irqchip/ts4800: Add TS-4800 interrupt controller
[linux/fpc-iii.git] / drivers / md / bcache / super.c
blob679a093a3bf6382a3edc89dc5be96e9019b938ea
1 /*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
30 static const char bcache_magic[] = {
31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 static const char invalid_uuid[] = {
36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 "default",
43 "writethrough",
44 "writeback",
45 "writearound",
46 "none",
47 NULL
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
60 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
62 /* Superblock */
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65 struct page **res)
67 const char *err;
68 struct cache_sb *s;
69 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70 unsigned i;
72 if (!bh)
73 return "IO error";
75 s = (struct cache_sb *) bh->b_data;
77 sb->offset = le64_to_cpu(s->offset);
78 sb->version = le64_to_cpu(s->version);
80 memcpy(sb->magic, s->magic, 16);
81 memcpy(sb->uuid, s->uuid, 16);
82 memcpy(sb->set_uuid, s->set_uuid, 16);
83 memcpy(sb->label, s->label, SB_LABEL_SIZE);
85 sb->flags = le64_to_cpu(s->flags);
86 sb->seq = le64_to_cpu(s->seq);
87 sb->last_mount = le32_to_cpu(s->last_mount);
88 sb->first_bucket = le16_to_cpu(s->first_bucket);
89 sb->keys = le16_to_cpu(s->keys);
91 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92 sb->d[i] = le64_to_cpu(s->d[i]);
94 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95 sb->version, sb->flags, sb->seq, sb->keys);
97 err = "Not a bcache superblock";
98 if (sb->offset != SB_SECTOR)
99 goto err;
101 if (memcmp(sb->magic, bcache_magic, 16))
102 goto err;
104 err = "Too many journal buckets";
105 if (sb->keys > SB_JOURNAL_BUCKETS)
106 goto err;
108 err = "Bad checksum";
109 if (s->csum != csum_set(s))
110 goto err;
112 err = "Bad UUID";
113 if (bch_is_zero(sb->uuid, 16))
114 goto err;
116 sb->block_size = le16_to_cpu(s->block_size);
118 err = "Superblock block size smaller than device block size";
119 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 goto err;
122 switch (sb->version) {
123 case BCACHE_SB_VERSION_BDEV:
124 sb->data_offset = BDEV_DATA_START_DEFAULT;
125 break;
126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 sb->data_offset = le64_to_cpu(s->data_offset);
129 err = "Bad data offset";
130 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 goto err;
133 break;
134 case BCACHE_SB_VERSION_CDEV:
135 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 sb->nbuckets = le64_to_cpu(s->nbuckets);
137 sb->block_size = le16_to_cpu(s->block_size);
138 sb->bucket_size = le16_to_cpu(s->bucket_size);
140 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
141 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
143 err = "Too many buckets";
144 if (sb->nbuckets > LONG_MAX)
145 goto err;
147 err = "Not enough buckets";
148 if (sb->nbuckets < 1 << 7)
149 goto err;
151 err = "Bad block/bucket size";
152 if (!is_power_of_2(sb->block_size) ||
153 sb->block_size > PAGE_SECTORS ||
154 !is_power_of_2(sb->bucket_size) ||
155 sb->bucket_size < PAGE_SECTORS)
156 goto err;
158 err = "Invalid superblock: device too small";
159 if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160 goto err;
162 err = "Bad UUID";
163 if (bch_is_zero(sb->set_uuid, 16))
164 goto err;
166 err = "Bad cache device number in set";
167 if (!sb->nr_in_set ||
168 sb->nr_in_set <= sb->nr_this_dev ||
169 sb->nr_in_set > MAX_CACHES_PER_SET)
170 goto err;
172 err = "Journal buckets not sequential";
173 for (i = 0; i < sb->keys; i++)
174 if (sb->d[i] != sb->first_bucket + i)
175 goto err;
177 err = "Too many journal buckets";
178 if (sb->first_bucket + sb->keys > sb->nbuckets)
179 goto err;
181 err = "Invalid superblock: first bucket comes before end of super";
182 if (sb->first_bucket * sb->bucket_size < 16)
183 goto err;
185 break;
186 default:
187 err = "Unsupported superblock version";
188 goto err;
191 sb->last_mount = get_seconds();
192 err = NULL;
194 get_page(bh->b_page);
195 *res = bh->b_page;
196 err:
197 put_bh(bh);
198 return err;
201 static void write_bdev_super_endio(struct bio *bio)
203 struct cached_dev *dc = bio->bi_private;
204 /* XXX: error checking */
206 closure_put(&dc->sb_write);
209 static void __write_super(struct cache_sb *sb, struct bio *bio)
211 struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212 unsigned i;
214 bio->bi_iter.bi_sector = SB_SECTOR;
215 bio->bi_rw = REQ_SYNC|REQ_META;
216 bio->bi_iter.bi_size = SB_SIZE;
217 bch_bio_map(bio, NULL);
219 out->offset = cpu_to_le64(sb->offset);
220 out->version = cpu_to_le64(sb->version);
222 memcpy(out->uuid, sb->uuid, 16);
223 memcpy(out->set_uuid, sb->set_uuid, 16);
224 memcpy(out->label, sb->label, SB_LABEL_SIZE);
226 out->flags = cpu_to_le64(sb->flags);
227 out->seq = cpu_to_le64(sb->seq);
229 out->last_mount = cpu_to_le32(sb->last_mount);
230 out->first_bucket = cpu_to_le16(sb->first_bucket);
231 out->keys = cpu_to_le16(sb->keys);
233 for (i = 0; i < sb->keys; i++)
234 out->d[i] = cpu_to_le64(sb->d[i]);
236 out->csum = csum_set(out);
238 pr_debug("ver %llu, flags %llu, seq %llu",
239 sb->version, sb->flags, sb->seq);
241 submit_bio(REQ_WRITE, bio);
244 static void bch_write_bdev_super_unlock(struct closure *cl)
246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
248 up(&dc->sb_write_mutex);
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
253 struct closure *cl = &dc->sb_write;
254 struct bio *bio = &dc->sb_bio;
256 down(&dc->sb_write_mutex);
257 closure_init(cl, parent);
259 bio_reset(bio);
260 bio->bi_bdev = dc->bdev;
