1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
34 #include <cluster/masklog.h>
41 #include "extent_map.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
51 #include "buffer_head_io.h"
56 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
57 struct buffer_head
*bh_result
, int create
)
61 struct ocfs2_dinode
*fe
= NULL
;
62 struct buffer_head
*bh
= NULL
;
63 struct buffer_head
*buffer_cache_bh
= NULL
;
64 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
69 (unsigned long long)iblock
, bh_result
, create
);
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
73 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
74 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock
);
79 status
= ocfs2_read_inode_block(inode
, &bh
);
84 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
86 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
87 le32_to_cpu(fe
->i_clusters
))) {
89 mlog(ML_ERROR
, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock
);
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
97 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
99 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
100 if (!buffer_cache_bh
) {
102 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh
)
111 && ocfs2_inode_is_new(inode
)) {
112 kaddr
= kmap_atomic(bh_result
->b_page
);
114 mlog(ML_ERROR
, "couldn't kmap!\n");
117 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
118 buffer_cache_bh
->b_data
,
120 kunmap_atomic(kaddr
);
121 set_buffer_uptodate(bh_result
);
123 brelse(buffer_cache_bh
);
126 map_bh(bh_result
, inode
->i_sb
,
127 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
137 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
138 struct buffer_head
*bh_result
, int create
)
141 unsigned int ext_flags
;
142 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
143 u64 p_blkno
, count
, past_eof
;
144 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
147 (unsigned long long)iblock
, bh_result
, create
);
149 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
150 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
151 inode
, inode
->i_ino
);
153 if (S_ISLNK(inode
->i_mode
)) {
154 /* this always does I/O for some reason. */
155 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
159 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
162 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
164 (unsigned long long)p_blkno
);
168 if (max_blocks
< count
)
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
182 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
183 clear_buffer_dirty(bh_result
);
184 clear_buffer_uptodate(bh_result
);
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
190 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
192 bh_result
->b_size
= count
<< inode
->i_blkbits
;
194 if (!ocfs2_sparse_alloc(osb
)) {
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock
,
200 (unsigned long long)p_blkno
,
201 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
202 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
208 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
211 (unsigned long long)past_eof
);
212 if (create
&& (iblock
>= past_eof
))
213 set_buffer_new(bh_result
);
222 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
223 struct buffer_head
*di_bh
)
227 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
229 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
230 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
235 size
= i_size_read(inode
);
237 if (size
> PAGE_SIZE
||
238 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
239 ocfs2_error(inode
->i_sb
,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
242 (unsigned long long)size
);
246 kaddr
= kmap_atomic(page
);
248 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
249 /* Clear the remaining part of the page */
250 memset(kaddr
+ size
, 0, PAGE_SIZE
- size
);
251 flush_dcache_page(page
);
252 kunmap_atomic(kaddr
);
254 SetPageUptodate(page
);
259 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
262 struct buffer_head
*di_bh
= NULL
;
264 BUG_ON(!PageLocked(page
));
265 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
267 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
273 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
281 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
283 struct inode
*inode
= page
->mapping
->host
;
284 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
285 loff_t start
= (loff_t
)page
->index
<< PAGE_SHIFT
;
288 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
289 (page
? page
->index
: 0));
291 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
293 if (ret
== AOP_TRUNCATED_PAGE
)
299 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
304 ret
= AOP_TRUNCATED_PAGE
;
307 down_read(&oi
->ip_alloc_sem
);
308 up_read(&oi
->ip_alloc_sem
);
309 goto out_inode_unlock
;
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
320 * XXX sys_readahead() seems to get that wrong?
322 if (start
>= i_size_read(inode
)) {
323 zero_user(page
, 0, PAGE_SIZE
);
324 SetPageUptodate(page
);
329 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
330 ret
= ocfs2_readpage_inline(inode
, page
);
332 ret
= block_read_full_page(page
, ocfs2_get_block
);
336 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
338 ocfs2_inode_unlock(inode
, 0);
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
354 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
355 struct list_head
*pages
, unsigned nr_pages
)
358 struct inode
*inode
= mapping
->host
;
359 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
367 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
371 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
372 ocfs2_inode_unlock(inode
, 0);
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
380 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
387 last
= list_entry(pages
->prev
, struct page
, lru
);
388 start
= (loff_t
)last
->index
<< PAGE_SHIFT
;
389 if (start
>= i_size_read(inode
))
392 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
395 up_read(&oi
->ip_alloc_sem
);
396 ocfs2_inode_unlock(inode
, 0);
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
412 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
418 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t
*handle
,
426 struct buffer_head
*head
,
430 int (*fn
)( handle_t
*handle
,
431 struct buffer_head
*bh
))
433 struct buffer_head
*bh
;
434 unsigned block_start
, block_end
;
435 unsigned blocksize
= head
->b_size
;
437 struct buffer_head
*next
;
439 for ( bh
= head
, block_start
= 0;
440 ret
== 0 && (bh
!= head
|| !block_start
);
441 block_start
= block_end
, bh
= next
)
443 next
= bh
->b_this_page
;
444 block_end
= block_start
+ blocksize
;
445 if (block_end
<= from
|| block_start
>= to
) {
446 if (partial
&& !buffer_uptodate(bh
))
450 err
= (*fn
)(handle
, bh
);
457 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
462 struct inode
*inode
= mapping
->host
;
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
465 (unsigned long long)block
);
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
470 if (!INODE_JOURNAL(inode
)) {
471 err
= ocfs2_inode_lock(inode
, NULL
, 0);
477 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
480 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
481 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
484 if (!INODE_JOURNAL(inode
)) {
485 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
486 ocfs2_inode_unlock(inode
, 0);
490 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block
);
497 status
= err
? 0 : p_blkno
;
502 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
504 if (!page_has_buffers(page
))
506 return try_to_free_buffers(page
);
509 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
514 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
516 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
519 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
521 cluster_start
= cpos
% cpp
;
522 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
524 cluster_end
= cluster_start
+ osb
->s_clustersize
;
527 BUG_ON(cluster_start
> PAGE_SIZE
);
528 BUG_ON(cluster_end
> PAGE_SIZE
);
531 *start
= cluster_start
;
537 * 'from' and 'to' are the region in the page to avoid zeroing.
