2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
94 #include <net/net_namespace.h>
95 #include <net/protocol.h>
97 #include <net/route.h>
98 #include <net/inetpeer.h>
100 #include <net/ip_fib.h>
103 #include <net/icmp.h>
104 #include <net/xfrm.h>
105 #include <net/netevent.h>
106 #include <net/rtnetlink.h>
108 #include <linux/sysctl.h>
111 #define RT_FL_TOS(oldflp) \
112 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
114 #define IP_MAX_MTU 0xFFF0
116 #define RT_GC_TIMEOUT (300*HZ)
118 static int ip_rt_max_size
;
119 static int ip_rt_gc_timeout __read_mostly
= RT_GC_TIMEOUT
;
120 static int ip_rt_gc_interval __read_mostly
= 60 * HZ
;
121 static int ip_rt_gc_min_interval __read_mostly
= HZ
/ 2;
122 static int ip_rt_redirect_number __read_mostly
= 9;
123 static int ip_rt_redirect_load __read_mostly
= HZ
/ 50;
124 static int ip_rt_redirect_silence __read_mostly
= ((HZ
/ 50) << (9 + 1));
125 static int ip_rt_error_cost __read_mostly
= HZ
;
126 static int ip_rt_error_burst __read_mostly
= 5 * HZ
;
127 static int ip_rt_gc_elasticity __read_mostly
= 8;
128 static int ip_rt_mtu_expires __read_mostly
= 10 * 60 * HZ
;
129 static int ip_rt_min_pmtu __read_mostly
= 512 + 20 + 20;
130 static int ip_rt_min_advmss __read_mostly
= 256;
131 static int ip_rt_secret_interval __read_mostly
= 10 * 60 * HZ
;
132 static int rt_chain_length_max __read_mostly
= 20;
134 static void rt_worker_func(struct work_struct
*work
);
135 static DECLARE_DELAYED_WORK(expires_work
, rt_worker_func
);
138 * Interface to generic destination cache.
141 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
142 static void ipv4_dst_destroy(struct dst_entry
*dst
);
143 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
144 struct net_device
*dev
, int how
);
145 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
146 static void ipv4_link_failure(struct sk_buff
*skb
);
147 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
148 static int rt_garbage_collect(struct dst_ops
*ops
);
149 static void rt_emergency_hash_rebuild(struct net
*net
);
152 static struct dst_ops ipv4_dst_ops
= {
154 .protocol
= __constant_htons(ETH_P_IP
),
155 .gc
= rt_garbage_collect
,
156 .check
= ipv4_dst_check
,
157 .destroy
= ipv4_dst_destroy
,
158 .ifdown
= ipv4_dst_ifdown
,
159 .negative_advice
= ipv4_negative_advice
,
160 .link_failure
= ipv4_link_failure
,
161 .update_pmtu
= ip_rt_update_pmtu
,
162 .local_out
= __ip_local_out
,
163 .entries
= ATOMIC_INIT(0),
166 #define ECN_OR_COST(class) TC_PRIO_##class
168 const __u8 ip_tos2prio
[16] = {
172 ECN_OR_COST(BESTEFFORT
),
178 ECN_OR_COST(INTERACTIVE
),
180 ECN_OR_COST(INTERACTIVE
),
181 TC_PRIO_INTERACTIVE_BULK
,
182 ECN_OR_COST(INTERACTIVE_BULK
),
183 TC_PRIO_INTERACTIVE_BULK
,
184 ECN_OR_COST(INTERACTIVE_BULK
)
192 /* The locking scheme is rather straight forward:
194 * 1) Read-Copy Update protects the buckets of the central route hash.
195 * 2) Only writers remove entries, and they hold the lock
196 * as they look at rtable reference counts.
197 * 3) Only readers acquire references to rtable entries,
198 * they do so with atomic increments and with the
202 struct rt_hash_bucket
{
203 struct rtable
*chain
;
206 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
207 defined(CONFIG_PROVE_LOCKING)
209 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
210 * The size of this table is a power of two and depends on the number of CPUS.