261 bio->bi_end_io = write_bdev_super_endio;
262 bio->bi_private = dc;
264 closure_get(cl);
265 __write_super(&dc->sb, bio);
267 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
270 static void write_super_endio(struct bio *bio)
272 struct cache *ca = bio->bi_private;
274 bch_count_io_errors(ca, bio->bi_error, "writing superblock");
275 closure_put(&ca->set->sb_write);
278 static void bcache_write_super_unlock(struct closure *cl)
280 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
282 up(&c->sb_write_mutex);
285 void bcache_write_super(struct cache_set *c)
287 struct closure *cl = &c->sb_write;
288 struct cache *ca;
289 unsigned i;
291 down(&c->sb_write_mutex);
292 closure_init(cl, &c->cl);
294 c->sb.seq++;
296 for_each_cache(ca, c, i) {
297 struct bio *bio = &ca->sb_bio;
299 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
300 ca->sb.seq = c->sb.seq;
301 ca->sb.last_mount = c->sb.last_mount;
303 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
305 bio_reset(bio);
306 bio->bi_bdev = ca->bdev;
307 bio->bi_end_io = write_super_endio;
308 bio->bi_private = ca;
310 closure_get(cl);
311 __write_super(&ca->sb, bio);
314 closure_return_with_destructor(cl, bcache_write_super_unlock);
317 /* UUID io */
319 static void uuid_endio(struct bio *bio)
321 struct closure *cl = bio->bi_private;
322 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
324 cache_set_err_on(bio->bi_error, c, "accessing uuids");
325 bch_bbio_free(bio, c);
326 closure_put(cl);
329 static void uuid_io_unlock(struct closure *cl)
331 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
333 up(&c->uuid_write_mutex);
336 static void uuid_io(struct cache_set *c, unsigned long rw,
337 struct bkey *k, struct closure *parent)
339 struct closure *cl = &c->uuid_write;
340 struct uuid_entry *u;
341 unsigned i;
342 char buf[80];
344 BUG_ON(!parent);
345 down(&c->uuid_write_mutex);
346 closure_init(cl, parent);
348 for (i = 0; i < KEY_PTRS(k); i++) {
349 struct bio *bio = bch_bbio_alloc(c);
351 bio->bi_rw = REQ_SYNC|REQ_META|rw;
352 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
354 bio->bi_end_io = uuid_endio;
355 bio->bi_private = cl;
356 bch_bio_map(bio, c->uuids);
358 bch_submit_bbio(bio, c, k, i);
360 if (!(rw & WRITE))
361 break;
364 bch_extent_to_text(buf, sizeof(buf), k);
365 pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
367 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 if (!bch_is_zero(u->uuid, 16))
369 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 u - c->uuids, u->uuid, u->label,
371 u->first_reg, u->last_reg, u->invalidated);
373 closure_return_with_destructor(cl, uuid_io_unlock);
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
378 struct bkey *k = &j->uuid_bucket;
380 if (__bch_btree_ptr_invalid(c, k))
381 return "bad uuid pointer";
383 bkey_copy(&c->uuid_bucket, k);
384 uuid_io(c, READ_SYNC, k, cl);
386 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 struct uuid_entry_v0 *u0 = (void *) c->uuids;
388 struct uuid_entry *u1 = (void *) c->uuids;
389 int i;
391 closure_sync(cl);
394 * Since the new uuid entry is bigger than the old, we have to
395 * convert starting at the highest memory address and work down
396 * in order to do it in place
399 for (i = c->nr_uuids - 1;
400 i >= 0;
401 --i) {
402 memcpy(u1[i].uuid, u0[i].uuid, 16);
403 memcpy(u1[i].label, u0[i].label, 32);
405 u1[i].first_reg = u0[i].first_reg;
406 u1[i].last_reg = u0[i].last_reg;
407 u1[i].invalidated = u0[i].invalidated;
409 u1[i].flags = 0;
410 u1[i].sectors = 0;
414 return NULL;
417 static int __uuid_write(struct cache_set *c)
419 BKEY_PADDED(key) k;
420 struct closure cl;
421 closure_init_stack(&cl);
423 lockdep_assert_held(&bch_register_lock);
425 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426 return 1;
428 SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429 uuid_io(c, REQ_WRITE, &k.key, &cl);
430 closure_sync(&cl);
432 bkey_copy(&c->uuid_bucket, &k.key);
433 bkey_put(c, &k.key);
434 return 0;
437 int bch_uuid_write(struct cache_set *c)
439 int ret = __uuid_write(c);
441 if (!ret)
442 bch_journal_meta(c, NULL);
444 return ret;
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
449 struct uuid_entry *u;
451 for (u = c->uuids;
452 u < c->uuids + c->nr_uuids; u++)
453 if (!memcmp(u->uuid, uuid, 16))
454 return u;
456 return NULL;
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
461 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462 return uuid_find(c, zero_uuid);
466 * Bucket priorities/gens:
468 * For each bucket, we store on disk its
469 * 8 bit gen
470 * 16 bit priority
472 * See alloc.c for an explanation of the gen. The priority is used to implement
473 * lru (and in the future other) cache replacement policies; for most purposes
474 * it's just an opaque integer.
476 * The gens and the priorities don't have a whole lot to do with each other, and
477 * it's actually the gens that must be written out at specific times - it's no
478 * big deal if the priorities don't get written, if we lose them we just reuse
479 * buckets in suboptimal order.
481 * On disk they're stored in a packed array, and in as many buckets are required
482 * to fit them all. The buckets we use to store them form a list; the journal
483 * header points to the first bucket, the first bucket points to the second
484 * bucket, et cetera.
486 * This code is used by the allocation code; periodically (whenever it runs out
487 * of buckets to allocate from) the allocation code will invalidate some
488 * buckets, but it can't use those buckets until their new gens are safely on
489 * disk.