539 * If pagesize > clustersize, this function will avoid zeroing outside
540 * of the cluster boundary.
542 * from == to == 0 is code for "zero the entire cluster region"
544 static void ocfs2_clear_page_regions(struct page
*page
,
545 struct ocfs2_super
*osb
, u32 cpos
,
546 unsigned from
, unsigned to
)
549 unsigned int cluster_start
, cluster_end
;
551 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
553 kaddr
= kmap_atomic(page
);
556 if (from
> cluster_start
)
557 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
558 if (to
< cluster_end
)
559 memset(kaddr
+ to
, 0, cluster_end
- to
);
561 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
564 kunmap_atomic(kaddr
);
568 * Nonsparse file systems fully allocate before we get to the write
569 * code. This prevents ocfs2_write() from tagging the write as an
570 * allocating one, which means ocfs2_map_page_blocks() might try to
571 * read-in the blocks at the tail of our file. Avoid reading them by
572 * testing i_size against each block offset.
574 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
575 unsigned int block_start
)
577 u64 offset
= page_offset(page
) + block_start
;
579 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
582 if (i_size_read(inode
) > offset
)
589 * Some of this taken from __block_write_begin(). We already have our
590 * mapping by now though, and the entire write will be allocating or
591 * it won't, so not much need to use BH_New.
593 * This will also skip zeroing, which is handled externally.
595 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
596 struct inode
*inode
, unsigned int from
,
597 unsigned int to
, int new)
600 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
601 unsigned int block_end
, block_start
;
602 unsigned int bsize
= i_blocksize(inode
);
604 if (!page_has_buffers(page
))
605 create_empty_buffers(page
, bsize
, 0);
607 head
= page_buffers(page
);
608 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
609 bh
= bh
->b_this_page
, block_start
+= bsize
) {
610 block_end
= block_start
+ bsize
;
612 clear_buffer_new(bh
);
615 * Ignore blocks outside of our i/o range -
616 * they may belong to unallocated clusters.
618 if (block_start
>= to
|| block_end
<= from
) {
619 if (PageUptodate(page
))
620 set_buffer_uptodate(bh
);
625 * For an allocating write with cluster size >= page
626 * size, we always write the entire page.
631 if (!buffer_mapped(bh
)) {
632 map_bh(bh
, inode
->i_sb
, *p_blkno
);
633 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
636 if (PageUptodate(page
)) {
637 if (!buffer_uptodate(bh
))
638 set_buffer_uptodate(bh
);
639 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
641 ocfs2_should_read_blk(inode
, page
, block_start
) &&
642 (block_start
< from
|| block_end
> to
)) {
643 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
647 *p_blkno
= *p_blkno
+ 1;
651 * If we issued read requests - let them complete.
653 while(wait_bh
> wait
) {
654 wait_on_buffer(*--wait_bh
);
655 if (!buffer_uptodate(*wait_bh
))
659 if (ret
== 0 || !new)
663 * If we get -EIO above, zero out any newly allocated blocks
664 * to avoid exposing stale data.
669 block_end
= block_start
+ bsize
;
670 if (block_end
<= from
)
672 if (block_start
>= to
)
675 zero_user(page
, block_start
, bh
->b_size
);
676 set_buffer_uptodate(bh
);
677 mark_buffer_dirty(bh
);
680 block_start
= block_end
;
681 bh
= bh
->b_this_page
;
682 } while (bh
!= head
);
687 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688 #define OCFS2_MAX_CTXT_PAGES 1
690 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
693 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
695 struct ocfs2_unwritten_extent
{
696 struct list_head ue_node
;
697 struct list_head ue_ip_node
;
703 * Describe the state of a single cluster to be written to.
705 struct ocfs2_write_cluster_desc
{
709 * Give this a unique field because c_phys eventually gets
713 unsigned c_clear_unwritten
;
714 unsigned c_needs_zero
;
717 struct ocfs2_write_ctxt
{
718 /* Logical cluster position / len of write */
722 /* First cluster allocated in a nonsparse extend */
723 u32 w_first_new_cpos
;
725 /* Type of caller. Must be one of buffer, mmap, direct. */
726 ocfs2_write_type_t w_type
;
728 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
731 * This is true if page_size > cluster_size.
733 * It triggers a set of special cases during write which might
734 * have to deal with allocating writes to partial pages.
736 unsigned int w_large_pages
;
739 * Pages involved in this write.
741 * w_target_page is the page being written to by the user.
743 * w_pages is an array of pages which always contains
744 * w_target_page, and in the case of an allocating write with
745 * page_size < cluster size, it will contain zero'd and mapped
746 * pages adjacent to w_target_page which need to be written
747 * out in so that future reads from that region will get
750 unsigned int w_num_pages
;
751 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
752 struct page
*w_target_page
;
755 * w_target_locked is used for page_mkwrite path indicating no unlocking
756 * against w_target_page in ocfs2_write_end_nolock.
