2 * linux/kernel/posix-timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
55 #include "timekeeping.h"
56 #include "posix-timers.h"
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
68 * Lets keep our timers in a slab cache :-)
70 static struct kmem_cache
*posix_timers_cache
;
72 static DEFINE_HASHTABLE(posix_timers_hashtable
, 9);
73 static DEFINE_SPINLOCK(hash_lock
);
75 static const struct k_clock
* const posix_clocks
[];
76 static const struct k_clock
*clockid_to_kclock(const clockid_t id
);
77 static const struct k_clock clock_realtime
, clock_monotonic
;
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
89 * parisc wants ENOTSUP instead of EOPNOTSUPP
92 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
94 # define ENANOSLEEP_NOTSUP ENOTSUP
98 * The timer ID is turned into a timer address by idr_find().
99 * Verifying a valid ID consists of:
101 * a) checking that idr_find() returns other than -1.
102 * b) checking that the timer id matches the one in the timer itself.
103 * c) that the timer owner is in the callers thread group.
107 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
108 * to implement others. This structure defines the various
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
119 * FUNCTIONS: The CLOCKs structure defines possible functions to
120 * handle various clock functions.
122 * The standard POSIX timer management code assumes the
123 * following: 1.) The k_itimer struct (sched.h) is used for
124 * the timer. 2.) The list, it_lock, it_clock, it_id and
125 * it_pid fields are not modified by timer code.
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
134 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
);
136 #define lock_timer(tid, flags) \
137 ({ struct k_itimer *__timr; \
138 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
142 static int hash(struct signal_struct
*sig
, unsigned int nr
)
144 return hash_32(hash32_ptr(sig
) ^ nr
, HASH_BITS(posix_timers_hashtable
));
147 static struct k_itimer
*__posix_timers_find(struct hlist_head
*head
,
148 struct signal_struct
*sig
,
151 struct k_itimer
*timer
;
153 hlist_for_each_entry_rcu(timer
, head
, t_hash
) {
154 if ((timer
->it_signal
== sig
) && (timer
->it_id
== id
))
160 static struct k_itimer
*posix_timer_by_id(timer_t id
)
162 struct signal_struct
*sig
= current
->signal
;
163 struct hlist_head
*head
= &posix_timers_hashtable
[hash(sig
, id
)];
165 return __posix_timers_find(head
, sig
, id
);
168 static int posix_timer_add(struct k_itimer
*timer
)
170 struct signal_struct
*sig
= current
->signal
;
171 int first_free_id
= sig
->posix_timer_id
;
172 struct hlist_head
*head
;
176 spin_lock(&hash_lock
);
177 head
= &posix_timers_hashtable
[hash(sig
, sig
->posix_timer_id
)];
178 if (!__posix_timers_find(head
, sig
, sig
->posix_timer_id
)) {
179 hlist_add_head_rcu(&timer
->t_hash
, head
);
180 ret
= sig
->posix_timer_id
;
182 if (++sig
->posix_timer_id
< 0)
183 sig
->posix_timer_id
= 0;
184 if ((sig
->posix_timer_id
== first_free_id
) && (ret
== -ENOENT
))
185 /* Loop over all possible ids completed */
187 spin_unlock(&hash_lock
);
188 } while (ret
== -ENOENT
);
192 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
194 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
197 /* Get clock_realtime */
198 static int posix_clock_realtime_get(clockid_t which_clock
, struct timespec64
*tp
)
200 ktime_get_real_ts64(tp
);
204 /* Set clock_realtime */
205 static int posix_clock_realtime_set(const clockid_t which_clock
,
206 const struct timespec64
*tp
)
208 return do_sys_settimeofday64(tp
, NULL
);
211 static int posix_clock_realtime_adj(const clockid_t which_clock
,
214 return do_adjtimex(t
);
218 * Get monotonic time for posix timers
220 static int posix_ktime_get_ts(clockid_t which_clock
, struct timespec64
*tp
)
227 * Get monotonic-raw time for posix timers
229 static int posix_get_monotonic_raw(clockid_t which_clock
, struct timespec64
*tp
)
231 getrawmonotonic64(tp
);
236 static int posix_get_realtime_coarse(clockid_t which_clock
, struct timespec64
*tp
)
238 *tp
= current_kernel_time64();
242 static int posix_get_monotonic_coarse(clockid_t which_clock
,
243 struct timespec64
*tp
)
245 *tp
= get_monotonic_coarse64();
249 static int posix_get_coarse_res(const clockid_t which_clock
, struct timespec64
*tp
)
251 *tp
= ktime_to_timespec64(KTIME_LOW_RES
