2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
43 #include <linux/of_platform.h>
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
49 struct rtc_device
*rtc
;
52 struct resource
*iomem
;
53 time64_t alarm_expires
;
55 void (*wake_on
)(struct device
*);
56 void (*wake_off
)(struct device
*);
61 /* newer hardware extends the original register set */
66 struct rtc_wkalrm saved_wkalrm
;
69 /* both platform and pnp busses use negative numbers for invalid irqs */
70 #define is_valid_irq(n) ((n) > 0)
72 static const char driver_name
[] = "rtc_cmos";
74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
75 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
78 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
80 static inline int is_intr(u8 rtc_intr
)
82 if (!(rtc_intr
& RTC_IRQF
))
84 return rtc_intr
& RTC_IRQMASK
;
87 /*----------------------------------------------------------------*/
89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
91 * used in a broken "legacy replacement" mode. The breakage includes
92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
95 * When that broken mode is in use, platform glue provides a partial
96 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
97 * want to use HPET for anything except those IRQs though...
99 #ifdef CONFIG_HPET_EMULATE_RTC
100 #include <asm/hpet.h>
103 static inline int is_hpet_enabled(void)
108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask
)
113 static inline int hpet_set_rtc_irq_bit(unsigned long mask
)
119 hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
124 static inline int hpet_set_periodic_freq(unsigned long freq
)
129 static inline int hpet_rtc_dropped_irq(void)
134 static inline int hpet_rtc_timer_init(void)
139 extern irq_handler_t hpet_rtc_interrupt
;
141 static inline int hpet_register_irq_handler(irq_handler_t handler
)
146 static inline int hpet_unregister_irq_handler(irq_handler_t handler
)
153 /*----------------------------------------------------------------*/
157 /* Most newer x86 systems have two register banks, the first used
158 * for RTC and NVRAM and the second only for NVRAM. Caller must
159 * own rtc_lock ... and we won't worry about access during NMI.
161 #define can_bank2 true
163 static inline unsigned char cmos_read_bank2(unsigned char addr
)
165 outb(addr
, RTC_PORT(2));
166 return inb(RTC_PORT(3));
169 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
171 outb(addr
, RTC_PORT(2));
172 outb(val
, RTC_PORT(3));
177 #define can_bank2 false
179 static inline unsigned char cmos_read_bank2(unsigned char addr
)
184 static inline void cmos_write_bank2(unsigned char val
, unsigned char addr
)
190 /*----------------------------------------------------------------*/
192 static int cmos_read_time(struct device
*dev
, struct rtc_time
*t
)
194 /* REVISIT: if the clock has a "century" register, use
195 * that instead of the heuristic in mc146818_get_time().
196 * That'll make Y3K compatility (year > 2070) easy!
198 mc146818_get_time(t
);
202 static int cmos_set_time(struct device
*dev
, struct rtc_time
*t
)
204 /* REVISIT: set the "century" register if available
206 * NOTE: this ignores the issue whereby updating the seconds
207 * takes effect exactly 500ms after we write the register.
208 * (Also queueing and other delays before we get this far.)
210 return mc146818_set_time(t
);
213 static int cmos_read_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
215 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
216 unsigned char rtc_control
;
218 if (!is_valid_irq(cmos
->irq
))
221 /* Basic alarms only support hour, minute, and seconds fields.