758 unsigned int w_target_locked
:1;
761 * ocfs2_write_end() uses this to know what the real range to
762 * write in the target should be.
764 unsigned int w_target_from
;
765 unsigned int w_target_to
;
768 * We could use journal_current_handle() but this is cleaner,
773 struct buffer_head
*w_di_bh
;
775 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
777 struct list_head w_unwritten_list
;
780 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
784 for(i
= 0; i
< num_pages
; i
++) {
786 unlock_page(pages
[i
]);
787 mark_page_accessed(pages
[i
]);
793 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt
*wc
)
798 * w_target_locked is only set to true in the page_mkwrite() case.
799 * The intent is to allow us to lock the target page from write_begin()
800 * to write_end(). The caller must hold a ref on w_target_page.
802 if (wc
->w_target_locked
) {
803 BUG_ON(!wc
->w_target_page
);
804 for (i
= 0; i
< wc
->w_num_pages
; i
++) {
805 if (wc
->w_target_page
== wc
->w_pages
[i
]) {
806 wc
->w_pages
[i
] = NULL
;
810 mark_page_accessed(wc
->w_target_page
);
811 put_page(wc
->w_target_page
);
813 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
816 static void ocfs2_free_unwritten_list(struct inode
*inode
,
817 struct list_head
*head
)
819 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
820 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
822 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
823 list_del(&ue
->ue_node
);
824 spin_lock(&oi
->ip_lock
);
825 list_del(&ue
->ue_ip_node
);
826 spin_unlock(&oi
->ip_lock
);
831 static void ocfs2_free_write_ctxt(struct inode
*inode
,
832 struct ocfs2_write_ctxt
*wc
)
834 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
835 ocfs2_unlock_pages(wc
);
840 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
841 struct ocfs2_super
*osb
, loff_t pos
,
842 unsigned len
, ocfs2_write_type_t type
,
843 struct buffer_head
*di_bh
)
846 struct ocfs2_write_ctxt
*wc
;
848 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
852 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
853 wc
->w_first_new_cpos
= UINT_MAX
;
854 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
855 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
860 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
861 wc
->w_large_pages
= 1;
863 wc
->w_large_pages
= 0;
865 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
866 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
874 * If a page has any new buffers, zero them out here, and mark them uptodate
875 * and dirty so they'll be written out (in order to prevent uninitialised
876 * block data from leaking). And clear the new bit.
878 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
880 unsigned int block_start
, block_end
;
881 struct buffer_head
*head
, *bh
;
883 BUG_ON(!PageLocked(page
));
884 if (!page_has_buffers(page
))
887 bh
= head
= page_buffers(page
);
890 block_end
= block_start
+ bh
->b_size
;
892 if (buffer_new(bh
)) {
893 if (block_end
> from
&& block_start
< to
) {
894 if (!PageUptodate(page
)) {
897 start
= max(from
, block_start
);
898 end
= min(to
, block_end
);
900 zero_user_segment(page
, start
, end
);
901 set_buffer_uptodate(bh
);
904 clear_buffer_new(bh
);
905 mark_buffer_dirty(bh
);
909 block_start
= block_end
;
910 bh
= bh
->b_this_page
;
911 } while (bh
!= head
);
915 * Only called when we have a failure during allocating write to write
916 * zero's to the newly allocated region.
918 static void ocfs2_write_failure(struct inode
*inode
,
919 struct ocfs2_write_ctxt
*wc
,
920 loff_t user_pos
, unsigned user_len
)
923 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
924 to
= user_pos
+ user_len
;
925 struct page
*tmppage
;
927 if (wc
->w_target_page
)
928 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
930 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
931 tmppage
= wc
->w_pages
[i
];
933 if (tmppage
&& page_has_buffers(tmppage
)) {
934 if (ocfs2_should_order_data(inode
))
935 ocfs2_jbd2_file_inode(wc
->w_handle
, inode
);
937 block_commit_write(tmppage
, from
, to
);
942 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
943 struct ocfs2_write_ctxt
*wc
,
944 struct page
*page
, u32 cpos
,
945 loff_t user_pos
, unsigned user_len
,
949 unsigned int map_from
= 0, map_to
= 0;
950 unsigned int cluster_start
, cluster_end
;
951 unsigned int user_data_from
= 0, user_data_to
= 0;
953 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
954 &cluster_start
, &cluster_end
);
956 /* treat the write as new if the a hole/lseek spanned across
959 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
960 (page_offset(page
) <= user_pos
));
962 if (page
== wc
->w_target_page
) {
963 map_from
= user_pos
& (PAGE_SIZE
- 1);
964 map_to
= map_from
+ user_len
;
967 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
968 cluster_start
, cluster_end
,
971 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
972 map_from
, map_to
, new);
978 user_data_from
= map_from
;
979 user_data_to
= map_to
;
981 map_from
= cluster_start
;
982 map_to
= cluster_end
;
986 * If we haven't allocated the new page yet, we
987 * shouldn't be writing it out without copying user
988 * data. This is likely a math error from the caller.
992 map_from
= cluster_start
;
993 map_to
= cluster_end
;
995 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
996 cluster_start
, cluster_end
, new);
1004 * Parts of newly allocated pages need to be zero'd.
1006 * Above, we have also rewritten 'to' and 'from' - as far as
1007 * the rest of the function is concerned, the entire cluster
1008 * range inside of a page needs to be written.
1010 * We can skip this if the page is up to date - it's already
1011 * been zero'd from being read in as a hole.