211 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
213 #ifdef CONFIG_LOCKDEP
214 # define RT_HASH_LOCK_SZ 256
217 # define RT_HASH_LOCK_SZ 4096
219 # define RT_HASH_LOCK_SZ 2048
221 # define RT_HASH_LOCK_SZ 1024
223 # define RT_HASH_LOCK_SZ 512
225 # define RT_HASH_LOCK_SZ 256
229 static spinlock_t
*rt_hash_locks
;
230 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
232 static __init
void rt_hash_lock_init(void)
236 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
239 panic("IP: failed to allocate rt_hash_locks\n");
241 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
242 spin_lock_init(&rt_hash_locks
[i
]);
245 # define rt_hash_lock_addr(slot) NULL
247 static inline void rt_hash_lock_init(void)
252 static struct rt_hash_bucket
*rt_hash_table __read_mostly
;
253 static unsigned rt_hash_mask __read_mostly
;
254 static unsigned int rt_hash_log __read_mostly
;
256 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
257 #define RT_CACHE_STAT_INC(field) \
258 (__raw_get_cpu_var(rt_cache_stat).field++)
260 static inline unsigned int rt_hash(__be32 daddr
, __be32 saddr
, int idx
,
263 return jhash_3words((__force u32
)(__be32
)(daddr
),
264 (__force u32
)(__be32
)(saddr
),
269 static inline int rt_genid(struct net
*net
)
271 return atomic_read(&net
->ipv4
.rt_genid
);
274 #ifdef CONFIG_PROC_FS
275 struct rt_cache_iter_state
{
276 struct seq_net_private p
;
281 static struct rtable
*rt_cache_get_first(struct seq_file
*seq
)
283 struct rt_cache_iter_state
*st
= seq
->private;
284 struct rtable
*r
= NULL
;
286 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
287 if (!rt_hash_table
[st
->bucket
].chain
)
290 r
= rcu_dereference(rt_hash_table
[st
->bucket
].chain
);
292 if (dev_net(r
->u
.dst
.dev
) == seq_file_net(seq
) &&
293 r
->rt_genid
== st
->genid
)
295 r
= rcu_dereference(r
->u
.dst
.rt_next
);
297 rcu_read_unlock_bh();
302 static struct rtable
*__rt_cache_get_next(struct seq_file
*seq
,
305 struct rt_cache_iter_state
*st
= seq
->private;
307 r
= r
->u
.dst
.rt_next
;
309 rcu_read_unlock_bh();
311 if (--st
->bucket
< 0)
313 } while (!rt_hash_table
[st
->bucket
].chain
);
315 r
= rt_hash_table
[st
->bucket
].chain
;
317 return rcu_dereference(r
);
320 static struct rtable
*rt_cache_get_next(struct seq_file
*seq
,
323 struct rt_cache_iter_state
*st
= seq
->private;
324 while ((r
= __rt_cache_get_next(seq
, r
)) != NULL
) {
325 if (dev_net(r
->u
.dst
.dev
) != seq_file_net(seq
))
327 if (r
->rt_genid
== st
->genid
)
333 static struct rtable
*rt_cache_get_idx(struct seq_file
*seq
, loff_t pos
)
335 struct rtable
*r
= rt_cache_get_first(seq
);
338 while (pos
&& (r
= rt_cache_get_next(seq
, r
)))
340 return pos
? NULL
: r
;
343 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
345 struct rt_cache_iter_state
*st
= seq
->private;
347 return rt_cache_get_idx(seq
, *pos
- 1);
348 st
->genid
= rt_genid(seq_file_net(seq
));
349 return SEQ_START_TOKEN
;
352 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
356 if (v
== SEQ_START_TOKEN
)
357 r
= rt_cache_get_first(seq
);
359 r
= rt_cache_get_next(seq
, v
);
364 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
366 if (v
&& v
!= SEQ_START_TOKEN
)
367 rcu_read_unlock_bh();
370 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
372 if (v
== SEQ_START_TOKEN
)
373 seq_printf(seq
, "%-127s\n",
374 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
375 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
378 struct rtable
*r
= v
;
381 seq_printf(seq
, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
382 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
383 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
384 (unsigned long)r
->rt_dst
, (unsigned long)r
->rt_gateway
,
385 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
