2 * Performance event support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
29 struct cpu_hw_events
{
36 struct perf_event
*event
[MAX_HWEVENTS
];
37 u64 events
[MAX_HWEVENTS
];
38 unsigned int flags
[MAX_HWEVENTS
];
39 unsigned long mmcr
[3];
40 struct perf_event
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
41 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
42 u64 alternatives
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
43 unsigned long amasks
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
44 unsigned long avalues
[MAX_HWEVENTS
][MAX_EVENT_ALTERNATIVES
];
46 unsigned int group_flag
;
50 u64 bhrb_filter
; /* BHRB HW branch filter */
53 struct perf_branch_stack bhrb_stack
;
54 struct perf_branch_entry bhrb_entries
[BHRB_MAX_ENTRIES
];
57 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
);
59 struct power_pmu
*ppmu
;
62 * Normally, to ignore kernel events we set the FCS (freeze counters
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
68 static unsigned int freeze_events_kernel
= MMCR0_FCS
;
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
77 #define MMCR0_PMCjCE MMCR0_PMCnCE
82 #define MMCR0_PMCC_U6 0
84 #define SPRN_MMCRA SPRN_MMCR2
85 #define MMCRA_SAMPLE_ENABLE 0
87 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
91 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
) { }
92 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
96 static inline void perf_read_regs(struct pt_regs
*regs
)
100 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
105 static inline int siar_valid(struct pt_regs
*regs
)
110 static bool is_ebb_event(struct perf_event
*event
) { return false; }
111 static int ebb_event_check(struct perf_event
*event
) { return 0; }
112 static void ebb_event_add(struct perf_event
*event
) { }
113 static void ebb_switch_out(unsigned long mmcr0
) { }
114 static unsigned long ebb_switch_in(bool ebb
, unsigned long mmcr0
)
119 static inline void power_pmu_bhrb_enable(struct perf_event
*event
) {}
120 static inline void power_pmu_bhrb_disable(struct perf_event
*event
) {}
121 void power_pmu_flush_branch_stack(void) {}
122 static inline void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
) {}
123 #endif /* CONFIG_PPC32 */
125 static bool regs_use_siar(struct pt_regs
*regs
)
127 return !!regs
->result
;
131 * Things that are specific to 64-bit implementations.
135 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
137 unsigned long mmcra
= regs
->dsisr
;
139 if ((ppmu
->flags
& PPMU_HAS_SSLOT
) && (mmcra
& MMCRA_SAMPLE_ENABLE
)) {
140 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
142 return 4 * (slot
- 1);
149 * The user wants a data address recorded.
150 * If we're not doing instruction sampling, give them the SDAR
151 * (sampled data address). If we are doing instruction sampling, then
152 * only give them the SDAR if it corresponds to the instruction
153 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
154 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
156 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
)
158 unsigned long mmcra
= regs
->dsisr
;
161 if (ppmu
->flags
& PPMU_HAS_SIER
)
162 sdar_valid
= regs
->dar
& SIER_SDAR_VALID
;
164 unsigned long sdsync
;
166 if (ppmu
->flags
& PPMU_SIAR_VALID
)
167 sdsync
= POWER7P_MMCRA_SDAR_VALID
;
168 else if (ppmu
->flags
& PPMU_ALT_SIPR
)
169 sdsync
= POWER6_MMCRA_SDSYNC
;
171 sdsync
= MMCRA_SDSYNC
;
173 sdar_valid
= mmcra
& sdsync
;
176 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || sdar_valid
)
177 *addrp
= mfspr(SPRN_SDAR
);
180 static bool regs_sihv(struct pt_regs
*regs
)
182 unsigned long sihv
= MMCRA_SIHV
;
184 if (ppmu
->flags
& PPMU_HAS_SIER
)
185 return !!(regs
->dar
& SIER_SIHV
);
187 if (ppmu
->flags
& PPMU_ALT_SIPR
)
188 sihv
= POWER6_MMCRA_SIHV
;
190 return !!(regs
->dsisr
& sihv
);
193 static bool regs_sipr(struct pt_regs
*regs
)
195 unsigned long sipr
= MMCRA_SIPR
;
197 if (ppmu
->flags
& PPMU_HAS_SIER
)
198 return !!(regs
->dar
& SIER_SIPR
);
200 if (ppmu
->flags
& PPMU_ALT_SIPR
)
201 sipr
= POWER6_MMCRA_SIPR
;
203 return !!(regs
->dsisr
& sipr
);
206 static inline u32
perf_flags_from_msr(struct pt_regs
*regs
)
208 if (regs
->msr
& MSR_PR
)
209 return PERF_RECORD_MISC_USER
;
210 if ((regs
->msr
& MSR_HV
) && freeze_events_kernel
!= MMCR0_FCHV
)
211 return PERF_RECORD_MISC_HYPERVISOR
;
212 return PERF_RECORD_MISC_KERNEL
;
215 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
217 bool use_siar
= regs_use_siar(regs
);
220 return perf_flags_from_msr(regs
);
223 * If we don't have flags in MMCRA, rather than using
224 * the MSR, we intuit the flags from the address in
225 * SIAR which should give slightly more reliable
228 if (ppmu
->flags
& PPMU_NO_SIPR
) {
229 unsigned long siar
= mfspr(SPRN_SIAR
);
230 if (siar
>= PAGE_OFFSET
)
231 return PERF_RECORD_MISC_KERNEL
;
232 return PERF_RECORD_MISC_USER
;
235 /* PR has priority over HV, so order below is important */
237 return PERF_RECORD_MISC_USER
;
239 if (regs_sihv(regs
) && (freeze_events_kernel
!= MMCR0_FCHV
))
240 return PERF_RECORD_MISC_HYPERVISOR
;
242 return PERF_RECORD_MISC_KERNEL
;
246 * Overload regs->dsisr to store MMCRA so we only need to read it once
248 * Overload regs->dar to store SIER if we have it.
249 * Overload regs->result to specify whether we should use the MSR (result
250 * is zero) or the SIAR (result is non zero).
252 static inline void perf_read_regs(struct pt_regs
*regs
)
254 unsigned long mmcra
= mfspr(SPRN_MMCRA
);
255 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
260 if (ppmu
->flags
& PPMU_HAS_SIER
)
261 regs
->dar
= mfspr(SPRN_SIER
);
264 * If this isn't a PMU exception (eg a software event) the SIAR is
265 * not valid. Use pt_regs.
267 * If it is a marked event use the SIAR.
