6209 * 0, the rest of the node is usable by ZONE_MOVABLE
6211 kernelcore_remaining
= kernelcore_node
;
6213 /* Go through each range of PFNs within this node */
6214 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6215 unsigned long size_pages
;
6217 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6218 if (start_pfn
>= end_pfn
)
6221 /* Account for what is only usable for kernelcore */
6222 if (start_pfn
< usable_startpfn
) {
6223 unsigned long kernel_pages
;
6224 kernel_pages
= min(end_pfn
, usable_startpfn
)
6227 kernelcore_remaining
-= min(kernel_pages
,
6228 kernelcore_remaining
);
6229 required_kernelcore
-= min(kernel_pages
,
6230 required_kernelcore
);
6232 /* Continue if range is now fully accounted */
6233 if (end_pfn
<= usable_startpfn
) {
6236 * Push zone_movable_pfn to the end so
6237 * that if we have to rebalance
6238 * kernelcore across nodes, we will
6239 * not double account here
6241 zone_movable_pfn
[nid
] = end_pfn
;
6244 start_pfn
= usable_startpfn
;
6248 * The usable PFN range for ZONE_MOVABLE is from
6249 * start_pfn->end_pfn. Calculate size_pages as the
6250 * number of pages used as kernelcore
6252 size_pages
= end_pfn
- start_pfn
;
6253 if (size_pages
> kernelcore_remaining
)
6254 size_pages
= kernelcore_remaining
;
6255 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6258 * Some kernelcore has been met, update counts and
6259 * break if the kernelcore for this node has been
6262 required_kernelcore
-= min(required_kernelcore
,
6264 kernelcore_remaining
-= size_pages
;
6265 if (!kernelcore_remaining
)
6271 * If there is still required_kernelcore, we do another pass with one
6272 * less node in the count. This will push zone_movable_pfn[nid] further
6273 * along on the nodes that still have memory until kernelcore is
6277 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6281 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6282 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6283 zone_movable_pfn
[nid
] =
6284 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6287 /* restore the node_state */
6288 node_states
[N_MEMORY
] = saved_node_state
;
6291 /* Any regular or high memory on that node ? */
6292 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6294 enum zone_type zone_type
;
6296 if (N_MEMORY
== N_NORMAL_MEMORY
)
6299 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6300 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6301 if (populated_zone(zone
)) {
6302 node_set_state(nid
, N_HIGH_MEMORY
);
6303 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6304 zone_type
<= ZONE_NORMAL
)
6305 node_set_state(nid
, N_NORMAL_MEMORY
);
6312 * free_area_init_nodes - Initialise all pg_data_t and zone data
6313 * @max_zone_pfn: an array of max PFNs for each zone
6315 * This will call free_area_init_node() for each active node in the system.
6316 * Using the page ranges provided by memblock_set_node(), the size of each
6317 * zone in each node and their holes is calculated. If the maximum PFN
6318 * between two adjacent zones match, it is assumed that the zone is empty.
6319 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6320 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6321 * starts where the previous one ended. For example, ZONE_DMA32 starts
6322 * at arch_max_dma_pfn.
