2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
48 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map
);
50 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
51 EXPORT_SYMBOL(node_possible_map
);
52 unsigned long totalram_pages __read_mostly
;
53 unsigned long totalhigh_pages __read_mostly
;
55 int percpu_pagelist_fraction
;
57 static void __free_pages_ok(struct page
*page
, unsigned int order
);
60 * results with 256, 32 in the lowmem_reserve sysctl:
61 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
62 * 1G machine -> (16M dma, 784M normal, 224M high)
63 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
64 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
65 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 * TBD: should special case ZONE_DMA32 machines here - in those we normally
68 * don't need any ZONE_NORMAL reservation
70 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 256, 32 };
72 EXPORT_SYMBOL(totalram_pages
);
75 * Used by page_zone() to look up the address of the struct zone whose
76 * id is encoded in the upper bits of page->flags
78 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
79 EXPORT_SYMBOL(zone_table
);
81 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "DMA32", "Normal", "HighMem" };
82 int min_free_kbytes
= 1024;
84 unsigned long __initdata nr_kernel_pages
;
85 unsigned long __initdata nr_all_pages
;
87 #ifdef CONFIG_DEBUG_VM
88 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
92 unsigned long pfn
= page_to_pfn(page
);
95 seq
= zone_span_seqbegin(zone
);
96 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
98 else if (pfn
< zone
->zone_start_pfn
)
100 } while (zone_span_seqretry(zone
, seq
));
105 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
107 #ifdef CONFIG_HOLES_IN_ZONE
108 if (!pfn_valid(page_to_pfn(page
)))
111 if (zone
!= page_zone(page
))
117 * Temporary debugging check for pages not lying within a given zone.
119 static int bad_range(struct zone
*zone
, struct page
*page
)
121 if (page_outside_zone_boundaries(zone
, page
))
123 if (!page_is_consistent(zone
, page
))
130 static inline int bad_range(struct zone
*zone
, struct page
*page
)
136 static void bad_page(struct page
*page
)
138 printk(KERN_EMERG
"Bad page state in process '%s'\n"
139 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
141 KERN_EMERG
"Backtrace:\n",
142 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
143 (unsigned long)page
->flags
, page
->mapping
,
144 page_mapcount(page
), page_count(page
));
146 page
->flags
&= ~(1 << PG_lru
|
155 set_page_count(page
, 0);
156 reset_page_mapcount(page
);
157 page
->mapping
= NULL
;
158 add_taint(TAINT_BAD_PAGE
);
162 * Higher-order pages are called "compound pages". They are structured thusly:
164 * The first PAGE_SIZE page is called the "head page".
166 * The remaining PAGE_SIZE pages are called "tail pages".
168 * All pages have PG_compound set. All pages have their ->private pointing at
169 * the head page (even the head page has this).
171 * The first tail page's ->lru.next holds the address of the compound page's
172 * put_page() function. Its ->lru.prev holds the order of allocation.
173 * This usage means that zero-order pages may not be compound.
176 static void free_compound_page(struct page
*page
)
178 __free_pages_ok(page
, (unsigned long)page
[1].lru
.prev
);
181 static void prep_compound_page(struct page
*page
, unsigned long order
)
184 int nr_pages
= 1 << order
;
186 page
[1].lru
.next
= (void *)free_compound_page
; /* set dtor */
187 page
[1].lru
.prev
= (void *)order
;
188 for (i
= 0; i
< nr_pages
; i
++) {
189 struct page
*p
= page
+ i
;
191 __SetPageCompound(p
);
192 set_page_private(p
, (unsigned long)page
);
196 static void destroy_compound_page(struct page
*page
, unsigned long order
)
199 int nr_pages
= 1 << order
;
201 if (unlikely((unsigned long)page
[1].lru
.prev
!= order
))
204 for (i
= 0; i
< nr_pages
; i
++) {
205 struct page
*p
= page
+ i
;
207 if (unlikely(!PageCompound(p
) |
208 (page_private(p
) != (unsigned long)page
)))
210 __ClearPageCompound(p
);
214 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
218 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
220 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
221 * and __GFP_HIGHMEM from hard or soft interrupt context.
223 BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
224 for (i
= 0; i
< (1 << order
); i
++)
225 clear_highpage(page
+ i
);
229 * function for dealing with page's order in buddy system.
230 * zone->lock is already acquired when we use these.
231 * So, we don't need atomic page->flags operations here.
233 static inline unsigned long page_order(struct page
*page
) {
234 return page_private(page
);
237 static inline void set_page_order(struct page
*page
, int order
) {
238 set_page_private(page
, order
);
239 __SetPagePrivate(page
);
242 static inline void rmv_page_order(struct page
*page
)
244 __ClearPagePrivate(page
);
245 set_page_private(page
, 0);
249 * Locate the struct page for both the matching buddy in our
250 * pair (buddy1) and the combined O(n+1) page they form (page).
252 * 1) Any buddy B1 will have an order O twin B2 which satisfies
253 * the following equation:
255 * For example, if the starting buddy (buddy2) is #8 its order
257 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
259 * 2) Any buddy B will have an order O+1 parent P which
260 * satisfies the following equation:
263 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
265 static inline struct page
*
266 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
268 unsigned long buddy_idx
= page_idx
^ (1 << order
);
270 return page
+ (buddy_idx
- page_idx
);
273 static inline unsigned long
274 __find_combined_index(unsigned long page_idx
, unsigned int order
)
276 return (page_idx
& ~(1 << order
));
280 * This function checks whether a page is free && is the buddy
281 * we can do coalesce a page and its buddy if
282 * (a) the buddy is not in a hole &&
283 * (b) the buddy is free &&
284 * (c) the buddy is on the buddy system &&
285 * (d) a page and its buddy have the same order.
286 * for recording page's order, we use page_private(page) and PG_private.
289 static inline int page_is_buddy(struct page
*page
, int order
)
291 #ifdef CONFIG_HOLES_IN_ZONE
292 if (!pfn_valid(page_to_pfn(page
)))
296 if (PagePrivate(page
) &&
297 (page_order(page
) == order
) &&
298 page_count(page
) == 0)
304 * Freeing function for a buddy system allocator.
306 * The concept of a buddy system is to maintain direct-mapped table
307 * (containing bit values) for memory blocks of various "orders".
308 * The bottom level table contains the map for the smallest allocatable
309 * units of memory (here, pages), and each level above it describes
310 * pairs of units from the levels below, hence, "buddies".
311 * At a high level, all that happens here is marking the table entry
312 * at the bottom level available, and propagating the changes upward
313 * as necessary, plus some accounting needed to play nicely with other
314 * parts of the VM system.
315 * At each level, we keep a list of pages, which are heads of continuous
316 * free pages of length of (1 << order) and marked with PG_Private.Page's
317 * order is recorded in page_private(page) field.
318 * So when we are allocating or freeing one, we can derive the state of the
319 * other. That is, if we allocate a small block, and both were
320 * free, the remainder of the region must be split into blocks.
321 * If a block is freed, and its buddy is also free, then this
322 * triggers coalescing into a block of larger size.
