1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
22 #define FSEC_PER_NSEC 1000000L
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
35 unsigned long hpet_address
;
36 unsigned long hpet_num_timers
;
37 static void __iomem
*hpet_virt_address
;
40 struct clock_event_device evt
;
48 unsigned long hpet_readl(unsigned long a
)
50 return readl(hpet_virt_address
+ a
);
53 static inline void hpet_writel(unsigned long d
, unsigned long a
)
55 writel(d
, hpet_virt_address
+ a
);
59 #include <asm/pgtable.h>
62 static inline void hpet_set_mapping(void)
64 hpet_virt_address
= ioremap_nocache(hpet_address
, HPET_MMAP_SIZE
);
66 __set_fixmap(VSYSCALL_HPET
, hpet_address
, PAGE_KERNEL_VSYSCALL_NOCACHE
);
70 static inline void hpet_clear_mapping(void)
72 iounmap(hpet_virt_address
);
73 hpet_virt_address
= NULL
;
77 * HPET command line enable / disable
79 static int boot_hpet_disable
;
82 static int __init
hpet_setup(char *str
)
85 if (!strncmp("disable", str
, 7))
86 boot_hpet_disable
= 1;
87 if (!strncmp("force", str
, 5))
92 __setup("hpet=", hpet_setup
);
94 static int __init
disable_hpet(char *str
)
96 boot_hpet_disable
= 1;
99 __setup("nohpet", disable_hpet
);
101 static inline int is_hpet_capable(void)
103 return !boot_hpet_disable
&& hpet_address
;
107 * HPET timer interrupt enable / disable
109 static int hpet_legacy_int_enabled
;
112 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
114 int is_hpet_enabled(void)
116 return is_hpet_capable() && hpet_legacy_int_enabled
;
118 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
121 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
122 * timer 0 and timer 1 in case of RTC emulation.
126 static void hpet_reserve_msi_timers(struct hpet_data
*hd
);
128 static void hpet_reserve_platform_timers(unsigned long id
)
130 struct hpet __iomem
*hpet
= hpet_virt_address
;
131 struct hpet_timer __iomem
*timer
= &hpet
->hpet_timers
[2];
132 unsigned int nrtimers
, i
;
135 nrtimers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
137 memset(&hd
, 0, sizeof(hd
));
138 hd
.hd_phys_address
= hpet_address
;
139 hd
.hd_address
= hpet
;
140 hd
.hd_nirqs
= nrtimers
;
141 hpet_reserve_timer(&hd
, 0);
143 #ifdef CONFIG_HPET_EMULATE_RTC
144 hpet_reserve_timer(&hd
, 1);
148 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
149 * is wrong for i8259!) not the output IRQ. Many BIOS writers
150 * don't bother configuring *any* comparator interrupts.