222 * Some also support day and month, for alarms up to a year in
226 spin_lock_irq(&rtc_lock
);
227 t
->time
.tm_sec
= CMOS_READ(RTC_SECONDS_ALARM
);
228 t
->time
.tm_min
= CMOS_READ(RTC_MINUTES_ALARM
);
229 t
->time
.tm_hour
= CMOS_READ(RTC_HOURS_ALARM
);
231 if (cmos
->day_alrm
) {
232 /* ignore upper bits on readback per ACPI spec */
233 t
->time
.tm_mday
= CMOS_READ(cmos
->day_alrm
) & 0x3f;
234 if (!t
->time
.tm_mday
)
235 t
->time
.tm_mday
= -1;
237 if (cmos
->mon_alrm
) {
238 t
->time
.tm_mon
= CMOS_READ(cmos
->mon_alrm
);
244 rtc_control
= CMOS_READ(RTC_CONTROL
);
245 spin_unlock_irq(&rtc_lock
);
247 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
248 if (((unsigned)t
->time
.tm_sec
) < 0x60)
249 t
->time
.tm_sec
= bcd2bin(t
->time
.tm_sec
);
252 if (((unsigned)t
->time
.tm_min
) < 0x60)
253 t
->time
.tm_min
= bcd2bin(t
->time
.tm_min
);
256 if (((unsigned)t
->time
.tm_hour
) < 0x24)
257 t
->time
.tm_hour
= bcd2bin(t
->time
.tm_hour
);
259 t
->time
.tm_hour
= -1;
261 if (cmos
->day_alrm
) {
262 if (((unsigned)t
->time
.tm_mday
) <= 0x31)
263 t
->time
.tm_mday
= bcd2bin(t
->time
.tm_mday
);
265 t
->time
.tm_mday
= -1;
267 if (cmos
->mon_alrm
) {
268 if (((unsigned)t
->time
.tm_mon
) <= 0x12)
269 t
->time
.tm_mon
= bcd2bin(t
->time
.tm_mon
)-1;
276 t
->enabled
= !!(rtc_control
& RTC_AIE
);
282 static void cmos_checkintr(struct cmos_rtc
*cmos
, unsigned char rtc_control
)
284 unsigned char rtc_intr
;
286 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
287 * allegedly some older rtcs need that to handle irqs properly
289 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
291 if (is_hpet_enabled())
294 rtc_intr
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
295 if (is_intr(rtc_intr
))
296 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
299 static void cmos_irq_enable(struct cmos_rtc
*cmos
, unsigned char mask
)
301 unsigned char rtc_control
;
303 /* flush any pending IRQ status, notably for update irqs,
304 * before we enable new IRQs
306 rtc_control
= CMOS_READ(RTC_CONTROL
);
307 cmos_checkintr(cmos
, rtc_control
);
310 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
311 hpet_set_rtc_irq_bit(mask
);
313 cmos_checkintr(cmos
, rtc_control
);
316 static void cmos_irq_disable(struct cmos_rtc
*cmos
, unsigned char mask
)
318 unsigned char rtc_control
;
320 rtc_control
= CMOS_READ(RTC_CONTROL
);
321 rtc_control
&= ~mask
;
322 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
323 hpet_mask_rtc_irq_bit(mask
);
325 cmos_checkintr(cmos
, rtc_control
);
328 static int cmos_set_alarm(struct device
*dev
, struct rtc_wkalrm
*t
)
330 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
331 unsigned char mon
, mday
, hrs
, min
, sec
, rtc_control
;
333 if (!is_valid_irq(cmos
->irq
))
336 mon
= t
->time
.tm_mon
+ 1;
337 mday
= t
->time
.tm_mday
;
338 hrs
= t
->time
.tm_hour
;
339 min
= t
->time
.tm_min
;
340 sec
= t
->time
.tm_sec
;
342 rtc_control
= CMOS_READ(RTC_CONTROL
);
343 if (!(rtc_control
& RTC_DM_BINARY
) || RTC_ALWAYS_BCD
) {
344 /* Writing 0xff means "don't care" or "match all". */
345 mon
= (mon
<= 12) ? bin2bcd(mon
) : 0xff;
346 mday
= (mday
>= 1 && mday
<= 31) ? bin2bcd(mday
) : 0xff;
347 hrs
= (hrs
< 24) ? bin2bcd(hrs
) : 0xff;
348 min
= (min
< 60) ? bin2bcd(min
) : 0xff;
349 sec
= (sec
< 60) ? bin2bcd(sec
) : 0xff;
352 spin_lock_irq(&rtc_lock
);
354 /* next rtc irq must not be from previous alarm setting */
355 cmos_irq_disable(cmos
, RTC_AIE
);
358 CMOS_WRITE(hrs
, RTC_HOURS_ALARM
);
359 CMOS_WRITE(min
, RTC_MINUTES_ALARM
);
360 CMOS_WRITE(sec
, RTC_SECONDS_ALARM
);
362 /* the system may support an "enhanced" alarm */
363 if (cmos
->day_alrm
) {
364 CMOS_WRITE(mday
, cmos
->day_alrm
);
366 CMOS_WRITE(mon
, cmos
->mon_alrm
);
369 /* FIXME the HPET alarm glue currently ignores day_alrm
372 hpet_set_alarm_time(t
->time
.tm_hour
, t
->time
.tm_min
, t
->time
.tm_sec
);
375 cmos_irq_enable(cmos
, RTC_AIE
);
377 spin_unlock_irq(&rtc_lock
);
379 cmos
->alarm_expires
= rtc_tm_to_time64(&t
->time
);
384 static int cmos_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
386 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
389 if (!is_valid_irq(cmos
->irq
))
392 spin_lock_irqsave(&rtc_lock
, flags
);
395 cmos_irq_enable(cmos
, RTC_AIE
);
397 cmos_irq_disable(cmos
, RTC_AIE
);
399 spin_unlock_irqrestore(&rtc_lock
, flags
);
403 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
405 static int cmos_procfs(struct device
*dev
, struct seq_file
*seq
)
407 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
408 unsigned char rtc_control
, valid
;
410 spin_lock_irq(&rtc_lock
);
411 rtc_control
= CMOS_READ(RTC_CONTROL
);
412 valid
= CMOS_READ(RTC_VALID
);
413 spin_unlock_irq(&rtc_lock
);
415 /* NOTE: at least ICH6 reports battery status using a different
416 * (non-RTC) bit; and SQWE is ignored on many current systems.