1013 if (new && !PageUptodate(page
))
1014 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1015 cpos
, user_data_from
, user_data_to
);
1017 flush_dcache_page(page
);
1024 * This function will only grab one clusters worth of pages.
1026 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1027 struct ocfs2_write_ctxt
*wc
,
1028 u32 cpos
, loff_t user_pos
,
1029 unsigned user_len
, int new,
1030 struct page
*mmap_page
)
1033 unsigned long start
, target_index
, end_index
, index
;
1034 struct inode
*inode
= mapping
->host
;
1037 target_index
= user_pos
>> PAGE_SHIFT
;
1040 * Figure out how many pages we'll be manipulating here. For
1041 * non allocating write, we just change the one
1042 * page. Otherwise, we'll need a whole clusters worth. If we're
1043 * writing past i_size, we only need enough pages to cover the
1044 * last page of the write.
1047 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1048 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1050 * We need the index *past* the last page we could possibly
1051 * touch. This is the page past the end of the write or
1052 * i_size, whichever is greater.
1054 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1055 BUG_ON(last_byte
< 1);
1056 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1057 if ((start
+ wc
->w_num_pages
) > end_index
)
1058 wc
->w_num_pages
= end_index
- start
;
1060 wc
->w_num_pages
= 1;
1061 start
= target_index
;
1063 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1065 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1068 if (index
>= target_index
&& index
<= end_index
&&
1069 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1071 * ocfs2_pagemkwrite() is a little different
1072 * and wants us to directly use the page
1075 lock_page(mmap_page
);
1077 /* Exit and let the caller retry */
1078 if (mmap_page
->mapping
!= mapping
) {
1079 WARN_ON(mmap_page
->mapping
);
1080 unlock_page(mmap_page
);
1085 get_page(mmap_page
);
1086 wc
->w_pages
[i
] = mmap_page
;
1087 wc
->w_target_locked
= true;
1088 } else if (index
>= target_index
&& index
<= end_index
&&
1089 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1090 /* Direct write has no mapping page. */
1091 wc
->w_pages
[i
] = NULL
;
1094 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1096 if (!wc
->w_pages
[i
]) {
1102 wait_for_stable_page(wc
->w_pages
[i
]);
1104 if (index
== target_index
)
1105 wc
->w_target_page
= wc
->w_pages
[i
];
1109 wc
->w_target_locked
= false;
1114 * Prepare a single cluster for write one cluster into the file.
1116 static int ocfs2_write_cluster(struct address_space
*mapping
,
1117 u32
*phys
, unsigned int new,
1118 unsigned int clear_unwritten
,
1119 unsigned int should_zero
,
1120 struct ocfs2_alloc_context
*data_ac
,
1121 struct ocfs2_alloc_context
*meta_ac
,
1122 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1123 loff_t user_pos
, unsigned user_len
)
1127 struct inode
*inode
= mapping
->host
;
1128 struct ocfs2_extent_tree et
;
1129 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1135 * This is safe to call with the page locks - it won't take
1136 * any additional semaphores or cluster locks.
1139 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1140 &tmp_pos
, 1, !clear_unwritten
,
1141 wc
->w_di_bh
, wc
->w_handle
,
1142 data_ac
, meta_ac
, NULL
);
1144 * This shouldn't happen because we must have already
1145 * calculated the correct meta data allocation required. The
1146 * internal tree allocation code should know how to increase
1147 * transaction credits itself.
1149 * If need be, we could handle -EAGAIN for a
1150 * RESTART_TRANS here.
1152 mlog_bug_on_msg(ret
== -EAGAIN
,
1153 "Inode %llu: EAGAIN return during allocation.\n",
1154 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1159 } else if (clear_unwritten
) {
1160 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1162 ret
= ocfs2_mark_extent_written(inode
, &et
,
1163 wc
->w_handle
, cpos
, 1, *phys
,
1164 meta_ac
, &wc
->w_dealloc
);
1172 * The only reason this should fail is due to an inability to
1173 * find the extent added.
1175 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1177 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1178 "at logical cluster %u",
1179 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1185 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1187 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1189 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1192 /* This is the direct io target page. */
1193 if (wc
->w_pages
[i
] == NULL
) {
1198 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1199 wc
->w_pages
[i
], cpos
,
1210 * We only have cleanup to do in case of allocating write.
1213 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1220 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1221 struct ocfs2_alloc_context
*data_ac
,
1222 struct ocfs2_alloc_context
*meta_ac
,
1223 struct ocfs2_write_ctxt
*wc
,
1224 loff_t pos
, unsigned len
)
1228 unsigned int local_len
= len
;
1229 struct ocfs2_write_cluster_desc
*desc
;
1230 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1232 for (i
= 0; i
< wc
->w_clen
; i
++) {
1233 desc
= &wc
->w_desc
[i
];
1236 * We have to make sure that the total write passed in
1237 * doesn't extend past a single cluster.
1240 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1241 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1242 local_len
= osb
->s_clustersize
- cluster_off
;
1244 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1246 desc
->c_clear_unwritten
,
1249 wc
, desc
->c_cpos
, pos
, local_len
);
1265 * ocfs2_write_end() wants to know which parts of the target page it
1266 * should complete the write on. It's easiest to compute them ahead of
1267 * time when a more complete view of the write is available.
1269 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1270 struct ocfs2_write_ctxt
*wc
,
1271 loff_t pos
, unsigned len
, int alloc
)
1273 struct ocfs2_write_cluster_desc
*desc
;
1275 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1276 wc
->w_target_to
= wc
->w_target_from
+ len
;
1282 * Allocating write - we may have different boundaries based
1283 * on page size and cluster size.