492 static void prio_endio(struct bio *bio)
494 struct cache *ca = bio->bi_private;
496 cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497 bch_bbio_free(bio, ca->set);
498 closure_put(&ca->prio);
501 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
503 struct closure *cl = &ca->prio;
504 struct bio *bio = bch_bbio_alloc(ca->set);
506 closure_init_stack(cl);
508 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
509 bio->bi_bdev = ca->bdev;
510 bio->bi_rw = REQ_SYNC|REQ_META|rw;
511 bio->bi_iter.bi_size = bucket_bytes(ca);
513 bio->bi_end_io = prio_endio;
514 bio->bi_private = ca;
515 bch_bio_map(bio, ca->disk_buckets);
517 closure_bio_submit(bio, &ca->prio);
518 closure_sync(cl);
521 void bch_prio_write(struct cache *ca)
523 int i;
524 struct bucket *b;
525 struct closure cl;
527 closure_init_stack(&cl);
529 lockdep_assert_held(&ca->set->bucket_lock);
531 ca->disk_buckets->seq++;
533 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
534 &ca->meta_sectors_written);
536 //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
537 // fifo_used(&ca->free_inc), fifo_used(&ca->unused));
539 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
540 long bucket;
541 struct prio_set *p = ca->disk_buckets;
542 struct bucket_disk *d = p->data;
543 struct bucket_disk *end = d + prios_per_bucket(ca);
545 for (b = ca->buckets + i * prios_per_bucket(ca);
546 b < ca->buckets + ca->sb.nbuckets && d < end;
547 b++, d++) {
548 d->prio = cpu_to_le16(b->prio);
549 d->gen = b->gen;
552 p->next_bucket = ca->prio_buckets[i + 1];
553 p->magic = pset_magic(&ca->sb);
554 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
556 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
557 BUG_ON(bucket == -1);
559 mutex_unlock(&ca->set->bucket_lock);
560 prio_io(ca, bucket, REQ_WRITE);
561 mutex_lock(&ca->set->bucket_lock);
563 ca->prio_buckets[i] = bucket;
564 atomic_dec_bug(&ca->buckets[bucket].pin);
567 mutex_unlock(&ca->set->bucket_lock);
569 bch_journal_meta(ca->set, &cl);
570 closure_sync(&cl);
572 mutex_lock(&ca->set->bucket_lock);
575 * Don't want the old priorities to get garbage collected until after we
576 * finish writing the new ones, and they're journalled
578 for (i = 0; i < prio_buckets(ca); i++) {
579 if (ca->prio_last_buckets[i])
580 __bch_bucket_free(ca,
581 &ca->buckets[ca->prio_last_buckets[i]]);
583 ca->prio_last_buckets[i] = ca->prio_buckets[i];
587 static void prio_read(struct cache *ca, uint64_t bucket)
589 struct prio_set *p = ca->disk_buckets;
590 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
591 struct bucket *b;
592 unsigned bucket_nr = 0;
594 for (b = ca->buckets;
595 b < ca->buckets + ca->sb.nbuckets;
596 b++, d++) {
597 if (d == end) {
598 ca->prio_buckets[bucket_nr] = bucket;
599 ca->prio_last_buckets[bucket_nr] = bucket;
600 bucket_nr++;
602 prio_io(ca, bucket, READ_SYNC);
604 if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
605 pr_warn("bad csum reading priorities");
607 if (p->magic != pset_magic(&ca->sb))
608 pr_warn("bad magic reading priorities");
610 bucket = p->next_bucket;
611 d = p->data;
614 b->prio = le16_to_cpu(d->prio);
615 b->gen = b->last_gc = d->gen;
619 /* Bcache device */
621 static int open_dev(struct block_device *b, fmode_t mode)
623 struct bcache_device *d = b->bd_disk->private_data;
624 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
625 return -ENXIO;
627 closure_get(&d->cl);
628 return 0;
631 static void release_dev(struct gendisk *b, fmode_t mode)
633 struct bcache_device *d = b->private_data;
634 closure_put(&d->cl);
637 static int ioctl_dev(struct block_device *b, fmode_t mode,
638 unsigned int cmd, unsigned long arg)
640 struct bcache_device *d = b->bd_disk->private_data;
641 return d->ioctl(d, mode, cmd, arg);
644 static const struct block_device_operations bcache_ops = {
645 .open = open_dev,
646 .release = release_dev,
647 .ioctl = ioctl_dev,
648 .owner = THIS_MODULE,
651 void bcache_device_stop(struct bcache_device *d)
653 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
654 closure_queue(&d->cl);
657 static void bcache_device_unlink(struct bcache_device *d)
659 lockdep_assert_held(&bch_register_lock);
661 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
662 unsigned i;
663 struct cache *ca;
665 sysfs_remove_link(&d->c->kobj, d->name);
666 sysfs_remove_link(&d->kobj, "cache");
668 for_each_cache(ca, d->c, i)
669 bd_unlink_disk_holder(ca->bdev, d->disk);
673 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
674 const char *name)
676 unsigned i;
677 struct cache *ca;
679 for_each_cache(ca, d->c, i)
680 bd_link_disk_holder(ca->bdev, d->disk);
682 snprintf(d->name, BCACHEDEVNAME_SIZE,
683 "%s%u", name, d->id);
685 WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
686 sysfs_create_link(&c->kobj, &d->kobj, d->name),
687 "Couldn't create device <-> cache set symlinks");
690 static void bcache_device_detach(struct bcache_device *d)
692 lockdep_assert_held(&bch_register_lock);
694 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
695 struct uuid_entry *u = d->c->uuids + d->id;
697 SET_UUID_FLASH_ONLY(u, 0);
698 memcpy(u->uuid, invalid_uuid, 16);
699 u->invalidated = cpu_to_le32(get_seconds());
700 bch_uuid_write(d->c);
703 bcache_device_unlink(d);
705 d->c->devices[d->id] = NULL;
706 closure_put(&d->c->caching);
707 d->c = NULL;
710 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
711 unsigned id)
713 d->id = id;
714 d->c = c;
715 c->devices[id] = d;
717 closure_get(&c->caching);
720 static void bcache_device_free(struct bcache_device *d)
722 lockdep_assert_held(&bch_register_lock);
724 pr_info("%s stopped", d->disk->disk_name);
726 if (d->c)
727 bcache_device_detach(d);
728 if (d->disk && d->disk->flags & GENHD_FL_UP)
729 del_gendisk(d->disk);
730 if (d->disk && d->disk->queue)
731 blk_cleanup_queue(d->disk->queue);
732 if (d->disk) {
733 ida_simple_remove(&bcache_minor, d->disk->first_minor);
734 put_disk(d->disk);
737 if (d->bio_split)
738 bioset_free(d->bio_split);
739 kvfree(d->full_dirty_stripes);
740 kvfree(d->stripe_sectors_dirty);
742 closure_debug_destroy(&d->cl);
745 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
746 sector_t sectors)
748 struct request_queue *q;
749 size_t n;
750 int minor;
752 if (!d->stripe_size)
753 d->stripe_size = 1 << 31;
755 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
757 if (!d->nr_stripes ||
758 d->nr_stripes > INT_MAX ||
759 d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
760 pr_err("nr_stripes too large");
761 return -ENOMEM;
764 n = d->nr_stripes * sizeof(atomic_t);
765 d->stripe_sectors_dirty = n < PAGE_SIZE << 6
766 ? kzalloc(n, GFP_KERNEL)
767 : vzalloc(n);
768 if (!d->stripe_sectors_dirty)
769 return -ENOMEM;
771 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
772 d->full_dirty_stripes = n < PAGE_SIZE << 6
773 ? kzalloc(n, GFP_KERNEL)
774 : vzalloc(n);
775 if (!d->full_dirty_stripes)
776 return -ENOMEM;
778 minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
779 if (minor < 0)
780 return minor;