327 static inline void __free_one_page(struct page
*page
,
328 struct zone
*zone
, unsigned int order
)
330 unsigned long page_idx
;
331 int order_size
= 1 << order
;
333 if (unlikely(PageCompound(page
)))
334 destroy_compound_page(page
, order
);
336 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
338 BUG_ON(page_idx
& (order_size
- 1));
339 BUG_ON(bad_range(zone
, page
));
341 zone
->free_pages
+= order_size
;
342 while (order
< MAX_ORDER
-1) {
343 unsigned long combined_idx
;
344 struct free_area
*area
;
347 buddy
= __page_find_buddy(page
, page_idx
, order
);
348 if (!page_is_buddy(buddy
, order
))
349 break; /* Move the buddy up one level. */
351 list_del(&buddy
->lru
);
352 area
= zone
->free_area
+ order
;
354 rmv_page_order(buddy
);
355 combined_idx
= __find_combined_index(page_idx
, order
);
356 page
= page
+ (combined_idx
- page_idx
);
357 page_idx
= combined_idx
;
360 set_page_order(page
, order
);
361 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
362 zone
->free_area
[order
].nr_free
++;
365 static inline int free_pages_check(struct page
*page
)
367 if (unlikely(page_mapcount(page
) |
368 (page
->mapping
!= NULL
) |
369 (page_count(page
) != 0) |
379 1 << PG_reserved
))))
382 __ClearPageDirty(page
);
384 * For now, we report if PG_reserved was found set, but do not
385 * clear it, and do not free the page. But we shall soon need
386 * to do more, for when the ZERO_PAGE count wraps negative.
388 return PageReserved(page
);
392 * Frees a list of pages.
393 * Assumes all pages on list are in same zone, and of same order.
394 * count is the number of pages to free.
396 * If the zone was previously in an "all pages pinned" state then look to
397 * see if this freeing clears that state.
399 * And clear the zone's pages_scanned counter, to hold off the "all pages are
400 * pinned" detection logic.
402 static void free_pages_bulk(struct zone
*zone
, int count
,
403 struct list_head
*list
, int order
)
405 spin_lock(&zone
->lock
);
406 zone
->all_unreclaimable
= 0;
407 zone
->pages_scanned
= 0;
411 BUG_ON(list_empty(list
));
412 page
= list_entry(list
->prev
, struct page
, lru
);
413 /* have to delete it as __free_one_page list manipulates */
414 list_del(&page
->lru
);
415 __free_one_page(page
, zone
, order
);
417 spin_unlock(&zone
->lock
);
420 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
423 list_add(&page
->lru
, &list
);
424 free_pages_bulk(zone
, 1, &list
, order
);
427 static void __free_pages_ok(struct page
*page
, unsigned int order
)
433 arch_free_page(page
, order
);
434 if (!PageHighMem(page
))
435 mutex_debug_check_no_locks_freed(page_address(page
),
438 for (i
= 0 ; i
< (1 << order
) ; ++i
)
439 reserved
+= free_pages_check(page
+ i
);
443 kernel_map_pages(page
, 1 << order
, 0);
444 local_irq_save(flags
);
445 __mod_page_state(pgfree
, 1 << order
);
446 free_one_page(page_zone(page
), page
, order
);
447 local_irq_restore(flags
);
451 * permit the bootmem allocator to evade page validation on high-order frees
453 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
456 __ClearPageReserved(page
);
457 set_page_count(page
, 0);
458 set_page_refcounted(page
);
464 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
465 struct page
*p
= &page
[loop
];
467 if (loop
+ 1 < BITS_PER_LONG
)
469 __ClearPageReserved(p
);
470 set_page_count(p
, 0);
473 set_page_refcounted(page
);
474 __free_pages(page
, order
);
480 * The order of subdivision here is critical for the IO subsystem.
481 * Please do not alter this order without good reasons and regression
482 * testing. Specifically, as large blocks of memory are subdivided,
483 * the order in which smaller blocks are delivered depends on the order
484 * they're subdivided in this function. This is the primary factor
485 * influencing the order in which pages are delivered to the IO
486 * subsystem according to empirical testing, and this is also justified
487 * by considering the behavior of a buddy system containing a single
488 * large block of memory acted on by a series of small allocations.
489 * This behavior is a critical factor in sglist merging's success.
493 static inline void expand(struct zone
*zone
, struct page
*page
,
494 int low
, int high
, struct free_area
*area
)
496 unsigned long size
= 1 << high
;
502 BUG_ON(bad_range(zone
, &page
[size
]));
503 list_add(&page
[size
].lru
, &area
->free_list
);
505 set_page_order(&page
[size
], high
);
510 * This page is about to be returned from the page allocator
512 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
514 if (unlikely(page_mapcount(page
) |
515 (page
->mapping
!= NULL
) |
516 (page_count(page
) != 0) |
527 1 << PG_reserved
))))
531 * For now, we report if PG_reserved was found set, but do not
532 * clear it, and do not allocate the page: as a safety net.
534 if (PageReserved(page
))
537 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
538 1 << PG_referenced
| 1 << PG_arch_1
|
539 1 << PG_checked
| 1 << PG_mappedtodisk
);
540 set_page_private(page
, 0);
541 set_page_refcounted(page
);
542 kernel_map_pages(page
, 1 << order
, 1);
544 if (gfp_flags
& __GFP_ZERO
)
545 prep_zero_page(page
, order
, gfp_flags
);
547 if (order
&& (gfp_flags
& __GFP_COMP
))
548 prep_compound_page(page
, order
);
554 * Do the hard work of removing an element from the buddy allocator.
555 * Call me with the zone->lock already held.
557 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
559 struct free_area
* area
;
560 unsigned int current_order
;
563 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
564 area
= zone
->free_area
+ current_order
;
565 if (list_empty(&area
->free_list
))
568 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
569 list_del(&page
->lru
);
570 rmv_page_order(page
);
572 zone
->free_pages
-= 1UL << order
;
573 expand(zone
, page
, order
, current_order
, area
);
581 * Obtain a specified number of elements from the buddy allocator, all under
582 * a single hold of the lock, for efficiency. Add them to the supplied list.
583 * Returns the number of new pages which were placed at *list.
585 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
586 unsigned long count
, struct list_head
*list
)
590 spin_lock(&zone
->lock
);
591 for (i
= 0; i
< count
; ++i
) {
592 struct page
*page
= __rmqueue(zone
, order
);
593 if (unlikely(page
== NULL
))
595 list_add_tail(&page
->lru
, list
);
597 spin_unlock(&zone
->lock
);
603 * Called from the slab reaper to drain pagesets on a particular node that
604 * belong to the currently executing processor.
605 * Note that this function must be called with the thread pinned to
606 * a single processor.