419 "periodic_IRQ\t: %s\n"
421 "HPET_emulated\t: %s\n"
422 // "square_wave\t: %s\n"
425 "periodic_freq\t: %d\n"
426 "batt_status\t: %s\n",
427 (rtc_control
& RTC_PIE
) ? "yes" : "no",
428 (rtc_control
& RTC_UIE
) ? "yes" : "no",
429 is_hpet_enabled() ? "yes" : "no",
430 // (rtc_control & RTC_SQWE) ? "yes" : "no",
431 (rtc_control
& RTC_DM_BINARY
) ? "no" : "yes",
432 (rtc_control
& RTC_DST_EN
) ? "yes" : "no",
434 (valid
& RTC_VRT
) ? "okay" : "dead");
440 #define cmos_procfs NULL
443 static const struct rtc_class_ops cmos_rtc_ops
= {
444 .read_time
= cmos_read_time
,
445 .set_time
= cmos_set_time
,
446 .read_alarm
= cmos_read_alarm
,
447 .set_alarm
= cmos_set_alarm
,
449 .alarm_irq_enable
= cmos_alarm_irq_enable
,
452 /*----------------------------------------------------------------*/
455 * All these chips have at least 64 bytes of address space, shared by
456 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
457 * by boot firmware. Modern chips have 128 or 256 bytes.
460 #define NVRAM_OFFSET (RTC_REG_D + 1)
463 cmos_nvram_read(struct file
*filp
, struct kobject
*kobj
,
464 struct bin_attribute
*attr
,
465 char *buf
, loff_t off
, size_t count
)
470 spin_lock_irq(&rtc_lock
);
471 for (retval
= 0; count
; count
--, off
++, retval
++) {
473 *buf
++ = CMOS_READ(off
);
475 *buf
++ = cmos_read_bank2(off
);
479 spin_unlock_irq(&rtc_lock
);
485 cmos_nvram_write(struct file
*filp
, struct kobject
*kobj
,
486 struct bin_attribute
*attr
,
487 char *buf
, loff_t off
, size_t count
)
489 struct cmos_rtc
*cmos
;
492 cmos
= dev_get_drvdata(container_of(kobj
, struct device
, kobj
));
494 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
495 * checksum on part of the NVRAM data. That's currently ignored
496 * here. If userspace is smart enough to know what fields of
497 * NVRAM to update, updating checksums is also part of its job.
500 spin_lock_irq(&rtc_lock
);
501 for (retval
= 0; count
; count
--, off
++, retval
++) {
502 /* don't trash RTC registers */
503 if (off
== cmos
->day_alrm
504 || off
== cmos
->mon_alrm
505 || off
== cmos
->century
)
508 CMOS_WRITE(*buf
++, off
);
510 cmos_write_bank2(*buf
++, off
);
514 spin_unlock_irq(&rtc_lock
);
519 static struct bin_attribute nvram
= {
522 .mode
= S_IRUGO
| S_IWUSR
,
525 .read
= cmos_nvram_read
,
526 .write
= cmos_nvram_write
,
527 /* size gets set up later */
530 /*----------------------------------------------------------------*/
532 static struct cmos_rtc cmos_rtc
;
534 static irqreturn_t
cmos_interrupt(int irq
, void *p
)
539 spin_lock(&rtc_lock
);
541 /* When the HPET interrupt handler calls us, the interrupt
542 * status is passed as arg1 instead of the irq number. But
543 * always clear irq status, even when HPET is in the way.
545 * Note that HPET and RTC are almost certainly out of phase,
546 * giving different IRQ status ...
548 irqstat
= CMOS_READ(RTC_INTR_FLAGS
);
549 rtc_control
= CMOS_READ(RTC_CONTROL
);
550 if (is_hpet_enabled())
551 irqstat
= (unsigned long)irq
& 0xF0;
553 /* If we were suspended, RTC_CONTROL may not be accurate since the
554 * bios may have cleared it.