269 * If the PMU doesn't update the SIAR for non marked events use
272 * If the PMU has HV/PR flags then check to see if they
273 * place the exception in userspace. If so, use pt_regs. In
274 * continuous sampling mode the SIAR and the PMU exception are
275 * not synchronised, so they may be many instructions apart.
276 * This can result in confusing backtraces. We still want
277 * hypervisor samples as well as samples in the kernel with
278 * interrupts off hence the userspace check.
280 if (TRAP(regs
) != 0xf00)
284 else if ((ppmu
->flags
& PPMU_NO_CONT_SAMPLING
))
286 else if (!(ppmu
->flags
& PPMU_NO_SIPR
) && regs_sipr(regs
))
291 regs
->result
= use_siar
;
295 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
298 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
304 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
305 * must be sampled only if the SIAR-valid bit is set.
307 * For unmarked instructions and for processors that don't have the SIAR-Valid
308 * bit, assume that SIAR is valid.
310 static inline int siar_valid(struct pt_regs
*regs
)
312 unsigned long mmcra
= regs
->dsisr
;
313 int marked
= mmcra
& MMCRA_SAMPLE_ENABLE
;
316 if (ppmu
->flags
& PPMU_HAS_SIER
)
317 return regs
->dar
& SIER_SIAR_VALID
;
319 if (ppmu
->flags
& PPMU_SIAR_VALID
)
320 return mmcra
& POWER7P_MMCRA_SIAR_VALID
;
327 /* Reset all possible BHRB entries */
328 static void power_pmu_bhrb_reset(void)
330 asm volatile(PPC_CLRBHRB
);
333 static void power_pmu_bhrb_enable(struct perf_event
*event
)
335 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
340 /* Clear BHRB if we changed task context to avoid data leaks */
341 if (event
->ctx
->task
&& cpuhw
->bhrb_context
!= event
->ctx
) {
342 power_pmu_bhrb_reset();
343 cpuhw
->bhrb_context
= event
->ctx
;
348 static void power_pmu_bhrb_disable(struct perf_event
*event
)
350 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
356 WARN_ON_ONCE(cpuhw
->bhrb_users
< 0);
358 if (!cpuhw
->disabled
&& !cpuhw
->bhrb_users
) {
359 /* BHRB cannot be turned off when other
360 * events are active on the PMU.
363 /* avoid stale pointer */
364 cpuhw
->bhrb_context
= NULL
;
368 /* Called from ctxsw to prevent one process's branch entries to
369 * mingle with the other process's entries during context switch.
371 void power_pmu_flush_branch_stack(void)
374 power_pmu_bhrb_reset();
376 /* Calculate the to address for a branch */
377 static __u64
power_pmu_bhrb_to(u64 addr
)
383 if (is_kernel_addr(addr
))
384 return branch_target((unsigned int *)addr
);
386 /* Userspace: need copy instruction here then translate it */
388 ret
= __get_user_inatomic(instr
, (unsigned int __user
*)addr
);
395 target
= branch_target(&instr
);
396 if ((!target
) || (instr
& BRANCH_ABSOLUTE
))
399 /* Translate relative branch target from kernel to user address */
400 return target
- (unsigned long)&instr
+ addr
;
403 /* Processing BHRB entries */
404 void power_pmu_bhrb_read(struct cpu_hw_events
*cpuhw
)
408 int r_index
, u_index
, pred
;
412 while (r_index
< ppmu
->bhrb_nr
) {
413 /* Assembly read function */
414 val
= read_bhrb(r_index
++);
416 /* Terminal marker: End of valid BHRB entries */
419 addr
= val
& BHRB_EA
;
420 pred
= val
& BHRB_PREDICTION
;
426 /* Branches are read most recent first (ie. mfbhrb 0 is
427 * the most recent branch).
428 * There are two types of valid entries:
429 * 1) a target entry which is the to address of a
430 * computed goto like a blr,bctr,btar. The next
431 * entry read from the bhrb will be branch
432 * corresponding to this target (ie. the actual
433 * blr/bctr/btar instruction).
434 * 2) a from address which is an actual branch. If a
435 * target entry proceeds this, then this is the
436 * matching branch for that target. If this is not
437 * following a target entry, then this is a branch
438 * where the target is given as an immediate field
439 * in the instruction (ie. an i or b form branch).
440 * In this case we need to read the instruction from
441 * memory to determine the target/to address.
444 if (val
& BHRB_TARGET
) {
445 /* Target branches use two entries
446 * (ie. computed gotos/XL form)
448 cpuhw
->bhrb_entries
[u_index
].to
= addr
;
449 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
450 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
452 /* Get from address in next entry */
453 val
= read_bhrb(r_index
++);
454 addr
= val
& BHRB_EA
;
455 if (val
& BHRB_TARGET
) {
456 /* Shouldn't have two targets in a
457 row.. Reset index and try again */
461 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
463 /* Branches to immediate field
465 cpuhw
->bhrb_entries
[u_index
].from
= addr
;
466 cpuhw
->bhrb_entries
[u_index
].to
=
467 power_pmu_bhrb_to(addr
);
468 cpuhw
->bhrb_entries
[u_index
].mispred
= pred
;
469 cpuhw
->bhrb_entries
[u_index
].predicted
= ~pred
;
475 cpuhw
->bhrb_stack
.nr
= u_index
;
479 static bool is_ebb_event(struct perf_event
*event
)
482 * This could be a per-PMU callback, but we'd rather avoid the cost. We
483 * check that the PMU supports EBB, meaning those that don't can still
484 * use bit 63 of the event code for something else if they wish.
486 return (ppmu
->flags
& PPMU_EBB
) &&
487 ((event
->attr
.config
>> PERF_EVENT_CONFIG_EBB_SHIFT
) & 1);
490 static int ebb_event_check(struct perf_event
*event
)
492 struct perf_event
*leader
= event
->group_leader
;
494 /* Event and group leader must agree on EBB */
495 if (is_ebb_event(leader
) != is_ebb_event(event
))
498 if (is_ebb_event(event
)) {
499 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
502 if (!leader
->attr
.pinned
|| !leader
->attr
.exclusive
)
505 if (event
->attr
.inherit
|| event
->attr
.sample_period
||
506 event
->attr
.enable_on_exec
|| event
->attr
.freq
)
513 static void ebb_event_add(struct perf_event
*event
)
515 if (!is_ebb_event(event
) || current
->thread
.used_ebb
)
519 * IFF this is the first time we've added an EBB event, set
520 * PMXE in the user MMCR0 so we can detect when it's cleared by
521 * userspace. We need this so that we can context switch while
522 * userspace is in the EBB handler (where PMXE is 0).