608 void drain_node_pages(int nodeid
)
613 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
614 struct zone
*zone
= NODE_DATA(nodeid
)->node_zones
+ z
;
615 struct per_cpu_pageset
*pset
;
617 pset
= zone_pcp(zone
, smp_processor_id());
618 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
619 struct per_cpu_pages
*pcp
;
623 local_irq_save(flags
);
624 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
626 local_irq_restore(flags
);
633 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
634 static void __drain_pages(unsigned int cpu
)
640 for_each_zone(zone
) {
641 struct per_cpu_pageset
*pset
;
643 pset
= zone_pcp(zone
, cpu
);
644 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
645 struct per_cpu_pages
*pcp
;
648 local_irq_save(flags
);
649 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
651 local_irq_restore(flags
);
655 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
659 void mark_free_pages(struct zone
*zone
)
661 unsigned long zone_pfn
, flags
;
663 struct list_head
*curr
;
665 if (!zone
->spanned_pages
)
668 spin_lock_irqsave(&zone
->lock
, flags
);
669 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
670 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
672 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
673 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
674 unsigned long start_pfn
, i
;
676 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
678 for (i
=0; i
< (1<<order
); i
++)
679 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
681 spin_unlock_irqrestore(&zone
->lock
, flags
);
685 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
687 void drain_local_pages(void)
691 local_irq_save(flags
);
692 __drain_pages(smp_processor_id());
693 local_irq_restore(flags
);
695 #endif /* CONFIG_PM */
697 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
, int cpu
)
700 pg_data_t
*pg
= z
->zone_pgdat
;
701 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
702 struct per_cpu_pageset
*p
;
704 p
= zone_pcp(z
, cpu
);
709 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
711 if (pg
== NODE_DATA(numa_node_id()))
719 * Free a 0-order page
721 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
723 struct zone
*zone
= page_zone(page
);
724 struct per_cpu_pages
*pcp
;
727 arch_free_page(page
, 0);
730 page
->mapping
= NULL
;
731 if (free_pages_check(page
))
734 kernel_map_pages(page
, 1, 0);
736 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
737 local_irq_save(flags
);
738 __inc_page_state(pgfree
);
739 list_add(&page
->lru
, &pcp
->list
);
741 if (pcp
->count
>= pcp
->high
) {
742 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
743 pcp
->count
-= pcp
->batch
;
745 local_irq_restore(flags
);
749 void fastcall
free_hot_page(struct page
*page
)
751 free_hot_cold_page(page
, 0);
754 void fastcall
free_cold_page(struct page
*page
)
756 free_hot_cold_page(page
, 1);
760 * split_page takes a non-compound higher-order page, and splits it into
761 * n (1<<order) sub-pages: page[0..n]
762 * Each sub-page must be freed individually.
764 * Note: this is probably too low level an operation for use in drivers.
765 * Please consult with lkml before using this in your driver.
767 void split_page(struct page
*page
, unsigned int order
)
771 BUG_ON(PageCompound(page
));
772 BUG_ON(!page_count(page
));
773 for (i
= 1; i
< (1 << order
); i
++)
774 set_page_refcounted(page
+ i
);
778 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
779 * we cheat by calling it from here, in the order > 0 path. Saves a branch
782 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
783 struct zone
*zone
, int order
, gfp_t gfp_flags
)
787 int cold
= !!(gfp_flags
& __GFP_COLD
);
792 if (likely(order
== 0)) {
793 struct per_cpu_pages
*pcp
;
795 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
796 local_irq_save(flags
);
798 pcp
->count
+= rmqueue_bulk(zone
, 0,
799 pcp
->batch
, &pcp
->list
);
800 if (unlikely(!pcp
->count
))
803 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
804 list_del(&page
->lru
);
807 spin_lock_irqsave(&zone
->lock
, flags
);
808 page
= __rmqueue(zone
, order
);
809 spin_unlock(&zone
->lock
);
814 __mod_page_state_zone(zone
, pgalloc
, 1 << order
);
815 zone_statistics(zonelist
, zone
, cpu
);
816 local_irq_restore(flags
);
819 BUG_ON(bad_range(zone
, page
));
820 if (prep_new_page(page
, order
, gfp_flags
))
825 local_irq_restore(flags
);
830 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
831 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
832 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
833 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
834 #define ALLOC_HARDER 0x10 /* try to alloc harder */
835 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
836 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
839 * Return 1 if free pages are above 'mark'. This takes into account the order
842 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
843 int classzone_idx
, int alloc_flags
)
845 /* free_pages my go negative - that's OK */
846 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
849 if (alloc_flags
& ALLOC_HIGH
)
851 if (alloc_flags
& ALLOC_HARDER
)
854 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
856 for (o
= 0; o
< order
; o
++) {
857 /* At the next order, this order's pages become unavailable */
858 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
860 /* Require fewer higher order pages to be free */
863 if (free_pages
<= min
)
870 * get_page_from_freeliest goes through the zonelist trying to allocate
874 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
875 struct zonelist
*zonelist
, int alloc_flags
)
877 struct zone
**z
= zonelist
->zones
;
878 struct page
*page
= NULL
;
879 int classzone_idx
= zone_idx(*z
);
882 * Go through the zonelist once, looking for a zone with enough free.
883 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
886 if ((alloc_flags
& ALLOC_CPUSET
) &&
887 !cpuset_zone_allowed(*z
, gfp_mask
))
890 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
892 if (alloc_flags
& ALLOC_WMARK_MIN
)
893 mark
= (*z
)->pages_min
;
894 else if (alloc_flags
& ALLOC_WMARK_LOW
)
895 mark
= (*z
)->pages_low
;
897 mark
= (*z
)->pages_high
;
898 if (!zone_watermark_ok(*z
, order
, mark
,
899 classzone_idx
, alloc_flags
))
900 if (!zone_reclaim_mode
||
901 !zone_reclaim(*z
, gfp_mask
, order
))
905 page
= buffered_rmqueue(zonelist
, *z
, order
, gfp_mask
);
909 } while (*(++z
) != NULL
);
914 * This is the 'heart' of the zoned buddy allocator.
916 struct page
* fastcall
917 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
918 struct zonelist
*zonelist
)
920 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
923 struct reclaim_state reclaim_state
;
924 struct task_struct
*p
= current
;
927 int did_some_progress
;
929 might_sleep_if(wait
);
932 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
934 if (unlikely(*z
== NULL
)) {
935 /* Should this ever happen?? */
939 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
940 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
945 if (cpuset_zone_allowed(*z
, gfp_mask
))
946 wakeup_kswapd(*z
, order
);
950 * OK, we're below the kswapd watermark and have kicked background
951 * reclaim. Now things get more complex, so set up alloc_flags according
952 * to how we want to proceed.
954 * The caller may dip into page reserves a bit more if the caller
955 * cannot run direct reclaim, or if the caller has realtime scheduling
956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
957 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
959 alloc_flags
= ALLOC_WMARK_MIN
;
960 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
961 alloc_flags
|= ALLOC_HARDER
;
962 if (gfp_mask
& __GFP_HIGH
)
963 alloc_flags
|= ALLOC_HIGH
;
964 alloc_flags
|= ALLOC_CPUSET
;
967 * Go through the zonelist again. Let __GFP_HIGH and allocations
968 * coming from realtime tasks go deeper into reserves.
970 * This is the last chance, in general, before the goto nopage.
971 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
972 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
974 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
978 /* This allocation should allow future memory freeing. */
980 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
981 && !in_interrupt()) {
982 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
984 /* go through the zonelist yet again, ignoring mins */
985 page
= get_page_from_freelist(gfp_mask
, order
,
986 zonelist
, ALLOC_NO_WATERMARKS
);
989 if (gfp_mask
& __GFP_NOFAIL
) {
990 blk_congestion_wait(WRITE
, HZ
/50);
997 /* Atomic allocations - we can't balance anything */
1004 /* We now go into synchronous reclaim */
1005 cpuset_memory_pressure_bump();
1006 p
->flags
|= PF_MEMALLOC
;
1007 reclaim_state
.reclaimed_slab
= 0;
1008 p
->reclaim_state
= &reclaim_state
;
1010 did_some_progress
= try_to_free_pages(zonelist
->zones
, gfp_mask
);
1012 p
->reclaim_state
= NULL
;
1013 p
->flags
&= ~PF_MEMALLOC
;
1017 if (likely(did_some_progress
)) {
1018 page
= get_page_from_freelist(gfp_mask
, order
,
1019 zonelist
, alloc_flags
);
1022 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1024 * Go through the zonelist yet one more time, keep
1025 * very high watermark here, this is only to catch
1026 * a parallel oom killing, we must fail if we're still
1027 * under heavy pressure.
1029 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1030 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1034 out_of_memory(zonelist
, gfp_mask
, order
);
1039 * Don't let big-order allocations loop unless the caller explicitly
1040 * requests that. Wait for some write requests to complete then retry.