6324 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6326 unsigned long start_pfn
, end_pfn
;
6329 /* Record where the zone boundaries are */
6330 memset(arch_zone_lowest_possible_pfn
, 0,
6331 sizeof(arch_zone_lowest_possible_pfn
));
6332 memset(arch_zone_highest_possible_pfn
, 0,
6333 sizeof(arch_zone_highest_possible_pfn
));
6335 start_pfn
= find_min_pfn_with_active_regions();
6337 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6338 if (i
== ZONE_MOVABLE
)
6341 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6342 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6343 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6345 start_pfn
= end_pfn
;
6347 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
6348 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
6350 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6351 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6352 find_zone_movable_pfns_for_nodes();
6354 /* Print out the zone ranges */
6355 pr_info("Zone ranges:\n");
6356 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6357 if (i
== ZONE_MOVABLE
)
6359 pr_info(" %-8s ", zone_names
[i
]);
6360 if (arch_zone_lowest_possible_pfn
[i
] ==
6361 arch_zone_highest_possible_pfn
[i
])
6364 pr_cont("[mem %#018Lx-%#018Lx]\n",
6365 (u64
)arch_zone_lowest_possible_pfn
[i
]
6367 ((u64
)arch_zone_highest_possible_pfn
[i
]
6368 << PAGE_SHIFT
) - 1);
6371 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6372 pr_info("Movable zone start for each node\n");
6373 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6374 if (zone_movable_pfn
[i
])
6375 pr_info(" Node %d: %#018Lx\n", i
,
6376 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6379 /* Print out the early node map */
6380 pr_info("Early memory node ranges\n");
6381 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6382 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6383 (u64
)start_pfn
<< PAGE_SHIFT
,
6384 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6386 /* Initialise every node */
6387 mminit_verify_pageflags_layout();
6388 setup_nr_node_ids();
6389 for_each_online_node(nid
) {
6390 pg_data_t
*pgdat
= NODE_DATA(nid
);
6391 free_area_init_node(nid
, NULL
,
6392 find_min_pfn_for_node(nid
), NULL
);
6394 /* Any memory on that node */
6395 if (pgdat
->node_present_pages
)
6396 node_set_state(nid
, N_MEMORY
);
6397 check_for_memory(pgdat
, nid
);
6401 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6403 unsigned long long coremem
;
6407 coremem
= memparse(p
, &p
);
6408 *core
= coremem
>> PAGE_SHIFT
;
6410 /* Paranoid check that UL is enough for the coremem value */
6411 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6417 * kernelcore=size sets the amount of memory for use for allocations that
6418 * cannot be reclaimed or migrated.
6420 static int __init
cmdline_parse_kernelcore(char *p
)
6422 /* parse kernelcore=mirror */
6423 if (parse_option_str(p
, "mirror")) {
6424 mirrored_kernelcore
= true;
6428 return cmdline_parse_core(p
, &required_kernelcore
);
6432 * movablecore=size sets the amount of memory for use for allocations that
6433 * can be reclaimed or migrated.
6435 static int __init
cmdline_parse_movablecore(char *p
)
6437 return cmdline_parse_core(p
, &required_movablecore
);
6440 early_param("kernelcore", cmdline_parse_kernelcore
);
6441 early_param("movablecore", cmdline_parse_movablecore
);
6443 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6445 void adjust_managed_page_count(struct page
*page
, long count
)
6447 spin_lock(&managed_page_count_lock
);
6448 page_zone(page
)->managed_pages
+= count
;
6449 totalram_pages
+= count
;
6450 #ifdef CONFIG_HIGHMEM
6451 if (PageHighMem(page
))
6452 totalhigh_pages
+= count
;
6454 spin_unlock(&managed_page_count_lock
);
6456 EXPORT_SYMBOL(adjust_managed_page_count
);
6458 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6461 unsigned long pages
= 0;
6463 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6464 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6465 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6466 if ((unsigned int)poison
<= 0xFF)
6467 memset(pos
, poison
, PAGE_SIZE
);
6468 free_reserved_page(virt_to_page(pos
));
6472 pr_info("Freeing %s memory: %ldK\n",
6473 s
, pages
<< (PAGE_SHIFT
- 10));
6477 EXPORT_SYMBOL(free_reserved_area
);
6479 #ifdef CONFIG_HIGHMEM
6480 void free_highmem_page(struct page
*page
)
6482 __free_reserved_page(page
);
6484 page_zone(page
)->managed_pages
++;
6490 void __init
mem_init_print_info(const char *str
)
6492 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6493 unsigned long init_code_size
, init_data_size
;
6495 physpages
= get_num_physpages();
6496 codesize
= _etext
- _stext
;
6497 datasize
= _edata
- _sdata
;
6498 rosize
= __end_rodata
- __start_rodata
;
6499 bss_size
= __bss_stop
- __bss_start
;
6500 init_data_size
= __init_end
- __init_begin
;
6501 init_code_size
= _einittext
- _sinittext
;
6504 * Detect special cases and adjust section sizes accordingly:
6505 * 1) .init.* may be embedded into .data sections
6506 * 2) .init.text.* may be out of [__init_begin, __init_end],
6507 * please refer to arch/tile/kernel/vmlinux.lds.S.
