2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
36 static DEFINE_IDR(zram_index_idr
);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex
);
40 static int zram_major
;
41 static const char *default_compressor
= "lzo";
43 /* Module params (documentation at end) */
44 static unsigned int num_devices
= 1;
46 static inline void deprecated_attr_warn(const char *name
)
48 pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
52 "See zram documentation.");
55 #define ZRAM_ATTR_RO(name) \
56 static ssize_t name##_show(struct device *d, \
57 struct device_attribute *attr, char *b) \
59 struct zram *zram = dev_to_zram(d); \
61 deprecated_attr_warn(__stringify(name)); \
62 return scnprintf(b, PAGE_SIZE, "%llu\n", \
63 (u64)atomic64_read(&zram->stats.name)); \
65 static DEVICE_ATTR_RO(name);
67 static inline bool init_done(struct zram
*zram
)
69 return zram
->disksize
;
72 static inline struct zram
*dev_to_zram(struct device
*dev
)
74 return (struct zram
*)dev_to_disk(dev
)->private_data
;
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta
*meta
, u32 index
,
79 enum zram_pageflags flag
)
81 return meta
->table
[index
].value
& BIT(flag
);
84 static void zram_set_flag(struct zram_meta
*meta
, u32 index
,
85 enum zram_pageflags flag
)
87 meta
->table
[index
].value
|= BIT(flag
);
90 static void zram_clear_flag(struct zram_meta
*meta
, u32 index
,
91 enum zram_pageflags flag
)
93 meta
->table
[index
].value
&= ~BIT(flag
);
96 static size_t zram_get_obj_size(struct zram_meta
*meta
, u32 index
)
98 return meta
->table
[index
].value
& (BIT(ZRAM_FLAG_SHIFT
) - 1);
101 static void zram_set_obj_size(struct zram_meta
*meta
,
102 u32 index
, size_t size
)
104 unsigned long flags
= meta
->table
[index
].value
>> ZRAM_FLAG_SHIFT
;
106 meta
->table
[index
].value
= (flags
<< ZRAM_FLAG_SHIFT
) | size
;
109 static inline bool is_partial_io(struct bio_vec
*bvec
)
111 return bvec
->bv_len
!= PAGE_SIZE
;
115 * Check if request is within bounds and aligned on zram logical blocks.
117 static inline bool valid_io_request(struct zram
*zram
,
118 sector_t start
, unsigned int size
)
122 /* unaligned request */
123 if (unlikely(start
& (ZRAM_SECTOR_PER_LOGICAL_BLOCK
- 1)))
125 if (unlikely(size
& (ZRAM_LOGICAL_BLOCK_SIZE
- 1)))
128 end
= start
+ (size
>> SECTOR_SHIFT
);
129 bound
= zram
->disksize
>> SECTOR_SHIFT
;
130 /* out of range range */
131 if (unlikely(start
>= bound
|| end
> bound
|| start
> end
))
134 /* I/O request is valid */
138 static void update_position(u32
*index
, int *offset
, struct bio_vec
*bvec
)
140 if (*offset
+ bvec
->bv_len
>= PAGE_SIZE
)
142 *offset
= (*offset
+ bvec
->bv_len
) % PAGE_SIZE
;
145 static inline void update_used_max(struct zram
*zram
,
146 const unsigned long pages
)
148 unsigned long old_max
, cur_max
;
150 old_max
= atomic_long_read(&zram
->stats
.max_used_pages
);
155 old_max
= atomic_long_cmpxchg(
156 &zram
->stats
.max_used_pages
, cur_max
, pages
);
157 } while (old_max
!= cur_max
);
160 static bool page_zero_filled(void *ptr
)
165 page
= (unsigned long *)ptr
;
167 for (pos
= 0; pos
!= PAGE_SIZE
/ sizeof(*page
); pos
++) {
175 static void handle_zero_page(struct bio_vec
*bvec
)
177 struct page
*page
= bvec
->bv_page
;
180 user_mem
= kmap_atomic(page
);
181 if (is_partial_io(bvec
))
182 memset(user_mem
+ bvec
->bv_offset
, 0, bvec
->bv_len
);
184 clear_page(user_mem
);
185 kunmap_atomic(user_mem
);
187 flush_dcache_page(page
);
190 static ssize_t
initstate_show(struct device
*dev
,
191 struct device_attribute
*attr
, char *buf
)
194 struct zram
*zram
= dev_to_zram(dev
);
196 down_read(&zram
->init_lock
);
197 val
= init_done(zram
);
198 up_read(&zram
->init_lock
);
200 return scnprintf(buf
, PAGE_SIZE
, "%u\n", val
);
203 static ssize_t
disksize_show(struct device
*dev
,
204 struct device_attribute
*attr
, char *buf
)
206 struct zram
*zram
= dev_to_zram(dev
);