1042 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1043 * <= 3, but that may not be true in other implementations.
1046 if (!(gfp_mask
& __GFP_NORETRY
)) {
1047 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
1049 if (gfp_mask
& __GFP_NOFAIL
)
1053 blk_congestion_wait(WRITE
, HZ
/50);
1058 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1059 printk(KERN_WARNING
"%s: page allocation failure."
1060 " order:%d, mode:0x%x\n",
1061 p
->comm
, order
, gfp_mask
);
1069 EXPORT_SYMBOL(__alloc_pages
);
1072 * Common helper functions.
1074 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1077 page
= alloc_pages(gfp_mask
, order
);
1080 return (unsigned long) page_address(page
);
1083 EXPORT_SYMBOL(__get_free_pages
);
1085 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1090 * get_zeroed_page() returns a 32-bit address, which cannot represent
1093 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1095 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1097 return (unsigned long) page_address(page
);
1101 EXPORT_SYMBOL(get_zeroed_page
);
1103 void __pagevec_free(struct pagevec
*pvec
)
1105 int i
= pagevec_count(pvec
);
1108 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1111 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1113 if (put_page_testzero(page
)) {
1115 free_hot_page(page
);
1117 __free_pages_ok(page
, order
);
1121 EXPORT_SYMBOL(__free_pages
);
1123 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1126 BUG_ON(!virt_addr_valid((void *)addr
));
1127 __free_pages(virt_to_page((void *)addr
), order
);
1131 EXPORT_SYMBOL(free_pages
);
1134 * Total amount of free (allocatable) RAM:
1136 unsigned int nr_free_pages(void)
1138 unsigned int sum
= 0;
1142 sum
+= zone
->free_pages
;
1147 EXPORT_SYMBOL(nr_free_pages
);
1150 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1152 unsigned int i
, sum
= 0;
1154 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1155 sum
+= pgdat
->node_zones
[i
].free_pages
;
1161 static unsigned int nr_free_zone_pages(int offset
)
1163 /* Just pick one node, since fallback list is circular */
1164 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1165 unsigned int sum
= 0;
1167 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1168 struct zone
**zonep
= zonelist
->zones
;
1171 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1172 unsigned long size
= zone
->present_pages
;
1173 unsigned long high
= zone
->pages_high
;
1182 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1184 unsigned int nr_free_buffer_pages(void)
1186 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1190 * Amount of free RAM allocatable within all zones
1192 unsigned int nr_free_pagecache_pages(void)
1194 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1197 #ifdef CONFIG_HIGHMEM
1198 unsigned int nr_free_highpages (void)
1201 unsigned int pages
= 0;
1203 for_each_online_pgdat(pgdat
)
1204 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1211 static void show_node(struct zone
*zone
)
1213 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1216 #define show_node(zone) do { } while (0)
1220 * Accumulate the page_state information across all CPUs.
1221 * The result is unavoidably approximate - it can change
1222 * during and after execution of this function.
1224 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1226 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1227 EXPORT_SYMBOL(nr_pagecache
);
1229 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1232 static void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1236 memset(ret
, 0, nr
* sizeof(unsigned long));
1237 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1239 for_each_cpu_mask(cpu
, *cpumask
) {
1245 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1247 next_cpu
= next_cpu(cpu
, *cpumask
);
1248 if (likely(next_cpu
< NR_CPUS
))
1249 prefetch(&per_cpu(page_states
, next_cpu
));
1251 out
= (unsigned long *)ret
;
1252 for (off
= 0; off
< nr
; off
++)
1257 void get_page_state_node(struct page_state
*ret
, int node
)
1260 cpumask_t mask
= node_to_cpumask(node
);
1262 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1263 nr
/= sizeof(unsigned long);
1265 __get_page_state(ret
, nr
+1, &mask
);
1268 void get_page_state(struct page_state
*ret
)
1271 cpumask_t mask
= CPU_MASK_ALL
;
1273 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1274 nr
/= sizeof(unsigned long);
1276 __get_page_state(ret
, nr
+ 1, &mask
);
1279 void get_full_page_state(struct page_state
*ret
)
1281 cpumask_t mask
= CPU_MASK_ALL
;
1283 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1286 unsigned long read_page_state_offset(unsigned long offset
)
1288 unsigned long ret
= 0;
1291 for_each_online_cpu(cpu
) {
1294 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1295 ret
+= *((unsigned long *)in
);
1300 void __mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1304 ptr
= &__get_cpu_var(page_states
);
1305 *(unsigned long *)(ptr
+ offset
) += delta
;
1307 EXPORT_SYMBOL(__mod_page_state_offset
);
1309 void mod_page_state_offset(unsigned long offset
, unsigned long delta
)
1311 unsigned long flags
;
1314 local_irq_save(flags
);
1315 ptr
= &__get_cpu_var(page_states
);
1316 *(unsigned long *)(ptr
+ offset
) += delta
;
1317 local_irq_restore(flags
);
1319 EXPORT_SYMBOL(mod_page_state_offset
);
1321 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1322 unsigned long *free
, struct pglist_data
*pgdat
)
1324 struct zone
*zones
= pgdat
->node_zones
;
1330 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1331 *active
+= zones
[i
].nr_active
;
1332 *inactive
+= zones
[i
].nr_inactive
;
1333 *free
+= zones
[i
].free_pages
;
1337 void get_zone_counts(unsigned long *active
,
1338 unsigned long *inactive
, unsigned long *free
)
1340 struct pglist_data
*pgdat
;
1345 for_each_online_pgdat(pgdat
) {
1346 unsigned long l
, m
, n
;
1347 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1354 void si_meminfo(struct sysinfo
*val
)
1356 val
->totalram
= totalram_pages
;
1358 val
->freeram
= nr_free_pages();
1359 val
->bufferram
= nr_blockdev_pages();
1360 #ifdef CONFIG_HIGHMEM
1361 val
->totalhigh
= totalhigh_pages
;
1362 val
->freehigh
= nr_free_highpages();
1367 val
->mem_unit
= PAGE_SIZE
;
1370 EXPORT_SYMBOL(si_meminfo
);
1373 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1375 pg_data_t
*pgdat
= NODE_DATA(nid
);
1377 val
->totalram
= pgdat
->node_present_pages
;
1378 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1379 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1380 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1381 val
->mem_unit
= PAGE_SIZE
;
1385 #define K(x) ((x) << (PAGE_SHIFT-10))
1388 * Show free area list (used inside shift_scroll-lock stuff)
1389 * We also calculate the percentage fragmentation. We do this by counting the
1390 * memory on each free list with the exception of the first item on the list.