1285 * NOTE: We can no longer compute one value from the other as
1286 * the actual write length and user provided length may be
1290 if (wc
->w_large_pages
) {
1292 * We only care about the 1st and last cluster within
1293 * our range and whether they should be zero'd or not. Either
1294 * value may be extended out to the start/end of a
1295 * newly allocated cluster.
1297 desc
= &wc
->w_desc
[0];
1298 if (desc
->c_needs_zero
)
1299 ocfs2_figure_cluster_boundaries(osb
,
1304 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1305 if (desc
->c_needs_zero
)
1306 ocfs2_figure_cluster_boundaries(osb
,
1311 wc
->w_target_from
= 0;
1312 wc
->w_target_to
= PAGE_SIZE
;
1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319 * by the direct io procedure.
1320 * If this is a new extent that allocated by direct io, we should mark it in
1321 * the ip_unwritten_list.
1323 static int ocfs2_unwritten_check(struct inode
*inode
,
1324 struct ocfs2_write_ctxt
*wc
,
1325 struct ocfs2_write_cluster_desc
*desc
)
1327 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1328 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1331 if (!desc
->c_needs_zero
)
1335 spin_lock(&oi
->ip_lock
);
1336 /* Needs not to zero no metter buffer or direct. The one who is zero
1337 * the cluster is doing zero. And he will clear unwritten after all
1338 * cluster io finished. */
1339 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1340 if (desc
->c_cpos
== ue
->ue_cpos
) {
1341 BUG_ON(desc
->c_new
);
1342 desc
->c_needs_zero
= 0;
1343 desc
->c_clear_unwritten
= 0;
1348 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1352 spin_unlock(&oi
->ip_lock
);
1353 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1361 /* This direct write will doing zero. */
1362 new->ue_cpos
= desc
->c_cpos
;
1363 new->ue_phys
= desc
->c_phys
;
1364 desc
->c_clear_unwritten
= 0;
1365 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1366 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1369 spin_unlock(&oi
->ip_lock
);
1377 * Populate each single-cluster write descriptor in the write context
1378 * with information about the i/o to be done.
1380 * Returns the number of clusters that will have to be allocated, as
1381 * well as a worst case estimate of the number of extent records that
1382 * would have to be created during a write to an unwritten region.
1384 static int ocfs2_populate_write_desc(struct inode
*inode
,
1385 struct ocfs2_write_ctxt
*wc
,
1386 unsigned int *clusters_to_alloc
,
1387 unsigned int *extents_to_split
)
1390 struct ocfs2_write_cluster_desc
*desc
;
1391 unsigned int num_clusters
= 0;
1392 unsigned int ext_flags
= 0;
1396 *clusters_to_alloc
= 0;
1397 *extents_to_split
= 0;
1399 for (i
= 0; i
< wc
->w_clen
; i
++) {
1400 desc
= &wc
->w_desc
[i
];
1401 desc
->c_cpos
= wc
->w_cpos
+ i
;
1403 if (num_clusters
== 0) {
1405 * Need to look up the next extent record.
1407 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1408 &num_clusters
, &ext_flags
);
1414 /* We should already CoW the refcountd extent. */
1415 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1418 * Assume worst case - that we're writing in
1419 * the middle of the extent.
1421 * We can assume that the write proceeds from
1422 * left to right, in which case the extent
1423 * insert code is smart enough to coalesce the
1424 * next splits into the previous records created.
1426 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1427 *extents_to_split
= *extents_to_split
+ 2;
1430 * Only increment phys if it doesn't describe
1437 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438 * file that got extended. w_first_new_cpos tells us
1439 * where the newly allocated clusters are so we can
1442 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1444 desc
->c_needs_zero
= 1;
1447 desc
->c_phys
= phys
;
1450 desc
->c_needs_zero
= 1;
1451 desc
->c_clear_unwritten
= 1;
1452 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1455 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1456 desc
->c_clear_unwritten
= 1;
1457 desc
->c_needs_zero
= 1;
1460 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1474 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1475 struct inode
*inode
,
1476 struct ocfs2_write_ctxt
*wc
)
1479 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1482 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1484 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1485 if (IS_ERR(handle
)) {
1486 ret
= PTR_ERR(handle
);
1491 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1493 ocfs2_commit_trans(osb
, handle
);
1499 * If we don't set w_num_pages then this page won't get unlocked
1500 * and freed on cleanup of the write context.
1502 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1503 wc
->w_num_pages
= 1;
1505 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1506 OCFS2_JOURNAL_ACCESS_WRITE
);
1508 ocfs2_commit_trans(osb
, handle
);
1514 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1515 ocfs2_set_inode_data_inline(inode
, di
);
1517 if (!PageUptodate(page
)) {
1518 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1520 ocfs2_commit_trans(osb
, handle
);
1526 wc
->w_handle
= handle
;
1531 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1533 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1535 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1540 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1541 struct inode
*inode
, loff_t pos
,
1542 unsigned len
, struct page
*mmap_page
,
1543 struct ocfs2_write_ctxt
*wc
)
1545 int ret
, written
= 0;
1546 loff_t end
= pos
+ len
;
1547 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1548 struct ocfs2_dinode
*di
= NULL
;
1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1551 len
, (unsigned long long)pos
,
1552 oi
->ip_dyn_features
);
1555 * Handle inodes which already have inline data 1st.
1557 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1558 if (mmap_page
== NULL
&&
1559 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1560 goto do_inline_write
;
1563 * The write won't fit - we have to give this inode an
1564 * inline extent list now.