524 current
->thread
.used_ebb
= 1;
525 current
->thread
.mmcr0
|= MMCR0_PMXE
;
528 static void ebb_switch_out(unsigned long mmcr0
)
530 if (!(mmcr0
& MMCR0_EBE
))
533 current
->thread
.siar
= mfspr(SPRN_SIAR
);
534 current
->thread
.sier
= mfspr(SPRN_SIER
);
535 current
->thread
.sdar
= mfspr(SPRN_SDAR
);
536 current
->thread
.mmcr0
= mmcr0
& MMCR0_USER_MASK
;
537 current
->thread
.mmcr2
= mfspr(SPRN_MMCR2
) & MMCR2_USER_MASK
;
540 static unsigned long ebb_switch_in(bool ebb
, unsigned long mmcr0
)
545 /* Enable EBB and read/write to all 6 PMCs for userspace */
546 mmcr0
|= MMCR0_EBE
| MMCR0_PMCC_U6
;
548 /* Add any bits from the user reg, FC or PMAO */
549 mmcr0
|= current
->thread
.mmcr0
;
551 /* Be careful not to set PMXE if userspace had it cleared */
552 if (!(current
->thread
.mmcr0
& MMCR0_PMXE
))
553 mmcr0
&= ~MMCR0_PMXE
;
555 mtspr(SPRN_SIAR
, current
->thread
.siar
);
556 mtspr(SPRN_SIER
, current
->thread
.sier
);
557 mtspr(SPRN_SDAR
, current
->thread
.sdar
);
558 mtspr(SPRN_MMCR2
, current
->thread
.mmcr2
);
562 #endif /* CONFIG_PPC64 */
564 static void perf_event_interrupt(struct pt_regs
*regs
);
566 void perf_event_print_debug(void)
571 * Read one performance monitor counter (PMC).
573 static unsigned long read_pmc(int idx
)
579 val
= mfspr(SPRN_PMC1
);
582 val
= mfspr(SPRN_PMC2
);
585 val
= mfspr(SPRN_PMC3
);
588 val
= mfspr(SPRN_PMC4
);
591 val
= mfspr(SPRN_PMC5
);
594 val
= mfspr(SPRN_PMC6
);
598 val
= mfspr(SPRN_PMC7
);
601 val
= mfspr(SPRN_PMC8
);
603 #endif /* CONFIG_PPC64 */
605 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
614 static void write_pmc(int idx
, unsigned long val
)
618 mtspr(SPRN_PMC1
, val
);
621 mtspr(SPRN_PMC2
, val
);
624 mtspr(SPRN_PMC3
, val
);
627 mtspr(SPRN_PMC4
, val
);
630 mtspr(SPRN_PMC5
, val
);
633 mtspr(SPRN_PMC6
, val
);
637 mtspr(SPRN_PMC7
, val
);
640 mtspr(SPRN_PMC8
, val
);
642 #endif /* CONFIG_PPC64 */
644 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
649 * Check if a set of events can all go on the PMU at once.
650 * If they can't, this will look at alternative codes for the events
651 * and see if any combination of alternative codes is feasible.
652 * The feasible set is returned in event_id[].
654 static int power_check_constraints(struct cpu_hw_events
*cpuhw
,
655 u64 event_id
[], unsigned int cflags
[],
658 unsigned long mask
, value
, nv
;
659 unsigned long smasks
[MAX_HWEVENTS
], svalues
[MAX_HWEVENTS
];
660 int n_alt
[MAX_HWEVENTS
], choice
[MAX_HWEVENTS
];
662 unsigned long addf
= ppmu
->add_fields
;
663 unsigned long tadd
= ppmu
->test_adder
;
665 if (n_ev
> ppmu
->n_counter
)
668 /* First see if the events will go on as-is */
669 for (i
= 0; i
< n_ev
; ++i
) {
670 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
671 && !ppmu
->limited_pmc_event(event_id
[i
])) {
672 ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
673 cpuhw
->alternatives
[i
]);
674 event_id
[i
] = cpuhw
->alternatives
[i
][0];
676 if (ppmu
->get_constraint(event_id
[i
], &cpuhw
->amasks
[i
][0],
677 &cpuhw
->avalues
[i
][0]))
681 for (i
= 0; i
< n_ev
; ++i
) {
682 nv
= (value
| cpuhw
->avalues
[i
][0]) +
683 (value
& cpuhw
->avalues
[i
][0] & addf
);
684 if ((((nv
+ tadd
) ^ value
) & mask
) != 0 ||
685 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][0]) &
686 cpuhw
->amasks
[i
][0]) != 0)
689 mask
|= cpuhw
->amasks
[i
][0];
692 return 0; /* all OK */
694 /* doesn't work, gather alternatives... */
695 if (!ppmu
->get_alternatives
)
697 for (i
= 0; i
< n_ev
; ++i
) {
699 n_alt
[i
] = ppmu
->get_alternatives(event_id
[i
], cflags
[i
],
700 cpuhw
->alternatives
[i
]);
701 for (j
= 1; j
< n_alt
[i
]; ++j
)
702 ppmu
->get_constraint(cpuhw
->alternatives
[i
][j
],
703 &cpuhw
->amasks
[i
][j
],
704 &cpuhw
->avalues
[i
][j
]);
707 /* enumerate all possibilities and see if any will work */
710 value
= mask
= nv
= 0;
713 /* we're backtracking, restore context */
719 * See if any alternative k for event_id i,
720 * where k > j, will satisfy the constraints.
722 while (++j
< n_alt
[i
]) {
723 nv
= (value
| cpuhw
->avalues
[i
][j
]) +
724 (value
& cpuhw
->avalues
[i
][j
] & addf
);
725 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
726 (((nv
+ tadd
) ^ cpuhw
->avalues
[i
][j
])
727 & cpuhw
->amasks
[i
][j
]) == 0)
732 * No feasible alternative, backtrack
733 * to event_id i-1 and continue enumerating its
734 * alternatives from where we got up to.
740 * Found a feasible alternative for event_id i,
741 * remember where we got up to with this event_id,
742 * go on to the next event_id, and start with
743 * the first alternative for it.