);
255 static int posix_get_boottime(const clockid_t which_clock
, struct timespec64
*tp
)
257 get_monotonic_boottime64(tp
);
261 static int posix_get_tai(clockid_t which_clock
, struct timespec64
*tp
)
263 timekeeping_clocktai64(tp
);
267 static int posix_get_hrtimer_res(clockid_t which_clock
, struct timespec64
*tp
)
270 tp
->tv_nsec
= hrtimer_resolution
;
275 * Initialize everything, well, just everything in Posix clocks/timers ;)
277 static __init
int init_posix_timers(void)
279 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
280 sizeof (struct k_itimer
), 0, SLAB_PANIC
,
284 __initcall(init_posix_timers
);
286 static void common_hrtimer_rearm(struct k_itimer
*timr
)
288 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
290 if (!timr
->it_interval
)
293 timr
->it_overrun
+= (unsigned int) hrtimer_forward(timer
,
294 timer
->base
->get_time(),
296 hrtimer_restart(timer
);
300 * This function is exported for use by the signal deliver code. It is
301 * called just prior to the info block being released and passes that
302 * block to us. It's function is to update the overrun entry AND to
303 * restart the timer. It should only be called if the timer is to be
304 * restarted (i.e. we have flagged this in the sys_private entry of the
307 * To protect against the timer going away while the interrupt is queued,
308 * we require that the it_requeue_pending flag be set.
310 void posixtimer_rearm(struct siginfo
*info
)
312 struct k_itimer
*timr
;
315 timr
= lock_timer(info
->si_tid
, &flags
);
319 if (timr
->it_requeue_pending
== info
->si_sys_private
) {
320 timr
->kclock
->timer_rearm(timr
);
323 timr
->it_overrun_last
= timr
->it_overrun
;
324 timr
->it_overrun
= -1;
325 ++timr
->it_requeue_pending
;
327 info
->si_overrun
+= timr
->it_overrun_last
;
330 unlock_timer(timr
, flags
);
333 int posix_timer_event(struct k_itimer
*timr
, int si_private
)
335 struct task_struct
*task
;
336 int shared
, ret
= -1;
338 * FIXME: if ->sigq is queued we can race with
339 * dequeue_signal()->posixtimer_rearm().
341 * If dequeue_signal() sees the "right" value of
342 * si_sys_private it calls posixtimer_rearm().
343 * We re-queue ->sigq and drop ->it_lock().
344 * posixtimer_rearm() locks the timer
345 * and re-schedules it while ->sigq is pending.
346 * Not really bad, but not that we want.
348 timr
->sigq
->info
.si_sys_private
= si_private
;
351 task
= pid_task(timr
->it_pid
, PIDTYPE_PID
);
353 shared
= !(timr
->it_sigev_notify
& SIGEV_THREAD_ID
);
354 ret
= send_sigqueue(timr
->sigq
, task
, shared
);
357 /* If we failed to send the signal the timer stops. */
362 * This function gets called when a POSIX.1b interval timer expires. It
363 * is used as a callback from the kernel internal timer. The
364 * run_timer_list code ALWAYS calls with interrupts on.
366 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
368 static enum hrtimer_restart
posix_timer_fn(struct hrtimer
*timer
)
370 struct k_itimer
*timr
;
373 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
375 timr
= container_of(timer
, struct k_itimer
, it
.real
.timer
);
376 spin_lock_irqsave(&timr
->it_lock
, flags
);
379 if (timr
->it_interval
!= 0)
380 si_private
= ++timr
->it_requeue_pending
;
382 if (posix_timer_event(timr
, si_private
)) {
384 * signal was not sent because of sig_ignor
385 * we will not get a call back to restart it AND
386 * it should be restarted.
388 if (timr
->it_interval
!= 0) {
389 ktime_t now
= hrtimer_cb_get_time(timer
);
392 * FIXME: What we really want, is to stop this
393 * timer completely and restart it in case the
394 * SIG_IGN is removed. This is a non trivial
395 * change which involves sighand locking
396 * (sigh !), which we don't want to do late in
399 * For now we just let timers with an interval
400 * less than a jiffie expire every jiffie to
401 * avoid softirq starvation in case of SIG_IGN
402 * and a very small interval, which would put
403 * the timer right back on the softirq pending
404 * list. By moving now ahead of time we trick
405 * hrtimer_forward() to expire the timer
406 * later, while we still maintain the overrun
407 * accuracy, but have some inconsistency in
408 * the timer_gettime() case. This is at least
409 * better than a starved softirq. A more
410 * complex fix which solves also another related
411 * inconsistency is already in the pipeline.