6508 * 3) .rodata.* may be embedded into .text or .data sections.
6510 #define adj_init_size(start, end, size, pos, adj) \
6512 if (start <= pos && pos < end && size > adj) \
6516 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6517 _sinittext
, init_code_size
);
6518 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6519 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6520 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6521 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6523 #undef adj_init_size
6525 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6526 #ifdef CONFIG_HIGHMEM
6530 nr_free_pages() << (PAGE_SHIFT
- 10),
6531 physpages
<< (PAGE_SHIFT
- 10),
6532 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6533 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6534 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6535 totalcma_pages
<< (PAGE_SHIFT
- 10),
6536 #ifdef CONFIG_HIGHMEM
6537 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6539 str
? ", " : "", str
? str
: "");
6543 * set_dma_reserve - set the specified number of pages reserved in the first zone
6544 * @new_dma_reserve: The number of pages to mark reserved
6546 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6547 * In the DMA zone, a significant percentage may be consumed by kernel image
6548 * and other unfreeable allocations which can skew the watermarks badly. This
6549 * function may optionally be used to account for unfreeable pages in the
6550 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6551 * smaller per-cpu batchsize.
6553 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6555 dma_reserve
= new_dma_reserve
;
6558 void __init
free_area_init(unsigned long *zones_size
)
6560 free_area_init_node(0, zones_size
,
6561 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6564 static int page_alloc_cpu_dead(unsigned int cpu
)
6567 lru_add_drain_cpu(cpu
);
6571 * Spill the event counters of the dead processor
6572 * into the current processors event counters.
6573 * This artificially elevates the count of the current
6576 vm_events_fold_cpu(cpu
);
6579 * Zero the differential counters of the dead processor
6580 * so that the vm statistics are consistent.
6582 * This is only okay since the processor is dead and cannot
6583 * race with what we are doing.
6585 cpu_vm_stats_fold(cpu
);
6589 void __init
page_alloc_init(void)
6593 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6594 "mm/page_alloc:dead", NULL
,
6595 page_alloc_cpu_dead
);
6600 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6601 * or min_free_kbytes changes.
6603 static void calculate_totalreserve_pages(void)
6605 struct pglist_data
*pgdat
;
6606 unsigned long reserve_pages
= 0;
6607 enum zone_type i
, j
;
6609 for_each_online_pgdat(pgdat
) {
6611 pgdat
->totalreserve_pages
= 0;
6613 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6614 struct zone
*zone
= pgdat
->node_zones
+ i
;
6617 /* Find valid and maximum lowmem_reserve in the zone */
6618 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6619 if (zone
->lowmem_reserve
[j
] > max
)
6620 max
= zone
->lowmem_reserve
[j
];
6623 /* we treat the high watermark as reserved pages. */
6624 max
+= high_wmark_pages(zone
);
6626 if (max
> zone
->managed_pages
)
6627 max
= zone
->managed_pages
;
6629 pgdat
->totalreserve_pages
+= max
;
6631 reserve_pages
+= max
;
6634 totalreserve_pages
= reserve_pages
;
6638 * setup_per_zone_lowmem_reserve - called whenever
6639 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6640 * has a correct pages reserved value, so an adequate number of
6641 * pages are left in the zone after a successful __alloc_pages().