556 if (!cmos_rtc
.suspend_ctrl
)
557 irqstat
&= (rtc_control
& RTC_IRQMASK
) | RTC_IRQF
;
559 irqstat
&= (cmos_rtc
.suspend_ctrl
& RTC_IRQMASK
) | RTC_IRQF
;
561 /* All Linux RTC alarms should be treated as if they were oneshot.
562 * Similar code may be needed in system wakeup paths, in case the
563 * alarm woke the system.
565 if (irqstat
& RTC_AIE
) {
566 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
567 rtc_control
&= ~RTC_AIE
;
568 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
569 hpet_mask_rtc_irq_bit(RTC_AIE
);
570 CMOS_READ(RTC_INTR_FLAGS
);
572 spin_unlock(&rtc_lock
);
574 if (is_intr(irqstat
)) {
575 rtc_update_irq(p
, 1, irqstat
);
585 #define INITSECTION __init
588 static int INITSECTION
589 cmos_do_probe(struct device
*dev
, struct resource
*ports
, int rtc_irq
)
591 struct cmos_rtc_board_info
*info
= dev_get_platdata(dev
);
593 unsigned char rtc_control
;
594 unsigned address_space
;
597 /* there can be only one ... */
604 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
606 * REVISIT non-x86 systems may instead use memory space resources
607 * (needing ioremap etc), not i/o space resources like this ...
610 ports
= request_region(ports
->start
, resource_size(ports
),
613 ports
= request_mem_region(ports
->start
, resource_size(ports
),
616 dev_dbg(dev
, "i/o registers already in use\n");
620 cmos_rtc
.irq
= rtc_irq
;
621 cmos_rtc
.iomem
= ports
;
623 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
624 * driver did, but don't reject unknown configs. Old hardware
625 * won't address 128 bytes. Newer chips have multiple banks,
626 * though they may not be listed in one I/O resource.
628 #if defined(CONFIG_ATARI)
630 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
631 || defined(__sparc__) || defined(__mips__) \
632 || defined(__powerpc__) || defined(CONFIG_MN10300)
635 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
638 if (can_bank2
&& ports
->end
> (ports
->start
+ 1))
641 /* For ACPI systems extension info comes from the FADT. On others,
642 * board specific setup provides it as appropriate. Systems where
643 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
644 * some almost-clones) can provide hooks to make that behave.
646 * Note that ACPI doesn't preclude putting these registers into
647 * "extended" areas of the chip, including some that we won't yet
648 * expect CMOS_READ and friends to handle.
653 if (info
->address_space
)
654 address_space
= info
->address_space
;
656 if (info
->rtc_day_alarm
&& info
->rtc_day_alarm
< 128)
657 cmos_rtc
.day_alrm
= info
->rtc_day_alarm
;
658 if (info
->rtc_mon_alarm
&& info
->rtc_mon_alarm
< 128)
659 cmos_rtc
.mon_alrm
= info
->rtc_mon_alarm
;
660 if (info
->rtc_century
&& info
->rtc_century
< 128)
661 cmos_rtc
.century
= info
->rtc_century
;
663 if (info
->wake_on
&& info
->wake_off
) {
664 cmos_rtc
.wake_on
= info
->wake_on
;
665 cmos_rtc
.wake_off
= info
->wake_off
;
670 dev_set_drvdata(dev
, &cmos_rtc
);
672 cmos_rtc
.rtc
= rtc_device_register(driver_name
, dev
,
673 &cmos_rtc_ops
, THIS_MODULE
);
674 if (IS_ERR(cmos_rtc
.rtc
)) {
675 retval
= PTR_ERR(cmos_rtc
.rtc
);
679 rename_region(ports
, dev_name(&cmos_rtc
.rtc
->dev
));
681 spin_lock_irq(&rtc_lock
);
683 if (!(flags
& CMOS_RTC_FLAGS_NOFREQ
)) {
684 /* force periodic irq to CMOS reset default of 1024Hz;
686 * REVISIT it's been reported that at least one x86_64 ALI
687 * mobo doesn't use 32KHz here ... for portability we might
688 * need to do something about other clock frequencies.