413 #ifdef CONFIG_HIGH_RES_TIMERS
415 ktime_t kj
= NSEC_PER_SEC
/ HZ
;
417 if (timr
->it_interval
< kj
)
418 now
= ktime_add(now
, kj
);
421 timr
->it_overrun
+= (unsigned int)
422 hrtimer_forward(timer
, now
,
424 ret
= HRTIMER_RESTART
;
425 ++timr
->it_requeue_pending
;
430 unlock_timer(timr
, flags
);
434 static struct pid
*good_sigevent(sigevent_t
* event
)
436 struct task_struct
*rtn
= current
->group_leader
;
438 switch (event
->sigev_notify
) {
439 case SIGEV_SIGNAL
| SIGEV_THREAD_ID
:
440 rtn
= find_task_by_vpid(event
->sigev_notify_thread_id
);
441 if (!rtn
|| !same_thread_group(rtn
, current
))
446 if (event
->sigev_signo
<= 0 || event
->sigev_signo
> SIGRTMAX
)
450 return task_pid(rtn
);
456 static struct k_itimer
* alloc_posix_timer(void)
458 struct k_itimer
*tmr
;
459 tmr
= kmem_cache_zalloc(posix_timers_cache
, GFP_KERNEL
);
462 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
463 kmem_cache_free(posix_timers_cache
, tmr
);
466 clear_siginfo(&tmr
->sigq
->info
);
470 static void k_itimer_rcu_free(struct rcu_head
*head
)
472 struct k_itimer
*tmr
= container_of(head
, struct k_itimer
, it
.rcu
);
474 kmem_cache_free(posix_timers_cache
, tmr
);
478 #define IT_ID_NOT_SET 0
479 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
483 spin_lock_irqsave(&hash_lock
, flags
);
484 hlist_del_rcu(&tmr
->t_hash
);
485 spin_unlock_irqrestore(&hash_lock
, flags
);
487 put_pid(tmr
->it_pid
);
488 sigqueue_free(tmr
->sigq
);
489 call_rcu(&tmr
->it
.rcu
, k_itimer_rcu_free
);
492 static int common_timer_create(struct k_itimer
*new_timer
)
494 hrtimer_init(&new_timer
->it
.real
.timer
, new_timer
->it_clock
, 0);
498 /* Create a POSIX.1b interval timer. */
499 static int do_timer_create(clockid_t which_clock
, struct sigevent
*event
,
500 timer_t __user
*created_timer_id
)
502 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
503 struct k_itimer
*new_timer
;
504 int error
, new_timer_id
;
505 int it_id_set
= IT_ID_NOT_SET
;
509 if (!kc
->timer_create
)
512 new_timer
= alloc_posix_timer();
513 if (unlikely(!new_timer
))
516 spin_lock_init(&new_timer
->it_lock
);
517 new_timer_id
= posix_timer_add(new_timer
);
518 if (new_timer_id
< 0) {
519 error
= new_timer_id
;
523 it_id_set
= IT_ID_SET
;
524 new_timer
->it_id
= (timer_t
) new_timer_id
;
525 new_timer
->it_clock
= which_clock
;
526 new_timer
->kclock
= kc
;
527 new_timer
->it_overrun
= -1;
531 new_timer
->it_pid
= get_pid(good_sigevent(event
));
533 if (!new_timer
->it_pid
) {
537 new_timer
->it_sigev_notify
= event
->sigev_notify
;
538 new_timer
->sigq
->info
.si_signo
= event
->sigev_signo
;
539 new_timer
->sigq
->info
.si_value
= event
->sigev_value
;
541 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
542 new_timer
->sigq
->info
.si_signo
= SIGALRM
;
543 memset(&new_timer
->sigq
->info
.si_value
, 0, sizeof(sigval_t
));
544 new_timer
->sigq
->info
.si_value
.sival_int
= new_timer
->it_id
;
545 new_timer
->it_pid
= get_pid(task_tgid(current
));
548 new_timer
->sigq
->info
.si_tid
= new_timer
->it_id
;
549 new_timer
->sigq
->info
.si_code
= SI_TIMER
;
551 if (copy_to_user(created_timer_id
,
552 &new_timer_id
, sizeof (new_timer_id
))) {
557 error
= kc
->timer_create(new_timer
);
561 spin_lock_irq(¤t
->sighand
->siglock
);
562 new_timer
->it_signal
= current
->signal
;
563 list_add(&new_timer
->list
, ¤t
->signal
->posix_timers
);
564 spin_unlock_irq(¤t
->sighand
->siglock
);
568 * In the case of the timer belonging to another task, after
569 * the task is unlocked, the timer is owned by the other task
570 * and may cease to exist at any time. Don't use or modify
571 * new_timer after the unlock call.