6643 static void setup_per_zone_lowmem_reserve(void)
6645 struct pglist_data
*pgdat
;
6646 enum zone_type j
, idx
;
6648 for_each_online_pgdat(pgdat
) {
6649 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6650 struct zone
*zone
= pgdat
->node_zones
+ j
;
6651 unsigned long managed_pages
= zone
->managed_pages
;
6653 zone
->lowmem_reserve
[j
] = 0;
6657 struct zone
*lower_zone
;
6661 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6662 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6664 lower_zone
= pgdat
->node_zones
+ idx
;
6665 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6666 sysctl_lowmem_reserve_ratio
[idx
];
6667 managed_pages
+= lower_zone
->managed_pages
;
6672 /* update totalreserve_pages */
6673 calculate_totalreserve_pages();
6676 static void __setup_per_zone_wmarks(void)
6678 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6679 unsigned long lowmem_pages
= 0;
6681 unsigned long flags
;
6683 /* Calculate total number of !ZONE_HIGHMEM pages */
6684 for_each_zone(zone
) {
6685 if (!is_highmem(zone
))
6686 lowmem_pages
+= zone
->managed_pages
;
6689 for_each_zone(zone
) {
6692 spin_lock_irqsave(&zone
->lock
, flags
);
6693 tmp
= (u64
)pages_min
* zone
->managed_pages
;
6694 do_div(tmp
, lowmem_pages
);
6695 if (is_highmem(zone
)) {
6697 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6698 * need highmem pages, so cap pages_min to a small
6701 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6702 * deltas control asynch page reclaim, and so should
6703 * not be capped for highmem.
6705 unsigned long min_pages
;
6707 min_pages
= zone
->managed_pages
/ 1024;
6708 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
6709 zone
->watermark
[WMARK_MIN
] = min_pages
;
6712 * If it's a lowmem zone, reserve a number of pages
6713 * proportionate to the zone's size.
6715 zone
->watermark
[WMARK_MIN
] = tmp
;
6719 * Set the kswapd watermarks distance according to the
6720 * scale factor in proportion to available memory, but
6721 * ensure a minimum size on small systems.
6723 tmp
= max_t(u64
, tmp
>> 2,
6724 mult_frac(zone
->managed_pages
,
6725 watermark_scale_factor
, 10000));
6727 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
6728 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
6730 spin_unlock_irqrestore(&zone
->lock
, flags
);
6733 /* update totalreserve_pages */
6734 calculate_totalreserve_pages();
6738 * setup_per_zone_wmarks - called when min_free_kbytes changes
6739 * or when memory is hot-{added|removed}
6741 * Ensures that the watermark[min,low,high] values for each zone are set
6742 * correctly with respect to min_free_kbytes.
6744 void setup_per_zone_wmarks(void)
6746 mutex_lock(&zonelists_mutex
);
6747 __setup_per_zone_wmarks();
6748 mutex_unlock(&zonelists_mutex
);
6752 * Initialise min_free_kbytes.
6754 * For small machines we want it small (128k min). For large machines
6755 * we want it large (64MB max). But it is not linear, because network
6756 * bandwidth does not increase linearly with machine size. We use
6758 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6759 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6775 int __meminit
init_per_zone_wmark_min(void)
6777 unsigned long lowmem_kbytes
;
6778 int new_min_free_kbytes
;
6780 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
6781 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
6783 if (new_min_free_kbytes
> user_min_free_kbytes
) {
6784 min_free_kbytes
= new_min_free_kbytes
;
6785 if (min_free_kbytes
< 128)
6786 min_free_kbytes
= 128;
6787 if (min_free_kbytes
> 65536)
6788 min_free_kbytes
= 65536;
6790 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6791 new_min_free_kbytes
, user_min_free_kbytes
);
6793 setup_per_zone_wmarks();
6794 refresh_zone_stat_thresholds();
6795 setup_per_zone_lowmem_reserve();
6798 setup_min_unmapped_ratio();
6799 setup_min_slab_ratio();
6804 core_initcall(init_per_zone_wmark_min
)
6807 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6808 * that we can call two helper functions whenever min_free_kbytes
6811 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
6812 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6816 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6821 user_min_free_kbytes
= min_free_kbytes
;
6822 setup_per_zone_wmarks();
6827 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
6828 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6832 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6837 setup_per_zone_wmarks();
6843 static void setup_min_unmapped_ratio(void)
6848 for_each_online_pgdat(pgdat
)
6849 pgdat
->min_unmapped_pages
= 0;
6852 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
6853 sysctl_min_unmapped_ratio
) / 100;
6857 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6858 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6862 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6866 setup_min_unmapped_ratio();
6871 static void setup_min_slab_ratio(void)
6876 for_each_online_pgdat(pgdat
)
6877 pgdat
->min_slab_pages
= 0;
6880 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
6881 sysctl_min_slab_ratio
) / 100;
6884 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6885 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6889 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6893 setup_min_slab_ratio();
6900 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6901 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6902 * whenever sysctl_lowmem_reserve_ratio changes.