1566 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1573 * Check whether the inode can accept inline data.
1575 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1579 * Check whether the write can fit.
1581 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1583 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1587 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1594 * This signals to the caller that the data can be written
1599 return written
? written
: ret
;
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1611 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1612 struct buffer_head
*di_bh
,
1613 loff_t pos
, unsigned len
,
1614 struct ocfs2_write_ctxt
*wc
)
1617 loff_t newsize
= pos
+ len
;
1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1621 if (newsize
<= i_size_read(inode
))
1624 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1628 /* There is no wc if this is call from direct. */
1630 wc
->w_first_new_cpos
=
1631 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1636 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1641 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1642 if (pos
> i_size_read(inode
))
1643 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1648 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1649 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1650 struct page
**pagep
, void **fsdata
,
1651 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1653 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1654 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1655 struct ocfs2_write_ctxt
*wc
;
1656 struct inode
*inode
= mapping
->host
;
1657 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1658 struct ocfs2_dinode
*di
;
1659 struct ocfs2_alloc_context
*data_ac
= NULL
;
1660 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1662 struct ocfs2_extent_tree et
;
1663 int try_free
= 1, ret1
;
1666 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1672 if (ocfs2_supports_inline_data(osb
)) {
1673 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1685 /* Direct io change i_size late, should not zero tail here. */
1686 if (type
!= OCFS2_WRITE_DIRECT
) {
1687 if (ocfs2_sparse_alloc(osb
))
1688 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1690 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1698 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1702 } else if (ret
== 1) {
1703 clusters_need
= wc
->w_clen
;
1704 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1705 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1712 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1718 clusters_need
+= clusters_to_alloc
;
1720 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1722 trace_ocfs2_write_begin_nolock(
1723 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1724 (long long)i_size_read(inode
),
1725 le32_to_cpu(di
->i_clusters
),
1726 pos
, len
, type
, mmap_page
,
1727 clusters_to_alloc
, extents_to_split
);
1730 * We set w_target_from, w_target_to here so that
1731 * ocfs2_write_end() knows which range in the target page to
1732 * write out. An allocation requires that we write the entire
1735 if (clusters_to_alloc
|| extents_to_split
) {
1737 * XXX: We are stretching the limits of
1738 * ocfs2_lock_allocators(). It greatly over-estimates
1739 * the work to be done.
1741 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1743 ret
= ocfs2_lock_allocators(inode
, &et
,
1744 clusters_to_alloc
, extents_to_split
,
1745 &data_ac
, &meta_ac
);
1752 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1754 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1756 } else if (type
== OCFS2_WRITE_DIRECT
)
1757 /* direct write needs not to start trans if no extents alloc. */
1761 * We have to zero sparse allocated clusters, unwritten extent clusters,
1762 * and non-sparse clusters we just extended. For non-sparse writes,
1763 * we know zeros will only be needed in the first and/or last cluster.
1765 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1766 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1767 cluster_of_pages
= 1;
1769 cluster_of_pages
= 0;
1771 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1773 handle
= ocfs2_start_trans(osb
, credits
);
1774 if (IS_ERR(handle
)) {
1775 ret
= PTR_ERR(handle
);
1780 wc
->w_handle
= handle
;
1782 if (clusters_to_alloc
) {
1783 ret
= dquot_alloc_space_nodirty(inode
,
1784 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1789 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1790 OCFS2_JOURNAL_ACCESS_WRITE
);
1797 * Fill our page array first. That way we've grabbed enough so
1798 * that we can zero and flush if we error after adding the
1801 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1802 cluster_of_pages
, mmap_page
);
1803 if (ret
&& ret
!= -EAGAIN
) {
1809 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1810 * the target page. In this case, we exit with no error and no target
1811 * page. This will trigger the caller, page_mkwrite(), to re-try
1814 if (ret
== -EAGAIN
) {
1815 BUG_ON(wc
->w_target_page
);
1820 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1828 ocfs2_free_alloc_context(data_ac
);
1830 ocfs2_free_alloc_context(meta_ac
);
1834 *pagep
= wc
->w_target_page
;
1838 if (clusters_to_alloc
)
1839 dquot_free_space(inode
,
1840 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1842 ocfs2_commit_trans(osb
, handle
);
1846 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1847 * even in case of error here like ENOSPC and ENOMEM. So, we need
1848 * to unlock the target page manually to prevent deadlocks when
1849 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1852 if (wc
->w_target_locked
)
1853 unlock_page(mmap_page
);
1855 ocfs2_free_write_ctxt(inode
, wc
);
1858 ocfs2_free_alloc_context(data_ac
);
1862 ocfs2_free_alloc_context(meta_ac
);
1866 if (ret
== -ENOSPC
&& try_free
) {
1868 * Try to free some truncate log so that we can have enough
1869 * clusters to allocate.