208 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", zram
->disksize
);
211 static ssize_t
orig_data_size_show(struct device
*dev
,
212 struct device_attribute
*attr
, char *buf
)
214 struct zram
*zram
= dev_to_zram(dev
);
216 deprecated_attr_warn("orig_data_size");
217 return scnprintf(buf
, PAGE_SIZE
, "%llu\n",
218 (u64
)(atomic64_read(&zram
->stats
.pages_stored
)) << PAGE_SHIFT
);
221 static ssize_t
mem_used_total_show(struct device
*dev
,
222 struct device_attribute
*attr
, char *buf
)
225 struct zram
*zram
= dev_to_zram(dev
);
227 deprecated_attr_warn("mem_used_total");
228 down_read(&zram
->init_lock
);
229 if (init_done(zram
)) {
230 struct zram_meta
*meta
= zram
->meta
;
231 val
= zs_get_total_pages(meta
->mem_pool
);
233 up_read(&zram
->init_lock
);
235 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", val
<< PAGE_SHIFT
);
238 static ssize_t
mem_limit_show(struct device
*dev
,
239 struct device_attribute
*attr
, char *buf
)
242 struct zram
*zram
= dev_to_zram(dev
);
244 deprecated_attr_warn("mem_limit");
245 down_read(&zram
->init_lock
);
246 val
= zram
->limit_pages
;
247 up_read(&zram
->init_lock
);
249 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", val
<< PAGE_SHIFT
);
252 static ssize_t
mem_limit_store(struct device
*dev
,
253 struct device_attribute
*attr
, const char *buf
, size_t len
)
257 struct zram
*zram
= dev_to_zram(dev
);
259 limit
= memparse(buf
, &tmp
);
260 if (buf
== tmp
) /* no chars parsed, invalid input */
263 down_write(&zram
->init_lock
);
264 zram
->limit_pages
= PAGE_ALIGN(limit
) >> PAGE_SHIFT
;
265 up_write(&zram
->init_lock
);
270 static ssize_t
mem_used_max_show(struct device
*dev
,
271 struct device_attribute
*attr
, char *buf
)
274 struct zram
*zram
= dev_to_zram(dev
);
276 deprecated_attr_warn("mem_used_max");
277 down_read(&zram
->init_lock
);
279 val
= atomic_long_read(&zram
->stats
.max_used_pages
);
280 up_read(&zram
->init_lock
);
282 return scnprintf(buf
, PAGE_SIZE
, "%llu\n", val
<< PAGE_SHIFT
);
285 static ssize_t
mem_used_max_store(struct device
*dev
,
286 struct device_attribute
*attr
, const char *buf
, size_t len
)
290 struct zram
*zram
= dev_to_zram(dev
);
292 err
= kstrtoul(buf
, 10, &val
);
296 down_read(&zram
->init_lock
);
297 if (init_done(zram
)) {
298 struct zram_meta
*meta
= zram
->meta
;
299 atomic_long_set(&zram
->stats
.max_used_pages
,
300 zs_get_total_pages(meta
->mem_pool
));
302 up_read(&zram
->init_lock
);
307 static ssize_t
max_comp_streams_show(struct device
*dev
,
308 struct device_attribute
*attr
, char *buf
)
311 struct zram
*zram
= dev_to_zram(dev
);
313 down_read(&zram
->init_lock
);
314 val
= zram
->max_comp_streams
;
315 up_read(&zram
->init_lock
);
317 return scnprintf(buf
, PAGE_SIZE
, "%d\n", val
);
320 static ssize_t
max_comp_streams_store(struct device
*dev
,
321 struct device_attribute
*attr
, const char *buf
, size_t len
)
324 struct zram
*zram
= dev_to_zram(dev
);
327 ret
= kstrtoint(buf
, 0, &num
);
333 down_write(&zram
->init_lock
);
334 if (init_done(zram
)) {
335 if (!zcomp_set_max_streams(zram
->comp
, num
)) {
336 pr_info("Cannot change max compression streams\n");
342 zram
->max_comp_streams
= num
;
345 up_write(&zram
->init_lock
);
349 static ssize_t
comp_algorithm_show(struct device
*dev
,
350 struct device_attribute
*attr
, char *buf
)
353 struct zram
*zram
= dev_to_zram(dev
);
355 down_read(&zram
->init_lock
);
356 sz
= zcomp_available_show(zram
->compressor
, buf
);
357 up_read(&zram
->init_lock
);
362 static ssize_t
comp_algorithm_store(struct device
*dev
,
363 struct device_attribute
*attr
, const char *buf
, size_t len
)
365 struct zram
*zram
= dev_to_zram(dev
);
368 if (!zcomp_available_algorithm(buf
))
371 down_write(&zram
->init_lock
);
372 if (init_done(zram
)) {
373 up_write(&zram
->init_lock
);
374 pr_info("Can't change algorithm for initialized device\n");
377 strlcpy(zram
->compressor
, buf