782 if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
783 !(d->disk = alloc_disk(1))) {
784 ida_simple_remove(&bcache_minor, minor);
785 return -ENOMEM;
788 set_capacity(d->disk, sectors);
789 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
791 d->disk->major = bcache_major;
792 d->disk->first_minor = minor;
793 d->disk->fops = &bcache_ops;
794 d->disk->private_data = d;
796 q = blk_alloc_queue(GFP_KERNEL);
797 if (!q)
798 return -ENOMEM;
800 blk_queue_make_request(q, NULL);
801 d->disk->queue = q;
802 q->queuedata = d;
803 q->backing_dev_info.congested_data = d;
804 q->limits.max_hw_sectors = UINT_MAX;
805 q->limits.max_sectors = UINT_MAX;
806 q->limits.max_segment_size = UINT_MAX;
807 q->limits.max_segments = BIO_MAX_PAGES;
808 blk_queue_max_discard_sectors(q, UINT_MAX);
809 q->limits.discard_granularity = 512;
810 q->limits.io_min = block_size;
811 q->limits.logical_block_size = block_size;
812 q->limits.physical_block_size = block_size;
813 set_bit(QUEUE_FLAG_NONROT, &d->disk->queue->queue_flags);
814 clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
815 set_bit(QUEUE_FLAG_DISCARD, &d->disk->queue->queue_flags);
817 blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
819 return 0;
822 /* Cached device */
824 static void calc_cached_dev_sectors(struct cache_set *c)
826 uint64_t sectors = 0;
827 struct cached_dev *dc;
829 list_for_each_entry(dc, &c->cached_devs, list)
830 sectors += bdev_sectors(dc->bdev);
832 c->cached_dev_sectors = sectors;
835 void bch_cached_dev_run(struct cached_dev *dc)
837 struct bcache_device *d = &dc->disk;
838 char buf[SB_LABEL_SIZE + 1];
839 char *env[] = {
840 "DRIVER=bcache",
841 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
842 NULL,
843 NULL,
846 memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
847 buf[SB_LABEL_SIZE] = '\0';
848 env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
850 if (atomic_xchg(&dc->running, 1))
851 return;
853 if (!d->c &&
854 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
855 struct closure cl;
856 closure_init_stack(&cl);
858 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
859 bch_write_bdev_super(dc, &cl);
860 closure_sync(&cl);
863 add_disk(d->disk);
864 bd_link_disk_holder(dc->bdev, dc->disk.disk);
865 /* won't show up in the uevent file, use udevadm monitor -e instead
866 * only class / kset properties are persistent */
867 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
868 kfree(env[1]);
869 kfree(env[2]);
871 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
872 sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
873 pr_debug("error creating sysfs link");
876 static void cached_dev_detach_finish(struct work_struct *w)
878 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
879 char buf[BDEVNAME_SIZE];
880 struct closure cl;
881 closure_init_stack(&cl);
883 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
884 BUG_ON(atomic_read(&dc->count));
886 mutex_lock(&bch_register_lock);
888 memset(&dc->sb.set_uuid, 0, 16);
889 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
891 bch_write_bdev_super(dc, &cl);
892 closure_sync(&cl);
894 bcache_device_detach(&dc->disk);
895 list_move(&dc->list, &uncached_devices);
897 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
898 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
900 mutex_unlock(&bch_register_lock);
902 pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
904 /* Drop ref we took in cached_dev_detach() */
905 closure_put(&dc->disk.cl);
908 void bch_cached_dev_detach(struct cached_dev *dc)
910 lockdep_assert_held(&bch_register_lock);
912 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
913 return;
915 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
916 return;
919 * Block the device from being closed and freed until we're finished
920 * detaching
922 closure_get(&dc->disk.cl);
924 bch_writeback_queue(dc);
925 cached_dev_put(dc);
928 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
930 uint32_t rtime = cpu_to_le32(get_seconds());
931 struct uuid_entry *u;
932 char buf[BDEVNAME_SIZE];
934 bdevname(dc->bdev, buf);
936 if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
937 return -ENOENT;
939 if (dc->disk.c) {
940 pr_err("Can't attach %s: already attached", buf);
941 return -EINVAL;
944 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
945 pr_err("Can't attach %s: shutting down", buf);
946 return -EINVAL;
949 if (dc->sb.block_size < c->sb.block_size) {
950 /* Will die */
951 pr_err("Couldn't attach %s: block size less than set's block size",
952 buf);
953 return -EINVAL;
956 u = uuid_find(c, dc->sb.uuid);
958 if (u &&
959 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
960 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
961 memcpy(u->uuid, invalid_uuid, 16);
962 u->invalidated = cpu_to_le32(get_seconds());
963 u = NULL;
966 if (!u) {
967 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
968 pr_err("Couldn't find uuid for %s in set", buf);
969 return -ENOENT;
972 u = uuid_find_empty(c);
973 if (!u) {
974 pr_err("Not caching %s, no room for UUID", buf);
975 return -EINVAL;
979 /* Deadlocks since we're called via sysfs...
980 sysfs_remove_file(&dc->kobj, &sysfs_attach);
983 if (bch_is_zero(u->uuid, 16)) {
984 struct closure cl;
985 closure_init_stack(&cl);
987 memcpy(u->uuid, dc->sb.uuid, 16);
988 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
989 u->first_reg = u->last_reg = rtime;
990 bch_uuid_write(c);
992 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
993 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
995 bch_write_bdev_super(dc, &cl);
996 closure_sync(&cl);
997 } else {
998 u->last_reg = rtime;
999 bch_uuid_write(c);
1002 bcache_device_attach(&dc->disk, c, u - c->uuids);
1003 list_move(&dc->list, &c->cached_devs);
1004 calc_cached_dev_sectors(c);
1006 smp_wmb();
1008 * dc->c must be set before dc->count != 0 - paired with the mb in
1009 * cached_dev_get()
1011 atomic_set(&dc->count, 1);
1013 if (bch_cached_dev_writeback_start(dc))
1014 return -ENOMEM;
1016 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1017 bch_sectors_dirty_init(dc);
1018 atomic_set(&dc->has_dirty, 1);
1019 atomic_inc(&dc->count);
1020 bch_writeback_queue(dc);
1023 bch_cached_dev_run(dc);
1024 bcache_device_link(&dc->disk, c, "bdev");
1026 pr_info("Caching %s as %s on set %pU",
1027 bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1028 dc->disk.c->sb.set_uuid);
1029 return 0;
1032 void bch_cached_dev_release(struct kobject *kobj)
1034 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1035 disk.kobj);
1036 kfree(dc);
1037 module_put(THIS_MODULE);
1040 static void cached_dev_free(struct closure *cl)
1042 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1044 cancel_delayed_work_sync(&dc->writeback_rate_update);
1045 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1046 kthread_stop(dc->writeback_thread);
1048 mutex_lock(&bch_register_lock);
1050 if (atomic_read(&dc->running))
1051 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1052 bcache_device_free(&dc->disk);