386 r
->u
.dst
.__use
, 0, (unsigned long)r
->rt_src
,
387 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
388 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
389 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
390 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
391 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
393 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
394 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
396 r
->rt_spec_dst
, &len
);
398 seq_printf(seq
, "%*s\n", 127 - len
, "");
403 static const struct seq_operations rt_cache_seq_ops
= {
404 .start
= rt_cache_seq_start
,
405 .next
= rt_cache_seq_next
,
406 .stop
= rt_cache_seq_stop
,
407 .show
= rt_cache_seq_show
,
410 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
412 return seq_open_net(inode
, file
, &rt_cache_seq_ops
,
413 sizeof(struct rt_cache_iter_state
));
416 static const struct file_operations rt_cache_seq_fops
= {
417 .owner
= THIS_MODULE
,
418 .open
= rt_cache_seq_open
,
421 .release
= seq_release_net
,
425 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
430 return SEQ_START_TOKEN
;
432 for (cpu
= *pos
-1; cpu
< NR_CPUS
; ++cpu
) {
433 if (!cpu_possible(cpu
))
436 return &per_cpu(rt_cache_stat
, cpu
);
441 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
445 for (cpu
= *pos
; cpu
< NR_CPUS
; ++cpu
) {
446 if (!cpu_possible(cpu
))
449 return &per_cpu(rt_cache_stat
, cpu
);
455 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
460 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
462 struct rt_cache_stat
*st
= v
;
464 if (v
== SEQ_START_TOKEN
) {
465 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
469 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
470 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
471 atomic_read(&ipv4_dst_ops
.entries
),
494 static const struct seq_operations rt_cpu_seq_ops
= {
495 .start
= rt_cpu_seq_start
,
496 .next
= rt_cpu_seq_next
,
497 .stop
= rt_cpu_seq_stop
,
498 .show
= rt_cpu_seq_show
,
502 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
504 return seq_open(file
, &rt_cpu_seq_ops
);
507 static const struct file_operations rt_cpu_seq_fops
= {
508 .owner
= THIS_MODULE
,
509 .open
= rt_cpu_seq_open
,
512 .release
= seq_release
,
515 #ifdef CONFIG_NET_CLS_ROUTE
516 static int ip_rt_acct_read(char *buffer
, char **start
, off_t offset
,
517 int length
, int *eof
, void *data
)
521 if ((offset
& 3) || (length
& 3))
524 if (offset
>= sizeof(struct ip_rt_acct
) * 256) {
529 if (offset
+ length
>= sizeof(struct ip_rt_acct
) * 256) {
530 length
= sizeof(struct ip_rt_acct
) * 256 - offset
;
534 offset
/= sizeof(u32
);
537 u32
*dst
= (u32
*) buffer
;
540 memset(dst
, 0, length
);
542 for_each_possible_cpu(i
) {
546 src
= ((u32
*) per_cpu_ptr(ip_rt_acct
, i
)) + offset
;
547 for (j
= 0; j
< length
/4; j
++)
555 static int __net_init
ip_rt_do_proc_init(struct net
*net
)
557 struct proc_dir_entry
*pde
;
559 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
564 pde
= proc_create("rt_cache", S_IRUGO
,
565 net
->proc_net_stat
, &rt_cpu_seq_fops
);
569 #ifdef CONFIG_NET_CLS_ROUTE
570 pde
= create_proc_read_entry("rt_acct", 0, net
->proc_net
,
571 ip_rt_acct_read
, NULL
);
577 #ifdef CONFIG_NET_CLS_ROUTE
579 remove_proc_entry("rt_cache", net
->proc_net_stat
);
582 remove_proc_entry("rt_cache", net
->proc_net
);
587 static void __net_exit
ip_rt_do_proc_exit(struct net
*net
)
589 remove_proc_entry("rt_cache", net
->proc_net_stat
);
590 remove_proc_entry("rt_cache", net
->proc_net
);
591 remove_proc_entry("rt_acct", net
->proc_net
);
594 static struct pernet_operations ip_rt_proc_ops __net_initdata
= {
595 .init
= ip_rt_do_proc_init
,
596 .exit
= ip_rt_do_proc_exit
,
599 static int __init
ip_rt_proc_init(void)