690 cmos_rtc
.rtc
->irq_freq
= 1024;
691 hpet_set_periodic_freq(cmos_rtc
.rtc
->irq_freq
);
692 CMOS_WRITE(RTC_REF_CLCK_32KHZ
| 0x06, RTC_FREQ_SELECT
);
696 if (is_valid_irq(rtc_irq
))
697 cmos_irq_disable(&cmos_rtc
, RTC_PIE
| RTC_AIE
| RTC_UIE
);
699 rtc_control
= CMOS_READ(RTC_CONTROL
);
701 spin_unlock_irq(&rtc_lock
);
704 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
706 if (is_valid_irq(rtc_irq
) && !(rtc_control
& RTC_24H
)) {
707 dev_warn(dev
, "only 24-hr supported\n");
712 hpet_rtc_timer_init();
714 if (is_valid_irq(rtc_irq
)) {
715 irq_handler_t rtc_cmos_int_handler
;
717 if (is_hpet_enabled()) {
718 rtc_cmos_int_handler
= hpet_rtc_interrupt
;
719 retval
= hpet_register_irq_handler(cmos_interrupt
);
721 hpet_mask_rtc_irq_bit(RTC_IRQMASK
);
722 dev_warn(dev
, "hpet_register_irq_handler "
723 " failed in rtc_init().");
727 rtc_cmos_int_handler
= cmos_interrupt
;
729 retval
= request_irq(rtc_irq
, rtc_cmos_int_handler
,
730 IRQF_SHARED
, dev_name(&cmos_rtc
.rtc
->dev
),
733 dev_dbg(dev
, "IRQ %d is already in use\n", rtc_irq
);
738 /* export at least the first block of NVRAM */
739 nvram
.size
= address_space
- NVRAM_OFFSET
;
740 retval
= sysfs_create_bin_file(&dev
->kobj
, &nvram
);
742 dev_dbg(dev
, "can't create nvram file? %d\n", retval
);
746 dev_info(dev
, "%s%s, %zd bytes nvram%s\n",
747 !is_valid_irq(rtc_irq
) ? "no alarms" :
748 cmos_rtc
.mon_alrm
? "alarms up to one year" :
749 cmos_rtc
.day_alrm
? "alarms up to one month" :
750 "alarms up to one day",
751 cmos_rtc
.century
? ", y3k" : "",
753 is_hpet_enabled() ? ", hpet irqs" : "");
758 if (is_valid_irq(rtc_irq
))
759 free_irq(rtc_irq
, cmos_rtc
.rtc
);
762 rtc_device_unregister(cmos_rtc
.rtc
);
765 release_region(ports
->start
, resource_size(ports
));
767 release_mem_region(ports
->start
, resource_size(ports
));
771 static void cmos_do_shutdown(int rtc_irq
)
773 spin_lock_irq(&rtc_lock
);
774 if (is_valid_irq(rtc_irq
))
775 cmos_irq_disable(&cmos_rtc
, RTC_IRQMASK
);
776 spin_unlock_irq(&rtc_lock
);
779 static void cmos_do_remove(struct device
*dev
)
781 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
782 struct resource
*ports
;
784 cmos_do_shutdown(cmos
->irq
);
786 sysfs_remove_bin_file(&dev
->kobj
, &nvram
);
788 if (is_valid_irq(cmos
->irq
)) {
789 free_irq(cmos
->irq
, cmos
->rtc
);
790 hpet_unregister_irq_handler(cmos_interrupt
);
793 rtc_device_unregister(cmos
->rtc
);
798 release_region(ports
->start
, resource_size(ports
));
800 release_mem_region(ports
->start
, resource_size(ports
));
806 static int cmos_aie_poweroff(struct device
*dev
)
808 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
812 unsigned char rtc_control
;
814 if (!cmos
->alarm_expires
)
817 spin_lock_irq(&rtc_lock
);
818 rtc_control
= CMOS_READ(RTC_CONTROL
);
819 spin_unlock_irq(&rtc_lock
);
821 /* We only care about the situation where AIE is disabled. */
822 if (rtc_control
& RTC_AIE
)
825 cmos_read_time(dev
, &now
);
826 t_now
= rtc_tm_to_time64(&now
);
829 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
830 * automatically right after shutdown on some buggy boxes.
831 * This automatic rebooting issue won't happen when the alarm
832 * time is larger than now+1 seconds.
834 * If the alarm time is equal to now+1 seconds, the issue can be
835 * prevented by cancelling the alarm.