1392 void show_free_areas(void)
1394 struct page_state ps
;
1395 int cpu
, temperature
;
1396 unsigned long active
;
1397 unsigned long inactive
;
1401 for_each_zone(zone
) {
1403 printk("%s per-cpu:", zone
->name
);
1405 if (!populated_zone(zone
)) {
1411 for_each_online_cpu(cpu
) {
1412 struct per_cpu_pageset
*pageset
;
1414 pageset
= zone_pcp(zone
, cpu
);
1416 for (temperature
= 0; temperature
< 2; temperature
++)
1417 printk("cpu %d %s: high %d, batch %d used:%d\n",
1419 temperature
? "cold" : "hot",
1420 pageset
->pcp
[temperature
].high
,
1421 pageset
->pcp
[temperature
].batch
,
1422 pageset
->pcp
[temperature
].count
);
1426 get_page_state(&ps
);
1427 get_zone_counts(&active
, &inactive
, &free
);
1429 printk("Free pages: %11ukB (%ukB HighMem)\n",
1431 K(nr_free_highpages()));
1433 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1434 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1443 ps
.nr_page_table_pages
);
1445 for_each_zone(zone
) {
1457 " pages_scanned:%lu"
1458 " all_unreclaimable? %s"
1461 K(zone
->free_pages
),
1464 K(zone
->pages_high
),
1466 K(zone
->nr_inactive
),
1467 K(zone
->present_pages
),
1468 zone
->pages_scanned
,
1469 (zone
->all_unreclaimable
? "yes" : "no")
1471 printk("lowmem_reserve[]:");
1472 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1473 printk(" %lu", zone
->lowmem_reserve
[i
]);
1477 for_each_zone(zone
) {
1478 unsigned long nr
, flags
, order
, total
= 0;
1481 printk("%s: ", zone
->name
);
1482 if (!populated_zone(zone
)) {
1487 spin_lock_irqsave(&zone
->lock
, flags
);
1488 for (order
= 0; order
< MAX_ORDER
; order
++) {
1489 nr
= zone
->free_area
[order
].nr_free
;
1490 total
+= nr
<< order
;
1491 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1493 spin_unlock_irqrestore(&zone
->lock
, flags
);
1494 printk("= %lukB\n", K(total
));
1497 show_swap_cache_info();
1501 * Builds allocation fallback zone lists.
1503 * Add all populated zones of a node to the zonelist.
1505 static int __init
build_zonelists_node(pg_data_t
*pgdat
,
1506 struct zonelist
*zonelist
, int nr_zones
, int zone_type
)
1510 BUG_ON(zone_type
> ZONE_HIGHMEM
);
1513 zone
= pgdat
->node_zones
+ zone_type
;
1514 if (populated_zone(zone
)) {
1515 #ifndef CONFIG_HIGHMEM
1516 BUG_ON(zone_type
> ZONE_NORMAL
);
1518 zonelist
->zones
[nr_zones
++] = zone
;
1519 check_highest_zone(zone_type
);
1523 } while (zone_type
>= 0);
1527 static inline int highest_zone(int zone_bits
)
1529 int res
= ZONE_NORMAL
;
1530 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1532 if (zone_bits
& (__force
int)__GFP_DMA32
)
1534 if (zone_bits
& (__force
int)__GFP_DMA
)
1540 #define MAX_NODE_LOAD (num_online_nodes())
1541 static int __initdata node_load
[MAX_NUMNODES
];
1543 * find_next_best_node - find the next node that should appear in a given node's fallback list
1544 * @node: node whose fallback list we're appending
1545 * @used_node_mask: nodemask_t of already used nodes
1547 * We use a number of factors to determine which is the next node that should
1548 * appear on a given node's fallback list. The node should not have appeared
1549 * already in @node's fallback list, and it should be the next closest node
1550 * according to the distance array (which contains arbitrary distance values
1551 * from each node to each node in the system), and should also prefer nodes
1552 * with no CPUs, since presumably they'll have very little allocation pressure
1553 * on them otherwise.
1554 * It returns -1 if no node is found.
1556 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1559 int min_val
= INT_MAX
;
1562 /* Use the local node if we haven't already */
1563 if (!node_isset(node
, *used_node_mask
)) {
1564 node_set(node
, *used_node_mask
);
1568 for_each_online_node(n
) {
1571 /* Don't want a node to appear more than once */
1572 if (node_isset(n
, *used_node_mask
))
1575 /* Use the distance array to find the distance */
1576 val
= node_distance(node
, n
);
1578 /* Penalize nodes under us ("prefer the next node") */
1581 /* Give preference to headless and unused nodes */
1582 tmp
= node_to_cpumask(n
);
1583 if (!cpus_empty(tmp
))
1584 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1586 /* Slight preference for less loaded node */
1587 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1588 val
+= node_load
[n
];
1590 if (val
< min_val
) {
1597 node_set(best_node
, *used_node_mask
);
1602 static void __init
build_zonelists(pg_data_t
*pgdat
)
1604 int i
, j
, k
, node
, local_node
;
1605 int prev_node
, load
;
1606 struct zonelist
*zonelist
;
1607 nodemask_t used_mask
;
1609 /* initialize zonelists */
1610 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1611 zonelist
= pgdat
->node_zonelists
+ i
;
1612 zonelist
->zones
[0] = NULL
;
1615 /* NUMA-aware ordering of nodes */
1616 local_node
= pgdat
->node_id
;
1617 load
= num_online_nodes();
1618 prev_node
= local_node
;
1619 nodes_clear(used_mask
);
1620 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1621 int distance
= node_distance(local_node
, node
);
1624 * If another node is sufficiently far away then it is better
1625 * to reclaim pages in a zone before going off node.
1627 if (distance
> RECLAIM_DISTANCE
)
1628 zone_reclaim_mode
= 1;
1631 * We don't want to pressure a particular node.
1632 * So adding penalty to the first node in same
1633 * distance group to make it round-robin.
1636 if (distance
!= node_distance(local_node
, prev_node
))
1637 node_load
[node
] += load
;
1640 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1641 zonelist
= pgdat
->node_zonelists
+ i
;
1642 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1644 k
= highest_zone(i
);
1646 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1647 zonelist
->zones
[j
] = NULL
;
1652 #else /* CONFIG_NUMA */
1654 static void __init
build_zonelists(pg_data_t
*pgdat
)
1656 int i
, j
, k
, node
, local_node
;
1658 local_node
= pgdat
->node_id
;
1659 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1660 struct zonelist
*zonelist
;
1662 zonelist
= pgdat
->node_zonelists
+ i
;
1665 k
= highest_zone(i
);
1666 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1668 * Now we build the zonelist so that it contains the zones
1669 * of all the other nodes.
1670 * We don't want to pressure a particular node, so when
1671 * building the zones for node N, we make sure that the
1672 * zones coming right after the local ones are those from
1673 * node N+1 (modulo N)
1675 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1676 if (!node_online(node
))
1678 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1680 for (node
= 0; node
< local_node
; node
++) {
1681 if (!node_online(node
))
1683 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1686 zonelist
->zones
[j
] = NULL
;
1690 #endif /* CONFIG_NUMA */
1692 void __init
build_all_zonelists(void)
1696 for_each_online_node(i
)
1697 build_zonelists(NODE_DATA(i
));
1698 printk("Built %i zonelists\n", num_online_nodes());
1699 cpuset_init_current_mems_allowed();
1703 * Helper functions to size the waitqueue hash table.
1704 * Essentially these want to choose hash table sizes sufficiently
1705 * large so that collisions trying to wait on pages are rare.
1706 * But in fact, the number of active page waitqueues on typical
1707 * systems is ridiculously low, less than 200. So this is even
1708 * conservative, even though it seems large.
1710 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1711 * waitqueues, i.e. the size of the waitq table given the number of pages.
1713 #define PAGES_PER_WAITQUEUE 256
1715 static inline unsigned long wait_table_size(unsigned long pages
)
1717 unsigned long size
= 1;
1719 pages
/= PAGES_PER_WAITQUEUE
;
1721 while (size
< pages
)
1725 * Once we have dozens or even hundreds of threads sleeping
1726 * on IO we've got bigger problems than wait queue collision.
1727 * Limit the size of the wait table to a reasonable size.
1729 size
= min(size
, 4096UL);
1731 return max(size
, 4UL);
1735 * This is an integer logarithm so that shifts can be used later
1736 * to extract the more random high bits from the multiplicative
1737 * hash function before the remainder is taken.