601 return register_pernet_subsys(&ip_rt_proc_ops
);
605 static inline int ip_rt_proc_init(void)
609 #endif /* CONFIG_PROC_FS */
611 static inline void rt_free(struct rtable
*rt
)
613 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
616 static inline void rt_drop(struct rtable
*rt
)
619 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
622 static inline int rt_fast_clean(struct rtable
*rth
)
624 /* Kill broadcast/multicast entries very aggresively, if they
625 collide in hash table with more useful entries */
626 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
627 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
630 static inline int rt_valuable(struct rtable
*rth
)
632 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
636 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
641 if (atomic_read(&rth
->u
.dst
.__refcnt
))
645 if (rth
->u
.dst
.expires
&&
646 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
649 age
= jiffies
- rth
->u
.dst
.lastuse
;
651 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
652 (age
<= tmo2
&& rt_valuable(rth
)))
658 /* Bits of score are:
660 * 30: not quite useless
661 * 29..0: usage counter
663 static inline u32
rt_score(struct rtable
*rt
)
665 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
667 score
= ~score
& ~(3<<30);
673 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
679 static inline bool rt_caching(const struct net
*net
)
681 return net
->ipv4
.current_rt_cache_rebuild_count
<=
682 net
->ipv4
.sysctl_rt_cache_rebuild_count
;
685 static inline bool compare_hash_inputs(const struct flowi
*fl1
,
686 const struct flowi
*fl2
)
688 return (__force u32
)(((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
689 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
) |
690 (fl1
->iif
^ fl2
->iif
)) == 0);
693 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
695 return ((__force u32
)((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
696 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
)) |
697 (fl1
->mark
^ fl2
->mark
) |
698 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^
699 *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
700 (fl1
->oif
^ fl2
->oif
) |
701 (fl1
->iif
^ fl2
->iif
)) == 0;
704 static inline int compare_netns(struct rtable
*rt1
, struct rtable
*rt2
)
706 return dev_net(rt1
->u
.dst
.dev
) == dev_net(rt2
->u
.dst
.dev
);
709 static inline int rt_is_expired(struct rtable
*rth
)
711 return rth
->rt_genid
!= rt_genid(dev_net(rth
->u
.dst
.dev
));
715 * Perform a full scan of hash table and free all entries.
716 * Can be called by a softirq or a process.
717 * In the later case, we want to be reschedule if necessary
719 static void rt_do_flush(int process_context
)
722 struct rtable
*rth
, *next
;
723 struct rtable
* tail
;
725 for (i
= 0; i
<= rt_hash_mask
; i
++) {
726 if (process_context
&& need_resched())
728 rth
= rt_hash_table
[i
].chain
;
732 spin_lock_bh(rt_hash_lock_addr(i
));
735 struct rtable
** prev
, * p
;
737 rth
= rt_hash_table
[i
].chain
;
739 /* defer releasing the head of the list after spin_unlock */
740 for (tail
= rth
; tail
; tail
= tail
->u
.dst
.rt_next
)
741 if (!rt_is_expired(tail
))
744 rt_hash_table
[i
].chain
= tail
;
746 /* call rt_free on entries after the tail requiring flush */
747 prev
= &rt_hash_table
[i
].chain
;
748 for (p
= *prev
; p
; p
= next
) {
749 next
= p
->u
.dst
.rt_next
;
750 if (!rt_is_expired(p
)) {
751 prev
= &p
->u
.dst
.rt_next
;
759 rth
= rt_hash_table
[i
].chain
;
760 rt_hash_table
[i
].chain
= NULL
;
763 spin_unlock_bh(rt_hash_lock_addr(i
));
765 for (; rth
!= tail
; rth
= next
) {
766 next
= rth
->u
.dst
.rt_next
;
773 * While freeing expired entries, we compute average chain length
774 * and standard deviation, using fixed-point arithmetic.