749 mask
|= cpuhw
->amasks
[i
][j
];
755 /* OK, we have a feasible combination, tell the caller the solution */
756 for (i
= 0; i
< n_ev
; ++i
)
757 event_id
[i
] = cpuhw
->alternatives
[i
][choice
[i
]];
762 * Check if newly-added events have consistent settings for
763 * exclude_{user,kernel,hv} with each other and any previously
766 static int check_excludes(struct perf_event
**ctrs
, unsigned int cflags
[],
767 int n_prev
, int n_new
)
769 int eu
= 0, ek
= 0, eh
= 0;
771 struct perf_event
*event
;
778 for (i
= 0; i
< n
; ++i
) {
779 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
780 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
785 eu
= event
->attr
.exclude_user
;
786 ek
= event
->attr
.exclude_kernel
;
787 eh
= event
->attr
.exclude_hv
;
789 } else if (event
->attr
.exclude_user
!= eu
||
790 event
->attr
.exclude_kernel
!= ek
||
791 event
->attr
.exclude_hv
!= eh
) {
797 for (i
= 0; i
< n
; ++i
)
798 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
799 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
804 static u64
check_and_compute_delta(u64 prev
, u64 val
)
806 u64 delta
= (val
- prev
) & 0xfffffffful
;
809 * POWER7 can roll back counter values, if the new value is smaller
810 * than the previous value it will cause the delta and the counter to
811 * have bogus values unless we rolled a counter over. If a coutner is
812 * rolled back, it will be smaller, but within 256, which is the maximum
813 * number of events to rollback at once. If we dectect a rollback
814 * return 0. This can lead to a small lack of precision in the
817 if (prev
> val
&& (prev
- val
) < 256)
823 static void power_pmu_read(struct perf_event
*event
)
825 s64 val
, delta
, prev
;
827 if (event
->hw
.state
& PERF_HES_STOPPED
)
833 if (is_ebb_event(event
)) {
834 val
= read_pmc(event
->hw
.idx
);
835 local64_set(&event
->hw
.prev_count
, val
);
840 * Performance monitor interrupts come even when interrupts
841 * are soft-disabled, as long as interrupts are hard-enabled.
842 * Therefore we treat them like NMIs.
845 prev
= local64_read(&event
->hw
.prev_count
);
847 val
= read_pmc(event
->hw
.idx
);
848 delta
= check_and_compute_delta(prev
, val
);
851 } while (local64_cmpxchg(&event
->hw
.prev_count
, prev
, val
) != prev
);
853 local64_add(delta
, &event
->count
);
854 local64_sub(delta
, &event
->hw
.period_left
);
858 * On some machines, PMC5 and PMC6 can't be written, don't respect
859 * the freeze conditions, and don't generate interrupts. This tells
860 * us if `event' is using such a PMC.
862 static int is_limited_pmc(int pmcnum
)
864 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
865 && (pmcnum
== 5 || pmcnum
== 6);
868 static void freeze_limited_counters(struct cpu_hw_events
*cpuhw
,
869 unsigned long pmc5
, unsigned long pmc6
)
871 struct perf_event
*event
;
872 u64 val
, prev
, delta
;
875 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
876 event
= cpuhw
->limited_counter
[i
];
879 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
880 prev
= local64_read(&event
->hw
.prev_count
);
882 delta
= check_and_compute_delta(prev
, val
);
884 local64_add(delta
, &event
->count
);
888 static void thaw_limited_counters(struct cpu_hw_events
*cpuhw
,
889 unsigned long pmc5
, unsigned long pmc6
)
891 struct perf_event
*event
;
895 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
896 event
= cpuhw
->limited_counter
[i
];
897 event
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
898 val
= (event
->hw
.idx
== 5) ? pmc5
: pmc6
;
899 prev
= local64_read(&event
->hw
.prev_count
);
900 if (check_and_compute_delta(prev
, val
))
901 local64_set(&event
->hw
.prev_count
, val
);
902 perf_event_update_userpage(event
);
907 * Since limited events don't respect the freeze conditions, we
908 * have to read them immediately after freezing or unfreezing the
909 * other events. We try to keep the values from the limited
910 * events as consistent as possible by keeping the delay (in
911 * cycles and instructions) between freezing/unfreezing and reading
912 * the limited events as small and consistent as possible.
913 * Therefore, if any limited events are in use, we read them
914 * both, and always in the same order, to minimize variability,
915 * and do it inside the same asm that writes MMCR0.
917 static void write_mmcr0(struct cpu_hw_events
*cpuhw
, unsigned long mmcr0
)
919 unsigned long pmc5
, pmc6
;
921 if (!cpuhw
->n_limited
) {
922 mtspr(SPRN_MMCR0
, mmcr0
);
927 * Write MMCR0, then read PMC5 and PMC6 immediately.
928 * To ensure we don't get a performance monitor interrupt
929 * between writing MMCR0 and freezing/thawing the limited
930 * events, we first write MMCR0 with the event overflow
931 * interrupt enable bits turned off.
933 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
934 : "=&r" (pmc5
), "=&r" (pmc6
)
935 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
937 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
939 if (mmcr0
& MMCR0_FC
)
940 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
942 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
945 * Write the full MMCR0 including the event overflow interrupt
946 * enable bits, if necessary.
948 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
949 mtspr(SPRN_MMCR0
, mmcr0
);
953 * Disable all events to prevent PMU interrupts and to allow
954 * events to be added or removed.
956 static void power_pmu_disable(struct pmu
*pmu
)
958 struct cpu_hw_events
*cpuhw
;
959 unsigned long flags
, mmcr0
, val
;
963 local_irq_save(flags
);
964 cpuhw
= &__get_cpu_var(cpu_hw_events
);
966 if (!cpuhw
->disabled
) {
968 * Check if we ever enabled the PMU on this cpu.
970 if (!cpuhw
->pmcs_enabled
) {
972 cpuhw
->pmcs_enabled
= 1;
976 * Set the 'freeze counters' bit, clear EBE/PMCC/PMAO/FC56.
978 val
= mmcr0
= mfspr(SPRN_MMCR0
);
980 val
&= ~(MMCR0_EBE
| MMCR0_PMCC
| MMCR0_PMAO
| MMCR0_FC56
);
983 * The barrier is to make sure the mtspr has been
984 * executed and the PMU has frozen the events etc.
987 write_mmcr0(cpuhw
, val
);
991 * Disable instruction sampling if it was enabled
993 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
995 cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1002 ebb_switch_out(mmcr0
);
1005 local_irq_restore(flags
);
1009 * Re-enable all events if disable == 0.