152 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
153 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
155 for (i
= 2; i
< nrtimers
; timer
++, i
++) {
156 hd
.hd_irq
[i
] = (readl(&timer
->hpet_config
) &
157 Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
160 hpet_reserve_msi_timers(&hd
);
166 static void hpet_reserve_platform_timers(unsigned long id
) { }
172 static unsigned long hpet_period
;
174 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
175 struct clock_event_device
*evt
);
176 static int hpet_legacy_next_event(unsigned long delta
,
177 struct clock_event_device
*evt
);
180 * The hpet clock event device
182 static struct clock_event_device hpet_clockevent
= {
184 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
185 .set_mode
= hpet_legacy_set_mode
,
186 .set_next_event
= hpet_legacy_next_event
,
192 static void hpet_start_counter(void)
194 unsigned long cfg
= hpet_readl(HPET_CFG
);
196 cfg
&= ~HPET_CFG_ENABLE
;
197 hpet_writel(cfg
, HPET_CFG
);
198 hpet_writel(0, HPET_COUNTER
);
199 hpet_writel(0, HPET_COUNTER
+ 4);
200 cfg
|= HPET_CFG_ENABLE
;
201 hpet_writel(cfg
, HPET_CFG
);
204 static void hpet_resume_device(void)
209 static void hpet_restart_counter(void)
211 hpet_resume_device();
212 hpet_start_counter();
215 static void hpet_enable_legacy_int(void)
217 unsigned long cfg
= hpet_readl(HPET_CFG
);
219 cfg
|= HPET_CFG_LEGACY
;
220 hpet_writel(cfg
, HPET_CFG
);
221 hpet_legacy_int_enabled
= 1;
224 static void hpet_legacy_clockevent_register(void)
226 /* Start HPET legacy interrupts */
227 hpet_enable_legacy_int();
230 * The mult factor is defined as (include/linux/clockchips.h)
231 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
232 * hpet_period is in units of femtoseconds (per cycle), so
233 * mult/2^shift = cyc/ns = 10^6/hpet_period
234 * mult = (10^6 * 2^shift)/hpet_period
235 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
237 hpet_clockevent
.mult
= div_sc((unsigned long) FSEC_PER_NSEC
,
238 hpet_period
, hpet_clockevent
.shift
);
239 /* Calculate the min / max delta */
240 hpet_clockevent
.max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF,
242 /* 5 usec minimum reprogramming delta. */
243 hpet_clockevent
.min_delta_ns
= 5000;
246 * Start hpet with the boot cpu mask and make it
247 * global after the IO_APIC has been initialized.
249 hpet_clockevent
.cpumask
= cpumask_of_cpu(smp_processor_id());
250 clockevents_register_device(&hpet_clockevent
);
251 global_clock_event
= &hpet_clockevent
;
252 printk(KERN_DEBUG
"hpet clockevent registered\n");
255 static int hpet_setup_msi_irq(unsigned int irq
);
257 static void hpet_set_mode(enum clock_event_mode mode
,
258 struct clock_event_device
*evt
, int timer
)
260 unsigned long cfg
, cmp
, now
;
264 case CLOCK_EVT_MODE_PERIODIC
:
265 delta
= ((uint64_t)(NSEC_PER_SEC
/HZ
)) * evt
->mult
;
266 delta
>>= evt
->shift
;
267 now
= hpet_readl(HPET_COUNTER
);
268 cmp
= now
+ (unsigned long) delta
;
269 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
270 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
|
271 HPET_TN_SETVAL
| HPET_TN_32BIT
;
272 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
274 * The first write after writing TN_SETVAL to the
275 * config register sets the counter value, the second
276 * write sets the period.
278 hpet_writel(cmp
, HPET_Tn_CMP(timer
));
280 hpet_writel((unsigned long) delta
, HPET_Tn_CMP(timer
));
283 case CLOCK_EVT_MODE_ONESHOT
:
284 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