775 * This to have an estimation of rt_chain_length_max
776 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
777 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
781 #define ONE (1UL << FRACT_BITS)
783 static void rt_check_expire(void)
785 static unsigned int rover
;
786 unsigned int i
= rover
, goal
;
787 struct rtable
*rth
, **rthp
;
788 unsigned long length
= 0, samples
= 0;
789 unsigned long sum
= 0, sum2
= 0;
792 mult
= ((u64
)ip_rt_gc_interval
) << rt_hash_log
;
793 if (ip_rt_gc_timeout
> 1)
794 do_div(mult
, ip_rt_gc_timeout
);
795 goal
= (unsigned int)mult
;
796 if (goal
> rt_hash_mask
)
797 goal
= rt_hash_mask
+ 1;
799 for (; goal
> 0; goal
--) {
800 unsigned long tmo
= ip_rt_gc_timeout
;
802 i
= (i
+ 1) & rt_hash_mask
;
803 rthp
= &rt_hash_table
[i
].chain
;
812 spin_lock_bh(rt_hash_lock_addr(i
));
813 while ((rth
= *rthp
) != NULL
) {
814 if (rt_is_expired(rth
)) {
815 *rthp
= rth
->u
.dst
.rt_next
;
819 if (rth
->u
.dst
.expires
) {
820 /* Entry is expired even if it is in use */
821 if (time_before_eq(jiffies
, rth
->u
.dst
.expires
)) {
823 rthp
= &rth
->u
.dst
.rt_next
;
825 * Only bump our length if the hash
826 * inputs on entries n and n+1 are not
827 * the same, we only count entries on
828 * a chain with equal hash inputs once
829 * so that entries for different QOS
830 * levels, and other non-hash input
831 * attributes don't unfairly skew
832 * the length computation
834 if ((*rthp
== NULL
) ||
835 !compare_hash_inputs(&(*rthp
)->fl
,
840 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
)) {
842 rthp
= &rth
->u
.dst
.rt_next
;
843 if ((*rthp
== NULL
) ||
844 !compare_hash_inputs(&(*rthp
)->fl
,
850 /* Cleanup aged off entries. */
851 *rthp
= rth
->u
.dst
.rt_next
;
854 spin_unlock_bh(rt_hash_lock_addr(i
));
856 sum2
+= length
*length
;
859 unsigned long avg
= sum
/ samples
;
860 unsigned long sd
= int_sqrt(sum2
/ samples
- avg
*avg
);
861 rt_chain_length_max
= max_t(unsigned long,
863 (avg
+ 4*sd
) >> FRACT_BITS
);
869 * rt_worker_func() is run in process context.
870 * we call rt_check_expire() to scan part of the hash table
872 static void rt_worker_func(struct work_struct
*work
)
875 schedule_delayed_work(&expires_work
, ip_rt_gc_interval
);
879 * Pertubation of rt_genid by a small quantity [1..256]
880 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
881 * many times (2^24) without giving recent rt_genid.
882 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
884 static void rt_cache_invalidate(struct net
*net
)
886 unsigned char shuffle
;
888 get_random_bytes(&shuffle
, sizeof(shuffle
));
889 atomic_add(shuffle
+ 1U, &net
->ipv4
.rt_genid
);
893 * delay < 0 : invalidate cache (fast : entries will be deleted later)
894 * delay >= 0 : invalidate & flush cache (can be long)
896 void rt_cache_flush(struct net
*net
, int delay
)
898 rt_cache_invalidate(net
);
900 rt_do_flush(!in_softirq());
904 * We change rt_genid and let gc do the cleanup
906 static void rt_secret_rebuild(unsigned long __net
)
908 struct net
*net
= (struct net
*)__net
;
909 rt_cache_invalidate(net
);
910 mod_timer(&net
->ipv4
.rt_secret_timer
, jiffies
+ ip_rt_secret_interval
);
913 static void rt_secret_rebuild_oneshot(struct net
*net
)
915 del_timer_sync(&net
->ipv4
.rt_secret_timer
);
916 rt_cache_invalidate(net
);
917 if (ip_rt_secret_interval
) {
918 net
->ipv4
.rt_secret_timer
.expires
+= ip_rt_secret_interval
;
919 add_timer(&net
->ipv4
.rt_secret_timer
);
923 static void rt_emergency_hash_rebuild(struct net
*net
)
925 if (net_ratelimit()) {
926 printk(KERN_WARNING
"Route hash chain too long!\n");
927 printk(KERN_WARNING
"Adjust your secret_interval!\n");
930 rt_secret_rebuild_oneshot(net
);
934 Short description of GC goals.
936 We want to build algorithm, which will keep routing cache
937 at some equilibrium point, when number of aged off entries
938 is kept approximately equal to newly generated ones.
940 Current expiration strength is variable "expire".
941 We try to adjust it dynamically, so that if networking
942 is idle expires is large enough to keep enough of warm entries,
943 and when load increases it reduces to limit cache size.
946 static int rt_garbage_collect(struct dst_ops
*ops
)
948 static unsigned long expire
= RT_GC_TIMEOUT
;
949 static unsigned long last_gc
;
951 static int equilibrium
;
952 struct rtable
*rth
, **rthp
;
953 unsigned long now
= jiffies
;
957 * Garbage collection is pretty expensive,
958 * do not make it too frequently.