1010 * If we were previously disabled and events were added, then
1011 * put the new config on the PMU.
1013 static void power_pmu_enable(struct pmu
*pmu
)
1015 struct perf_event
*event
;
1016 struct cpu_hw_events
*cpuhw
;
1017 unsigned long flags
;
1019 unsigned long val
, mmcr0
;
1021 unsigned int hwc_index
[MAX_HWEVENTS
];
1028 local_irq_save(flags
);
1030 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1031 if (!cpuhw
->disabled
)
1034 if (cpuhw
->n_events
== 0) {
1035 ppc_set_pmu_inuse(0);
1039 cpuhw
->disabled
= 0;
1042 * EBB requires an exclusive group and all events must have the EBB
1043 * flag set, or not set, so we can just check a single event. Also we
1044 * know we have at least one event.
1046 ebb
= is_ebb_event(cpuhw
->event
[0]);
1049 * If we didn't change anything, or only removed events,
1050 * no need to recalculate MMCR* settings and reset the PMCs.
1051 * Just reenable the PMU with the current MMCR* settings
1052 * (possibly updated for removal of events).
1054 if (!cpuhw
->n_added
) {
1055 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1056 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1061 * Compute MMCR* values for the new set of events
1063 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_events
, hwc_index
,
1065 /* shouldn't ever get here */
1066 printk(KERN_ERR
"oops compute_mmcr failed\n");
1071 * Add in MMCR0 freeze bits corresponding to the
1072 * attr.exclude_* bits for the first event.
1073 * We have already checked that all events have the
1074 * same values for these bits as the first event.
1076 event
= cpuhw
->event
[0];
1077 if (event
->attr
.exclude_user
)
1078 cpuhw
->mmcr
[0] |= MMCR0_FCP
;
1079 if (event
->attr
.exclude_kernel
)
1080 cpuhw
->mmcr
[0] |= freeze_events_kernel
;
1081 if (event
->attr
.exclude_hv
)
1082 cpuhw
->mmcr
[0] |= MMCR0_FCHV
;
1085 * Write the new configuration to MMCR* with the freeze
1086 * bit set and set the hardware events to their initial values.
1087 * Then unfreeze the events.
1089 ppc_set_pmu_inuse(1);
1090 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
1091 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
1092 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
[0] & ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
1096 * Read off any pre-existing events that need to move
1099 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1100 event
= cpuhw
->event
[i
];
1101 if (event
->hw
.idx
&& event
->hw
.idx
!= hwc_index
[i
] + 1) {
1102 power_pmu_read(event
);
1103 write_pmc(event
->hw
.idx
, 0);
1109 * Initialize the PMCs for all the new and moved events.
1111 cpuhw
->n_limited
= n_lim
= 0;
1112 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1113 event
= cpuhw
->event
[i
];
1116 idx
= hwc_index
[i
] + 1;
1117 if (is_limited_pmc(idx
)) {
1118 cpuhw
->limited_counter
[n_lim
] = event
;
1119 cpuhw
->limited_hwidx
[n_lim
] = idx
;
1125 val
= local64_read(&event
->hw
.prev_count
);
1128 if (event
->hw
.sample_period
) {
1129 left
= local64_read(&event
->hw
.period_left
);
1130 if (left
< 0x80000000L
)
1131 val
= 0x80000000L
- left
;
1133 local64_set(&event
->hw
.prev_count
, val
);
1136 event
->hw
.idx
= idx
;
1137 if (event
->hw
.state
& PERF_HES_STOPPED
)
1139 write_pmc(idx
, val
);
1141 perf_event_update_userpage(event
);
1143 cpuhw
->n_limited
= n_lim
;
1144 cpuhw
->mmcr
[0] |= MMCR0_PMXE
| MMCR0_FCECE
;
1147 mmcr0
= ebb_switch_in(ebb
, cpuhw
->mmcr
[0]);
1150 write_mmcr0(cpuhw
, mmcr0
);
1153 * Enable instruction sampling if necessary
1155 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
1157 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2]);
1161 if (cpuhw
->bhrb_users
)
1162 ppmu
->config_bhrb(cpuhw
->bhrb_filter
);
1164 local_irq_restore(flags
);
1167 static int collect_events(struct perf_event
*group
, int max_count
,
1168 struct perf_event
*ctrs
[], u64
*events
,
1169 unsigned int *flags
)
1172 struct perf_event
*event
;
1174 if (!is_software_event(group
)) {
1178 flags
[n
] = group
->hw
.event_base
;
1179 events
[n
++] = group
->hw
.config
;
1181 list_for_each_entry(event
, &group
->sibling_list
, group_entry
) {
1182 if (!is_software_event(event
) &&
1183 event
->state
!= PERF_EVENT_STATE_OFF
) {
1187 flags
[n
] = event
->hw
.event_base
;
1188 events
[n
++] = event
->hw
.config
;
1195 * Add a event to the PMU.
1196 * If all events are not already frozen, then we disable and
1197 * re-enable the PMU in order to get hw_perf_enable to do the
1198 * actual work of reconfiguring the PMU.
1200 static int power_pmu_add(struct perf_event
*event
, int ef_flags
)
1202 struct cpu_hw_events
*cpuhw
;
1203 unsigned long flags
;
1207 local_irq_save(flags
);
1208 perf_pmu_disable(event
->pmu
);
1211 * Add the event to the list (if there is room)
1212 * and check whether the total set is still feasible.
1214 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1215 n0
= cpuhw
->n_events
;
1216 if (n0
>= ppmu
->n_counter
)
1218 cpuhw
->event
[n0
] = event
;
1219 cpuhw
->events
[n0
] = event
->hw
.config
;
1220 cpuhw
->flags
[n0
] = event
->hw
.event_base
;
1223 * This event may have been disabled/stopped in record_and_restart()
1224 * because we exceeded the ->event_limit. If re-starting the event,
1225 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1226 * notification is re-enabled.
1228 if (!(ef_flags
& PERF_EF_START
))
1229 event
->hw
.state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1231 event
->hw
.state
= 0;
1234 * If group events scheduling transaction was started,
1235 * skip the schedulability test here, it will be performed
1236 * at commit time(->commit_txn) as a whole
1238 if (cpuhw
->group_flag
& PERF_EVENT_TXN
)
1241 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, n0
, 1))
1243 if (power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
1245 event
->hw
.config
= cpuhw
->events
[n0
];
1248 ebb_event_add(event
);
1255 if (has_branch_stack(event
)) {
1256 power_pmu_bhrb_enable(event
);
1257 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1258 event
->attr
.branch_sample_type
);
1261 perf_pmu_enable(event
->pmu
);
1262 local_irq_restore(flags
);
1267 * Remove a event from the PMU.