837 if (cmos
->alarm_expires
== t_now
+ 1) {
838 struct rtc_wkalrm alarm
;
840 /* Cancel the AIE timer by configuring the past time. */
841 rtc_time64_to_tm(t_now
- 1, &alarm
.time
);
843 retval
= cmos_set_alarm(dev
, &alarm
);
844 } else if (cmos
->alarm_expires
> t_now
+ 1) {
851 static int cmos_suspend(struct device
*dev
)
853 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
856 /* only the alarm might be a wakeup event source */
857 spin_lock_irq(&rtc_lock
);
858 cmos
->suspend_ctrl
= tmp
= CMOS_READ(RTC_CONTROL
);
859 if (tmp
& (RTC_PIE
|RTC_AIE
|RTC_UIE
)) {
862 if (device_may_wakeup(dev
))
863 mask
= RTC_IRQMASK
& ~RTC_AIE
;
867 CMOS_WRITE(tmp
, RTC_CONTROL
);
868 hpet_mask_rtc_irq_bit(mask
);
870 cmos_checkintr(cmos
, tmp
);
872 spin_unlock_irq(&rtc_lock
);
875 cmos
->enabled_wake
= 1;
879 enable_irq_wake(cmos
->irq
);
882 cmos_read_alarm(dev
, &cmos
->saved_wkalrm
);
884 dev_dbg(dev
, "suspend%s, ctrl %02x\n",
885 (tmp
& RTC_AIE
) ? ", alarm may wake" : "",
891 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
892 * after a detour through G3 "mechanical off", although the ACPI spec
893 * says wakeup should only work from G1/S4 "hibernate". To most users,
894 * distinctions between S4 and S5 are pointless. So when the hardware
895 * allows, don't draw that distinction.
897 static inline int cmos_poweroff(struct device
*dev
)
899 if (!IS_ENABLED(CONFIG_PM
))
902 return cmos_suspend(dev
);
905 static void cmos_check_wkalrm(struct device
*dev
)
907 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
908 struct rtc_wkalrm current_alarm
;
909 time64_t t_current_expires
;
910 time64_t t_saved_expires
;
912 cmos_read_alarm(dev
, ¤t_alarm
);
913 t_current_expires
= rtc_tm_to_time64(¤t_alarm
.time
);
914 t_saved_expires
= rtc_tm_to_time64(&cmos
->saved_wkalrm
.time
);
915 if (t_current_expires
!= t_saved_expires
||
916 cmos
->saved_wkalrm
.enabled
!= current_alarm
.enabled
) {
917 cmos_set_alarm(dev
, &cmos
->saved_wkalrm
);
921 static void cmos_check_acpi_rtc_status(struct device
*dev
,
922 unsigned char *rtc_control
);
924 static int __maybe_unused
cmos_resume(struct device
*dev
)
926 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
929 if (cmos
->enabled_wake
) {
933 disable_irq_wake(cmos
->irq
);
934 cmos
->enabled_wake
= 0;
937 /* The BIOS might have changed the alarm, restore it */
938 cmos_check_wkalrm(dev
);
940 spin_lock_irq(&rtc_lock
);
941 tmp
= cmos
->suspend_ctrl
;
942 cmos
->suspend_ctrl
= 0;
943 /* re-enable any irqs previously active */
944 if (tmp
& RTC_IRQMASK
) {
947 if (device_may_wakeup(dev
))
948 hpet_rtc_timer_init();
951 CMOS_WRITE(tmp
, RTC_CONTROL
);
952 hpet_set_rtc_irq_bit(tmp
& RTC_IRQMASK
);
954 mask
= CMOS_READ(RTC_INTR_FLAGS
);
955 mask
&= (tmp
& RTC_IRQMASK
) | RTC_IRQF
;
956 if (!is_hpet_enabled() || !is_intr(mask
))
959 /* force one-shot behavior if HPET blocked
960 * the wake alarm's irq
962 rtc_update_irq(cmos
->rtc
, 1, mask
);
964 hpet_mask_rtc_irq_bit(RTC_AIE
);
965 } while (mask
& RTC_AIE
);
968 cmos_check_acpi_rtc_status(dev
, &tmp
);
970 spin_unlock_irq(&rtc_lock
);
972 dev_dbg(dev
, "resume, ctrl %02x\n", tmp
);
977 static SIMPLE_DEV_PM_OPS(cmos_pm_ops
, cmos_suspend
, cmos_resume
);
979 /*----------------------------------------------------------------*/
981 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
982 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
983 * probably list them in similar PNPBIOS tables; so PNP is more common.
985 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
986 * predate even PNPBIOS should set up platform_bus devices.
991 #include <linux/acpi.h>
993 static u32
rtc_handler(void *context
)
995 struct device
*dev
= context
;
996 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
997 unsigned char rtc_control
= 0;
998 unsigned char rtc_intr
;
1001 spin_lock_irqsave(&rtc_lock
, flags
);
1002 if (cmos_rtc
.suspend_ctrl
)
1003 rtc_control
= CMOS_READ(RTC_CONTROL
);
1004 if (rtc_control
& RTC_AIE
) {
1005 cmos_rtc
.suspend_ctrl
&= ~RTC_AIE
;
1006 CMOS_WRITE(rtc_control
, RTC_CONTROL
);
1007 rtc_intr
= CMOS_READ(RTC_INTR_FLAGS
);
1008 rtc_update_irq(cmos
->rtc
, 1, rtc_intr
);
1010 spin_unlock_irqrestore(&rtc_lock
, flags
);
1012 pm_wakeup_event(dev
, 0);
1013 acpi_clear_event(ACPI_EVENT_RTC
);
1014 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1015 return ACPI_INTERRUPT_HANDLED
;
1018 static inline void rtc_wake_setup(struct device
*dev
)
1020 acpi_install_fixed_event_handler(ACPI_EVENT_RTC
, rtc_handler
, dev
);
1022 * After the RTC handler is installed, the Fixed_RTC event should
1023 * be disabled. Only when the RTC alarm is set will it be enabled.