6904 * The reserve ratio obviously has absolutely no relation with the
6905 * minimum watermarks. The lowmem reserve ratio can only make sense
6906 * if in function of the boot time zone sizes.
6908 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
6909 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6911 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6912 setup_per_zone_lowmem_reserve();
6917 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6918 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6919 * pagelist can have before it gets flushed back to buddy allocator.
6921 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
6922 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
6925 int old_percpu_pagelist_fraction
;
6928 mutex_lock(&pcp_batch_high_lock
);
6929 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
6931 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6932 if (!write
|| ret
< 0)
6935 /* Sanity checking to avoid pcp imbalance */
6936 if (percpu_pagelist_fraction
&&
6937 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
6938 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
6944 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
6947 for_each_populated_zone(zone
) {
6950 for_each_possible_cpu(cpu
)
6951 pageset_set_high_and_batch(zone
,
6952 per_cpu_ptr(zone
->pageset
, cpu
));
6955 mutex_unlock(&pcp_batch_high_lock
);
6960 int hashdist
= HASHDIST_DEFAULT
;
6962 static int __init
set_hashdist(char *str
)
6966 hashdist
= simple_strtoul(str
, &str
, 0);
6969 __setup("hashdist=", set_hashdist
);
6972 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6974 * Returns the number of pages that arch has reserved but
6975 * is not known to alloc_large_system_hash().
6977 static unsigned long __init
arch_reserved_kernel_pages(void)
6984 * allocate a large system hash table from bootmem
6985 * - it is assumed that the hash table must contain an exact power-of-2
6986 * quantity of entries
6987 * - limit is the number of hash buckets, not the total allocation size
6989 void *__init
alloc_large_system_hash(const char *tablename
,
6990 unsigned long bucketsize
,
6991 unsigned long numentries
,
6994 unsigned int *_hash_shift
,
6995 unsigned int *_hash_mask
,
6996 unsigned long low_limit
,
6997 unsigned long high_limit
)
6999 unsigned long long max
= high_limit
;
7000 unsigned long log2qty
, size
;
7003 /* allow the kernel cmdline to have a say */
7005 /* round applicable memory size up to nearest megabyte */
7006 numentries
= nr_kernel_pages
;
7007 numentries
-= arch_reserved_kernel_pages();
7009 /* It isn't necessary when PAGE_SIZE >= 1MB */
7010 if (PAGE_SHIFT
< 20)
7011 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7013 /* limit to 1 bucket per 2^scale bytes of low memory */
7014 if (scale
> PAGE_SHIFT
)
7015 numentries
>>= (scale
- PAGE_SHIFT
);
7017 numentries
<<= (PAGE_SHIFT
- scale
);
7019 /* Make sure we've got at least a 0-order allocation.. */
7020 if (unlikely(flags
& HASH_SMALL
)) {
7021 /* Makes no sense without HASH_EARLY */
7022 WARN_ON(!(flags
& HASH_EARLY
));
7023 if (!(numentries
>> *_hash_shift
)) {
7024 numentries
= 1UL << *_hash_shift
;
7025 BUG_ON(!numentries
);
7027 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7028 numentries
= PAGE_SIZE
/ bucketsize
;
7030 numentries
= roundup_pow_of_two(numentries
);
7032 /* limit allocation size to 1/16 total memory by default */
7034 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7035 do_div(max
, bucketsize
);
7037 max
= min(max
, 0x80000000ULL
);
7039 if (numentries
< low_limit
)
7040 numentries
= low_limit
;
7041 if (numentries
> max
)
7044 log2qty
= ilog2(numentries
);
7047 size
= bucketsize
<< log2qty
;
7048 if (flags
& HASH_EARLY
)
7049 table
= memblock_virt_alloc_nopanic(size
, 0);
7051 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
7054 * If bucketsize is not a power-of-two, we may free
7055 * some pages at the end of hash table which
7056 * alloc_pages_exact() automatically does
7058 if (get_order(size
) < MAX_ORDER
) {
7059 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
7060 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
7063 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7066 panic("Failed to allocate %s hash table\n", tablename
);
7068 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7069 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7072 *_hash_shift
= log2qty
;
7074 *_hash_mask
= (1 << log2qty
) - 1;
7080 * This function checks whether pageblock includes unmovable pages or not.