961 RT_CACHE_STAT_INC(gc_total
);
963 if (now
- last_gc
< ip_rt_gc_min_interval
&&
964 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
965 RT_CACHE_STAT_INC(gc_ignored
);
969 /* Calculate number of entries, which we want to expire now. */
970 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
971 (ip_rt_gc_elasticity
<< rt_hash_log
);
973 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
974 equilibrium
= ipv4_dst_ops
.gc_thresh
;
975 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
977 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
978 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
981 /* We are in dangerous area. Try to reduce cache really
984 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
985 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
988 if (now
- last_gc
>= ip_rt_gc_min_interval
)
999 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
1000 unsigned long tmo
= expire
;
1002 k
= (k
+ 1) & rt_hash_mask
;
1003 rthp
= &rt_hash_table
[k
].chain
;
1004 spin_lock_bh(rt_hash_lock_addr(k
));
1005 while ((rth
= *rthp
) != NULL
) {
1006 if (!rt_is_expired(rth
) &&
1007 !rt_may_expire(rth
, tmo
, expire
)) {
1009 rthp
= &rth
->u
.dst
.rt_next
;
1012 *rthp
= rth
->u
.dst
.rt_next
;
1016 spin_unlock_bh(rt_hash_lock_addr(k
));
1025 /* Goal is not achieved. We stop process if:
1027 - if expire reduced to zero. Otherwise, expire is halfed.
1028 - if table is not full.
1029 - if we are called from interrupt.
1030 - jiffies check is just fallback/debug loop breaker.
1031 We will not spin here for long time in any case.
1034 RT_CACHE_STAT_INC(gc_goal_miss
);
1040 #if RT_CACHE_DEBUG >= 2
1041 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
1042 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
1045 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
1047 } while (!in_softirq() && time_before_eq(jiffies
, now
));
1049 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
1051 if (net_ratelimit())
1052 printk(KERN_WARNING
"dst cache overflow\n");
1053 RT_CACHE_STAT_INC(gc_dst_overflow
);
1057 expire
+= ip_rt_gc_min_interval
;
1058 if (expire
> ip_rt_gc_timeout
||
1059 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
1060 expire
= ip_rt_gc_timeout
;
1061 #if RT_CACHE_DEBUG >= 2
1062 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
1063 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
1068 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
, struct rtable
**rp
)
1070 struct rtable
*rth
, **rthp
;
1071 struct rtable
*rthi
;
1073 struct rtable
*cand
, **candp
;
1076 int attempts
= !in_softirq();
1080 min_score
= ~(u32
)0;
1085 if (!rt_caching(dev_net(rt
->u
.dst
.dev
))) {
1090 rthp
= &rt_hash_table
[hash
].chain
;
1093 spin_lock_bh(rt_hash_lock_addr(hash
));
1094 while ((rth
= *rthp
) != NULL
) {
1095 if (rt_is_expired(rth
)) {
1096 *rthp
= rth
->u
.dst
.rt_next
;
1100 if (compare_keys(&rth
->fl
, &rt
->fl
) && compare_netns(rth
, rt
)) {
1102 *rthp
= rth
->u
.dst
.rt_next
;
1104 * Since lookup is lockfree, the deletion
1105 * must be visible to another weakly ordered CPU before
1106 * the insertion at the start of the hash chain.
1108 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
1109 rt_hash_table
[hash
].chain
);
1111 * Since lookup is lockfree, the update writes
1112 * must be ordered for consistency on SMP.
1114 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
1116 dst_use(&rth
->u
.dst
, now
);
1117 spin_unlock_bh(rt_hash_lock_addr(hash
));
1124 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
1125 u32 score
= rt_score(rth
);
1127 if (score
<= min_score
) {
1136 rthp
= &rth
->u
.dst
.rt_next
;
1139 * check to see if the next entry in the chain
1140 * contains the same hash input values as rt. If it does
1141 * This is where we will insert into the list, instead of
1142 * at the head. This groups entries that differ by aspects not
1143 * relvant to the hash function together, which we use to adjust
1146 if (*rthp
&& compare_hash_inputs(&(*rthp
)->fl
, &rt
->fl
))
1151 /* ip_rt_gc_elasticity used to be average length of chain
1152 * length, when exceeded gc becomes really aggressive.
1154 * The second limit is less certain. At the moment it allows
1155 * only 2 entries per bucket. We will see.