1873 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1884 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1885 loff_t pos
, unsigned len
, unsigned flags
,
1886 struct page
**pagep
, void **fsdata
)
1889 struct buffer_head
*di_bh
= NULL
;
1890 struct inode
*inode
= mapping
->host
;
1892 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1899 * Take alloc sem here to prevent concurrent lookups. That way
1900 * the mapping, zeroing and tree manipulation within
1901 * ocfs2_write() will be safe against ->readpage(). This
1902 * should also serve to lock out allocation from a shared
1905 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1907 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1908 pagep
, fsdata
, di_bh
, NULL
);
1919 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1922 ocfs2_inode_unlock(inode
, 1);
1927 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1928 unsigned len
, unsigned *copied
,
1929 struct ocfs2_dinode
*di
,
1930 struct ocfs2_write_ctxt
*wc
)
1934 if (unlikely(*copied
< len
)) {
1935 if (!PageUptodate(wc
->w_target_page
)) {
1941 kaddr
= kmap_atomic(wc
->w_target_page
);
1942 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1943 kunmap_atomic(kaddr
);
1945 trace_ocfs2_write_end_inline(
1946 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1947 (unsigned long long)pos
, *copied
,
1948 le16_to_cpu(di
->id2
.i_data
.id_count
),
1949 le16_to_cpu(di
->i_dyn_features
));
1952 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1953 loff_t pos
, unsigned len
, unsigned copied
,
1954 struct page
*page
, void *fsdata
)
1957 unsigned from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1958 struct inode
*inode
= mapping
->host
;
1959 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1960 struct ocfs2_write_ctxt
*wc
= fsdata
;
1961 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1962 handle_t
*handle
= wc
->w_handle
;
1963 struct page
*tmppage
;
1965 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1968 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1969 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
1977 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1978 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1979 goto out_write_size
;
1982 if (unlikely(copied
< len
) && wc
->w_target_page
) {
1983 if (!PageUptodate(wc
->w_target_page
))
1986 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1989 if (wc
->w_target_page
)
1990 flush_dcache_page(wc
->w_target_page
);
1992 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1993 tmppage
= wc
->w_pages
[i
];
1995 /* This is the direct io target page. */
1996 if (tmppage
== NULL
)
1999 if (tmppage
== wc
->w_target_page
) {
2000 from
= wc
->w_target_from
;
2001 to
= wc
->w_target_to
;
2003 BUG_ON(from
> PAGE_SIZE
||
2008 * Pages adjacent to the target (if any) imply
2009 * a hole-filling write in which case we want
2010 * to flush their entire range.
2016 if (page_has_buffers(tmppage
)) {
2017 if (handle
&& ocfs2_should_order_data(inode
))
2018 ocfs2_jbd2_file_inode(handle
, inode
);
2019 block_commit_write(tmppage
, from
, to
);
2024 /* Direct io do not update i_size here. */
2025 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2027 if (pos
> i_size_read(inode
)) {
2028 i_size_write(inode
, pos
);
2029 mark_inode_dirty(inode
);
2031 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2032 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2033 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2034 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2035 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2036 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2039 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2042 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2043 * lock, or it will cause a deadlock since journal commit threads holds
2044 * this lock and will ask for the page lock when flushing the data.
2045 * put it here to preserve the unlock order.
2047 ocfs2_unlock_pages(wc
);
2050 ocfs2_commit_trans(osb
, handle
);
2052 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2054 brelse(wc
->w_di_bh
);
2060 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2061 loff_t pos
, unsigned len
, unsigned copied
,
2062 struct page
*page
, void *fsdata
)
2065 struct inode
*inode
= mapping
->host
;
2067 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, page
, fsdata
);
2069 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2070 ocfs2_inode_unlock(inode
, 1);
2075 struct ocfs2_dio_write_ctxt
{
2076 struct list_head dw_zero_list
;
2077 unsigned dw_zero_count
;
2079 pid_t dw_writer_pid
;
2082 static struct ocfs2_dio_write_ctxt
*
2083 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2085 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2088 return bh
->b_private
;
2090 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2093 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2094 dwc
->dw_zero_count
= 0;
2095 dwc
->dw_orphaned
= 0;
2096 dwc
->dw_writer_pid
= task_pid_nr(current
);
2097 bh
->b_private
= dwc
;
2103 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2104 struct ocfs2_dio_write_ctxt
*dwc
)
2106 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2111 * TODO: Make this into a generic get_blocks function.
2113 * From do_direct_io in direct-io.c:
2114 * "So what we do is to permit the ->get_blocks function to populate
2115 * bh.b_size with the size of IO which is permitted at this offset and
2118 * This function is called directly from get_more_blocks in direct-io.c.
2120 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2121 * fs_count, map_bh, dio->rw == WRITE);
2123 static int ocfs2_dio_get_block(struct inode
*inode
, sector_t iblock
,
2124 struct buffer_head
*bh_result
, int create
)
2126 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2127 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2128 struct ocfs2_write_ctxt
*wc
;
2129 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2130 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2131 struct buffer_head
*di_bh
= NULL
;
2133 loff_t pos
= iblock
<< inode
->i_sb
->s_blocksize_bits
;
2134 unsigned len
, total_len
= bh_result
->b_size
;
2135 int ret
= 0, first_get_block
= 0;
2137 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2138 len
= min(total_len
, len
);
2140 mlog(0, "get block of %lu at %llu:%u req %u\n",
2141 inode
->i_ino
, pos
, len
, total_len
);
2144 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2145 * we may need to add it to orphan dir. So can not fall to fast path
2146 * while file size will be changed.
2148 if (pos
+ total_len
<= i_size_read(inode
)) {
2149 down_read(&oi
->ip_alloc_sem
);
2150 /* This is the fast path for re-write. */
2151 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
2153 up_read(&oi
->ip_alloc_sem
);
2155 if (buffer_mapped(bh_result
) &&
2156 !buffer_new(bh_result
) &&
2160 /* Clear state set by ocfs2_get_block. */
2161 bh_result
->b_state
= 0;
2164 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2165 if (unlikely(dwc
== NULL
)) {
2171 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2172 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2173 !dwc
->dw_orphaned
) {
2175 * when we are going to alloc extents beyond file size, add the
2176 * inode to orphan dir, so we can recall those spaces when
2177 * system crashed during write.