574 release_posix_timer(new_timer
, it_id_set
);
578 SYSCALL_DEFINE3(timer_create
, const clockid_t
, which_clock
,
579 struct sigevent __user
*, timer_event_spec
,
580 timer_t __user
*, created_timer_id
)
582 if (timer_event_spec
) {
585 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
)))
587 return do_timer_create(which_clock
, &event
, created_timer_id
);
589 return do_timer_create(which_clock
, NULL
, created_timer_id
);
593 COMPAT_SYSCALL_DEFINE3(timer_create
, clockid_t
, which_clock
,
594 struct compat_sigevent __user
*, timer_event_spec
,
595 timer_t __user
*, created_timer_id
)
597 if (timer_event_spec
) {
600 if (get_compat_sigevent(&event
, timer_event_spec
))
602 return do_timer_create(which_clock
, &event
, created_timer_id
);
604 return do_timer_create(which_clock
, NULL
, created_timer_id
);
609 * Locking issues: We need to protect the result of the id look up until
610 * we get the timer locked down so it is not deleted under us. The
611 * removal is done under the idr spinlock so we use that here to bridge
612 * the find to the timer lock. To avoid a dead lock, the timer id MUST
613 * be release with out holding the timer lock.
615 static struct k_itimer
*__lock_timer(timer_t timer_id
, unsigned long *flags
)
617 struct k_itimer
*timr
;
620 * timer_t could be any type >= int and we want to make sure any
621 * @timer_id outside positive int range fails lookup.
623 if ((unsigned long long)timer_id
> INT_MAX
)
627 timr
= posix_timer_by_id(timer_id
);
629 spin_lock_irqsave(&timr
->it_lock
, *flags
);
630 if (timr
->it_signal
== current
->signal
) {
634 spin_unlock_irqrestore(&timr
->it_lock
, *flags
);
641 static ktime_t
common_hrtimer_remaining(struct k_itimer
*timr
, ktime_t now
)
643 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
645 return __hrtimer_expires_remaining_adjusted(timer
, now
);
648 static int common_hrtimer_forward(struct k_itimer
*timr
, ktime_t now
)
650 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
652 return (int)hrtimer_forward(timer
, now
, timr
->it_interval
);
656 * Get the time remaining on a POSIX.1b interval timer. This function
657 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
660 * We have a couple of messes to clean up here. First there is the case
661 * of a timer that has a requeue pending. These timers should appear to
662 * be in the timer list with an expiry as if we were to requeue them
665 * The second issue is the SIGEV_NONE timer which may be active but is
666 * not really ever put in the timer list (to save system resources).
667 * This timer may be expired, and if so, we will do it here. Otherwise
668 * it is the same as a requeue pending timer WRT to what we should
671 void common_timer_get(struct k_itimer
*timr
, struct itimerspec64
*cur_setting
)
673 const struct k_clock
*kc
= timr
->kclock
;
674 ktime_t now
, remaining
, iv
;
675 struct timespec64 ts64
;
678 sig_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
679 iv
= timr
->it_interval
;
681 /* interval timer ? */
683 cur_setting
->it_interval
= ktime_to_timespec64(iv
);
684 } else if (!timr
->it_active
) {
686 * SIGEV_NONE oneshot timers are never queued. Check them
694 * The timespec64 based conversion is suboptimal, but it's not
695 * worth to implement yet another callback.
697 kc
->clock_get(timr
->it_clock
, &ts64
);
698 now
= timespec64_to_ktime(ts64
);
701 * When a requeue is pending or this is a SIGEV_NONE timer move the
702 * expiry time forward by intervals, so expiry is > now.