1157 if (chain_length
> ip_rt_gc_elasticity
) {
1158 *candp
= cand
->u
.dst
.rt_next
;
1162 if (chain_length
> rt_chain_length_max
) {
1163 struct net
*net
= dev_net(rt
->u
.dst
.dev
);
1164 int num
= ++net
->ipv4
.current_rt_cache_rebuild_count
;
1165 if (!rt_caching(dev_net(rt
->u
.dst
.dev
))) {
1166 printk(KERN_WARNING
"%s: %d rebuilds is over limit, route caching disabled\n",
1167 rt
->u
.dst
.dev
->name
, num
);
1169 rt_emergency_hash_rebuild(dev_net(rt
->u
.dst
.dev
));
1173 /* Try to bind route to arp only if it is output
1174 route or unicast forwarding path.
1176 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1177 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1179 spin_unlock_bh(rt_hash_lock_addr(hash
));
1181 if (err
!= -ENOBUFS
) {
1186 /* Neighbour tables are full and nothing
1187 can be released. Try to shrink route cache,
1188 it is most likely it holds some neighbour records.
1190 if (attempts
-- > 0) {
1191 int saved_elasticity
= ip_rt_gc_elasticity
;
1192 int saved_int
= ip_rt_gc_min_interval
;
1193 ip_rt_gc_elasticity
= 1;
1194 ip_rt_gc_min_interval
= 0;
1195 rt_garbage_collect(&ipv4_dst_ops
);
1196 ip_rt_gc_min_interval
= saved_int
;
1197 ip_rt_gc_elasticity
= saved_elasticity
;
1201 if (net_ratelimit())
1202 printk(KERN_WARNING
"Neighbour table overflow.\n");
1209 rt
->u
.dst
.rt_next
= rthi
->u
.dst
.rt_next
;
1211 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
1213 #if RT_CACHE_DEBUG >= 2
1214 if (rt
->u
.dst
.rt_next
) {
1216 printk(KERN_DEBUG
"rt_cache @%02x: %pI4", hash
, &rt
->rt_dst
);
1217 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
1218 printk(" . %pI4", &trt
->rt_dst
);
1223 * Since lookup is lockfree, we must make sure
1224 * previous writes to rt are comitted to memory
1225 * before making rt visible to other CPUS.
1228 rcu_assign_pointer(rthi
->u
.dst
.rt_next
, rt
);
1230 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rt
);
1232 spin_unlock_bh(rt_hash_lock_addr(hash
));
1237 void rt_bind_peer(struct rtable
*rt
, int create
)
1239 static DEFINE_SPINLOCK(rt_peer_lock
);
1240 struct inet_peer
*peer
;
1242 peer
= inet_getpeer(rt
->rt_dst
, create
);
1244 spin_lock_bh(&rt_peer_lock
);
1245 if (rt
->peer
== NULL
) {
1249 spin_unlock_bh(&rt_peer_lock
);
1255 * Peer allocation may fail only in serious out-of-memory conditions. However
1256 * we still can generate some output.
1257 * Random ID selection looks a bit dangerous because we have no chances to
1258 * select ID being unique in a reasonable period of time.
1259 * But broken packet identifier may be better than no packet at all.
1261 static void ip_select_fb_ident(struct iphdr
*iph
)
1263 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1264 static u32 ip_fallback_id
;
1267 spin_lock_bh(&ip_fb_id_lock
);
1268 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1269 iph
->id
= htons(salt
& 0xFFFF);
1270 ip_fallback_id
= salt
;
1271 spin_unlock_bh(&ip_fb_id_lock
);
1274 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1276 struct rtable
*rt
= (struct rtable
*) dst
;
1279 if (rt
->peer
== NULL
)
1280 rt_bind_peer(rt
, 1);
1282 /* If peer is attached to destination, it is never detached,
1283 so that we need not to grab a lock to dereference it.