1053 list_del(&dc->list);
1055 mutex_unlock(&bch_register_lock);
1057 if (!IS_ERR_OR_NULL(dc->bdev))
1058 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1060 wake_up(&unregister_wait);
1062 kobject_put(&dc->disk.kobj);
1065 static void cached_dev_flush(struct closure *cl)
1067 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1068 struct bcache_device *d = &dc->disk;
1070 mutex_lock(&bch_register_lock);
1071 bcache_device_unlink(d);
1072 mutex_unlock(&bch_register_lock);
1074 bch_cache_accounting_destroy(&dc->accounting);
1075 kobject_del(&d->kobj);
1077 continue_at(cl, cached_dev_free, system_wq);
1080 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1082 int ret;
1083 struct io *io;
1084 struct request_queue *q = bdev_get_queue(dc->bdev);
1086 __module_get(THIS_MODULE);
1087 INIT_LIST_HEAD(&dc->list);
1088 closure_init(&dc->disk.cl, NULL);
1089 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1090 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1091 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1092 sema_init(&dc->sb_write_mutex, 1);
1093 INIT_LIST_HEAD(&dc->io_lru);
1094 spin_lock_init(&dc->io_lock);
1095 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1097 dc->sequential_cutoff = 4 << 20;
1099 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1100 list_add(&io->lru, &dc->io_lru);
1101 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1104 dc->disk.stripe_size = q->limits.io_opt >> 9;
1106 if (dc->disk.stripe_size)
1107 dc->partial_stripes_expensive =
1108 q->limits.raid_partial_stripes_expensive;
1110 ret = bcache_device_init(&dc->disk, block_size,
1111 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1112 if (ret)
1113 return ret;
1115 set_capacity(dc->disk.disk,
1116 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1118 dc->disk.disk->queue->backing_dev_info.ra_pages =
1119 max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1120 q->backing_dev_info.ra_pages);
1122 bch_cached_dev_request_init(dc);
1123 bch_cached_dev_writeback_init(dc);
1124 return 0;
1127 /* Cached device - bcache superblock */
1129 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1130 struct block_device *bdev,
1131 struct cached_dev *dc)
1133 char name[BDEVNAME_SIZE];
1134 const char *err = "cannot allocate memory";
1135 struct cache_set *c;
1137 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1138 dc->bdev = bdev;
1139 dc->bdev->bd_holder = dc;
1141 bio_init(&dc->sb_bio);
1142 dc->sb_bio.bi_max_vecs = 1;
1143 dc->sb_bio.bi_io_vec = dc->sb_bio.bi_inline_vecs;
1144 dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1145 get_page(sb_page);
1147 if (cached_dev_init(dc, sb->block_size << 9))
1148 goto err;
1150 err = "error creating kobject";
1151 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1152 "bcache"))
1153 goto err;
1154 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1155 goto err;
1157 pr_info("registered backing device %s", bdevname(bdev, name));
1159 list_add(&dc->list, &uncached_devices);
1160 list_for_each_entry(c, &bch_cache_sets, list)
1161 bch_cached_dev_attach(dc, c);
1163 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1164 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1165 bch_cached_dev_run(dc);
1167 return;
1168 err:
1169 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1170 bcache_device_stop(&dc->disk);
1173 /* Flash only volumes */
1175 void bch_flash_dev_release(struct kobject *kobj)
1177 struct bcache_device *d = container_of(kobj, struct bcache_device,
1178 kobj);
1179 kfree(d);
1182 static void flash_dev_free(struct closure *cl)
1184 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1185 mutex_lock(&bch_register_lock);
1186 bcache_device_free(d);
1187 mutex_unlock(&bch_register_lock);
1188 kobject_put(&d->kobj);
1191 static void flash_dev_flush(struct closure *cl)
1193 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1195 mutex_lock(&bch_register_lock);
1196 bcache_device_unlink(d);
1197 mutex_unlock(&bch_register_lock);
1198 kobject_del(&d->kobj);
1199 continue_at(cl, flash_dev_free, system_wq);
1202 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1204 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1205 GFP_KERNEL);
1206 if (!d)
1207 return -ENOMEM;
1209 closure_init(&d->cl, NULL);
1210 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1212 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1214 if (bcache_device_init(d, block_bytes(c), u->sectors))
1215 goto err;
1217 bcache_device_attach(d, c, u - c->uuids);
1218 bch_flash_dev_request_init(d);
1219 add_disk(d->disk);
1221 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1222 goto err;
1224 bcache_device_link(d, c, "volume");
1226 return 0;
1227 err:
1228 kobject_put(&d->kobj);
1229 return -ENOMEM;
1232 static int flash_devs_run(struct cache_set *c)
1234 int ret = 0;
1235 struct uuid_entry *u;
1237 for (u = c->uuids;
1238 u < c->uuids + c->nr_uuids && !ret;
1239 u++)
1240 if (UUID_FLASH_ONLY(u))
1241 ret = flash_dev_run(c, u);
1243 return ret;
1246 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1248 struct uuid_entry *u;
1250 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1251 return -EINTR;
1253 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1254 return -EPERM;
1256 u = uuid_find_empty(c);
1257 if (!u) {
1258 pr_err("Can't create volume, no room for UUID");
1259 return -EINVAL;
1262 get_random_bytes(u->uuid, 16);
1263 memset(u->label, 0, 32);
1264 u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1266 SET_UUID_FLASH_ONLY(u, 1);
1267 u->sectors = size >> 9;
1269 bch_uuid_write(c);
1271 return flash_dev_run(c, u);
1274 /* Cache set */
1276 __printf(2, 3)
1277 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1279 va_list args;
1281 if (c->on_error != ON_ERROR_PANIC &&
1282 test_bit(CACHE_SET_STOPPING, &c->flags))
1283 return false;
1285 /* XXX: we can be called from atomic context
1286 acquire_console_sem();
1289 printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1291 va_start(args, fmt);
1292 vprintk(fmt, args);
1293 va_end(args);
1295 printk(", disabling caching\n");
1297 if (c->on_error == ON_ERROR_PANIC)
1298 panic("panic forced after error\n");
1300 bch_cache_set_unregister(c);
1301 return true;
1304 void bch_cache_set_release(struct kobject *kobj)
1306 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1307 kfree(c);
1308 module_put(THIS_MODULE);
1311 static void cache_set_free(struct closure *cl)
1313 struct cache_set *c = container_of(cl, struct cache_set, cl);
1314 struct cache *ca;
1315 unsigned i;
1317 if (!IS_ERR_OR_NULL(c->debug))
1318 debugfs_remove(c->debug);
1320 bch_open_buckets_free(c);
1321 bch_btree_cache_free(c);
1322 bch_journal_free(c);
1324 for_each_cache(ca, c, i)
1325 if (ca) {
1326 ca->set = NULL;
1327 c->cache[ca->sb.nr_this_dev] = NULL;
1328 kobject_put(&ca->kobj);
1331 bch_bset_sort_state_free(&c->sort);
1332 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1334 if (c->moving_gc_wq)
1335 destroy_workqueue(c->moving_gc_wq);
1336 if (c->bio_split)
1337 bioset_free(c->bio_split);