1269 static void power_pmu_del(struct perf_event
*event
, int ef_flags
)
1271 struct cpu_hw_events
*cpuhw
;
1273 unsigned long flags
;
1275 local_irq_save(flags
);
1276 perf_pmu_disable(event
->pmu
);
1278 power_pmu_read(event
);
1280 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1281 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1282 if (event
== cpuhw
->event
[i
]) {
1283 while (++i
< cpuhw
->n_events
) {
1284 cpuhw
->event
[i
-1] = cpuhw
->event
[i
];
1285 cpuhw
->events
[i
-1] = cpuhw
->events
[i
];
1286 cpuhw
->flags
[i
-1] = cpuhw
->flags
[i
];
1289 ppmu
->disable_pmc(event
->hw
.idx
- 1, cpuhw
->mmcr
);
1290 if (event
->hw
.idx
) {
1291 write_pmc(event
->hw
.idx
, 0);
1294 perf_event_update_userpage(event
);
1298 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
1299 if (event
== cpuhw
->limited_counter
[i
])
1301 if (i
< cpuhw
->n_limited
) {
1302 while (++i
< cpuhw
->n_limited
) {
1303 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
1304 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
1308 if (cpuhw
->n_events
== 0) {
1309 /* disable exceptions if no events are running */
1310 cpuhw
->mmcr
[0] &= ~(MMCR0_PMXE
| MMCR0_FCECE
);
1313 if (has_branch_stack(event
))
1314 power_pmu_bhrb_disable(event
);
1316 perf_pmu_enable(event
->pmu
);
1317 local_irq_restore(flags
);
1321 * POWER-PMU does not support disabling individual counters, hence
1322 * program their cycle counter to their max value and ignore the interrupts.
1325 static void power_pmu_start(struct perf_event
*event
, int ef_flags
)
1327 unsigned long flags
;
1331 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1334 if (!(event
->hw
.state
& PERF_HES_STOPPED
))
1337 if (ef_flags
& PERF_EF_RELOAD
)
1338 WARN_ON_ONCE(!(event
->hw
.state
& PERF_HES_UPTODATE
));
1340 local_irq_save(flags
);
1341 perf_pmu_disable(event
->pmu
);
1343 event
->hw
.state
= 0;
1344 left
= local64_read(&event
->hw
.period_left
);
1347 if (left
< 0x80000000L
)
1348 val
= 0x80000000L
- left
;
1350 write_pmc(event
->hw
.idx
, val
);
1352 perf_event_update_userpage(event
);
1353 perf_pmu_enable(event
->pmu
);
1354 local_irq_restore(flags
);
1357 static void power_pmu_stop(struct perf_event
*event
, int ef_flags
)
1359 unsigned long flags
;
1361 if (!event
->hw
.idx
|| !event
->hw
.sample_period
)
1364 if (event
->hw
.state
& PERF_HES_STOPPED
)
1367 local_irq_save(flags
);
1368 perf_pmu_disable(event
->pmu
);
1370 power_pmu_read(event
);
1371 event
->hw
.state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
1372 write_pmc(event
->hw
.idx
, 0);
1374 perf_event_update_userpage(event
);
1375 perf_pmu_enable(event
->pmu
);
1376 local_irq_restore(flags
);
1380 * Start group events scheduling transaction
1381 * Set the flag to make pmu::enable() not perform the
1382 * schedulability test, it will be performed at commit time
1384 void power_pmu_start_txn(struct pmu
*pmu
)
1386 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1388 perf_pmu_disable(pmu
);
1389 cpuhw
->group_flag
|= PERF_EVENT_TXN
;
1390 cpuhw
->n_txn_start
= cpuhw
->n_events
;
1394 * Stop group events scheduling transaction
1395 * Clear the flag and pmu::enable() will perform the
1396 * schedulability test.
1398 void power_pmu_cancel_txn(struct pmu
*pmu
)
1400 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1402 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1403 perf_pmu_enable(pmu
);
1407 * Commit group events scheduling transaction
1408 * Perform the group schedulability test as a whole
1409 * Return 0 if success
1411 int power_pmu_commit_txn(struct pmu
*pmu
)
1413 struct cpu_hw_events
*cpuhw
;
1418 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1419 n
= cpuhw
->n_events
;
1420 if (check_excludes(cpuhw
->event
, cpuhw
->flags
, 0, n
))
1422 i
= power_check_constraints(cpuhw
, cpuhw
->events
, cpuhw
->flags
, n
);
1426 for (i
= cpuhw
->n_txn_start
; i
< n
; ++i
)
1427 cpuhw
->event
[i
]->hw
.config
= cpuhw
->events
[i
];
1429 cpuhw
->group_flag
&= ~PERF_EVENT_TXN
;
1430 perf_pmu_enable(pmu
);
1435 * Return 1 if we might be able to put event on a limited PMC,
1437 * A event can only go on a limited PMC if it counts something
1438 * that a limited PMC can count, doesn't require interrupts, and
1439 * doesn't exclude any processor mode.
1441 static int can_go_on_limited_pmc(struct perf_event
*event
, u64 ev
,
1445 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1447 if (event
->attr
.exclude_user
1448 || event
->attr
.exclude_kernel
1449 || event
->attr
.exclude_hv
1450 || event
->attr
.sample_period
)
1453 if (ppmu
->limited_pmc_event(ev
))
1457 * The requested event_id isn't on a limited PMC already;
1458 * see if any alternative code goes on a limited PMC.
1460 if (!ppmu
->get_alternatives
)
1463 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
1464 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1470 * Find an alternative event_id that goes on a normal PMC, if possible,
1471 * and return the event_id code, or 0 if there is no such alternative.
1472 * (Note: event_id code 0 is "don't count" on all machines.)
1474 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
1476 u64 alt
[MAX_EVENT_ALTERNATIVES
];
1479 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
1480 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
1486 /* Number of perf_events counting hardware events */
1487 static atomic_t num_events
;
1488 /* Used to avoid races in calling reserve/release_pmc_hardware */
1489 static DEFINE_MUTEX(pmc_reserve_mutex
);
1492 * Release the PMU if this is the last perf_event.