, sizeof(zram
->compressor
));
379 /* ignore trailing newline */
380 sz
= strlen(zram
->compressor
);
381 if (sz
> 0 && zram
->compressor
[sz
- 1] == '\n')
382 zram
->compressor
[sz
- 1] = 0x00;
384 up_write(&zram
->init_lock
);
388 static ssize_t
compact_store(struct device
*dev
,
389 struct device_attribute
*attr
, const char *buf
, size_t len
)
391 struct zram
*zram
= dev_to_zram(dev
);
392 struct zram_meta
*meta
;
394 down_read(&zram
->init_lock
);
395 if (!init_done(zram
)) {
396 up_read(&zram
->init_lock
);
401 zs_compact(meta
->mem_pool
);
402 up_read(&zram
->init_lock
);
407 static ssize_t
io_stat_show(struct device
*dev
,
408 struct device_attribute
*attr
, char *buf
)
410 struct zram
*zram
= dev_to_zram(dev
);
413 down_read(&zram
->init_lock
);
414 ret
= scnprintf(buf
, PAGE_SIZE
,
415 "%8llu %8llu %8llu %8llu\n",
416 (u64
)atomic64_read(&zram
->stats
.failed_reads
),
417 (u64
)atomic64_read(&zram
->stats
.failed_writes
),
418 (u64
)atomic64_read(&zram
->stats
.invalid_io
),
419 (u64
)atomic64_read(&zram
->stats
.notify_free
));
420 up_read(&zram
->init_lock
);
425 static ssize_t
mm_stat_show(struct device
*dev
,
426 struct device_attribute
*attr
, char *buf
)
428 struct zram
*zram
= dev_to_zram(dev
);
429 struct zs_pool_stats pool_stats
;
430 u64 orig_size
, mem_used
= 0;
434 memset(&pool_stats
, 0x00, sizeof(struct zs_pool_stats
));
436 down_read(&zram
->init_lock
);
437 if (init_done(zram
)) {
438 mem_used
= zs_get_total_pages(zram
->meta
->mem_pool
);
439 zs_pool_stats(zram
->meta
->mem_pool
, &pool_stats
);
442 orig_size
= atomic64_read(&zram
->stats
.pages_stored
);
443 max_used
= atomic_long_read(&zram
->stats
.max_used_pages
);
445 ret
= scnprintf(buf
, PAGE_SIZE
,
446 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
447 orig_size
<< PAGE_SHIFT
,
448 (u64
)atomic64_read(&zram
->stats
.compr_data_size
),
449 mem_used
<< PAGE_SHIFT
,
450 zram
->limit_pages
<< PAGE_SHIFT
,
451 max_used
<< PAGE_SHIFT
,
452 (u64
)atomic64_read(&zram
->stats
.zero_pages
),
453 pool_stats
.pages_compacted
);
454 up_read(&zram
->init_lock
);
459 static DEVICE_ATTR_RO(io_stat
);
460 static DEVICE_ATTR_RO(mm_stat
);
461 ZRAM_ATTR_RO(num_reads
);
462 ZRAM_ATTR_RO(num_writes
);
463 ZRAM_ATTR_RO(failed_reads
);
464 ZRAM_ATTR_RO(failed_writes
);
465 ZRAM_ATTR_RO(invalid_io
);
466 ZRAM_ATTR_RO(notify_free
);
467 ZRAM_ATTR_RO(zero_pages
);
468 ZRAM_ATTR_RO(compr_data_size
);
470 static inline bool zram_meta_get(struct zram
*zram
)
472 if (atomic_inc_not_zero(&zram
->refcount
))
477 static inline void zram_meta_put(struct zram
*zram
)
479 atomic_dec(&zram
->refcount
);
482 static void zram_meta_free(struct zram_meta
*meta
, u64 disksize
)
484 size_t num_pages
= disksize
>> PAGE_SHIFT
;
487 /* Free all pages that are still in this zram device */
488 for (index
= 0; index
< num_pages
; index
++) {
489 unsigned long handle
= meta
->table
[index
].handle
;
494 zs_free(meta
->mem_pool
, handle
);
497 zs_destroy_pool(meta
->mem_pool
);
502 static struct zram_meta
*zram_meta_alloc(char *pool_name
, u64 disksize
)
505 struct zram_meta
*meta
= kmalloc(sizeof(*meta
), GFP_KERNEL
);
510 num_pages
= disksize
>> PAGE_SHIFT
;
511 meta
->table
= vzalloc(num_pages
* sizeof(*meta
->table
));
513 pr_err("Error allocating zram address table\n");
517 meta
->mem_pool
= zs_create_pool(pool_name
, GFP_NOIO
| __GFP_HIGHMEM
);
518 if (!meta
->mem_pool
) {
519 pr_err("Error creating memory pool\n");
532 * To protect concurrent access to the same index entry,
533 * caller should hold this table index entry's bit_spinlock to
534 * indicate this index entry is accessing.
536 static void zram_free_page(struct zram
*zram
, size_t index
)
538 struct zram_meta
*meta
= zram
->meta
;
539 unsigned long handle
= meta
->table
[index
].handle
;
541 if (unlikely(!handle
)) {
543 * No memory is allocated for zero filled pages.
544 * Simply clear zero page flag.