7081 * If @count is not zero, it is okay to include less @count unmovable pages
7083 * PageLRU check without isolation or lru_lock could race so that
7084 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7085 * expect this function should be exact.
7087 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7088 bool skip_hwpoisoned_pages
)
7090 unsigned long pfn
, iter
, found
;
7094 * For avoiding noise data, lru_add_drain_all() should be called
7095 * If ZONE_MOVABLE, the zone never contains unmovable pages
7097 if (zone_idx(zone
) == ZONE_MOVABLE
)
7099 mt
= get_pageblock_migratetype(page
);
7100 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
7103 pfn
= page_to_pfn(page
);
7104 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7105 unsigned long check
= pfn
+ iter
;
7107 if (!pfn_valid_within(check
))
7110 page
= pfn_to_page(check
);
7113 * Hugepages are not in LRU lists, but they're movable.
7114 * We need not scan over tail pages bacause we don't
7115 * handle each tail page individually in migration.
7117 if (PageHuge(page
)) {
7118 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7123 * We can't use page_count without pin a page
7124 * because another CPU can free compound page.
7125 * This check already skips compound tails of THP
7126 * because their page->_refcount is zero at all time.
7128 if (!page_ref_count(page
)) {
7129 if (PageBuddy(page
))
7130 iter
+= (1 << page_order(page
)) - 1;
7135 * The HWPoisoned page may be not in buddy system, and
7136 * page_count() is not 0.
7138 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7144 * If there are RECLAIMABLE pages, we need to check
7145 * it. But now, memory offline itself doesn't call
7146 * shrink_node_slabs() and it still to be fixed.
7149 * If the page is not RAM, page_count()should be 0.
7150 * we don't need more check. This is an _used_ not-movable page.
7152 * The problematic thing here is PG_reserved pages. PG_reserved
7153 * is set to both of a memory hole page and a _used_ kernel
7162 bool is_pageblock_removable_nolock(struct page
*page
)
7168 * We have to be careful here because we are iterating over memory
7169 * sections which are not zone aware so we might end up outside of
7170 * the zone but still within the section.
7171 * We have to take care about the node as well. If the node is offline
7172 * its NODE_DATA will be NULL - see page_zone.