285 cfg
&= ~HPET_TN_PERIODIC
;
286 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
287 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
290 case CLOCK_EVT_MODE_UNUSED
:
291 case CLOCK_EVT_MODE_SHUTDOWN
:
292 cfg
= hpet_readl(HPET_Tn_CFG(timer
));
293 cfg
&= ~HPET_TN_ENABLE
;
294 hpet_writel(cfg
, HPET_Tn_CFG(timer
));
297 case CLOCK_EVT_MODE_RESUME
:
299 hpet_enable_legacy_int();
301 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
302 hpet_setup_msi_irq(hdev
->irq
);
303 disable_irq(hdev
->irq
);
304 irq_set_affinity(hdev
->irq
, cpumask_of_cpu(hdev
->cpu
));
305 enable_irq(hdev
->irq
);
311 static int hpet_next_event(unsigned long delta
,
312 struct clock_event_device
*evt
, int timer
)
316 cnt
= hpet_readl(HPET_COUNTER
);
318 hpet_writel(cnt
, HPET_Tn_CMP(timer
));
321 * We need to read back the CMP register to make sure that
322 * what we wrote hit the chip before we compare it to the
325 WARN_ON_ONCE((u32
)hpet_readl(HPET_Tn_CMP(timer
)) != cnt
);
327 return (s32
)((u32
)hpet_readl(HPET_COUNTER
) - cnt
) >= 0 ? -ETIME
: 0;
330 static void hpet_legacy_set_mode(enum clock_event_mode mode
,
331 struct clock_event_device
*evt
)
333 hpet_set_mode(mode
, evt
, 0);
336 static int hpet_legacy_next_event(unsigned long delta
,
337 struct clock_event_device
*evt
)
339 return hpet_next_event(delta
, evt
, 0);
345 #ifdef CONFIG_PCI_MSI
347 static DEFINE_PER_CPU(struct hpet_dev
*, cpu_hpet_dev
);
348 static struct hpet_dev
*hpet_devs
;
350 void hpet_msi_unmask(unsigned int irq
)
352 struct hpet_dev
*hdev
= get_irq_data(irq
);
356 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
358 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
361 void hpet_msi_mask(unsigned int irq
)
364 struct hpet_dev
*hdev
= get_irq_data(irq
);
367 cfg
= hpet_readl(HPET_Tn_CFG(hdev
->num
));
369 hpet_writel(cfg
, HPET_Tn_CFG(hdev
->num
));
372 void hpet_msi_write(unsigned int irq
, struct msi_msg
*msg
)
374 struct hpet_dev
*hdev
= get_irq_data(irq
);
376 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hdev
->num
));
377 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hdev
->num
) + 4);
380 void hpet_msi_read(unsigned int irq
, struct msi_msg
*msg
)
382 struct hpet_dev
*hdev
= get_irq_data(irq
);
384 msg
->data
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
));
385 msg
->address_lo
= hpet_readl(HPET_Tn_ROUTE(hdev
->num
) + 4);
389 static void hpet_msi_set_mode(enum clock_event_mode mode
,
390 struct clock_event_device
*evt
)
392 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
393 hpet_set_mode(mode
, evt
, hdev
->num
);
396 static int hpet_msi_next_event(unsigned long delta
,
397 struct clock_event_device
*evt
)
399 struct hpet_dev
*hdev
= EVT_TO_HPET_DEV(evt
);
400 return hpet_next_event(delta
, evt
, hdev
->num
);
403 static int hpet_setup_msi_irq(unsigned int irq
)
405 if (arch_setup_hpet_msi(irq
)) {
412 static int hpet_assign_irq(struct hpet_dev
*dev
)
420 set_irq_data(irq
, dev
);
422 if (hpet_setup_msi_irq(irq
))
429 static irqreturn_t
hpet_interrupt_handler(int irq
, void *data
)
431 struct hpet_dev
*dev
= (struct hpet_dev
*)data
;
432 struct clock_event_device
*hevt
= &dev
->evt
;
434 if (!hevt
->event_handler
) {
435 printk(KERN_INFO
"Spurious HPET timer interrupt on HPET timer %d\n",
440 hevt
->event_handler(hevt
);
444 static int hpet_setup_irq(struct hpet_dev
*dev
)
447 if (request_irq(dev
->irq
, hpet_interrupt_handler
,
448 IRQF_DISABLED
|IRQF_NOBALANCING
, dev
->name
, dev
))