1494 static void hw_perf_event_destroy(struct perf_event
*event
)
1496 if (!atomic_add_unless(&num_events
, -1, 1)) {
1497 mutex_lock(&pmc_reserve_mutex
);
1498 if (atomic_dec_return(&num_events
) == 0)
1499 release_pmc_hardware();
1500 mutex_unlock(&pmc_reserve_mutex
);
1505 * Translate a generic cache event_id config to a raw event_id code.
1507 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
1509 unsigned long type
, op
, result
;
1512 if (!ppmu
->cache_events
)
1516 type
= config
& 0xff;
1517 op
= (config
>> 8) & 0xff;
1518 result
= (config
>> 16) & 0xff;
1520 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
1521 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
1522 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
1525 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1534 static int power_pmu_event_init(struct perf_event
*event
)
1537 unsigned long flags
;
1538 struct perf_event
*ctrs
[MAX_HWEVENTS
];
1539 u64 events
[MAX_HWEVENTS
];
1540 unsigned int cflags
[MAX_HWEVENTS
];
1543 struct cpu_hw_events
*cpuhw
;
1548 if (has_branch_stack(event
)) {
1549 /* PMU has BHRB enabled */
1550 if (!(ppmu
->flags
& PPMU_BHRB
))
1554 switch (event
->attr
.type
) {
1555 case PERF_TYPE_HARDWARE
:
1556 ev
= event
->attr
.config
;
1557 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1559 ev
= ppmu
->generic_events
[ev
];
1561 case PERF_TYPE_HW_CACHE
:
1562 err
= hw_perf_cache_event(event
->attr
.config
, &ev
);
1567 ev
= event
->attr
.config
;
1573 event
->hw
.config_base
= ev
;
1577 * If we are not running on a hypervisor, force the
1578 * exclude_hv bit to 0 so that we don't care what
1579 * the user set it to.
1581 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1582 event
->attr
.exclude_hv
= 0;
1585 * If this is a per-task event, then we can use
1586 * PM_RUN_* events interchangeably with their non RUN_*
1587 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1588 * XXX we should check if the task is an idle task.
1591 if (event
->attach_state
& PERF_ATTACH_TASK
)
1592 flags
|= PPMU_ONLY_COUNT_RUN
;
1595 * If this machine has limited events, check whether this
1596 * event_id could go on a limited event.
1598 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1599 if (can_go_on_limited_pmc(event
, ev
, flags
)) {
1600 flags
|= PPMU_LIMITED_PMC_OK
;
1601 } else if (ppmu
->limited_pmc_event(ev
)) {
1603 * The requested event_id is on a limited PMC,
1604 * but we can't use a limited PMC; see if any
1605 * alternative goes on a normal PMC.
1607 ev
= normal_pmc_alternative(ev
, flags
);
1613 /* Extra checks for EBB */
1614 err
= ebb_event_check(event
);
1619 * If this is in a group, check if it can go on with all the
1620 * other hardware events in the group. We assume the event
1621 * hasn't been linked into its leader's sibling list at this point.
1624 if (event
->group_leader
!= event
) {
1625 n
= collect_events(event
->group_leader
, ppmu
->n_counter
- 1,
1626 ctrs
, events
, cflags
);
1633 if (check_excludes(ctrs
, cflags
, n
, 1))
1636 cpuhw
= &get_cpu_var(cpu_hw_events
);
1637 err
= power_check_constraints(cpuhw
, events
, cflags
, n
+ 1);
1639 if (has_branch_stack(event
)) {
1640 cpuhw
->bhrb_filter
= ppmu
->bhrb_filter_map(
1641 event
->attr
.branch_sample_type
);
1643 if(cpuhw
->bhrb_filter
== -1)
1647 put_cpu_var(cpu_hw_events
);
1651 event
->hw
.config
= events
[n
];
1652 event
->hw
.event_base
= cflags
[n
];
1653 event
->hw
.last_period
= event
->hw
.sample_period
;
1654 local64_set(&event
->hw
.period_left
, event
->hw
.last_period
);
1657 * For EBB events we just context switch the PMC value, we don't do any
1658 * of the sample_period logic. We use hw.prev_count for this.
1660 if (is_ebb_event(event
))
1661 local64_set(&event
->hw
.prev_count
, 0);
1664 * See if we need to reserve the PMU.
1665 * If no events are currently in use, then we have to take a
1666 * mutex to ensure that we don't race with another task doing
1667 * reserve_pmc_hardware or release_pmc_hardware.
1670 if (!atomic_inc_not_zero(&num_events
)) {
1671 mutex_lock(&pmc_reserve_mutex
);
1672 if (atomic_read(&num_events
) == 0 &&
1673 reserve_pmc_hardware(perf_event_interrupt
))
1676 atomic_inc(&num_events
);
1677 mutex_unlock(&pmc_reserve_mutex
);
1679 event
->destroy
= hw_perf_event_destroy
;
1684 static int power_pmu_event_idx(struct perf_event
*event
)
1686 return event
->hw
.idx
;
1689 ssize_t
power_events_sysfs_show(struct device
*dev
,
1690 struct device_attribute
*attr
, char *page
)
1692 struct perf_pmu_events_attr
*pmu_attr
;
1694 pmu_attr
= container_of(attr
, struct perf_pmu_events_attr
, attr
);
1696 return sprintf(page
, "event=0x%02llx\n", pmu_attr
->id
);
1699 struct pmu power_pmu
= {
1700 .pmu_enable
= power_pmu_enable
,
1701 .pmu_disable
= power_pmu_disable
,
1702 .event_init
= power_pmu_event_init
,
1703 .add
= power_pmu_add
,
1704 .del
= power_pmu_del
,
1705 .start
= power_pmu_start
,
1706 .stop
= power_pmu_stop
,
1707 .read
= power_pmu_read
,
1708 .start_txn
= power_pmu_start_txn
,
1709 .cancel_txn
= power_pmu_cancel_txn
,
1710 .commit_txn
= power_pmu_commit_txn
,
1711 .event_idx
= power_pmu_event_idx
,
1712 .flush_branch_stack
= power_pmu_flush_branch_stack
,
1716 * A counter has overflowed; update its count and record
1717 * things if requested. Note that interrupts are hard-disabled
1718 * here so there is no possibility of being interrupted.