7174 if (!node_online(page_to_nid(page
)))
7177 zone
= page_zone(page
);
7178 pfn
= page_to_pfn(page
);
7179 if (!zone_spans_pfn(zone
, pfn
))
7182 return !has_unmovable_pages(zone
, page
, 0, true);
7185 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7187 static unsigned long pfn_max_align_down(unsigned long pfn
)
7189 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7190 pageblock_nr_pages
) - 1);
7193 static unsigned long pfn_max_align_up(unsigned long pfn
)
7195 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7196 pageblock_nr_pages
));
7199 /* [start, end) must belong to a single zone. */
7200 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7201 unsigned long start
, unsigned long end
)
7203 /* This function is based on compact_zone() from compaction.c. */
7204 unsigned long nr_reclaimed
;
7205 unsigned long pfn
= start
;
7206 unsigned int tries
= 0;
7211 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7212 if (fatal_signal_pending(current
)) {
7217 if (list_empty(&cc
->migratepages
)) {
7218 cc
->nr_migratepages
= 0;
7219 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7225 } else if (++tries
== 5) {
7226 ret
= ret
< 0 ? ret
: -EBUSY
;
7230 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7232 cc
->nr_migratepages
-= nr_reclaimed
;
7234 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7235 NULL
, 0, cc
->mode
, MR_CMA
);
7238 putback_movable_pages(&cc
->migratepages
);
7245 * alloc_contig_range() -- tries to allocate given range of pages
7246 * @start: start PFN to allocate
7247 * @end: one-past-the-last PFN to allocate
7248 * @migratetype: migratetype of the underlaying pageblocks (either
7249 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7250 * in range must have the same migratetype and it must
7251 * be either of the two.
7253 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7254 * aligned, however it's the caller's responsibility to guarantee that
7255 * we are the only thread that changes migrate type of pageblocks the
7258 * The PFN range must belong to a single zone.
7260 * Returns zero on success or negative error code. On success all
7261 * pages which PFN is in [start, end) are allocated for the caller and
7262 * need to be freed with free_contig_range().
7264 int alloc_contig_range(unsigned long start
, unsigned long end
,
7265 unsigned migratetype
)
7267 unsigned long outer_start
, outer_end
;
7271 struct compact_control cc
= {
7272 .nr_migratepages
= 0,
7274 .zone
= page_zone(pfn_to_page(start
)),
7275 .mode
= MIGRATE_SYNC
,
7276 .ignore_skip_hint
= true,
7277 .gfp_mask
= GFP_KERNEL
,
7279 INIT_LIST_HEAD(&cc
.migratepages
);
7282 * What we do here is we mark all pageblocks in range as
7283 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7284 * have different sizes, and due to the way page allocator
7285 * work, we align the range to biggest of the two pages so
7286 * that page allocator won't try to merge buddies from
7287 * different pageblocks and change MIGRATE_ISOLATE to some
7288 * other migration type.
7290 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7291 * migrate the pages from an unaligned range (ie. pages that
7292 * we are interested in). This will put all the pages in
7293 * range back to page allocator as MIGRATE_ISOLATE.
7295 * When this is done, we take the pages in range from page
7296 * allocator removing them from the buddy system. This way
7297 * page allocator will never consider using them.
7299 * This lets us mark the pageblocks back as
7300 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7301 * aligned range but not in the unaligned, original range are
7302 * put back to page allocator so that buddy can use them.
7305 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7306 pfn_max_align_up(end
), migratetype
,
7312 * In case of -EBUSY, we'd like to know which page causes problem.
7313 * So, just fall through. We will check it in test_pages_isolated().
7315 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7316 if (ret
&& ret
!= -EBUSY
)
7320 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7321 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7322 * more, all pages in [start, end) are free in page allocator.
7323 * What we are going to do is to allocate all pages from
7324 * [start, end) (that is remove them from page allocator).
7326 * The only problem is that pages at the beginning and at the
7327 * end of interesting range may be not aligned with pages that
7328 * page allocator holds, ie. they can be part of higher order
7329 * pages. Because of this, we reserve the bigger range and
7330 * once this is done free the pages we are not interested in.
7332 * We don't have to hold zone->lock here because the pages are
7333 * isolated thus they won't get removed from buddy.