451 disable_irq(dev
->irq
);
452 irq_set_affinity(dev
->irq
, cpumask_of_cpu(dev
->cpu
));
453 enable_irq(dev
->irq
);
455 printk(KERN_DEBUG
"hpet: %s irq %d for MSI\n",
456 dev
->name
, dev
->irq
);
461 /* This should be called in specific @cpu */
462 static void init_one_hpet_msi_clockevent(struct hpet_dev
*hdev
, int cpu
)
464 struct clock_event_device
*evt
= &hdev
->evt
;
467 WARN_ON(cpu
!= smp_processor_id());
468 if (!(hdev
->flags
& HPET_DEV_VALID
))
471 if (hpet_setup_msi_irq(hdev
->irq
))
475 per_cpu(cpu_hpet_dev
, cpu
) = hdev
;
476 evt
->name
= hdev
->name
;
477 hpet_setup_irq(hdev
);
478 evt
->irq
= hdev
->irq
;
481 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
482 if (hdev
->flags
& HPET_DEV_PERI_CAP
)
483 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
485 evt
->set_mode
= hpet_msi_set_mode
;
486 evt
->set_next_event
= hpet_msi_next_event
;
490 * The period is a femto seconds value. We need to calculate the
491 * scaled math multiplication factor for nanosecond to hpet tick
494 hpet_freq
= 1000000000000000ULL;
495 do_div(hpet_freq
, hpet_period
);
496 evt
->mult
= div_sc((unsigned long) hpet_freq
,
497 NSEC_PER_SEC
, evt
->shift
);
498 /* Calculate the max delta */
499 evt
->max_delta_ns
= clockevent_delta2ns(0x7FFFFFFF, evt
);
500 /* 5 usec minimum reprogramming delta. */
501 evt
->min_delta_ns
= 5000;
503 evt
->cpumask
= cpumask_of_cpu(hdev
->cpu
);
504 clockevents_register_device(evt
);
508 /* Reserve at least one timer for userspace (/dev/hpet) */
509 #define RESERVE_TIMERS 1
511 #define RESERVE_TIMERS 0
514 static void hpet_msi_capability_lookup(unsigned int start_timer
)
517 unsigned int num_timers
;
518 unsigned int num_timers_used
= 0;
521 id
= hpet_readl(HPET_ID
);
523 num_timers
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
);
524 num_timers
++; /* Value read out starts from 0 */
526 hpet_devs
= kzalloc(sizeof(struct hpet_dev
) * num_timers
, GFP_KERNEL
);
530 hpet_num_timers
= num_timers
;
532 for (i
= start_timer
; i
< num_timers
- RESERVE_TIMERS
; i
++) {
533 struct hpet_dev
*hdev
= &hpet_devs
[num_timers_used
];
534 unsigned long cfg
= hpet_readl(HPET_Tn_CFG(i
));
536 /* Only consider HPET timer with MSI support */
537 if (!(cfg
& HPET_TN_FSB_CAP
))
541 if (cfg
& HPET_TN_PERIODIC_CAP
)
542 hdev
->flags
|= HPET_DEV_PERI_CAP
;
545 sprintf(hdev
->name
, "hpet%d", i
);
546 if (hpet_assign_irq(hdev
))
549 hdev
->flags
|= HPET_DEV_FSB_CAP
;
550 hdev
->flags
|= HPET_DEV_VALID
;
552 if (num_timers_used
== num_possible_cpus())
556 printk(KERN_INFO
"HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
557 num_timers
, num_timers_used
);
561 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
568 for (i
= 0; i
< hpet_num_timers
; i
++) {
569 struct hpet_dev
*hdev
= &hpet_devs
[i
];
571 if (!(hdev
->flags
& HPET_DEV_VALID
))
574 hd
->hd_irq
[hdev
->num
] = hdev
->irq
;
575 hpet_reserve_timer(hd
, hdev
->num
);
580 static struct hpet_dev
*hpet_get_unused_timer(void)
587 for (i
= 0; i
< hpet_num_timers
; i
++) {
588 struct hpet_dev
*hdev
= &hpet_devs
[i
];
590 if (!(hdev
->flags
& HPET_DEV_VALID
))
592 if (test_and_set_bit(HPET_DEV_USED_BIT
,
593 (unsigned long *)&hdev
->flags
))
600 struct hpet_work_struct
{
601 struct delayed_work work
;
602 struct completion complete
;
605 static void hpet_work(struct work_struct
*w
)
607 struct hpet_dev
*hdev
;
608 int cpu
= smp_processor_id();
609 struct hpet_work_struct
*hpet_work
;
611 hpet_work
= container_of(w
, struct hpet_work_struct
, work
.work
);