1739 static inline unsigned long wait_table_bits(unsigned long size
)
1744 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1746 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1747 unsigned long *zones_size
, unsigned long *zholes_size
)
1749 unsigned long realtotalpages
, totalpages
= 0;
1752 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1753 totalpages
+= zones_size
[i
];
1754 pgdat
->node_spanned_pages
= totalpages
;
1756 realtotalpages
= totalpages
;
1758 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1759 realtotalpages
-= zholes_size
[i
];
1760 pgdat
->node_present_pages
= realtotalpages
;
1761 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1766 * Initially all pages are reserved - free ones are freed
1767 * up by free_all_bootmem() once the early boot process is
1768 * done. Non-atomic initialization, single-pass.
1770 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1771 unsigned long start_pfn
)
1774 unsigned long end_pfn
= start_pfn
+ size
;
1777 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1778 if (!early_pfn_valid(pfn
))
1780 page
= pfn_to_page(pfn
);
1781 set_page_links(page
, zone
, nid
, pfn
);
1782 init_page_count(page
);
1783 reset_page_mapcount(page
);
1784 SetPageReserved(page
);
1785 INIT_LIST_HEAD(&page
->lru
);
1786 #ifdef WANT_PAGE_VIRTUAL
1787 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1788 if (!is_highmem_idx(zone
))
1789 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1794 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1798 for (order
= 0; order
< MAX_ORDER
; order
++) {
1799 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1800 zone
->free_area
[order
].nr_free
= 0;
1804 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1805 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1808 unsigned long snum
= pfn_to_section_nr(pfn
);
1809 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1812 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1814 for (; snum
<= end
; snum
++)
1815 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1818 #ifndef __HAVE_ARCH_MEMMAP_INIT
1819 #define memmap_init(size, nid, zone, start_pfn) \
1820 memmap_init_zone((size), (nid), (zone), (start_pfn))
1823 static int __cpuinit
zone_batchsize(struct zone
*zone
)
1828 * The per-cpu-pages pools are set to around 1000th of the
1829 * size of the zone. But no more than 1/2 of a meg.
1831 * OK, so we don't know how big the cache is. So guess.
1833 batch
= zone
->present_pages
/ 1024;
1834 if (batch
* PAGE_SIZE
> 512 * 1024)
1835 batch
= (512 * 1024) / PAGE_SIZE
;
1836 batch
/= 4; /* We effectively *= 4 below */
1841 * Clamp the batch to a 2^n - 1 value. Having a power
1842 * of 2 value was found to be more likely to have
1843 * suboptimal cache aliasing properties in some cases.
1845 * For example if 2 tasks are alternately allocating
1846 * batches of pages, one task can end up with a lot
1847 * of pages of one half of the possible page colors
1848 * and the other with pages of the other colors.
1850 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
1855 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1857 struct per_cpu_pages
*pcp
;
1859 memset(p
, 0, sizeof(*p
));
1861 pcp
= &p
->pcp
[0]; /* hot */
1863 pcp
->high
= 6 * batch
;
1864 pcp
->batch
= max(1UL, 1 * batch
);
1865 INIT_LIST_HEAD(&pcp
->list
);
1867 pcp
= &p
->pcp
[1]; /* cold*/
1869 pcp
->high
= 2 * batch
;
1870 pcp
->batch
= max(1UL, batch
/2);
1871 INIT_LIST_HEAD(&pcp
->list
);
1875 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1876 * to the value high for the pageset p.
1879 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
1882 struct per_cpu_pages
*pcp
;
1884 pcp
= &p
->pcp
[0]; /* hot list */
1886 pcp
->batch
= max(1UL, high
/4);
1887 if ((high
/4) > (PAGE_SHIFT
* 8))
1888 pcp
->batch
= PAGE_SHIFT
* 8;
1894 * Boot pageset table. One per cpu which is going to be used for all
1895 * zones and all nodes. The parameters will be set in such a way
1896 * that an item put on a list will immediately be handed over to
1897 * the buddy list. This is safe since pageset manipulation is done
1898 * with interrupts disabled.
1900 * Some NUMA counter updates may also be caught by the boot pagesets.
1902 * The boot_pagesets must be kept even after bootup is complete for
1903 * unused processors and/or zones. They do play a role for bootstrapping
1904 * hotplugged processors.
1906 * zoneinfo_show() and maybe other functions do
1907 * not check if the processor is online before following the pageset pointer.
1908 * Other parts of the kernel may not check if the zone is available.
1910 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
1913 * Dynamically allocate memory for the
1914 * per cpu pageset array in struct zone.
1916 static int __cpuinit
process_zones(int cpu
)
1918 struct zone
*zone
, *dzone
;
1920 for_each_zone(zone
) {
1922 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
1923 GFP_KERNEL
, cpu_to_node(cpu
));
1924 if (!zone_pcp(zone
, cpu
))
1927 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
1929 if (percpu_pagelist_fraction
)
1930 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
1931 (zone
->present_pages
/ percpu_pagelist_fraction
));
1936 for_each_zone(dzone
) {
1939 kfree(zone_pcp(dzone
, cpu
));
1940 zone_pcp(dzone
, cpu
) = NULL
;
1945 static inline void free_zone_pagesets(int cpu
)
1949 for_each_zone(zone
) {
1950 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1952 zone_pcp(zone
, cpu
) = NULL
;
1957 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1958 unsigned long action
,
1961 int cpu
= (long)hcpu
;
1962 int ret
= NOTIFY_OK
;
1965 case CPU_UP_PREPARE
:
1966 if (process_zones(cpu
))
1969 case CPU_UP_CANCELED
:
1971 free_zone_pagesets(cpu
);
1979 static struct notifier_block pageset_notifier
=
1980 { &pageset_cpuup_callback
, NULL
, 0 };
1982 void __init
setup_per_cpu_pageset(void)
1986 /* Initialize per_cpu_pageset for cpu 0.