704 if (iv
&& (timr
->it_requeue_pending
& REQUEUE_PENDING
|| sig_none
))
705 timr
->it_overrun
+= kc
->timer_forward(timr
, now
);
707 remaining
= kc
->timer_remaining(timr
, now
);
708 /* Return 0 only, when the timer is expired and not pending */
709 if (remaining
<= 0) {
711 * A single shot SIGEV_NONE timer must return 0, when
715 cur_setting
->it_value
.tv_nsec
= 1;
717 cur_setting
->it_value
= ktime_to_timespec64(remaining
);
721 /* Get the time remaining on a POSIX.1b interval timer. */
722 static int do_timer_gettime(timer_t timer_id
, struct itimerspec64
*setting
)
724 struct k_itimer
*timr
;
725 const struct k_clock
*kc
;
729 timr
= lock_timer(timer_id
, &flags
);
733 memset(setting
, 0, sizeof(*setting
));
735 if (WARN_ON_ONCE(!kc
|| !kc
->timer_get
))
738 kc
->timer_get(timr
, setting
);
740 unlock_timer(timr
, flags
);
744 /* Get the time remaining on a POSIX.1b interval timer. */
745 SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
746 struct itimerspec __user
*, setting
)
748 struct itimerspec64 cur_setting
;
750 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
752 if (put_itimerspec64(&cur_setting
, setting
))
759 COMPAT_SYSCALL_DEFINE2(timer_gettime
, timer_t
, timer_id
,
760 struct compat_itimerspec __user
*, setting
)
762 struct itimerspec64 cur_setting
;
764 int ret
= do_timer_gettime(timer_id
, &cur_setting
);
766 if (put_compat_itimerspec64(&cur_setting
, setting
))
774 * Get the number of overruns of a POSIX.1b interval timer. This is to
775 * be the overrun of the timer last delivered. At the same time we are
776 * accumulating overruns on the next timer. The overrun is frozen when
777 * the signal is delivered, either at the notify time (if the info block
778 * is not queued) or at the actual delivery time (as we are informed by
779 * the call back to posixtimer_rearm(). So all we need to do is
780 * to pick up the frozen overrun.
782 SYSCALL_DEFINE1(timer_getoverrun
, timer_t
, timer_id
)
784 struct k_itimer
*timr
;
788 timr
= lock_timer(timer_id
, &flags
);
792 overrun
= timr
->it_overrun_last
;
793 unlock_timer(timr
, flags
);
798 static void common_hrtimer_arm(struct k_itimer
*timr
, ktime_t expires
,
799 bool absolute
, bool sigev_none
)
801 struct hrtimer
*timer
= &timr
->it
.real
.timer
;
802 enum hrtimer_mode mode
;
804 mode
= absolute
? HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
;
806 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
807 * clock modifications, so they become CLOCK_MONOTONIC based under the
808 * hood. See hrtimer_init(). Update timr->kclock, so the generic
809 * functions which use timr->kclock->clock_get() work.
811 * Note: it_clock stays unmodified, because the next timer_set() might
812 * use ABSTIME, so it needs to switch back.
814 if (timr
->it_clock
== CLOCK_REALTIME
)
815 timr
->kclock
= absolute
? &clock_realtime
: &clock_monotonic
;
817 hrtimer_init(&timr
->it
.real
.timer
, timr
->it_clock
, mode
);
818 timr
->it
.real
.timer
.function
= posix_timer_fn
;
821 expires
= ktime_add_safe(expires
, timer
->base
->get_time());
822 hrtimer_set_expires(timer
, expires
);
825 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
828 static int common_hrtimer_try_to_cancel(struct k_itimer
*timr
)
830 return hrtimer_try_to_cancel(&timr
->it
.real
.timer
);
833 /* Set a POSIX.1b interval timer. */
834 int common_timer_set(struct k_itimer
*timr
, int flags
,
835 struct itimerspec64
*new_setting
,
836 struct itimerspec64
*old_setting
)
838 const struct k_clock
*kc
= timr
->kclock
;
843 common_timer_get(timr
, old_setting
);
845 /* Prevent rearming by clearing the interval */
846 timr
->it_interval
= 0;
848 * Careful here. On SMP systems the timer expiry function could be
849 * active and spinning on timr->it_lock.
851 if (kc
->timer_try_to_cancel(timr
) < 0)
855 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
857 timr
->it_overrun_last
= 0;
859 /* Switch off the timer when it_value is zero */
860 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
)
863 timr
->it_interval
= timespec64_to_ktime(new_setting
->it_interval
);
864 expires
= timespec64_to_ktime(new_setting
->it_value
);
865 sigev_none
= timr
->it_sigev_notify
== SIGEV_NONE
;
867 kc
->timer_arm(timr
, expires
, flags
& TIMER_ABSTIME
, sigev_none
);
868 timr
->it_active
= !sigev_none
;
872 static int do_timer_settime(timer_t timer_id
, int flags
,
873 struct itimerspec64
*new_spec64
,
874 struct itimerspec64
*old_spec64
)
876 const struct k_clock
*kc
;
877 struct k_itimer
*timr
;
881 if (!timespec64_valid(&new_spec64
->it_interval
) ||
882 !timespec64_valid(&new_spec64
->it_value
))
886 memset(old_spec64
, 0, sizeof(*old_spec64
));
888 timr
= lock_timer(timer_id
, &flag
);
893 if (WARN_ON_ONCE(!kc
|| !kc
->timer_set
))
896 error
= kc
->timer_set(timr
, flags
, new_spec64
, old_spec64
);
898 unlock_timer(timr
, flag
);
899 if (error
== TIMER_RETRY
) {
900 old_spec64
= NULL
; // We already got the old time...