613 hdev
= hpet_get_unused_timer();
615 init_one_hpet_msi_clockevent(hdev
, cpu
);
617 complete(&hpet_work
->complete
);
620 static int hpet_cpuhp_notify(struct notifier_block
*n
,
621 unsigned long action
, void *hcpu
)
623 unsigned long cpu
= (unsigned long)hcpu
;
624 struct hpet_work_struct work
;
625 struct hpet_dev
*hdev
= per_cpu(cpu_hpet_dev
, cpu
);
627 switch (action
& 0xf) {
629 INIT_DELAYED_WORK(&work
.work
, hpet_work
);
630 init_completion(&work
.complete
);
631 /* FIXME: add schedule_work_on() */
632 schedule_delayed_work_on(cpu
, &work
.work
, 0);
633 wait_for_completion(&work
.complete
);
637 free_irq(hdev
->irq
, hdev
);
638 hdev
->flags
&= ~HPET_DEV_USED
;
639 per_cpu(cpu_hpet_dev
, cpu
) = NULL
;
647 static int hpet_setup_msi_irq(unsigned int irq
)
651 static void hpet_msi_capability_lookup(unsigned int start_timer
)
657 static void hpet_reserve_msi_timers(struct hpet_data
*hd
)
663 static int hpet_cpuhp_notify(struct notifier_block
*n
,
664 unsigned long action
, void *hcpu
)
672 * Clock source related code
674 static cycle_t
read_hpet(void)
676 return (cycle_t
)hpet_readl(HPET_COUNTER
);
680 static cycle_t __vsyscall_fn
vread_hpet(void)
682 return readl((const void __iomem
*)fix_to_virt(VSYSCALL_HPET
) + 0xf0);
686 static struct clocksource clocksource_hpet
= {
692 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
693 .resume
= hpet_restart_counter
,
699 static int hpet_clocksource_register(void)
704 /* Start the counter */
705 hpet_start_counter();
707 /* Verify whether hpet counter works */
712 * We don't know the TSC frequency yet, but waiting for
713 * 200000 TSC cycles is safe:
720 } while ((now
- start
) < 200000UL);
722 if (t1
== read_hpet()) {
724 "HPET counter not counting. HPET disabled\n");
729 * The definition of mult is (include/linux/clocksource.h)
730 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
731 * so we first need to convert hpet_period to ns/cyc units:
732 * mult/2^shift = ns/cyc = hpet_period/10^6
733 * mult = (hpet_period * 2^shift)/10^6
734 * mult = (hpet_period << shift)/FSEC_PER_NSEC
736 clocksource_hpet
.mult
= div_sc(hpet_period
, FSEC_PER_NSEC
, HPET_SHIFT
);
738 clocksource_register(&clocksource_hpet
);
744 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
746 int __init
hpet_enable(void)
751 if (!is_hpet_capable())
757 * Read the period and check for a sane value:
759 hpet_period
= hpet_readl(HPET_PERIOD
);
762 * AMD SB700 based systems with spread spectrum enabled use a
763 * SMM based HPET emulation to provide proper frequency
764 * setting. The SMM code is initialized with the first HPET
765 * register access and takes some time to complete. During
766 * this time the config register reads 0xffffffff. We check
767 * for max. 1000 loops whether the config register reads a non
768 * 0xffffffff value to make sure that HPET is up and running
769 * before we go further. A counting loop is safe, as the HPET
770 * access takes thousands of CPU cycles. On non SB700 based
771 * machines this check is only done once and has no side
774 for (i
= 0; hpet_readl(HPET_CFG
) == 0xFFFFFFFF; i
++) {
777 "HPET config register value = 0xFFFFFFFF. "
783 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
787 * Read the HPET ID register to retrieve the IRQ routing
788 * information and the number of channels
790 id
= hpet_readl(HPET_ID
);
792 #ifdef CONFIG_HPET_EMULATE_RTC
794 * The legacy routing mode needs at least two channels, tick timer
795 * and the rtc emulation channel.