1987 * A cpuup callback will do this for every cpu
1988 * as it comes online
1990 err
= process_zones(smp_processor_id());
1992 register_cpu_notifier(&pageset_notifier
);
1998 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2001 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2004 * The per-page waitqueue mechanism uses hashed waitqueues
2007 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
2008 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
2009 zone
->wait_table
= (wait_queue_head_t
*)
2010 alloc_bootmem_node(pgdat
, zone
->wait_table_size
2011 * sizeof(wait_queue_head_t
));
2013 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
2014 init_waitqueue_head(zone
->wait_table
+ i
);
2017 static __meminit
void zone_pcp_init(struct zone
*zone
)
2020 unsigned long batch
= zone_batchsize(zone
);
2022 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2024 /* Early boot. Slab allocator not functional yet */
2025 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2026 setup_pageset(&boot_pageset
[cpu
],0);
2028 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2031 if (zone
->present_pages
)
2032 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2033 zone
->name
, zone
->present_pages
, batch
);
2036 static __meminit
void init_currently_empty_zone(struct zone
*zone
,
2037 unsigned long zone_start_pfn
, unsigned long size
)
2039 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2041 zone_wait_table_init(zone
, size
);
2042 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2044 zone
->zone_start_pfn
= zone_start_pfn
;
2046 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2048 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2052 * Set up the zone data structures:
2053 * - mark all pages reserved
2054 * - mark all memory queues empty
2055 * - clear the memory bitmaps
2057 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
2058 unsigned long *zones_size
, unsigned long *zholes_size
)
2061 int nid
= pgdat
->node_id
;
2062 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
2064 pgdat_resize_init(pgdat
);
2065 pgdat
->nr_zones
= 0;
2066 init_waitqueue_head(&pgdat
->kswapd_wait
);
2067 pgdat
->kswapd_max_order
= 0;
2069 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2070 struct zone
*zone
= pgdat
->node_zones
+ j
;
2071 unsigned long size
, realsize
;
2073 realsize
= size
= zones_size
[j
];
2075 realsize
-= zholes_size
[j
];
2077 if (j
< ZONE_HIGHMEM
)
2078 nr_kernel_pages
+= realsize
;
2079 nr_all_pages
+= realsize
;
2081 zone
->spanned_pages
= size
;
2082 zone
->present_pages
= realsize
;
2083 zone
->name
= zone_names
[j
];
2084 spin_lock_init(&zone
->lock
);
2085 spin_lock_init(&zone
->lru_lock
);
2086 zone_seqlock_init(zone
);
2087 zone
->zone_pgdat
= pgdat
;
2088 zone
->free_pages
= 0;
2090 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
2092 zone_pcp_init(zone
);
2093 INIT_LIST_HEAD(&zone
->active_list
);
2094 INIT_LIST_HEAD(&zone
->inactive_list
);
2095 zone
->nr_scan_active
= 0;
2096 zone
->nr_scan_inactive
= 0;
2097 zone
->nr_active
= 0;
2098 zone
->nr_inactive
= 0;
2099 atomic_set(&zone
->reclaim_in_progress
, 0);
2103 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2104 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2105 zone_start_pfn
+= size
;
2109 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2111 /* Skip empty nodes */
2112 if (!pgdat
->node_spanned_pages
)
2115 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2116 /* ia64 gets its own node_mem_map, before this, without bootmem */
2117 if (!pgdat
->node_mem_map
) {
2121 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2122 map
= alloc_remap(pgdat
->node_id
, size
);
2124 map
= alloc_bootmem_node(pgdat
, size
);
2125 pgdat
->node_mem_map
= map
;
2127 #ifdef CONFIG_FLATMEM
2129 * With no DISCONTIG, the global mem_map is just set as node 0's
2131 if (pgdat
== NODE_DATA(0))
2132 mem_map
= NODE_DATA(0)->node_mem_map
;
2134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2137 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2138 unsigned long *zones_size
, unsigned long node_start_pfn
,
2139 unsigned long *zholes_size
)
2141 pgdat
->node_id
= nid
;
2142 pgdat
->node_start_pfn
= node_start_pfn
;
2143 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2145 alloc_node_mem_map(pgdat
);
2147 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2150 #ifndef CONFIG_NEED_MULTIPLE_NODES
2151 static bootmem_data_t contig_bootmem_data
;
2152 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2154 EXPORT_SYMBOL(contig_page_data
);
2157 void __init
free_area_init(unsigned long *zones_size
)
2159 free_area_init_node(0, NODE_DATA(0), zones_size
,
2160 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2163 #ifdef CONFIG_PROC_FS
2165 #include <linux/seq_file.h>
2167 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2171 for (pgdat
= first_online_pgdat();
2173 pgdat
= next_online_pgdat(pgdat
))
2179 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2181 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2184 return next_online_pgdat(pgdat
);
2187 static void frag_stop(struct seq_file
*m
, void *arg
)
2192 * This walks the free areas for each zone.
2194 static int frag_show(struct seq_file
*m
, void *arg
)
2196 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2198 struct zone
*node_zones
= pgdat
->node_zones
;
2199 unsigned long flags
;
2202 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2203 if (!populated_zone(zone
))
2206 spin_lock_irqsave(&zone
->lock
, flags
);
2207 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2208 for (order
= 0; order
< MAX_ORDER
; ++order
)
2209 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2210 spin_unlock_irqrestore(&zone
->lock
, flags
);
2216 struct seq_operations fragmentation_op
= {
2217 .start
= frag_start
,
2224 * Output information about zones in @pgdat.
2226 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2228 pg_data_t
*pgdat
= arg
;
2230 struct zone
*node_zones
= pgdat
->node_zones
;
2231 unsigned long flags
;
2233 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2236 if (!populated_zone(zone
))
2239 spin_lock_irqsave(&zone
->lock
, flags
);
2240 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2248 "\n scanned %lu (a: %lu i: %lu)"
2257 zone
->pages_scanned
,
2258 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2259 zone
->spanned_pages
,
2260 zone
->present_pages
);
2262 "\n protection: (%lu",
2263 zone
->lowmem_reserve
[0]);
2264 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2265 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2269 for_each_online_cpu(i
) {
2270 struct per_cpu_pageset
*pageset
;
2273 pageset
= zone_pcp(zone
, i
);
2274 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2275 if (pageset
->pcp
[j
].count
)
2278 if (j
== ARRAY_SIZE(pageset
->pcp
))
2280 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2282 "\n cpu: %i pcp: %i"
2287 pageset
->pcp
[j
].count
,
2288 pageset
->pcp
[j
].high
,
2289 pageset
->pcp
[j
].batch
);
2295 "\n numa_foreign: %lu"
2296 "\n interleave_hit: %lu"
2297 "\n local_node: %lu"
2298 "\n other_node: %lu",
2301 pageset
->numa_foreign
,
2302 pageset
->interleave_hit
,
2303 pageset
->local_node
,
2304 pageset
->other_node
);
2308 "\n all_unreclaimable: %u"
2309 "\n prev_priority: %i"
2310 "\n temp_priority: %i"
2311 "\n start_pfn: %lu",
2312 zone
->all_unreclaimable
,
2313 zone
->prev_priority
,
2314 zone
->temp_priority
,
2315 zone
->zone_start_pfn
);
2316 spin_unlock_irqrestore(&zone
->lock
, flags
);
2322 struct seq_operations zoneinfo_op
= {
2323 .start
= frag_start
, /* iterate over all zones. The same as in
2327 .show
= zoneinfo_show
,
2330 static char *vmstat_text
[] = {
2334 "nr_page_table_pages",
2365 "pgscan_kswapd_high",
2366 "pgscan_kswapd_normal",
2367 "pgscan_kswapd_dma32",
2368 "pgscan_kswapd_dma",
2370 "pgscan_direct_high",
2371 "pgscan_direct_normal",
2372 "pgscan_direct_dma32",
2373 "pgscan_direct_dma",
2378 "kswapd_inodesteal",
2386 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2388 struct page_state
*ps
;
2390 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2393 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2396 return ERR_PTR(-ENOMEM
);
2397 get_full_page_state(ps
);
2398 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2400 return (unsigned long *)ps
+ *pos
;
2403 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2406 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2408 return (unsigned long *)m
->private + *pos
;
2411 static int vmstat_show(struct seq_file
*m
, void *arg
)
2413 unsigned long *l
= arg
;
2414 unsigned long off
= l
- (unsigned long *)m
->private;
2416 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2420 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2426 struct seq_operations vmstat_op
= {
2427 .start
= vmstat_start
,
2428 .next
= vmstat_next
,
2429 .stop
= vmstat_stop
,
2430 .show
= vmstat_show
,
2433 #endif /* CONFIG_PROC_FS */
2435 #ifdef CONFIG_HOTPLUG_CPU
2436 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2437 unsigned long action
, void *hcpu
)
2439 int cpu
= (unsigned long)hcpu
;
2441 unsigned long *src
, *dest
;
2443 if (action
== CPU_DEAD
) {
2446 /* Drain local pagecache count. */
2447 count
= &per_cpu(nr_pagecache_local
, cpu
);
2448 atomic_add(*count
, &nr_pagecache
);
2450 local_irq_disable();
2453 /* Add dead cpu's page_states to our own. */
2454 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2455 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2457 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2467 #endif /* CONFIG_HOTPLUG_CPU */
2469 void __init
page_alloc_init(void)
2471 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2475 * setup_per_zone_lowmem_reserve - called whenever
2476 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2477 * has a correct pages reserved value, so an adequate number of
2478 * pages are left in the zone after a successful __alloc_pages().