1338 if (c->fill_iter)
1339 mempool_destroy(c->fill_iter);
1340 if (c->bio_meta)
1341 mempool_destroy(c->bio_meta);
1342 if (c->search)
1343 mempool_destroy(c->search);
1344 kfree(c->devices);
1346 mutex_lock(&bch_register_lock);
1347 list_del(&c->list);
1348 mutex_unlock(&bch_register_lock);
1350 pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1351 wake_up(&unregister_wait);
1353 closure_debug_destroy(&c->cl);
1354 kobject_put(&c->kobj);
1357 static void cache_set_flush(struct closure *cl)
1359 struct cache_set *c = container_of(cl, struct cache_set, caching);
1360 struct cache *ca;
1361 struct btree *b;
1362 unsigned i;
1364 bch_cache_accounting_destroy(&c->accounting);
1366 kobject_put(&c->internal);
1367 kobject_del(&c->kobj);
1369 if (c->gc_thread)
1370 kthread_stop(c->gc_thread);
1372 if (!IS_ERR_OR_NULL(c->root))
1373 list_add(&c->root->list, &c->btree_cache);
1375 /* Should skip this if we're unregistering because of an error */
1376 list_for_each_entry(b, &c->btree_cache, list) {
1377 mutex_lock(&b->write_lock);
1378 if (btree_node_dirty(b))
1379 __bch_btree_node_write(b, NULL);
1380 mutex_unlock(&b->write_lock);
1383 for_each_cache(ca, c, i)
1384 if (ca->alloc_thread)
1385 kthread_stop(ca->alloc_thread);
1387 if (c->journal.cur) {
1388 cancel_delayed_work_sync(&c->journal.work);
1389 /* flush last journal entry if needed */
1390 c->journal.work.work.func(&c->journal.work.work);
1393 closure_return(cl);
1396 static void __cache_set_unregister(struct closure *cl)
1398 struct cache_set *c = container_of(cl, struct cache_set, caching);
1399 struct cached_dev *dc;
1400 size_t i;
1402 mutex_lock(&bch_register_lock);
1404 for (i = 0; i < c->nr_uuids; i++)
1405 if (c->devices[i]) {
1406 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1407 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1408 dc = container_of(c->devices[i],
1409 struct cached_dev, disk);
1410 bch_cached_dev_detach(dc);
1411 } else {
1412 bcache_device_stop(c->devices[i]);
1416 mutex_unlock(&bch_register_lock);
1418 continue_at(cl, cache_set_flush, system_wq);
1421 void bch_cache_set_stop(struct cache_set *c)
1423 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1424 closure_queue(&c->caching);
1427 void bch_cache_set_unregister(struct cache_set *c)
1429 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1430 bch_cache_set_stop(c);
1433 #define alloc_bucket_pages(gfp, c) \
1434 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1436 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1438 int iter_size;
1439 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1440 if (!c)
1441 return NULL;
1443 __module_get(THIS_MODULE);
1444 closure_init(&c->cl, NULL);
1445 set_closure_fn(&c->cl, cache_set_free, system_wq);
1447 closure_init(&c->caching, &c->cl);
1448 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1450 /* Maybe create continue_at_noreturn() and use it here? */
1451 closure_set_stopped(&c->cl);
1452 closure_put(&c->cl);
1454 kobject_init(&c->kobj, &bch_cache_set_ktype);
1455 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1457 bch_cache_accounting_init(&c->accounting, &c->cl);
1459 memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1460 c->sb.block_size = sb->block_size;
1461 c->sb.bucket_size = sb->bucket_size;
1462 c->sb.nr_in_set = sb->nr_in_set;
1463 c->sb.last_mount = sb->last_mount;
1464 c->bucket_bits = ilog2(sb->bucket_size);
1465 c->block_bits = ilog2(sb->block_size);
1466 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry);
1468 c->btree_pages = bucket_pages(c);
1469 if (c->btree_pages > BTREE_MAX_PAGES)
1470 c->btree_pages = max_t(int, c->btree_pages / 4,
1471 BTREE_MAX_PAGES);
1473 sema_init(&c->sb_write_mutex, 1);
1474 mutex_init(&c->bucket_lock);
1475 init_waitqueue_head(&c->btree_cache_wait);
1476 init_waitqueue_head(&c->bucket_wait);
1477 sema_init(&c->uuid_write_mutex, 1);
1479 spin_lock_init(&c->btree_gc_time.lock);
1480 spin_lock_init(&c->btree_split_time.lock);
1481 spin_lock_init(&c->btree_read_time.lock);
1483 bch_moving_init_cache_set(c);
1485 INIT_LIST_HEAD(&c->list);
1486 INIT_LIST_HEAD(&c->cached_devs);
1487 INIT_LIST_HEAD(&c->btree_cache);
1488 INIT_LIST_HEAD(&c->btree_cache_freeable);
1489 INIT_LIST_HEAD(&c->btree_cache_freed);
1490 INIT_LIST_HEAD(&c->data_buckets);
1492 c->search = mempool_create_slab_pool(32, bch_search_cache);
1493 if (!c->search)
1494 goto err;
1496 iter_size = (sb->bucket_size / sb->block_size + 1) *
1497 sizeof(struct btree_iter_set);
1499 if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1500 !(c->bio_meta = mempool_create_kmalloc_pool(2,
1501 sizeof(struct bbio) + sizeof(struct bio_vec) *
1502 bucket_pages(c))) ||
1503 !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1504 !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1505 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1506 !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1507 bch_journal_alloc(c) ||
1508 bch_btree_cache_alloc(c) ||
1509 bch_open_buckets_alloc(c) ||
1510 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1511 goto err;
1513 c->congested_read_threshold_us = 2000;
1514 c->congested_write_threshold_us = 20000;
1515 c->error_limit = 8 << IO_ERROR_SHIFT;
1517 return c;
1518 err:
1519 bch_cache_set_unregister(c);
1520 return NULL;
1523 static void run_cache_set(struct cache_set *c)
1525 const char *err = "cannot allocate memory";
1526 struct cached_dev *dc, *t;
1527 struct cache *ca;
1528 struct closure cl;
1529 unsigned i;
1531 closure_init_stack(&cl);
1533 for_each_cache(ca, c, i)
1534 c->nbuckets += ca->sb.nbuckets;
1536 if (CACHE_SYNC(&c->sb)) {
1537 LIST_HEAD(journal);
1538 struct bkey *k;
1539 struct jset *j;
1541 err = "cannot allocate memory for journal";
1542 if (bch_journal_read(c, &journal))
1543 goto err;
1545 pr_debug("btree_journal_read() done");
1547 err = "no journal entries found";
1548 if (list_empty(&journal))
1549 goto err;
1551 j = &list_entry(journal.prev, struct journal_replay, list)->j;
1553 err = "IO error reading priorities";
1554 for_each_cache(ca, c, i)
1555 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1558 * If prio_read() fails it'll call cache_set_error and we'll
1559 * tear everything down right away, but if we perhaps checked
1560 * sooner we could avoid journal replay.
1563 k = &j->btree_root;
1565 err = "bad btree root";
1566 if (__bch_btree_ptr_invalid(c, k))
1567 goto err;
1569 err = "error reading btree root";
1570 c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1571 if (IS_ERR_OR_NULL(c->root))
1572 goto err;
1574 list_del_init(&c->root->list);
1575 rw_unlock(true, c->root);
1577 err = uuid_read(c, j, &cl);
1578 if (err)
1579 goto err;
1581 err = "error in recovery";
1582 if (bch_btree_check(c))
1583 goto err;
1585 bch_journal_mark(c, &journal);
1586 bch_initial_gc_finish(c);
1587 pr_debug("btree_check() done");
1590 * bcache_journal_next() can't happen sooner, or
1591 * btree_gc_finish() will give spurious errors about last_gc >
1592 * gc_gen - this is a hack but oh well.