546 if (zram_test_flag(meta
, index
, ZRAM_ZERO
)) {
547 zram_clear_flag(meta
, index
, ZRAM_ZERO
);
548 atomic64_dec(&zram
->stats
.zero_pages
);
553 zs_free(meta
->mem_pool
, handle
);
555 atomic64_sub(zram_get_obj_size(meta
, index
),
556 &zram
->stats
.compr_data_size
);
557 atomic64_dec(&zram
->stats
.pages_stored
);
559 meta
->table
[index
].handle
= 0;
560 zram_set_obj_size(meta
, index
, 0);
563 static int zram_decompress_page(struct zram
*zram
, char *mem
, u32 index
)
567 struct zram_meta
*meta
= zram
->meta
;
568 unsigned long handle
;
571 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
572 handle
= meta
->table
[index
].handle
;
573 size
= zram_get_obj_size(meta
, index
);
575 if (!handle
|| zram_test_flag(meta
, index
, ZRAM_ZERO
)) {
576 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
581 cmem
= zs_map_object(meta
->mem_pool
, handle
, ZS_MM_RO
);
582 if (size
== PAGE_SIZE
)
583 copy_page(mem
, cmem
);
585 ret
= zcomp_decompress(zram
->comp
, cmem
, size
, mem
);
586 zs_unmap_object(meta
->mem_pool
, handle
);
587 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
589 /* Should NEVER happen. Return bio error if it does. */
591 pr_err("Decompression failed! err=%d, page=%u\n", ret
, index
);
598 static int zram_bvec_read(struct zram
*zram
, struct bio_vec
*bvec
,
599 u32 index
, int offset
)
603 unsigned char *user_mem
, *uncmem
= NULL
;
604 struct zram_meta
*meta
= zram
->meta
;
605 page
= bvec
->bv_page
;
607 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
608 if (unlikely(!meta
->table
[index
].handle
) ||
609 zram_test_flag(meta
, index
, ZRAM_ZERO
)) {
610 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
611 handle_zero_page(bvec
);
614 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
616 if (is_partial_io(bvec
))
617 /* Use a temporary buffer to decompress the page */
618 uncmem
= kmalloc(PAGE_SIZE
, GFP_NOIO
);
620 user_mem
= kmap_atomic(page
);
621 if (!is_partial_io(bvec
))
625 pr_err("Unable to allocate temp memory\n");
630 ret
= zram_decompress_page(zram
, uncmem
, index
);
631 /* Should NEVER happen. Return bio error if it does. */
635 if (is_partial_io(bvec
))
636 memcpy(user_mem
+ bvec
->bv_offset
, uncmem
+ offset
,
639 flush_dcache_page(page
);
642 kunmap_atomic(user_mem
);
643 if (is_partial_io(bvec
))
648 static int zram_bvec_write(struct zram
*zram
, struct bio_vec
*bvec
, u32 index
,
653 unsigned long handle
;
655 unsigned char *user_mem
, *cmem
, *src
, *uncmem
= NULL
;
656 struct zram_meta
*meta
= zram
->meta
;
657 struct zcomp_strm
*zstrm
= NULL
;
658 unsigned long alloced_pages
;
660 page
= bvec
->bv_page
;
661 if (is_partial_io(bvec
)) {
663 * This is a partial IO. We need to read the full page
664 * before to write the changes.
666 uncmem
= kmalloc(PAGE_SIZE
, GFP_NOIO
);
671 ret
= zram_decompress_page(zram
, uncmem
, index
);
676 zstrm
= zcomp_strm_find(zram
->comp
);
677 user_mem
= kmap_atomic(page
);
679 if (is_partial_io(bvec
)) {
680 memcpy(uncmem
+ offset
, user_mem
+ bvec
->bv_offset
,
682 kunmap_atomic(user_mem
);
688 if (page_zero_filled(uncmem
)) {
690 kunmap_atomic(user_mem
);
691 /* Free memory associated with this sector now. */
692 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
693 zram_free_page(zram
, index
);
694 zram_set_flag(meta
, index
, ZRAM_ZERO
);
695 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
697 atomic64_inc(&zram
->stats
.zero_pages
);
702 ret
= zcomp_compress(zram
->comp
, zstrm
, uncmem
, &clen
);
703 if (!is_partial_io(bvec
)) {
704 kunmap_atomic(user_mem
);
710 pr_err("Compression failed! err=%d\n", ret
);
714 if (unlikely(clen
> max_zpage_size
)) {
716 if (is_partial_io(bvec
))
720 handle
= zs_malloc(meta
->mem_pool
, clen
);
722 pr_err("Error allocating memory for compressed page: %u, size=%zu\n",
728 alloced_pages
= zs_get_total_pages(meta
->mem_pool
);
729 update_used_max(zram
, alloced_pages
);
731 if (zram
->limit_pages
&& alloced_pages
> zram
->limit_pages
) {
732 zs_free(meta
->mem_pool
, handle
);
737 cmem
= zs_map_object(meta
->mem_pool
, handle
, ZS_MM_WO
);
739 if ((clen
== PAGE_SIZE
) && !is_partial_io(bvec
)) {
740 src
= kmap_atomic(page
);
741 copy_page(cmem
, src
);
744 memcpy(cmem
, src
, clen
);
747 zcomp_strm_release(zram
->comp
, zstrm
);
749 zs_unmap_object(meta
->mem_pool
, handle
);
752 * Free memory associated with this sector
753 * before overwriting unused sectors.