1720 static void record_and_restart(struct perf_event
*event
, unsigned long val
,
1721 struct pt_regs
*regs
)
1723 u64 period
= event
->hw
.sample_period
;
1724 s64 prev
, delta
, left
;
1727 if (event
->hw
.state
& PERF_HES_STOPPED
) {
1728 write_pmc(event
->hw
.idx
, 0);
1732 /* we don't have to worry about interrupts here */
1733 prev
= local64_read(&event
->hw
.prev_count
);
1734 delta
= check_and_compute_delta(prev
, val
);
1735 local64_add(delta
, &event
->count
);
1738 * See if the total period for this event has expired,
1739 * and update for the next period.
1742 left
= local64_read(&event
->hw
.period_left
) - delta
;
1750 record
= siar_valid(regs
);
1751 event
->hw
.last_period
= event
->hw
.sample_period
;
1753 if (left
< 0x80000000LL
)
1754 val
= 0x80000000LL
- left
;
1757 write_pmc(event
->hw
.idx
, val
);
1758 local64_set(&event
->hw
.prev_count
, val
);
1759 local64_set(&event
->hw
.period_left
, left
);
1760 perf_event_update_userpage(event
);
1763 * Finally record data if requested.
1766 struct perf_sample_data data
;
1768 perf_sample_data_init(&data
, ~0ULL, event
->hw
.last_period
);
1770 if (event
->attr
.sample_type
& PERF_SAMPLE_ADDR
)
1771 perf_get_data_addr(regs
, &data
.addr
);
1773 if (event
->attr
.sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
1774 struct cpu_hw_events
*cpuhw
;
1775 cpuhw
= &__get_cpu_var(cpu_hw_events
);
1776 power_pmu_bhrb_read(cpuhw
);
1777 data
.br_stack
= &cpuhw
->bhrb_stack
;
1780 if (perf_event_overflow(event
, &data
, regs
))
1781 power_pmu_stop(event
, 0);
1786 * Called from generic code to get the misc flags (i.e. processor mode)
1789 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1791 u32 flags
= perf_get_misc_flags(regs
);
1795 return user_mode(regs
) ? PERF_RECORD_MISC_USER
:
1796 PERF_RECORD_MISC_KERNEL
;
1800 * Called from generic code to get the instruction pointer
1803 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1805 bool use_siar
= regs_use_siar(regs
);
1807 if (use_siar
&& siar_valid(regs
))
1808 return mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
1810 return 0; // no valid instruction pointer
1815 static bool pmc_overflow_power7(unsigned long val
)
1818 * Events on POWER7 can roll back if a speculative event doesn't
1819 * eventually complete. Unfortunately in some rare cases they will
1820 * raise a performance monitor exception. We need to catch this to
1821 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1822 * cycles from overflow.
1824 * We only do this if the first pass fails to find any overflowing
1825 * PMCs because a user might set a period of less than 256 and we
1826 * don't want to mistakenly reset them.
1828 if ((0x80000000 - val
) <= 256)
1834 static bool pmc_overflow(unsigned long val
)
1843 * Performance monitor interrupt stuff
1845 static void perf_event_interrupt(struct pt_regs
*regs
)
1848 struct cpu_hw_events
*cpuhw
= &__get_cpu_var(cpu_hw_events
);
1849 struct perf_event
*event
;
1850 unsigned long val
[8];
1854 if (cpuhw
->n_limited
)
1855 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
1858 perf_read_regs(regs
);
1860 nmi
= perf_intr_is_nmi(regs
);
1866 /* Read all the PMCs since we'll need them a bunch of times */
1867 for (i
= 0; i
< ppmu
->n_counter
; ++i
)
1868 val
[i
] = read_pmc(i
+ 1);
1870 /* Try to find what caused the IRQ */
1872 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
1873 if (!pmc_overflow(val
[i
]))
1875 if (is_limited_pmc(i
+ 1))
1876 continue; /* these won't generate IRQs */
1878 * We've found one that's overflowed. For active
1879 * counters we need to log this. For inactive
1880 * counters, we need to reset it anyway
1884 for (j
= 0; j
< cpuhw
->n_events
; ++j
) {
1885 event
= cpuhw
->event
[j
];
1886 if (event
->hw
.idx
== (i
+ 1)) {
1888 record_and_restart(event
, val
[i
], regs
);
1893 /* reset non active counters that have overflowed */
1894 write_pmc(i
+ 1, 0);
1896 if (!found
&& pvr_version_is(PVR_POWER7
)) {
1897 /* check active counters for special buggy p7 overflow */
1898 for (i
= 0; i
< cpuhw
->n_events
; ++i
) {
1899 event
= cpuhw
->event
[i
];
1900 if (!event
->hw
.idx
|| is_limited_pmc(event
->hw
.idx
))
1902 if (pmc_overflow_power7(val
[event
->hw
.idx
- 1])) {
1903 /* event has overflowed in a buggy way*/
1905 record_and_restart(event
,
1906 val
[event
->hw
.idx
- 1],
1911 if (!found
&& !nmi
&& printk_ratelimit())
1912 printk(KERN_WARNING
"Can't find PMC that caused IRQ\n");
1915 * Reset MMCR0 to its normal value. This will set PMXE and
1916 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1917 * and thus allow interrupts to occur again.
1918 * XXX might want to use MSR.PM to keep the events frozen until
1919 * we get back out of this interrupt.
1921 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
1929 static void power_pmu_setup(int cpu
)
1931 struct cpu_hw_events
*cpuhw
= &per_cpu(cpu_hw_events
, cpu
);
1935 memset(cpuhw
, 0, sizeof(*cpuhw
));
1936 cpuhw
->mmcr
[0] = MMCR0_FC
;
1940 power_pmu_notifier(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
1942 unsigned int cpu
= (long)hcpu
;
1944 switch (action
& ~CPU_TASKS_FROZEN
) {
1945 case CPU_UP_PREPARE
:
1946 power_pmu_setup(cpu
);
1956 int register_power_pmu(struct power_pmu
*pmu
)
1959 return -EBUSY
; /* something's already registered */
1962 pr_info("%s performance monitor hardware support registered\n",
1965 power_pmu
.attr_groups
= ppmu
->attr_groups
;
1969 * Use FCHV to ignore kernel events if MSR.HV is set.
1971 if (mfmsr() & MSR_HV
)
1972 freeze_events_kernel
= MMCR0_FCHV
;
1973 #endif /* CONFIG_PPC64 */
1975 perf_pmu_register(&power_pmu
, "cpu", PERF_TYPE_RAW
);
1976 perf_cpu_notifier(power_pmu_notifier
);