7336 lru_add_drain_all();
7337 drain_all_pages(cc
.zone
);
7340 outer_start
= start
;
7341 while (!PageBuddy(pfn_to_page(outer_start
))) {
7342 if (++order
>= MAX_ORDER
) {
7343 outer_start
= start
;
7346 outer_start
&= ~0UL << order
;
7349 if (outer_start
!= start
) {
7350 order
= page_order(pfn_to_page(outer_start
));
7353 * outer_start page could be small order buddy page and
7354 * it doesn't include start page. Adjust outer_start
7355 * in this case to report failed page properly
7356 * on tracepoint in test_pages_isolated()
7358 if (outer_start
+ (1UL << order
) <= start
)
7359 outer_start
= start
;
7362 /* Make sure the range is really isolated. */
7363 if (test_pages_isolated(outer_start
, end
, false)) {
7364 pr_info("%s: [%lx, %lx) PFNs busy\n",
7365 __func__
, outer_start
, end
);
7370 /* Grab isolated pages from freelists. */
7371 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7377 /* Free head and tail (if any) */
7378 if (start
!= outer_start
)
7379 free_contig_range(outer_start
, start
- outer_start
);
7380 if (end
!= outer_end
)
7381 free_contig_range(end
, outer_end
- end
);
7384 undo_isolate_page_range(pfn_max_align_down(start
),
7385 pfn_max_align_up(end
), migratetype
);
7389 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7391 unsigned int count
= 0;
7393 for (; nr_pages
--; pfn
++) {
7394 struct page
*page
= pfn_to_page(pfn
);
7396 count
+= page_count(page
) != 1;
7399 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7403 #ifdef CONFIG_MEMORY_HOTPLUG
7405 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7406 * page high values need to be recalulated.
7408 void __meminit
zone_pcp_update(struct zone
*zone
)
7411 mutex_lock(&pcp_batch_high_lock
);
7412 for_each_possible_cpu(cpu
)
7413 pageset_set_high_and_batch(zone
,
7414 per_cpu_ptr(zone
->pageset
, cpu
));
7415 mutex_unlock(&pcp_batch_high_lock
);
7419 void zone_pcp_reset(struct zone
*zone
)
7421 unsigned long flags
;
7423 struct per_cpu_pageset
*pset
;
7425 /* avoid races with drain_pages() */
7426 local_irq_save(flags
);
7427 if (zone
->pageset
!= &boot_pageset
) {
7428 for_each_online_cpu(cpu
) {
7429 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7430 drain_zonestat(zone
, pset
);
7432 free_percpu(zone
->pageset
);
7433 zone
->pageset
= &boot_pageset
;
7435 local_irq_restore(flags
);
7438 #ifdef CONFIG_MEMORY_HOTREMOVE
7440 * All pages in the range must be in a single zone and isolated
7441 * before calling this.
7444 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7448 unsigned int order
, i
;
7450 unsigned long flags
;
7451 /* find the first valid pfn */
7452 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7457 zone
= page_zone(pfn_to_page(pfn
));
7458 spin_lock_irqsave(&zone
->lock
, flags
);
7460 while (pfn
< end_pfn
) {
7461 if (!pfn_valid(pfn
)) {
7465 page
= pfn_to_page(pfn
);
7467 * The HWPoisoned page may be not in buddy system, and
7468 * page_count() is not 0.
7470 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7472 SetPageReserved(page
);
7476 BUG_ON(page_count(page
));
7477 BUG_ON(!PageBuddy(page
));
7478 order
= page_order(page
);
7479 #ifdef CONFIG_DEBUG_VM
7480 pr_info("remove from free list %lx %d %lx\n",
7481 pfn
, 1 << order
, end_pfn
);
7483 list_del(&page
->lru
);
7484 rmv_page_order(page
);
7485 zone
->free_area
[order
].nr_free
--;
7486 for (i
= 0; i
< (1 << order
); i
++)
7487 SetPageReserved((page
+i
));
7488 pfn
+= (1 << order
);
7490 spin_unlock_irqrestore(&zone
->lock
, flags
);
7494 bool is_free_buddy_page(struct page
*page
)
7496 struct zone
*zone
= page_zone(page
);
7497 unsigned long pfn
= page_to_pfn(page
);
7498 unsigned long flags
;
7501 spin_lock_irqsave(&zone
->lock
, flags
);
7502 for (order
= 0; order
< MAX_ORDER
; order
++) {
7503 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7505 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7508 spin_unlock_irqrestore(&zone
->lock
, flags
);
7510 return order
< MAX_ORDER
;