755 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
756 zram_free_page(zram
, index
);
758 meta
->table
[index
].handle
= handle
;
759 zram_set_obj_size(meta
, index
, clen
);
760 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
763 atomic64_add(clen
, &zram
->stats
.compr_data_size
);
764 atomic64_inc(&zram
->stats
.pages_stored
);
767 zcomp_strm_release(zram
->comp
, zstrm
);
768 if (is_partial_io(bvec
))
774 * zram_bio_discard - handler on discard request
775 * @index: physical block index in PAGE_SIZE units
776 * @offset: byte offset within physical block
778 static void zram_bio_discard(struct zram
*zram
, u32 index
,
779 int offset
, struct bio
*bio
)
781 size_t n
= bio
->bi_iter
.bi_size
;
782 struct zram_meta
*meta
= zram
->meta
;
785 * zram manages data in physical block size units. Because logical block
786 * size isn't identical with physical block size on some arch, we
787 * could get a discard request pointing to a specific offset within a
788 * certain physical block. Although we can handle this request by
789 * reading that physiclal block and decompressing and partially zeroing
790 * and re-compressing and then re-storing it, this isn't reasonable
791 * because our intent with a discard request is to save memory. So
792 * skipping this logical block is appropriate here.
795 if (n
<= (PAGE_SIZE
- offset
))
798 n
-= (PAGE_SIZE
- offset
);
802 while (n
>= PAGE_SIZE
) {
803 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
804 zram_free_page(zram
, index
);
805 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
806 atomic64_inc(&zram
->stats
.notify_free
);
812 static int zram_bvec_rw(struct zram
*zram
, struct bio_vec
*bvec
, u32 index
,
815 unsigned long start_time
= jiffies
;
818 generic_start_io_acct(rw
, bvec
->bv_len
>> SECTOR_SHIFT
,
822 atomic64_inc(&zram
->stats
.num_reads
);
823 ret
= zram_bvec_read(zram
, bvec
, index
, offset
);
825 atomic64_inc(&zram
->stats
.num_writes
);
826 ret
= zram_bvec_write(zram
, bvec
, index
, offset
);
829 generic_end_io_acct(rw
, &zram
->disk
->part0
, start_time
);
833 atomic64_inc(&zram
->stats
.failed_reads
);
835 atomic64_inc(&zram
->stats
.failed_writes
);
841 static void __zram_make_request(struct zram
*zram
, struct bio
*bio
)
846 struct bvec_iter iter
;
848 index
= bio
->bi_iter
.bi_sector
>> SECTORS_PER_PAGE_SHIFT
;
849 offset
= (bio
->bi_iter
.bi_sector
&
850 (SECTORS_PER_PAGE
- 1)) << SECTOR_SHIFT
;
852 if (unlikely(bio
->bi_rw
& REQ_DISCARD
)) {
853 zram_bio_discard(zram
, index
, offset
, bio
);
858 rw
= bio_data_dir(bio
);
859 bio_for_each_segment(bvec
, bio
, iter
) {
860 int max_transfer_size
= PAGE_SIZE
- offset
;
862 if (bvec
.bv_len
> max_transfer_size
) {
864 * zram_bvec_rw() can only make operation on a single
865 * zram page. Split the bio vector.
869 bv
.bv_page
= bvec
.bv_page
;
870 bv
.bv_len
= max_transfer_size
;
871 bv
.bv_offset
= bvec
.bv_offset
;
873 if (zram_bvec_rw(zram
, &bv
, index
, offset
, rw
) < 0)
876 bv
.bv_len
= bvec
.bv_len
- max_transfer_size
;
877 bv
.bv_offset
+= max_transfer_size
;
878 if (zram_bvec_rw(zram
, &bv
, index
+ 1, 0, rw
) < 0)
881 if (zram_bvec_rw(zram
, &bvec
, index
, offset
, rw
) < 0)
884 update_position(&index
, &offset
, &bvec
);
895 * Handler function for all zram I/O requests.
897 static blk_qc_t
zram_make_request(struct request_queue
*queue
, struct bio
*bio
)
899 struct zram
*zram
= queue
->queuedata
;
901 if (unlikely(!zram_meta_get(zram
)))
904 blk_queue_split(queue
, &bio
, queue
->bio_split
);
906 if (!valid_io_request(zram
, bio
->bi_iter
.bi_sector
,
907 bio
->bi_iter
.bi_size
)) {
908 atomic64_inc(&zram
->stats
.invalid_io
);
912 __zram_make_request(zram
, bio
);
914 return BLK_QC_T_NONE
;
919 return BLK_QC_T_NONE
;
922 static void zram_slot_free_notify(struct block_device
*bdev
,
926 struct zram_meta
*meta
;
928 zram
= bdev
->bd_disk
->private_data
;
931 bit_spin_lock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
932 zram_free_page(zram
, index
);
933 bit_spin_unlock(ZRAM_ACCESS
, &meta
->table
[index
].value
);
934 atomic64_inc(&zram
->stats
.notify_free
);
937 static int zram_rw_page(struct block_device
*bdev
, sector_t sector
,
938 struct page
*page
, int rw
)
940 int offset
, err
= -EIO
;
945 zram
= bdev
->bd_disk
->private_data
;
946 if (unlikely(!zram_meta_get(zram
)))
949 if (!valid_io_request(zram
, sector
, PAGE_SIZE
)) {
950 atomic64_inc(&zram
->stats
.invalid_io
);
955 index
= sector
>> SECTORS_PER_PAGE_SHIFT
;
956 offset
= sector
& (SECTORS_PER_PAGE
- 1) << SECTOR_SHIFT
;
959 bv
.bv_len
= PAGE_SIZE
;
962 err
= zram_bvec_rw(zram
, &bv
, index
, offset
, rw
);
967 * If I/O fails, just return error(ie, non-zero) without
968 * calling page_endio.
969 * It causes resubmit the I/O with bio request by upper functions
970 * of rw_page(e.g., swap_readpage, __swap_writepage) and
971 * bio->bi_end_io does things to handle the error
972 * (e.g., SetPageError, set_page_dirty and extra works).
975 page_endio(page
, rw
, 0);
979 static void zram_reset_device(struct zram
*zram
)
981 struct zram_meta
*meta
;
985 down_write(&zram
->init_lock
);
987 zram
->limit_pages
= 0;
989 if (!init_done(zram
)) {
990 up_write(&zram
->init_lock
);
996 disksize
= zram
->disksize
;
998 * Refcount will go down to 0 eventually and r/w handler
999 * cannot handle further I/O so it will bail out by
1000 * check zram_meta_get.
1002 zram_meta_put(zram
);
1004 * We want to free zram_meta in process context to avoid
1005 * deadlock between reclaim path and any other locks.
1007 wait_event(zram
->io_done
, atomic_read(&zram
->refcount
) == 0);
1010 memset(&zram
->stats
, 0, sizeof(zram
->stats
));
1012 zram
->max_comp_streams
= 1;
1014 set_capacity(zram
->disk
, 0);
1015 part_stat_set_all(&zram
->disk
->part0
, 0);
1017 up_write(&zram
->init_lock
);
1018 /* I/O operation under all of CPU are done so let's free */
1019 zram_meta_free(meta
, disksize
);
1020 zcomp_destroy(comp
);
1023 static ssize_t
disksize_store(struct device
*dev
,
1024 struct device_attribute
*attr
, const char *buf
, size_t len
)
1028 struct zram_meta
*meta
;
1029 struct zram
*zram
= dev_to_zram(dev
);
1032 disksize
= memparse(buf
, NULL
);
1036 disksize
= PAGE_ALIGN(disksize
);
1037 meta
= zram_meta_alloc(zram
->disk
->disk_name
, disksize
);
1041 comp
= zcomp_create(zram
->compressor
, zram
->max_comp_streams
);
1043 pr_err("Cannot initialise %s compressing backend\n",
1045 err
= PTR_ERR(comp
);
1049 down_write(&zram
->init_lock
);
1050 if (init_done(zram
)) {
1051 pr_info("Cannot change disksize for initialized device\n");
1053 goto out_destroy_comp
;
1056 init_waitqueue_head(&zram
->io_done
);
1057 atomic_set(&zram
->refcount
, 1);
1060 zram
->disksize
= disksize
;
1061 set_capacity(zram
->disk
, zram
->disksize
>> SECTOR_SHIFT
);
1062 up_write(&zram
->init_lock
);
1065 * Revalidate disk out of the init_lock to avoid lockdep splat.
1066 * It's okay because disk's capacity is protected by init_lock
1067 * so that revalidate_disk always sees up-to-date capacity.