1025 acpi_clear_event(ACPI_EVENT_RTC
);
1026 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1029 static void rtc_wake_on(struct device
*dev
)
1031 acpi_clear_event(ACPI_EVENT_RTC
);
1032 acpi_enable_event(ACPI_EVENT_RTC
, 0);
1035 static void rtc_wake_off(struct device
*dev
)
1037 acpi_disable_event(ACPI_EVENT_RTC
, 0);
1040 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1041 * its device node and pass extra config data. This helps its driver use
1042 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1043 * that this board's RTC is wakeup-capable (per ACPI spec).
1045 static struct cmos_rtc_board_info acpi_rtc_info
;
1047 static void cmos_wake_setup(struct device
*dev
)
1052 rtc_wake_setup(dev
);
1053 acpi_rtc_info
.wake_on
= rtc_wake_on
;
1054 acpi_rtc_info
.wake_off
= rtc_wake_off
;
1056 /* workaround bug in some ACPI tables */
1057 if (acpi_gbl_FADT
.month_alarm
&& !acpi_gbl_FADT
.day_alarm
) {
1058 dev_dbg(dev
, "bogus FADT month_alarm (%d)\n",
1059 acpi_gbl_FADT
.month_alarm
);
1060 acpi_gbl_FADT
.month_alarm
= 0;
1063 acpi_rtc_info
.rtc_day_alarm
= acpi_gbl_FADT
.day_alarm
;
1064 acpi_rtc_info
.rtc_mon_alarm
= acpi_gbl_FADT
.month_alarm
;
1065 acpi_rtc_info
.rtc_century
= acpi_gbl_FADT
.century
;
1067 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1068 if (acpi_gbl_FADT
.flags
& ACPI_FADT_S4_RTC_WAKE
)
1069 dev_info(dev
, "RTC can wake from S4\n");
1071 dev
->platform_data
= &acpi_rtc_info
;
1073 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1074 device_init_wakeup(dev
, 1);
1077 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1078 unsigned char *rtc_control
)
1080 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1081 acpi_event_status rtc_status
;
1084 if (acpi_gbl_FADT
.flags
& ACPI_FADT_FIXED_RTC
)
1087 status
= acpi_get_event_status(ACPI_EVENT_RTC
, &rtc_status
);
1088 if (ACPI_FAILURE(status
)) {
1089 dev_err(dev
, "Could not get RTC status\n");
1090 } else if (rtc_status
& ACPI_EVENT_FLAG_SET
) {
1092 *rtc_control
&= ~RTC_AIE
;
1093 CMOS_WRITE(*rtc_control
, RTC_CONTROL
);
1094 mask
= CMOS_READ(RTC_INTR_FLAGS
);
1095 rtc_update_irq(cmos
->rtc
, 1, mask
);
1101 static void cmos_wake_setup(struct device
*dev
)
1105 static void cmos_check_acpi_rtc_status(struct device
*dev
,
1106 unsigned char *rtc_control
)
1114 #include <linux/pnp.h>
1116 static int cmos_pnp_probe(struct pnp_dev
*pnp
, const struct pnp_device_id
*id
)
1118 cmos_wake_setup(&pnp
->dev
);
1120 if (pnp_port_start(pnp
, 0) == 0x70 && !pnp_irq_valid(pnp
, 0))
1121 /* Some machines contain a PNP entry for the RTC, but
1122 * don't define the IRQ. It should always be safe to
1123 * hardcode it in these cases
1125 return cmos_do_probe(&pnp
->dev
,
1126 pnp_get_resource(pnp
, IORESOURCE_IO
, 0), 8);
1128 return cmos_do_probe(&pnp
->dev
,
1129 pnp_get_resource(pnp
, IORESOURCE_IO
, 0),
1133 static void cmos_pnp_remove(struct pnp_dev
*pnp
)
1135 cmos_do_remove(&pnp
->dev
);
1138 static void cmos_pnp_shutdown(struct pnp_dev
*pnp
)
1140 struct device
*dev
= &pnp
->dev
;
1141 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1143 if (system_state
== SYSTEM_POWER_OFF
) {
1144 int retval
= cmos_poweroff(dev
);
1146 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1150 cmos_do_shutdown(cmos
->irq
);
1153 static const struct pnp_device_id rtc_ids
[] = {
1154 { .id
= "PNP0b00", },
1155 { .id