1594 bch_journal_next(&c->journal);
1596 err = "error starting allocator thread";
1597 for_each_cache(ca, c, i)
1598 if (bch_cache_allocator_start(ca))
1599 goto err;
1602 * First place it's safe to allocate: btree_check() and
1603 * btree_gc_finish() have to run before we have buckets to
1604 * allocate, and bch_bucket_alloc_set() might cause a journal
1605 * entry to be written so bcache_journal_next() has to be called
1606 * first.
1608 * If the uuids were in the old format we have to rewrite them
1609 * before the next journal entry is written:
1611 if (j->version < BCACHE_JSET_VERSION_UUID)
1612 __uuid_write(c);
1614 bch_journal_replay(c, &journal);
1615 } else {
1616 pr_notice("invalidating existing data");
1618 for_each_cache(ca, c, i) {
1619 unsigned j;
1621 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1622 2, SB_JOURNAL_BUCKETS);
1624 for (j = 0; j < ca->sb.keys; j++)
1625 ca->sb.d[j] = ca->sb.first_bucket + j;
1628 bch_initial_gc_finish(c);
1630 err = "error starting allocator thread";
1631 for_each_cache(ca, c, i)
1632 if (bch_cache_allocator_start(ca))
1633 goto err;
1635 mutex_lock(&c->bucket_lock);
1636 for_each_cache(ca, c, i)
1637 bch_prio_write(ca);
1638 mutex_unlock(&c->bucket_lock);
1640 err = "cannot allocate new UUID bucket";
1641 if (__uuid_write(c))
1642 goto err;
1644 err = "cannot allocate new btree root";
1645 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1646 if (IS_ERR_OR_NULL(c->root))
1647 goto err;
1649 mutex_lock(&c->root->write_lock);
1650 bkey_copy_key(&c->root->key, &MAX_KEY);
1651 bch_btree_node_write(c->root, &cl);
1652 mutex_unlock(&c->root->write_lock);
1654 bch_btree_set_root(c->root);
1655 rw_unlock(true, c->root);
1658 * We don't want to write the first journal entry until
1659 * everything is set up - fortunately journal entries won't be
1660 * written until the SET_CACHE_SYNC() here:
1662 SET_CACHE_SYNC(&c->sb, true);
1664 bch_journal_next(&c->journal);
1665 bch_journal_meta(c, &cl);
1668 err = "error starting gc thread";
1669 if (bch_gc_thread_start(c))
1670 goto err;
1672 closure_sync(&cl);
1673 c->sb.last_mount = get_seconds();
1674 bcache_write_super(c);
1676 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1677 bch_cached_dev_attach(dc, c);
1679 flash_devs_run(c);
1681 set_bit(CACHE_SET_RUNNING, &c->flags);
1682 return;
1683 err:
1684 closure_sync(&cl);
1685 /* XXX: test this, it's broken */
1686 bch_cache_set_error(c, "%s", err);
1689 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1691 return ca->sb.block_size == c->sb.block_size &&
1692 ca->sb.bucket_size == c->sb.bucket_size &&
1693 ca->sb.nr_in_set == c->sb.nr_in_set;
1696 static const char *register_cache_set(struct cache *ca)
1698 char buf[12];
1699 const char *err = "cannot allocate memory";
1700 struct cache_set *c;
1702 list_for_each_entry(c, &bch_cache_sets, list)
1703 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1704 if (c->cache[ca->sb.nr_this_dev])
1705 return "duplicate cache set member";
1707 if (!can_attach_cache(ca, c))
1708 return "cache sb does not match set";
1710 if (!CACHE_SYNC(&ca->sb))
1711 SET_CACHE_SYNC(&c->sb, false);
1713 goto found;
1716 c = bch_cache_set_alloc(&ca->sb);
1717 if (!c)
1718 return err;
1720 err = "error creating kobject";
1721 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1722 kobject_add(&c->internal, &c->kobj, "internal"))
1723 goto err;
1725 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1726 goto err;
1728 bch_debug_init_cache_set(c);
1730 list_add(&c->list, &bch_cache_sets);
1731 found:
1732 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1733 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1734 sysfs_create_link(&c->kobj, &ca->kobj, buf))
1735 goto err;
1737 if (ca->sb.seq > c->sb.seq) {
1738 c->sb.version = ca->sb.version;
1739 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1740 c->sb.flags = ca->sb.flags;
1741 c->sb.seq = ca->sb.seq;
1742 pr_debug("set version = %llu", c->sb.version);
1745 kobject_get(&ca->kobj);
1746 ca->set = c;
1747 ca->set->cache[ca->sb.nr_this_dev] = ca;
1748 c->cache_by_alloc[c->caches_loaded++] = ca;
1750 if (c->caches_loaded == c->sb.nr_in_set)
1751 run_cache_set(c);
1753 return NULL;
1754 err:
1755 bch_cache_set_unregister(c);
1756 return err;
1759 /* Cache device */
1761 void bch_cache_release(struct kobject *kobj)
1763 struct cache *ca = container_of(kobj, struct cache, kobj);
1764 unsigned i;
1766 if (ca->set) {
1767 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1768 ca->set->cache[ca->sb.nr_this_dev] = NULL;
1771 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1772 kfree(ca->prio_buckets);
1773 vfree(ca->buckets);
1775 free_heap(&ca->heap);
1776 free_fifo(&ca->free_inc);
1778 for (i = 0; i < RESERVE_NR; i++)
1779 free_fifo(&ca->free[i]);
1781 if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1782 put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1784 if (!IS_ERR_OR_NULL(ca->bdev))
1785 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1787 kfree(ca);
1788 module_put(THIS_MODULE);
1791 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1793 size_t free;
1794 struct bucket *b;
1796 __module_get(THIS_MODULE);
1797 kobject_init(&ca->kobj, &bch_cache_ktype);
1799 bio_init(&ca->journal.bio);
1800 ca->journal.bio.bi_max_vecs = 8;
1801 ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1803 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1805 if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1806 !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1807 !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1808 !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1809 !init_fifo(&ca->free_inc, free << 2, GFP_KERNEL) ||
1810 !init_heap(&ca->heap, free << 3, GFP_KERNEL) ||
1811 !(ca->buckets = vzalloc(sizeof(struct bucket) *
1812 ca->sb.nbuckets)) ||
1813 !(ca->prio_buckets = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1814 2, GFP_KERNEL)) ||
1815 !(ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca)))
1816 return -ENOMEM;
1818 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1820 for_each_bucket(b, ca)
1821 atomic_set(&b->pin, 0);
1823 return 0;
1826 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1827 struct block_device *bdev, struct cache *ca)
1829 char name[BDEVNAME_SIZE];
1830 const char *err = "cannot allocate memory";