2480 static void setup_per_zone_lowmem_reserve(void)
2482 struct pglist_data
*pgdat
;
2485 for_each_online_pgdat(pgdat
) {
2486 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2487 struct zone
*zone
= pgdat
->node_zones
+ j
;
2488 unsigned long present_pages
= zone
->present_pages
;
2490 zone
->lowmem_reserve
[j
] = 0;
2492 for (idx
= j
-1; idx
>= 0; idx
--) {
2493 struct zone
*lower_zone
;
2495 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2496 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2498 lower_zone
= pgdat
->node_zones
+ idx
;
2499 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2500 sysctl_lowmem_reserve_ratio
[idx
];
2501 present_pages
+= lower_zone
->present_pages
;
2508 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2509 * that the pages_{min,low,high} values for each zone are set correctly
2510 * with respect to min_free_kbytes.
2512 void setup_per_zone_pages_min(void)
2514 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2515 unsigned long lowmem_pages
= 0;
2517 unsigned long flags
;
2519 /* Calculate total number of !ZONE_HIGHMEM pages */
2520 for_each_zone(zone
) {
2521 if (!is_highmem(zone
))
2522 lowmem_pages
+= zone
->present_pages
;
2525 for_each_zone(zone
) {
2527 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2528 tmp
= (pages_min
* zone
->present_pages
) / lowmem_pages
;
2529 if (is_highmem(zone
)) {
2531 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2532 * need highmem pages, so cap pages_min to a small
2535 * The (pages_high-pages_low) and (pages_low-pages_min)
2536 * deltas controls asynch page reclaim, and so should
2537 * not be capped for highmem.
2541 min_pages
= zone
->present_pages
/ 1024;
2542 if (min_pages
< SWAP_CLUSTER_MAX
)
2543 min_pages
= SWAP_CLUSTER_MAX
;
2544 if (min_pages
> 128)
2546 zone
->pages_min
= min_pages
;
2549 * If it's a lowmem zone, reserve a number of pages
2550 * proportionate to the zone's size.
2552 zone
->pages_min
= tmp
;
2555 zone
->pages_low
= zone
->pages_min
+ tmp
/ 4;
2556 zone
->pages_high
= zone
->pages_min
+ tmp
/ 2;
2557 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2562 * Initialise min_free_kbytes.
2564 * For small machines we want it small (128k min). For large machines
2565 * we want it large (64MB max). But it is not linear, because network
2566 * bandwidth does not increase linearly with machine size. We use
2568 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2569 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2585 static int __init
init_per_zone_pages_min(void)
2587 unsigned long lowmem_kbytes
;
2589 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2591 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2592 if (min_free_kbytes
< 128)
2593 min_free_kbytes
= 128;
2594 if (min_free_kbytes
> 65536)
2595 min_free_kbytes
= 65536;
2596 setup_per_zone_pages_min();
2597 setup_per_zone_lowmem_reserve();
2600 module_init(init_per_zone_pages_min
)
2603 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2604 * that we can call two helper functions whenever min_free_kbytes
2607 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2608 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2610 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2611 setup_per_zone_pages_min();
2616 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2617 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2618 * whenever sysctl_lowmem_reserve_ratio changes.
2620 * The reserve ratio obviously has absolutely no relation with the
2621 * pages_min watermarks. The lowmem reserve ratio can only make sense
2622 * if in function of the boot time zone sizes.
2624 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2625 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2627 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2628 setup_per_zone_lowmem_reserve();
2633 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2634 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2635 * can have before it gets flushed back to buddy allocator.
2638 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
2639 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2645 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2646 if (!write
|| (ret
== -EINVAL
))
2648 for_each_zone(zone
) {
2649 for_each_online_cpu(cpu
) {
2651 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
2652 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
2658 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2661 static int __init
set_hashdist(char *str
)
2665 hashdist
= simple_strtoul(str
, &str
, 0);
2668 __setup("hashdist=", set_hashdist
);
2672 * allocate a large system hash table from bootmem
2673 * - it is assumed that the hash table must contain an exact power-of-2
2674 * quantity of entries
2675 * - limit is the number of hash buckets, not the total allocation size
2677 void *__init
alloc_large_system_hash(const char *tablename
,
2678 unsigned long bucketsize
,
2679 unsigned long numentries
,
2682 unsigned int *_hash_shift
,
2683 unsigned int *_hash_mask
,
2684 unsigned long limit
)
2686 unsigned long long max
= limit
;
2687 unsigned long log2qty
, size
;
2690 /* allow the kernel cmdline to have a say */
2692 /* round applicable memory size up to nearest megabyte */
2693 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2694 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2695 numentries
>>= 20 - PAGE_SHIFT
;
2696 numentries
<<= 20 - PAGE_SHIFT
;
2698 /* limit to 1 bucket per 2^scale bytes of low memory */
2699 if (scale
> PAGE_SHIFT
)
2700 numentries
>>= (scale
- PAGE_SHIFT
);
2702 numentries
<<= (PAGE_SHIFT
- scale
);
2704 numentries
= roundup_pow_of_two(numentries
);
2706 /* limit allocation size to 1/16 total memory by default */
2708 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2709 do_div(max
, bucketsize
);
2712 if (numentries
> max
)
2715 log2qty
= long_log2(numentries
);
2718 size
= bucketsize
<< log2qty
;
2719 if (flags
& HASH_EARLY
)
2720 table
= alloc_bootmem(size
);
2722 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2724 unsigned long order
;
2725 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2727 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2729 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2732 panic("Failed to allocate %s hash table\n", tablename
);
2734 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2737 long_log2(size
) - PAGE_SHIFT
,
2741 *_hash_shift
= log2qty
;
2743 *_hash_mask
= (1 << log2qty
) - 1;
2748 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2750 * pfn <-> page translation. out-of-line version.
2751 * (see asm-generic/memory_model.h)
2753 #if defined(CONFIG_FLATMEM)
2754 struct page
*pfn_to_page(unsigned long pfn
)
2756 return mem_map
+ (pfn
- ARCH_PFN_OFFSET
);
2758 unsigned long page_to_pfn(struct page
*page
)
2760 return (page
- mem_map
) + ARCH_PFN_OFFSET
;
2762 #elif defined(CONFIG_DISCONTIGMEM)
2763 struct page
*pfn_to_page(unsigned long pfn
)
2765 int nid
= arch_pfn_to_nid(pfn
);
2766 return NODE_DATA(nid
)->node_mem_map
+ arch_local_page_offset(pfn
,nid
);
2768 unsigned long page_to_pfn(struct page
*page
)
2770 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
2771 return (page
- pgdat
->node_mem_map
) + pgdat
->node_start_pfn
;
2773 #elif defined(CONFIG_SPARSEMEM)
2774 struct page
*pfn_to_page(unsigned long pfn
)
2776 return __section_mem_map_addr(__pfn_to_section(pfn
)) + pfn
;
2779 unsigned long page_to_pfn(struct page
*page
)
2781 long section_id
= page_to_section(page
);
2782 return page
- __section_mem_map_addr(__nr_to_section(section_id
));
2784 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2785 EXPORT_SYMBOL(pfn_to_page
);
2786 EXPORT_SYMBOL(page_to_pfn
);
2787 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */