1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/ioport.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/syscore_ops.h>
17 #include <soc/at91/atmel_tcb.h>
21 * We're configured to use a specific TC block, one that's not hooked
22 * up to external hardware, to provide a time solution:
24 * - Two channels combine to create a free-running 32 bit counter
25 * with a base rate of 5+ MHz, packaged as a clocksource (with
26 * resolution better than 200 nsec).
27 * - Some chips support 32 bit counter. A single channel is used for
28 * this 32 bit free-running counter. the second channel is not used.
30 * - The third channel may be used to provide a 16-bit clockevent
31 * source, used in either periodic or oneshot mode. This runs
32 * at 32 KiHZ, and can handle delays of up to two seconds.
34 * REVISIT behavior during system suspend states... we should disable
35 * all clocks and save the power. Easily done for clockevent devices,
36 * but clocksources won't necessarily get the needed notifications.
37 * For deeper system sleep states, this will be mandatory...
40 static void __iomem
*tcaddr
;
50 static u64
tc_get_cycles(struct clocksource
*cs
)
55 raw_local_irq_save(flags
);
57 upper
= readl_relaxed(tcaddr
+ ATMEL_TC_REG(1, CV
));
58 lower
= readl_relaxed(tcaddr
+ ATMEL_TC_REG(0, CV
));
59 } while (upper
!= readl_relaxed(tcaddr
+ ATMEL_TC_REG(1, CV
)));
61 raw_local_irq_restore(flags
);
62 return (upper
<< 16) | lower
;
65 static u64
tc_get_cycles32(struct clocksource
*cs
)
67 return readl_relaxed(tcaddr
+ ATMEL_TC_REG(0, CV
));
70 static void tc_clksrc_suspend(struct clocksource
*cs
)
74 for (i
= 0; i
< ARRAY_SIZE(tcb_cache
); i
++) {
75 tcb_cache
[i
].cmr
= readl(tcaddr
+ ATMEL_TC_REG(i
, CMR
));
76 tcb_cache
[i
].imr
= readl(tcaddr
+ ATMEL_TC_REG(i
, IMR
));
77 tcb_cache
[i
].rc
= readl(tcaddr
+ ATMEL_TC_REG(i
, RC
));
78 tcb_cache
[i
].clken
= !!(readl(tcaddr
+ ATMEL_TC_REG(i
, SR
)) &
82 bmr_cache
= readl(tcaddr
+ ATMEL_TC_BMR
);
85 static void tc_clksrc_resume(struct clocksource
*cs
)
89 for (i
= 0; i
< ARRAY_SIZE(tcb_cache
); i
++) {
90 /* Restore registers for the channel, RA and RB are not used */
91 writel(tcb_cache
[i
].cmr
, tcaddr
+ ATMEL_TC_REG(i
, CMR
));
92 writel(tcb_cache
[i
].rc
, tcaddr
+ ATMEL_TC_REG(i
, RC
));
93 writel(0, tcaddr
+ ATMEL_TC_REG(i
, RA
));
94 writel(0, tcaddr
+ ATMEL_TC_REG(i
, RB
));
95 /* Disable all the interrupts */
96 writel(0xff, tcaddr
+ ATMEL_TC_REG(i
, IDR
));
97 /* Reenable interrupts that were enabled before suspending */
98 writel(tcb_cache
[i
].imr
, tcaddr
+ ATMEL_TC_REG(i
, IER
));
99 /* Start the clock if it was used */
100 if (tcb_cache
[i
].clken
)
101 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(i
, CCR
));
104 /* Dual channel, chain channels */
105 writel(bmr_cache
, tcaddr
+ ATMEL_TC_BMR
);
106 /* Finally, trigger all the channels*/
107 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
110 static struct clocksource clksrc
= {
112 .read
= tc_get_cycles
,
113 .mask
= CLOCKSOURCE_MASK(32),
114 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
115 .suspend
= tc_clksrc_suspend
,
116 .resume
= tc_clksrc_resume
,
119 static u64 notrace
tc_sched_clock_read(void)
121 return tc_get_cycles(&clksrc
);
124 static u64 notrace
tc_sched_clock_read32(void)
126 return tc_get_cycles32(&clksrc
);
129 static struct delay_timer tc_delay_timer
;
131 static unsigned long tc_delay_timer_read(void)
133 return tc_get_cycles(&clksrc
);
136 static unsigned long notrace
tc_delay_timer_read32(void)
138 return tc_get_cycles32(&clksrc
);
141 #ifdef CONFIG_GENERIC_CLOCKEVENTS
143 struct tc_clkevt_device
{
144 struct clock_event_device clkevt
;
149 static struct tc_clkevt_device
*to_tc_clkevt(struct clock_event_device
*clkevt
)
151 return container_of(clkevt
, struct tc_clkevt_device
, clkevt
);
154 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
155 * because using one of the divided clocks would usually mean the
156 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
158 * A divided clock could be good for high resolution timers, since
159 * 30.5 usec resolution can seem "low".
161 static u32 timer_clock
;
163 static int tc_shutdown(struct clock_event_device
*d
)
165 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
166 void __iomem
*regs
= tcd
->regs
;
168 writel(0xff, regs
+ ATMEL_TC_REG(2, IDR
));
169 writel(ATMEL_TC_CLKDIS
, regs
+ ATMEL_TC_REG(2, CCR
));
170 if (!clockevent_state_detached(d
))
171 clk_disable(tcd
->clk
);
176 static int tc_set_oneshot(struct clock_event_device
*d
)
178 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
179 void __iomem
*regs
= tcd
->regs
;
181 if (clockevent_state_oneshot(d
) || clockevent_state_periodic(d
))
184 clk_enable(tcd
->clk
);
186 /* slow clock, count up to RC, then irq and stop */
187 writel(timer_clock
| ATMEL_TC_CPCSTOP
| ATMEL_TC_WAVE
|
188 ATMEL_TC_WAVESEL_UP_AUTO
, regs
+ ATMEL_TC_REG(2, CMR
));
189 writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
191 /* set_next_event() configures and starts the timer */
195 static int tc_set_periodic(struct clock_event_device
*d
)
197 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
198 void __iomem
*regs
= tcd
->regs
;
200 if (clockevent_state_oneshot(d
) || clockevent_state_periodic(d
))
203 /* By not making the gentime core emulate periodic mode on top
204 * of oneshot, we get lower overhead and improved accuracy.
206 clk_enable(tcd
->clk
);
208 /* slow clock, count up to RC, then irq and restart */
209 writel(timer_clock
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
210 regs
+ ATMEL_TC_REG(2, CMR
));
211 writel((32768 + HZ
/ 2) / HZ
, tcaddr
+ ATMEL_TC_REG(2, RC
));
213 /* Enable clock and interrupts on RC compare */
214 writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
217 writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
, regs
+
218 ATMEL_TC_REG(2, CCR
));
222 static int tc_next_event(unsigned long delta
, struct clock_event_device
*d
)
224 writel_relaxed(delta
, tcaddr
+ ATMEL_TC_REG(2, RC
));
227 writel_relaxed(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
228 tcaddr
+ ATMEL_TC_REG(2, CCR
));
232 static struct tc_clkevt_device clkevt
= {
234 .features
= CLOCK_EVT_FEAT_PERIODIC
|
235 CLOCK_EVT_FEAT_ONESHOT
,
236 /* Should be lower than at91rm9200's system timer */
238 .set_next_event
= tc_next_event
,
239 .set_state_shutdown
= tc_shutdown
,
240 .set_state_periodic
= tc_set_periodic
,
241 .set_state_oneshot
= tc_set_oneshot
,
245 static irqreturn_t
ch2_irq(int irq
, void *handle
)
247 struct tc_clkevt_device
*dev
= handle
;
250 sr
= readl_relaxed(dev
->regs
+ ATMEL_TC_REG(2, SR
));
251 if (sr
& ATMEL_TC_CPCS
) {
252 dev
->clkevt
.event_handler(&dev
->clkevt
);
259 static int __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
262 struct clk
*t2_clk
= tc
->clk
[2];
263 int irq
= tc
->irq
[2];
265 ret
= clk_prepare_enable(tc
->slow_clk
);
269 /* try to enable t2 clk to avoid future errors in mode change */
270 ret
= clk_prepare_enable(t2_clk
);
272 clk_disable_unprepare(tc
->slow_clk
);
278 clkevt
.regs
= tc
->regs
;
281 timer_clock
= clk32k_divisor_idx
;
283 clkevt
.clkevt
.cpumask
= cpumask_of(0);
285 ret
= request_irq(irq
, ch2_irq
, IRQF_TIMER
, "tc_clkevt", &clkevt
);
287 clk_unprepare(t2_clk
);
288 clk_disable_unprepare(tc
->slow_clk
);
292 clockevents_config_and_register(&clkevt
.clkevt
, 32768, 1, 0xffff);
297 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
299 static int __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
307 static void __init
tcb_setup_dual_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
309 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
310 writel(mck_divisor_idx
/* likely divide-by-8 */
312 | ATMEL_TC_WAVESEL_UP
/* free-run */
313 | ATMEL_TC_ACPA_SET
/* TIOA0 rises at 0 */
314 | ATMEL_TC_ACPC_CLEAR
, /* (duty cycle 50%) */
315 tcaddr
+ ATMEL_TC_REG(0, CMR
));
316 writel(0x0000, tcaddr
+ ATMEL_TC_REG(0, RA
));
317 writel(0x8000, tcaddr
+ ATMEL_TC_REG(0, RC
));
318 writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
319 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
321 /* channel 1: waveform mode, input TIOA0 */
322 writel(ATMEL_TC_XC1
/* input: TIOA0 */
324 | ATMEL_TC_WAVESEL_UP
, /* free-run */
325 tcaddr
+ ATMEL_TC_REG(1, CMR
));
326 writel(0xff, tcaddr
+ ATMEL_TC_REG(1, IDR
)); /* no irqs */
327 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(1, CCR
));
329 /* chain channel 0 to channel 1*/
330 writel(ATMEL_TC_TC1XC1S_TIOA0
, tcaddr
+ ATMEL_TC_BMR
);
331 /* then reset all the timers */
332 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
335 static void __init
tcb_setup_single_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
337 /* channel 0: waveform mode, input mclk/8 */
338 writel(mck_divisor_idx
/* likely divide-by-8 */
340 | ATMEL_TC_WAVESEL_UP
, /* free-run */
341 tcaddr
+ ATMEL_TC_REG(0, CMR
));
342 writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
343 writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
345 /* then reset all the timers */
346 writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
349 static const u8 atmel_tcb_divisors
[5] = { 2, 8, 32, 128, 0, };
351 static const struct of_device_id atmel_tcb_of_match
[] = {
352 { .compatible
= "atmel,at91rm9200-tcb", .data
= (void *)16, },
353 { .compatible
= "atmel,at91sam9x5-tcb", .data
= (void *)32, },
357 static int __init
tcb_clksrc_init(struct device_node
*node
)
361 const struct of_device_id
*match
;
362 u64 (*tc_sched_clock
)(void);
363 u32 rate
, divided_rate
= 0;
364 int best_divisor_idx
= -1;
365 int clk32k_divisor_idx
= -1;
370 /* Protect against multiple calls */
374 tc
.regs
= of_iomap(node
->parent
, 0);
378 t0_clk