907 /* Set a POSIX.1b interval timer */
908 SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
909 const struct itimerspec __user
*, new_setting
,
910 struct itimerspec __user
*, old_setting
)
912 struct itimerspec64 new_spec
, old_spec
;
913 struct itimerspec64
*rtn
= old_setting
? &old_spec
: NULL
;
919 if (get_itimerspec64(&new_spec
, new_setting
))
922 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
923 if (!error
&& old_setting
) {
924 if (put_itimerspec64(&old_spec
, old_setting
))
931 COMPAT_SYSCALL_DEFINE4(timer_settime
, timer_t
, timer_id
, int, flags
,
932 struct compat_itimerspec __user
*, new,
933 struct compat_itimerspec __user
*, old
)
935 struct itimerspec64 new_spec
, old_spec
;
936 struct itimerspec64
*rtn
= old
? &old_spec
: NULL
;
941 if (get_compat_itimerspec64(&new_spec
, new))
944 error
= do_timer_settime(timer_id
, flags
, &new_spec
, rtn
);
946 if (put_compat_itimerspec64(&old_spec
, old
))
953 int common_timer_del(struct k_itimer
*timer
)
955 const struct k_clock
*kc
= timer
->kclock
;
957 timer
->it_interval
= 0;
958 if (kc
->timer_try_to_cancel(timer
) < 0)
960 timer
->it_active
= 0;
964 static inline int timer_delete_hook(struct k_itimer
*timer
)
966 const struct k_clock
*kc
= timer
->kclock
;
968 if (WARN_ON_ONCE(!kc
|| !kc
->timer_del
))
970 return kc
->timer_del(timer
);
973 /* Delete a POSIX.1b interval timer. */
974 SYSCALL_DEFINE1(timer_delete
, timer_t
, timer_id
)
976 struct k_itimer
*timer
;
980 timer
= lock_timer(timer_id
, &flags
);
984 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
985 unlock_timer(timer
, flags
);
989 spin_lock(¤t
->sighand
->siglock
);
990 list_del(&timer
->list
);
991 spin_unlock(¤t
->sighand
->siglock
);
993 * This keeps any tasks waiting on the spin lock from thinking
994 * they got something (see the lock code above).
996 timer
->it_signal
= NULL
;
998 unlock_timer(timer
, flags
);
999 release_posix_timer(timer
, IT_ID_SET
);
1004 * return timer owned by the process, used by exit_itimers
1006 static void itimer_delete(struct k_itimer
*timer
)
1008 unsigned long flags
;
1011 spin_lock_irqsave(&timer
->it_lock
, flags
);
1013 if (timer_delete_hook(timer
) == TIMER_RETRY
) {
1014 unlock_timer(timer
, flags
);
1017 list_del(&timer
->list
);
1019 * This keeps any tasks waiting on the spin lock from thinking
1020 * they got something (see the lock code above).
1022 timer
->it_signal
= NULL
;
1024 unlock_timer(timer
, flags
);
1025 release_posix_timer(timer
, IT_ID_SET
);
1029 * This is called by do_exit or de_thread, only when there are no more
1030 * references to the shared signal_struct.