2179 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2184 dwc
->dw_orphaned
= 1;
2187 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2193 down_write(&oi
->ip_alloc_sem
);
2195 if (first_get_block
) {
2196 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
2197 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2199 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2207 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2208 OCFS2_WRITE_DIRECT
, NULL
,
2209 (void **)&wc
, di_bh
, NULL
);
2215 desc
= &wc
->w_desc
[0];
2217 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2218 BUG_ON(p_blkno
== 0);
2219 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2221 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2222 bh_result
->b_size
= len
;
2223 if (desc
->c_needs_zero
)
2224 set_buffer_new(bh_result
);
2226 /* May sleep in end_io. It should not happen in a irq context. So defer
2227 * it to dio work queue. */
2228 set_buffer_defer_completion(bh_result
);
2230 if (!list_empty(&wc
->w_unwritten_list
)) {
2231 struct ocfs2_unwritten_extent
*ue
= NULL
;
2233 ue
= list_first_entry(&wc
->w_unwritten_list
,
2234 struct ocfs2_unwritten_extent
,
2236 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2237 /* The physical address may be 0, fill it. */
2238 ue
->ue_phys
= desc
->c_phys
;
2240 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2241 dwc
->dw_zero_count
++;
2244 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, NULL
, wc
);
2248 up_write(&oi
->ip_alloc_sem
);
2249 ocfs2_inode_unlock(inode
, 1);
2257 static void ocfs2_dio_end_io_write(struct inode
*inode
,
2258 struct ocfs2_dio_write_ctxt
*dwc
,
2262 struct ocfs2_cached_dealloc_ctxt dealloc
;
2263 struct ocfs2_extent_tree et
;
2264 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2265 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2266 struct ocfs2_unwritten_extent
*ue
= NULL
;
2267 struct buffer_head
*di_bh
= NULL
;
2268 struct ocfs2_dinode
*di
;
2269 struct ocfs2_alloc_context
*data_ac
= NULL
;
2270 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2271 handle_t
*handle
= NULL
;
2272 loff_t end
= offset
+ bytes
;
2273 int ret
= 0, credits
= 0, locked
= 0;
2275 ocfs2_init_dealloc_ctxt(&dealloc
);
2277 /* We do clear unwritten, delete orphan, change i_size here. If neither
2278 * of these happen, we can skip all this. */
2279 if (list_empty(&dwc
->dw_zero_list
) &&
2280 end
<= i_size_read(inode
) &&
2284 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2285 * are in that context. */
2286 if (dwc
->dw_writer_pid
!= task_pid_nr(current
)) {
2291 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2297 down_write(&oi
->ip_alloc_sem
);
2299 /* Delete orphan before acquire i_mutex. */
2300 if (dwc
->dw_orphaned
) {
2301 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2303 end
= end
> i_size_read(inode
) ? end
: 0;
2305 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2311 di
= (struct ocfs2_dinode
*)di_bh
;
2313 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2315 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2316 &data_ac
, &meta_ac
);
2322 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2324 handle
= ocfs2_start_trans(osb
, credits
);
2325 if (IS_ERR(handle
)) {
2326 ret
= PTR_ERR(handle
);
2330 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2331 OCFS2_JOURNAL_ACCESS_WRITE
);
2337 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2338 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2348 if (end
> i_size_read(inode
)) {
2349 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2354 ocfs2_commit_trans(osb
, handle
);
2356 up_write(&oi
->ip_alloc_sem
);
2357 ocfs2_inode_unlock(inode
, 1);
2361 ocfs2_free_alloc_context(data_ac
);
2363 ocfs2_free_alloc_context(meta_ac
);
2364 ocfs2_run_deallocs(osb
, &dealloc
);
2366 inode_unlock(inode
);
2367 ocfs2_dio_free_write_ctx(inode
, dwc
);
2371 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2372 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2373 * to protect io on one node from truncation on another.
2375 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2380 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2386 /* this io's submitter should not have unlocked this before we could */
2387 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2390 ocfs2_dio_end_io_write(inode
, private, offset
, bytes
);
2392 ocfs2_iocb_clear_rw_locked(iocb
);
2394 level
= ocfs2_iocb_rw_locked_level(iocb
);
2395 ocfs2_rw_unlock(inode
, level
);
2399 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2401 struct file
*file
= iocb
->ki_filp
;
2402 struct inode
*inode
= file
->f_mapping
->host
;
2403 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2404 get_block_t
*get_block
;
2407 * Fallback to buffered I/O if we see an inode without
2410 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2413 /* Fallback to buffered I/O if we do not support append dio. */
2414 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2415 !ocfs2_supports_append_dio(osb
))
2418 if (iov_iter_rw(iter
) == READ
)
2419 get_block
= ocfs2_get_block
;
2421 get_block
= ocfs2_dio_get_block
;
2423 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2425 ocfs2_dio_end_io
, NULL
, 0);
2428 const struct address_space_operations ocfs2_aops
= {
2429 .readpage
= ocfs2_readpage
,
2430 .readpages
= ocfs2_readpages
,
2431 .writepage
= ocfs2_writepage
,
2432 .write_begin
= ocfs2_write_begin
,
2433 .write_end
= ocfs2_write_end
,
2435 .direct_IO
= ocfs2_direct_IO
,
2436 .invalidatepage
= block_invalidatepage
,
2437 .releasepage
= ocfs2_releasepage
,
2438 .migratepage
= buffer_migrate_page
,
2439 .is_partially_uptodate
= block_is_partially_uptodate
,
2440 .error_remove_page
= generic_error_remove_page
,