797 if (!(id
& HPET_ID_NUMBER
))
801 if (hpet_clocksource_register())
804 if (id
& HPET_ID_LEGSUP
) {
805 hpet_legacy_clockevent_register();
806 hpet_msi_capability_lookup(2);
809 hpet_msi_capability_lookup(0);
813 hpet_clear_mapping();
814 boot_hpet_disable
= 1;
819 * Needs to be late, as the reserve_timer code calls kalloc !
821 * Not a problem on i386 as hpet_enable is called from late_time_init,
822 * but on x86_64 it is necessary !
824 static __init
int hpet_late_init(void)
828 if (boot_hpet_disable
)
832 if (!force_hpet_address
)
835 hpet_address
= force_hpet_address
;
837 if (!hpet_virt_address
)
841 hpet_reserve_platform_timers(hpet_readl(HPET_ID
));
843 for_each_online_cpu(cpu
) {
844 hpet_cpuhp_notify(NULL
, CPU_ONLINE
, (void *)(long)cpu
);
847 /* This notifier should be called after workqueue is ready */
848 hotcpu_notifier(hpet_cpuhp_notify
, -20);
852 fs_initcall(hpet_late_init
);
854 void hpet_disable(void)
856 if (is_hpet_capable()) {
857 unsigned long cfg
= hpet_readl(HPET_CFG
);
859 if (hpet_legacy_int_enabled
) {
860 cfg
&= ~HPET_CFG_LEGACY
;
861 hpet_legacy_int_enabled
= 0;
863 cfg
&= ~HPET_CFG_ENABLE
;
864 hpet_writel(cfg
, HPET_CFG
);
868 #ifdef CONFIG_HPET_EMULATE_RTC
870 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
871 * is enabled, we support RTC interrupt functionality in software.
872 * RTC has 3 kinds of interrupts:
873 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
875 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
876 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
877 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
878 * (1) and (2) above are implemented using polling at a frequency of
879 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
880 * overhead. (DEFAULT_RTC_INT_FREQ)
881 * For (3), we use interrupts at 64Hz or user specified periodic
882 * frequency, whichever is higher.
884 #include <linux/mc146818rtc.h>
885 #include <linux/rtc.h>
888 #define DEFAULT_RTC_INT_FREQ 64
889 #define DEFAULT_RTC_SHIFT 6
890 #define RTC_NUM_INTS 1
892 static unsigned long hpet_rtc_flags
;
893 static int hpet_prev_update_sec
;
894 static struct rtc_time hpet_alarm_time
;
895 static unsigned long hpet_pie_count
;
896 static unsigned long hpet_t1_cmp
;
897 static unsigned long hpet_default_delta
;
898 static unsigned long hpet_pie_delta
;
899 static unsigned long hpet_pie_limit
;
901 static rtc_irq_handler irq_handler
;
904 * Registers a IRQ handler.
906 int hpet_register_irq_handler(rtc_irq_handler handler
)
908 if (!is_hpet_enabled())
913 irq_handler
= handler
;
917 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
920 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
923 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
925 if (!is_hpet_enabled())
931 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
934 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
935 * is not supported by all HPET implementations for timer 1.
937 * hpet_rtc_timer_init() is called when the rtc is initialized.