1032 void exit_itimers(struct signal_struct
*sig
)
1034 struct k_itimer
*tmr
;
1036 while (!list_empty(&sig
->posix_timers
)) {
1037 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1042 SYSCALL_DEFINE2(clock_settime
, const clockid_t
, which_clock
,
1043 const struct timespec __user
*, tp
)
1045 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1046 struct timespec64 new_tp
;
1048 if (!kc
|| !kc
->clock_set
)
1051 if (get_timespec64(&new_tp
, tp
))
1054 return kc
->clock_set(which_clock
, &new_tp
);
1057 SYSCALL_DEFINE2(clock_gettime
, const clockid_t
, which_clock
,
1058 struct timespec __user
*,tp
)
1060 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1061 struct timespec64 kernel_tp
;
1067 error
= kc
->clock_get(which_clock
, &kernel_tp
);
1069 if (!error
&& put_timespec64(&kernel_tp
, tp
))
1075 SYSCALL_DEFINE2(clock_adjtime
, const clockid_t
, which_clock
,
1076 struct timex __user
*, utx
)
1078 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1087 if (copy_from_user(&ktx
, utx
, sizeof(ktx
)))
1090 err
= kc
->clock_adj(which_clock
, &ktx
);
1092 if (err
>= 0 && copy_to_user(utx
, &ktx
, sizeof(ktx
)))
1098 SYSCALL_DEFINE2(clock_getres
, const clockid_t
, which_clock
,
1099 struct timespec __user
*, tp
)
1101 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1102 struct timespec64 rtn_tp
;
1108 error
= kc
->clock_getres(which_clock
, &rtn_tp
);
1110 if (!error
&& tp
&& put_timespec64(&rtn_tp
, tp
))
1116 #ifdef CONFIG_COMPAT
1118 COMPAT_SYSCALL_DEFINE2(clock_settime
, clockid_t
, which_clock
,
1119 struct compat_timespec __user
*, tp
)
1121 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1122 struct timespec64 ts
;
1124 if (!kc
|| !kc
->clock_set
)
1127 if (compat_get_timespec64(&ts
, tp
))
1130 return kc
->clock_set(which_clock
, &ts
);
1133 COMPAT_SYSCALL_DEFINE2(clock_gettime
, clockid_t
, which_clock
,
1134 struct compat_timespec __user
*, tp
)
1136 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1137 struct timespec64 ts
;
1143 err
= kc
->clock_get(which_clock
, &ts
);
1145 if (!err
&& compat_put_timespec64(&ts
, tp
))
1151 COMPAT_SYSCALL_DEFINE2(clock_adjtime
, clockid_t
, which_clock
,
1152 struct compat_timex __user
*, utp
)
1154 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1163 err
= compat_get_timex(&ktx
, utp
);
1167 err
= kc
->clock_adj(which_clock
, &ktx
);
1170 err
= compat_put_timex(utp
, &ktx
);
1175 COMPAT_SYSCALL_DEFINE2(clock_getres
, clockid_t
, which_clock
,
1176 struct compat_timespec __user
*, tp
)
1178 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1179 struct timespec64 ts
;
1185 err
= kc
->clock_getres(which_clock
, &ts
);
1186 if (!err
&& tp
&& compat_put_timespec64(&ts
, tp
))
1195 * nanosleep for monotonic and realtime clocks
1197 static int common_nsleep(const clockid_t which_clock
, int flags
,
1198 const struct timespec64
*rqtp
)
1200 return hrtimer_nanosleep(rqtp
, flags
& TIMER_ABSTIME
?
1201 HRTIMER_MODE_ABS
: HRTIMER_MODE_REL
,
1205 SYSCALL_DEFINE4(clock_nanosleep
, const clockid_t
, which_clock
, int, flags
,
1206 const struct timespec __user
*, rqtp
,
1207 struct timespec __user
*, rmtp
)
1209 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1210 struct timespec64 t
;
1215 return -ENANOSLEEP_NOTSUP
;
1217 if (get_timespec64(&t
, rqtp
))
1220 if (!timespec64_valid(&t
))
1222 if (flags
& TIMER_ABSTIME
)
1224 current
->restart_block
.nanosleep
.type
= rmtp
? TT_NATIVE
: TT_NONE
;
1225 current
->restart_block
.nanosleep
.rmtp
= rmtp
;
1227 return kc
->nsleep(which_clock
, flags
, &t
);
1230 #ifdef CONFIG_COMPAT
1231 COMPAT_SYSCALL_DEFINE4(clock_nanosleep
, clockid_t
, which_clock
, int, flags
,
1232 struct compat_timespec __user
*, rqtp
,
1233 struct compat_timespec __user
*, rmtp
)
1235 const struct k_clock
*kc
= clockid_to_kclock(which_clock
);
1236 struct timespec64 t
;
1241 return -ENANOSLEEP_NOTSUP
;
1243 if (compat_get_timespec64(&t
, rqtp