1069 revalidate_disk(zram
->disk
);
1074 up_write(&zram
->init_lock
);
1075 zcomp_destroy(comp
);
1077 zram_meta_free(meta
, disksize
);
1081 static ssize_t
reset_store(struct device
*dev
,
1082 struct device_attribute
*attr
, const char *buf
, size_t len
)
1085 unsigned short do_reset
;
1087 struct block_device
*bdev
;
1089 ret
= kstrtou16(buf
, 10, &do_reset
);
1096 zram
= dev_to_zram(dev
);
1097 bdev
= bdget_disk(zram
->disk
, 0);
1101 mutex_lock(&bdev
->bd_mutex
);
1102 /* Do not reset an active device or claimed device */
1103 if (bdev
->bd_openers
|| zram
->claim
) {
1104 mutex_unlock(&bdev
->bd_mutex
);
1109 /* From now on, anyone can't open /dev/zram[0-9] */
1111 mutex_unlock(&bdev
->bd_mutex
);
1113 /* Make sure all the pending I/O are finished */
1115 zram_reset_device(zram
);
1116 revalidate_disk(zram
->disk
);
1119 mutex_lock(&bdev
->bd_mutex
);
1120 zram
->claim
= false;
1121 mutex_unlock(&bdev
->bd_mutex
);
1126 static int zram_open(struct block_device
*bdev
, fmode_t mode
)
1131 WARN_ON(!mutex_is_locked(&bdev
->bd_mutex
));
1133 zram
= bdev
->bd_disk
->private_data
;
1134 /* zram was claimed to reset so open request fails */
1141 static const struct block_device_operations zram_devops
= {
1143 .swap_slot_free_notify
= zram_slot_free_notify
,
1144 .rw_page
= zram_rw_page
,
1145 .owner
= THIS_MODULE
1148 static DEVICE_ATTR_WO(compact
);
1149 static DEVICE_ATTR_RW(disksize
);
1150 static DEVICE_ATTR_RO(initstate
);
1151 static DEVICE_ATTR_WO(reset
);
1152 static DEVICE_ATTR_RO(orig_data_size
);
1153 static DEVICE_ATTR_RO(mem_used_total
);
1154 static DEVICE_ATTR_RW(mem_limit
);
1155 static DEVICE_ATTR_RW(mem_used_max
);
1156 static DEVICE_ATTR_RW(max_comp_streams
);
1157 static DEVICE_ATTR_RW(comp_algorithm
);
1159 static struct attribute
*zram_disk_attrs
[] = {
1160 &dev_attr_disksize
.attr
,
1161 &dev_attr_initstate
.attr
,
1162 &dev_attr_reset
.attr
,
1163 &dev_attr_num_reads
.attr
,
1164 &dev_attr_num_writes
.attr
,
1165 &dev_attr_failed_reads
.attr
,
1166 &dev_attr_failed_writes
.attr
,
1167 &dev_attr_compact
.attr
,
1168 &dev_attr_invalid_io
.attr
,
1169 &dev_attr_notify_free
.attr
,
1170 &dev_attr_zero_pages
.attr
,
1171 &dev_attr_orig_data_size
.attr
,
1172 &dev_attr_compr_data_size
.attr
,
1173 &dev_attr_mem_used_total
.attr
,
1174 &dev_attr_mem_limit
.attr
,
1175 &dev_attr_mem_used_max
.attr
,
1176 &dev_attr_max_comp_streams
.attr
,
1177 &dev_attr_comp_algorithm
.attr
,
1178 &dev_attr_io_stat
.attr
,
1179 &dev_attr_mm_stat
.attr
,
1183 static struct attribute_group zram_disk_attr_group
= {
1184 .attrs
= zram_disk_attrs
,
1188 * Allocate and initialize new zram device. the function returns
1189 * '>= 0' device_id upon success, and negative value otherwise.
1191 static int zram_add(void)
1194 struct request_queue
*queue
;
1197 zram
= kzalloc(sizeof(struct zram
), GFP_KERNEL
);
1201 ret
= idr_alloc(&zram_index_idr
, zram
, 0, 0, GFP_KERNEL
);
1206 init_rwsem(&zram
->init_lock
);
1208 queue
= blk_alloc_queue(GFP_KERNEL
);
1210 pr_err("Error allocating disk queue for device %d\n",
1216 blk_queue_make_request(queue
, zram_make_request
);
1218 /* gendisk structure */
1219 zram
->disk
= alloc_disk(1);
1221 pr_err("Error allocating disk structure for device %d\n",
1224 goto out_free_queue
;
1227 zram
->disk
->major
= zram_major
;
1228 zram
->disk
->first_minor
= device_id
;
1229 zram
->disk
->fops
= &zram_devops
;
1230 zram
->disk
->queue
= queue
;
1231 zram
->disk
->queue
->queuedata
= zram
;
1232 zram
->disk
->private_data
= zram
;
1233 snprintf(zram
->disk
->disk_name
, 16, "zram%d", device_id
);
1235 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1236 set_capacity(zram
->disk
, 0);
1237 /* zram devices sort of resembles non-rotational disks */
1238 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, zram
->disk
->queue
);
1239 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM
, zram
->disk
->queue
);
1241 * To ensure that we always get PAGE_SIZE aligned
1242 * and n*PAGE_SIZED sized I/O requests.