= "PNP0b01", },
1156 { .id
= "PNP0b02", },
1159 MODULE_DEVICE_TABLE(pnp
, rtc_ids
);
1161 static struct pnp_driver cmos_pnp_driver
= {
1162 .name
= (char *) driver_name
,
1163 .id_table
= rtc_ids
,
1164 .probe
= cmos_pnp_probe
,
1165 .remove
= cmos_pnp_remove
,
1166 .shutdown
= cmos_pnp_shutdown
,
1168 /* flag ensures resume() gets called, and stops syslog spam */
1169 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1175 #endif /* CONFIG_PNP */
1178 static const struct of_device_id of_cmos_match
[] = {
1180 .compatible
= "motorola,mc146818",
1184 MODULE_DEVICE_TABLE(of
, of_cmos_match
);
1186 static __init
void cmos_of_init(struct platform_device
*pdev
)
1188 struct device_node
*node
= pdev
->dev
.of_node
;
1189 struct rtc_time time
;
1196 val
= of_get_property(node
, "ctrl-reg", NULL
);
1198 CMOS_WRITE(be32_to_cpup(val
), RTC_CONTROL
);
1200 val
= of_get_property(node
, "freq-reg", NULL
);
1202 CMOS_WRITE(be32_to_cpup(val
), RTC_FREQ_SELECT
);
1204 cmos_read_time(&pdev
->dev
, &time
);
1205 ret
= rtc_valid_tm(&time
);
1207 struct rtc_time def_time
= {
1211 cmos_set_time(&pdev
->dev
, &def_time
);
1215 static inline void cmos_of_init(struct platform_device
*pdev
) {}
1217 /*----------------------------------------------------------------*/
1219 /* Platform setup should have set up an RTC device, when PNP is
1220 * unavailable ... this could happen even on (older) PCs.
1223 static int __init
cmos_platform_probe(struct platform_device
*pdev
)
1225 struct resource
*resource
;
1229 cmos_wake_setup(&pdev
->dev
);
1232 resource
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
1234 resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1235 irq
= platform_get_irq(pdev
, 0);
1239 return cmos_do_probe(&pdev
->dev
, resource
, irq
);
1242 static int cmos_platform_remove(struct platform_device
*pdev
)
1244 cmos_do_remove(&pdev
->dev
);
1248 static void cmos_platform_shutdown(struct platform_device
*pdev
)
1250 struct device
*dev
= &pdev
->dev
;
1251 struct cmos_rtc
*cmos
= dev_get_drvdata(dev
);
1253 if (system_state
== SYSTEM_POWER_OFF
) {
1254 int retval
= cmos_poweroff(dev
);
1256 if (cmos_aie_poweroff(dev
) < 0 && !retval
)
1260 cmos_do_shutdown(cmos
->irq
);
1263 /* work with hotplug and coldplug */
1264 MODULE_ALIAS("platform:rtc_cmos");
1266 static struct platform_driver cmos_platform_driver
= {
1267 .remove
= cmos_platform_remove
,
1268 .shutdown
= cmos_platform_shutdown
,
1270 .name
= driver_name
,
1272 .of_match_table
= of_match_ptr(of_cmos_match
),
1277 static bool pnp_driver_registered
;
1279 static bool platform_driver_registered
;
1281 static int __init
cmos_init(void)
1286 retval
= pnp_register_driver(&cmos_pnp_driver
);
1288 pnp_driver_registered
= true;
1291 if (!cmos_rtc
.dev
) {
1292 retval
= platform_driver_probe(&cmos_platform_driver
,
1293 cmos_platform_probe
);
1295 platform_driver_registered
= true;
1302 if (pnp_driver_registered
)
1303 pnp_unregister_driver(&cmos_pnp_driver
);
1307 module_init(cmos_init
);
1309 static void __exit
cmos_exit(void)
1312 if (pnp_driver_registered
)
1313 pnp_unregister_driver(&cmos_pnp_driver
);
1315 if (platform_driver_registered
)
1316 platform_driver_unregister(&cmos_platform_driver
);
1318 module_exit(cmos_exit
);
1321 MODULE_AUTHOR("David Brownell");
1322 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1323 MODULE_LICENSE("GPL");