))
1246 if (!timespec64_valid(&t
))
1248 if (flags
& TIMER_ABSTIME
)
1250 current
->restart_block
.nanosleep
.type
= rmtp
? TT_COMPAT
: TT_NONE
;
1251 current
->restart_block
.nanosleep
.compat_rmtp
= rmtp
;
1253 return kc
->nsleep(which_clock
, flags
, &t
);
1257 static const struct k_clock clock_realtime
= {
1258 .clock_getres
= posix_get_hrtimer_res
,
1259 .clock_get
= posix_clock_realtime_get
,
1260 .clock_set
= posix_clock_realtime_set
,
1261 .clock_adj
= posix_clock_realtime_adj
,
1262 .nsleep
= common_nsleep
,
1263 .timer_create
= common_timer_create
,
1264 .timer_set
= common_timer_set
,
1265 .timer_get
= common_timer_get
,
1266 .timer_del
= common_timer_del
,
1267 .timer_rearm
= common_hrtimer_rearm
,
1268 .timer_forward
= common_hrtimer_forward
,
1269 .timer_remaining
= common_hrtimer_remaining
,
1270 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1271 .timer_arm
= common_hrtimer_arm
,
1274 static const struct k_clock clock_monotonic
= {
1275 .clock_getres
= posix_get_hrtimer_res
,
1276 .clock_get
= posix_ktime_get_ts
,
1277 .nsleep
= common_nsleep
,
1278 .timer_create
= common_timer_create
,
1279 .timer_set
= common_timer_set
,
1280 .timer_get
= common_timer_get
,
1281 .timer_del
= common_timer_del
,
1282 .timer_rearm
= common_hrtimer_rearm
,
1283 .timer_forward
= common_hrtimer_forward
,
1284 .timer_remaining
= common_hrtimer_remaining
,
1285 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1286 .timer_arm
= common_hrtimer_arm
,
1289 static const struct k_clock clock_monotonic_raw
= {
1290 .clock_getres
= posix_get_hrtimer_res
,
1291 .clock_get
= posix_get_monotonic_raw
,
1294 static const struct k_clock clock_realtime_coarse
= {
1295 .clock_getres
= posix_get_coarse_res
,
1296 .clock_get
= posix_get_realtime_coarse
,
1299 static const struct k_clock clock_monotonic_coarse
= {
1300 .clock_getres
= posix_get_coarse_res
,
1301 .clock_get
= posix_get_monotonic_coarse
,
1304 static const struct k_clock clock_tai
= {
1305 .clock_getres
= posix_get_hrtimer_res
,
1306 .clock_get
= posix_get_tai
,
1307 .nsleep
= common_nsleep
,
1308 .timer_create
= common_timer_create
,
1309 .timer_set
= common_timer_set
,
1310 .timer_get
= common_timer_get
,
1311 .timer_del
= common_timer_del
,
1312 .timer_rearm
= common_hrtimer_rearm
,
1313 .timer_forward
= common_hrtimer_forward
,
1314 .timer_remaining
= common_hrtimer_remaining
,
1315 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1316 .timer_arm
= common_hrtimer_arm
,
1319 static const struct k_clock clock_boottime
= {
1320 .clock_getres
= posix_get_hrtimer_res
,
1321 .clock_get
= posix_get_boottime
,
1322 .nsleep
= common_nsleep
,
1323 .timer_create
= common_timer_create
,
1324 .timer_set
= common_timer_set
,
1325 .timer_get
= common_timer_get
,
1326 .timer_del
= common_timer_del
,
1327 .timer_rearm
= common_hrtimer_rearm
,
1328 .timer_forward
= common_hrtimer_forward
,
1329 .timer_remaining
= common_hrtimer_remaining
,
1330 .timer_try_to_cancel
= common_hrtimer_try_to_cancel
,
1331 .timer_arm
= common_hrtimer_arm
,
1334 static const struct k_clock
* const posix_clocks
[] = {
1335 [CLOCK_REALTIME
] = &clock_realtime
,
1336 [CLOCK_MONOTONIC
] = &clock_monotonic
,
1337 [CLOCK_PROCESS_CPUTIME_ID
] = &clock_process
,
1338 [CLOCK_THREAD_CPUTIME_ID
] = &clock_thread
,
1339 [CLOCK_MONOTONIC_RAW
] = &clock_monotonic_raw
,
1340 [CLOCK_REALTIME_COARSE
] = &clock_realtime_coarse
,
1341 [CLOCK_MONOTONIC_COARSE
] = &clock_monotonic_coarse
,
1342 [CLOCK_BOOTTIME
] = &clock_boottime
,
1343 [CLOCK_REALTIME_ALARM
] = &alarm_clock
,
1344 [CLOCK_BOOTTIME_ALARM
] = &alarm_clock
,
1345 [CLOCK_TAI
] = &clock_tai
,
1348 static const struct k_clock
*clockid_to_kclock(const clockid_t id
)
1353 return (id
& CLOCKFD_MASK
) == CLOCKFD
?
1354 &clock_posix_dynamic
: &clock_posix_cpu
;
1357 if (id
>= ARRAY_SIZE(posix_clocks
))
1360 return posix_clocks
[array_index_nospec(idx
, ARRAY_SIZE(posix_clocks
))];