1832 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1833 ca->bdev = bdev;
1834 ca->bdev->bd_holder = ca;
1836 bio_init(&ca->sb_bio);
1837 ca->sb_bio.bi_max_vecs = 1;
1838 ca->sb_bio.bi_io_vec = ca->sb_bio.bi_inline_vecs;
1839 ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1840 get_page(sb_page);
1842 if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1843 ca->discard = CACHE_DISCARD(&ca->sb);
1845 if (cache_alloc(sb, ca) != 0)
1846 goto err;
1848 err = "error creating kobject";
1849 if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1850 goto err;
1852 mutex_lock(&bch_register_lock);
1853 err = register_cache_set(ca);
1854 mutex_unlock(&bch_register_lock);
1856 if (err)
1857 goto err;
1859 pr_info("registered cache device %s", bdevname(bdev, name));
1860 out:
1861 kobject_put(&ca->kobj);
1862 return;
1863 err:
1864 pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1865 goto out;
1868 /* Global interfaces/init */
1870 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1871 const char *, size_t);
1873 kobj_attribute_write(register, register_bcache);
1874 kobj_attribute_write(register_quiet, register_bcache);
1876 static bool bch_is_open_backing(struct block_device *bdev) {
1877 struct cache_set *c, *tc;
1878 struct cached_dev *dc, *t;
1880 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1881 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1882 if (dc->bdev == bdev)
1883 return true;
1884 list_for_each_entry_safe(dc, t, &uncached_devices, list)
1885 if (dc->bdev == bdev)
1886 return true;
1887 return false;
1890 static bool bch_is_open_cache(struct block_device *bdev) {
1891 struct cache_set *c, *tc;
1892 struct cache *ca;
1893 unsigned i;
1895 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1896 for_each_cache(ca, c, i)
1897 if (ca->bdev == bdev)
1898 return true;
1899 return false;
1902 static bool bch_is_open(struct block_device *bdev) {
1903 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1906 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1907 const char *buffer, size_t size)
1909 ssize_t ret = size;
1910 const char *err = "cannot allocate memory";
1911 char *path = NULL;
1912 struct cache_sb *sb = NULL;
1913 struct block_device *bdev = NULL;
1914 struct page *sb_page = NULL;
1916 if (!try_module_get(THIS_MODULE))
1917 return -EBUSY;
1919 if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1920 !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1921 goto err;
1923 err = "failed to open device";
1924 bdev = blkdev_get_by_path(strim(path),
1925 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1926 sb);
1927 if (IS_ERR(bdev)) {
1928 if (bdev == ERR_PTR(-EBUSY)) {
1929 bdev = lookup_bdev(strim(path));
1930 mutex_lock(&bch_register_lock);
1931 if (!IS_ERR(bdev) && bch_is_open(bdev))
1932 err = "device already registered";
1933 else
1934 err = "device busy";
1935 mutex_unlock(&bch_register_lock);
1937 goto err;
1940 err = "failed to set blocksize";
1941 if (set_blocksize(bdev, 4096))
1942 goto err_close;
1944 err = read_super(sb, bdev, &sb_page);
1945 if (err)
1946 goto err_close;
1948 if (SB_IS_BDEV(sb)) {
1949 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1950 if (!dc)
1951 goto err_close;
1953 mutex_lock(&bch_register_lock);
1954 register_bdev(sb, sb_page, bdev, dc);
1955 mutex_unlock(&bch_register_lock);
1956 } else {
1957 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1958 if (!ca)
1959 goto err_close;
1961 register_cache(sb, sb_page, bdev, ca);
1963 out:
1964 if (sb_page)
1965 put_page(sb_page);
1966 kfree(sb);
1967 kfree(path);
1968 module_put(THIS_MODULE);
1969 return ret;
1971 err_close:
1972 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1973 err:
1974 if (attr != &ksysfs_register_quiet)
1975 pr_info("error opening %s: %s", path, err);
1976 ret = -EINVAL;
1977 goto out;
1980 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1982 if (code == SYS_DOWN ||
1983 code == SYS_HALT ||
1984 code == SYS_POWER_OFF) {
1985 DEFINE_WAIT(wait);
1986 unsigned long start = jiffies;
1987 bool stopped = false;
1989 struct cache_set *c, *tc;
1990 struct cached_dev *dc, *tdc;
1992 mutex_lock(&bch_register_lock);
1994 if (list_empty(&bch_cache_sets) &&
1995 list_empty(&uncached_devices))
1996 goto out;
1998 pr_info("Stopping all devices:");
2000 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2001 bch_cache_set_stop(c);
2003 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2004 bcache_device_stop(&dc->disk);
2006 /* What's a condition variable? */
2007 while (1) {
2008 long timeout = start + 2 * HZ - jiffies;
2010 stopped = list_empty(&bch_cache_sets) &&
2011 list_empty(&uncached_devices);
2013 if (timeout < 0 || stopped)
2014 break;
2016 prepare_to_wait(&unregister_wait, &wait,
2017 TASK_UNINTERRUPTIBLE);
2019 mutex_unlock(&bch_register_lock);
2020 schedule_timeout(timeout);
2021 mutex_lock(&bch_register_lock);
2024 finish_wait(&unregister_wait, &wait);
2026 if (stopped)
2027 pr_info("All devices stopped");
2028 else
2029 pr_notice("Timeout waiting for devices to be closed");
2030 out:
2031 mutex_unlock(&bch_register_lock);
2034 return NOTIFY_DONE;
2037 static struct notifier_block reboot = {
2038 .notifier_call = bcache_reboot,
2039 .priority = INT_MAX, /* before any real devices */
2042 static void bcache_exit(void)
2044 bch_debug_exit();
2045 bch_request_exit();
2046 if (bcache_kobj)
2047 kobject_put(bcache_kobj);
2048 if (bcache_wq)
2049 destroy_workqueue(bcache_wq);
2050 if (bcache_major)
2051 unregister_blkdev(bcache_major, "bcache");
2052 unregister_reboot_notifier(&reboot);
2055 static int __init bcache_init(void)
2057 static const struct attribute *files[] = {
2058 &ksysfs_register.attr,
2059 &ksysfs_register_quiet.attr,
2060 NULL
2063 mutex_init(&bch_register_lock);
2064 init_waitqueue_head(&unregister_wait);
2065 register_reboot_notifier(&reboot);
2066 closure_debug_init();
2068 bcache_major = register_blkdev(0, "bcache");
2069 if (bcache_major < 0)
2070 return bcache_major;
2072 if (!(bcache_wq = create_workqueue("bcache")) ||
2073 !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2074 sysfs_create_files(bcache_kobj, files) ||
2075 bch_request_init() ||
2076 bch_debug_init(bcache_kobj))
2077 goto err;
2079 return 0;
2080 err:
2081 bcache_exit();
2082 return -ENOMEM;
2085 module_exit(bcache_exit);
2086 module_init(bcache_init);