= of_clk_get_by_name(node
->parent
, "t0_clk");
380 return PTR_ERR(t0_clk
);
382 tc
.slow_clk
= of_clk_get_by_name(node
->parent
, "slow_clk");
383 if (IS_ERR(tc
.slow_clk
))
384 return PTR_ERR(tc
.slow_clk
);
387 tc
.clk
[1] = of_clk_get_by_name(node
->parent
, "t1_clk");
388 if (IS_ERR(tc
.clk
[1]))
390 tc
.clk
[2] = of_clk_get_by_name(node
->parent
, "t2_clk");
391 if (IS_ERR(tc
.clk
[2]))
394 tc
.irq
[2] = of_irq_get(node
->parent
, 2);
395 if (tc
.irq
[2] <= 0) {
396 tc
.irq
[2] = of_irq_get(node
->parent
, 0);
401 match
= of_match_node(atmel_tcb_of_match
, node
->parent
);
402 bits
= (uintptr_t)match
->data
;
404 for (i
= 0; i
< ARRAY_SIZE(tc
.irq
); i
++)
405 writel(ATMEL_TC_ALL_IRQ
, tc
.regs
+ ATMEL_TC_REG(i
, IDR
));
407 ret
= clk_prepare_enable(t0_clk
);
409 pr_debug("can't enable T0 clk\n");
413 /* How fast will we be counting? Pick something over 5 MHz. */
414 rate
= (u32
) clk_get_rate(t0_clk
);
415 for (i
= 0; i
< ARRAY_SIZE(atmel_tcb_divisors
); i
++) {
416 unsigned divisor
= atmel_tcb_divisors
[i
];
419 /* remember 32 KiHz clock for later */
421 clk32k_divisor_idx
= i
;
425 tmp
= rate
/ divisor
;
426 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate
, divisor
, i
, tmp
);
427 if (best_divisor_idx
> 0) {
428 if (tmp
< 5 * 1000 * 1000)
432 best_divisor_idx
= i
;
435 clksrc
.name
= kbasename(node
->parent
->full_name
);
436 clkevt
.clkevt
.name
= kbasename(node
->parent
->full_name
);
437 pr_debug("%s at %d.%03d MHz\n", clksrc
.name
, divided_rate
/ 1000000,
438 ((divided_rate
% 1000000) + 500) / 1000);
443 /* use apropriate function to read 32 bit counter */
444 clksrc
.read
= tc_get_cycles32
;
445 /* setup ony channel 0 */
446 tcb_setup_single_chan(&tc
, best_divisor_idx
);
447 tc_sched_clock
= tc_sched_clock_read32
;
448 tc_delay_timer
.read_current_timer
= tc_delay_timer_read32
;
450 /* we have three clocks no matter what the
451 * underlying platform supports.
453 ret
= clk_prepare_enable(tc
.clk
[1]);
455 pr_debug("can't enable T1 clk\n");
458 /* setup both channel 0 & 1 */
459 tcb_setup_dual_chan(&tc
, best_divisor_idx
);
460 tc_sched_clock
= tc_sched_clock_read
;
461 tc_delay_timer
.read_current_timer
= tc_delay_timer_read
;
464 /* and away we go! */
465 ret
= clocksource_register_hz(&clksrc
, divided_rate
);
469 /* channel 2: periodic and oneshot timer support */
470 ret
= setup_clkevents(&tc
, clk32k_divisor_idx
);
472 goto err_unregister_clksrc
;
474 sched_clock_register(tc_sched_clock
, 32, divided_rate
);
476 tc_delay_timer
.freq
= divided_rate
;
477 register_current_timer_delay(&tc_delay_timer
);
481 err_unregister_clksrc
:
482 clocksource_unregister(&clksrc
);
486 clk_disable_unprepare(tc
.clk
[1]);
489 clk_disable_unprepare(t0_clk
);
495 TIMER_OF_DECLARE(atmel_tcb_clksrc
, "atmel,tcb-timer", tcb_clksrc_init
);