1244 blk_queue_physical_block_size(zram
->disk
->queue
, PAGE_SIZE
);
1245 blk_queue_logical_block_size(zram
->disk
->queue
,
1246 ZRAM_LOGICAL_BLOCK_SIZE
);
1247 blk_queue_io_min(zram
->disk
->queue
, PAGE_SIZE
);
1248 blk_queue_io_opt(zram
->disk
->queue
, PAGE_SIZE
);
1249 zram
->disk
->queue
->limits
.discard_granularity
= PAGE_SIZE
;
1250 blk_queue_max_discard_sectors(zram
->disk
->queue
, UINT_MAX
);
1252 * zram_bio_discard() will clear all logical blocks if logical block
1253 * size is identical with physical block size(PAGE_SIZE). But if it is
1254 * different, we will skip discarding some parts of logical blocks in
1255 * the part of the request range which isn't aligned to physical block
1256 * size. So we can't ensure that all discarded logical blocks are
1259 if (ZRAM_LOGICAL_BLOCK_SIZE
== PAGE_SIZE
)
1260 zram
->disk
->queue
->limits
.discard_zeroes_data
= 1;
1262 zram
->disk
->queue
->limits
.discard_zeroes_data
= 0;
1263 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, zram
->disk
->queue
);
1265 add_disk(zram
->disk
);
1267 ret
= sysfs_create_group(&disk_to_dev(zram
->disk
)->kobj
,
1268 &zram_disk_attr_group
);
1270 pr_err("Error creating sysfs group for device %d\n",
1274 strlcpy(zram
->compressor
, default_compressor
, sizeof(zram
->compressor
));
1276 zram
->max_comp_streams
= 1;
1278 pr_info("Added device: %s\n", zram
->disk
->disk_name
);
1282 del_gendisk(zram
->disk
);
1283 put_disk(zram
->disk
);
1285 blk_cleanup_queue(queue
);
1287 idr_remove(&zram_index_idr
, device_id
);
1293 static int zram_remove(struct zram
*zram
)
1295 struct block_device
*bdev
;
1297 bdev
= bdget_disk(zram
->disk
, 0);
1301 mutex_lock(&bdev
->bd_mutex
);
1302 if (bdev
->bd_openers
|| zram
->claim
) {
1303 mutex_unlock(&bdev
->bd_mutex
);
1309 mutex_unlock(&bdev
->bd_mutex
);
1312 * Remove sysfs first, so no one will perform a disksize
1313 * store while we destroy the devices. This also helps during
1314 * hot_remove -- zram_reset_device() is the last holder of
1315 * ->init_lock, no later/concurrent disksize_store() or any
1316 * other sysfs handlers are possible.
1318 sysfs_remove_group(&disk_to_dev(zram
->disk
)->kobj
,
1319 &zram_disk_attr_group
);
1321 /* Make sure all the pending I/O are finished */
1323 zram_reset_device(zram
);
1326 pr_info("Removed device: %s\n", zram
->disk
->disk_name
);
1328 idr_remove(&zram_index_idr
, zram
->disk
->first_minor
);
1329 blk_cleanup_queue(zram
->disk
->queue
);
1330 del_gendisk(zram
->disk
);
1331 put_disk(zram
->disk
);
1336 /* zram-control sysfs attributes */
1337 static ssize_t
hot_add_show(struct class *class,
1338 struct class_attribute
*attr
,
1343 mutex_lock(&zram_index_mutex
);
1345 mutex_unlock(&zram_index_mutex
);
1349 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ret
);
1352 static ssize_t
hot_remove_store(struct class *class,
1353 struct class_attribute
*attr
,
1360 /* dev_id is gendisk->first_minor, which is `int' */
1361 ret
= kstrtoint(buf
, 10, &dev_id
);
1367 mutex_lock(&zram_index_mutex
);
1369 zram
= idr_find(&zram_index_idr
, dev_id
);
1371 ret
= zram_remove(zram
);
1375 mutex_unlock(&zram_index_mutex
);
1376 return ret
? ret
: count
;
1379 static struct class_attribute zram_control_class_attrs
[] = {
1381 __ATTR_WO(hot_remove
),
1385 static struct class zram_control_class
= {
1386 .name
= "zram-control",
1387 .owner
= THIS_MODULE
,
1388 .class_attrs
= zram_control_class_attrs
,
1391 static int zram_remove_cb(int id
, void *ptr
, void *data
)
1397 static void destroy_devices(void)
1399 class_unregister(&zram_control_class
);
1400 idr_for_each(&zram_index_idr
, &zram_remove_cb
, NULL
);
1401 idr_destroy(&zram_index_idr
);
1402 unregister_blkdev(zram_major
, "zram");
1405 static int __init
zram_init(void)
1409 ret
= class_register(&zram_control_class
);
1411 pr_err("Unable to register zram-control class\n");
1415 zram_major
= register_blkdev(0, "zram");
1416 if (zram_major
<= 0) {
1417 pr_err("Unable to get major number\n");
1418 class_unregister(&zram_control_class
);
1422 while (num_devices
!= 0) {
1423 mutex_lock(&zram_index_mutex
);
1425 mutex_unlock(&zram_index_mutex
);
1438 static void __exit
zram_exit(void)
1443 module_init(zram_init
);
1444 module_exit(zram_exit
);
1446 module_param(num_devices
, uint
, 0);
1447 MODULE_PARM_DESC(num_devices
, "Number of pre-created zram devices");
1449 MODULE_LICENSE("Dual BSD/GPL");
1450 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1451 MODULE_DESCRIPTION("Compressed RAM Block Device");