939 int hpet_rtc_timer_init(void)
941 unsigned long cfg
, cnt
, delta
, flags
;
943 if (!is_hpet_enabled())
946 if (!hpet_default_delta
) {
949 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
950 clc
>>= hpet_clockevent
.shift
+ DEFAULT_RTC_SHIFT
;
951 hpet_default_delta
= (unsigned long) clc
;
954 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
955 delta
= hpet_default_delta
;
957 delta
= hpet_pie_delta
;
959 local_irq_save(flags
);
961 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
962 hpet_writel(cnt
, HPET_T1_CMP
);
965 cfg
= hpet_readl(HPET_T1_CFG
);
966 cfg
&= ~HPET_TN_PERIODIC
;
967 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
968 hpet_writel(cfg
, HPET_T1_CFG
);
970 local_irq_restore(flags
);
974 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
977 * The functions below are called from rtc driver.
978 * Return 0 if HPET is not being used.
979 * Otherwise do the necessary changes and return 1.
981 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
983 if (!is_hpet_enabled())
986 hpet_rtc_flags
&= ~bit_mask
;
989 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
991 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
993 unsigned long oldbits
= hpet_rtc_flags
;
995 if (!is_hpet_enabled())
998 hpet_rtc_flags
|= bit_mask
;
1000 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1001 hpet_prev_update_sec
= -1;
1004 hpet_rtc_timer_init();
1008 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1010 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
,
1013 if (!is_hpet_enabled())
1016 hpet_alarm_time
.tm_hour
= hrs
;
1017 hpet_alarm_time
.tm_min
= min
;
1018 hpet_alarm_time
.tm_sec
= sec
;
1022 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1024 int hpet_set_periodic_freq(unsigned long freq
)
1028 if (!is_hpet_enabled())
1031 if (freq
<= DEFAULT_RTC_INT_FREQ
)
1032 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1034 clc
= (uint64_t) hpet_clockevent
.mult
* NSEC_PER_SEC
;
1036 clc
>>= hpet_clockevent
.shift
;
1037 hpet_pie_delta
= (unsigned long) clc
;
1041 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1043 int hpet_rtc_dropped_irq(void)
1045 return is_hpet_enabled();
1047 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1049 static void hpet_rtc_timer_reinit(void)
1051 unsigned long cfg
, delta
;
1054 if (unlikely(!hpet_rtc_flags
)) {
1055 cfg
= hpet_readl(HPET_T1_CFG
);
1056 cfg
&= ~HPET_TN_ENABLE
;
1057 hpet_writel(cfg
, HPET_T1_CFG
);
1061 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1062 delta
= hpet_default_delta
;
1064 delta
= hpet_pie_delta
;
1067 * Increment the comparator value until we are ahead of the
1071 hpet_t1_cmp
+= delta
;
1072 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1074 } while ((long)(hpet_readl(HPET_COUNTER
) - hpet_t1_cmp
) > 0);
1077 if (hpet_rtc_flags
& RTC_PIE
)
1078 hpet_pie_count
+= lost_ints
;
1079 if (printk_ratelimit())
1080 printk(KERN_WARNING
"hpet1: lost %d rtc interrupts\n",
1085 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1087 struct rtc_time curr_time
;
1088 unsigned long rtc_int_flag
= 0;
1090 hpet_rtc_timer_reinit();
1091 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1093 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
))
1094 get_rtc_time(&curr_time
);
1096 if (hpet_rtc_flags
& RTC_UIE
&&
1097 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1098 if (hpet_prev_update_sec
>= 0)
1099 rtc_int_flag
= RTC_UF
;
1100 hpet_prev_update_sec
= curr_time
.tm_sec
;
1103 if (hpet_rtc_flags
& RTC_PIE
&&
1104 ++hpet_pie_count
>= hpet_pie_limit
) {
1105 rtc_int_flag
|= RTC_PF
;
1109 if (hpet_rtc_flags
& RTC_AIE
&&
1110 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1111 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1112 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1113 rtc_int_flag
|= RTC_AF
;
1116 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1118 irq_handler(rtc_int_flag
, dev_id
);
1122 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);