1286 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1290 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1291 __builtin_return_address(0));
1293 ip_select_fb_ident(iph
);
1296 static void rt_del(unsigned hash
, struct rtable
*rt
)
1298 struct rtable
**rthp
, *aux
;
1300 rthp
= &rt_hash_table
[hash
].chain
;
1301 spin_lock_bh(rt_hash_lock_addr(hash
));
1303 while ((aux
= *rthp
) != NULL
) {
1304 if (aux
== rt
|| rt_is_expired(aux
)) {
1305 *rthp
= aux
->u
.dst
.rt_next
;
1309 rthp
= &aux
->u
.dst
.rt_next
;
1311 spin_unlock_bh(rt_hash_lock_addr(hash
));
1314 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1315 __be32 saddr
, struct net_device
*dev
)
1318 struct in_device
*in_dev
= in_dev_get(dev
);
1319 struct rtable
*rth
, **rthp
;
1320 __be32 skeys
[2] = { saddr
, 0 };
1321 int ikeys
[2] = { dev
->ifindex
, 0 };
1322 struct netevent_redirect netevent
;
1329 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
)
1330 || ipv4_is_multicast(new_gw
) || ipv4_is_lbcast(new_gw
)
1331 || ipv4_is_zeronet(new_gw
))
1332 goto reject_redirect
;
1334 if (!rt_caching(net
))
1335 goto reject_redirect
;
1337 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1338 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1339 goto reject_redirect
;
1340 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1341 goto reject_redirect
;
1343 if (inet_addr_type(net
, new_gw
) != RTN_UNICAST
)
1344 goto reject_redirect
;
1347 for (i
= 0; i
< 2; i
++) {
1348 for (k
= 0; k
< 2; k
++) {
1349 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1352 rthp
=&rt_hash_table
[hash
].chain
;
1355 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1358 if (rth
->fl
.fl4_dst
!= daddr
||
1359 rth
->fl
.fl4_src
!= skeys
[i
] ||
1360 rth
->fl
.oif
!= ikeys
[k
] ||
1362 rt_is_expired(rth
) ||
1363 !net_eq(dev_net(rth
->u
.dst
.dev
), net
)) {
1364 rthp
= &rth
->u
.dst
.rt_next
;
1368 if (rth
->rt_dst
!= daddr
||
1369 rth
->rt_src
!= saddr
||
1371 rth
->rt_gateway
!= old_gw
||
1372 rth
->u
.dst
.dev
!= dev
)
1375 dst_hold(&rth
->u
.dst
);
1378 rt
= dst_alloc(&ipv4_dst_ops
);
1385 /* Copy all the information. */
1387 rt
->u
.dst
.__use
= 1;
1388 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1389 rt
->u
.dst
.child
= NULL
;
1391 dev_hold(rt
->u
.dst
.dev
);
1393 in_dev_hold(rt
->idev
);
1394 rt
->u
.dst
.obsolete
= 0;
1395 rt
->u
.dst
.lastuse
= jiffies
;
1396 rt
->u
.dst
.path
= &rt
->u
.dst
;
1397 rt
->u
.dst
.neighbour
= NULL
;
1398 rt
->u
.dst
.hh
= NULL
;
1400 rt
->u
.dst
.xfrm
= NULL
;
1402 rt
->rt_genid
= rt_genid(net
);
1403 rt
->rt_flags
|= RTCF_REDIRECTED
;
1405 /* Gateway is different ... */
1406 rt
->rt_gateway
= new_gw
;
1408 /* Redirect received -> path was valid */
1409 dst_confirm(&rth
->u
.dst
);
1412 atomic_inc(&rt
->peer
->refcnt
);
1414 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1415 !(rt
->u
.dst
.neighbour
->nud_state
&
1417 if (rt
->u
.dst
.neighbour
)
1418 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1424 netevent
.old
= &rth
->u
.dst
;
1425 netevent
.new = &rt
->u
.dst
;
1426 call_netevent_notifiers(NETEVENT_REDIRECT
,
1430 if (!rt_intern_hash(hash
, rt
, &rt
))
1443 #ifdef CONFIG_IP_ROUTE_VERBOSE
1444 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1445 printk(KERN_INFO
"Redirect from %pI4 on %s about %pI4 ignored.\n"
1446 " Advised path = %pI4 -> %pI4\n",
1447 &old_gw
, dev
->name
, &new_gw
,
1453 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1455 struct rtable
*rt
= (struct rtable
*)dst
;
1456 struct dst_entry
*ret
= dst
;
1459 if (dst
->obsolete
) {
1462 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1463 rt
->u
.dst
.expires
) {
1464 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1466 rt_genid(dev_net(dst
->dev
)));
1467 #if RT_CACHE_DEBUG >= 1
1468 printk(KERN_DEBUG
"ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1469 &rt
->rt_dst
, rt
->fl
.fl4_tos
);
1480 * 1. The first ip_rt_redirect_number redirects are sent
1481 * with exponential backoff, then we stop sending them at all,
1482 * assuming that the host ignores our redirects.
1483 * 2. If we did not see packets requiring redirects
1484 * during ip_rt_redirect_silence, we assume that the host
1485 * forgot redirected route and start to send redirects again.
1487 * This algorithm is much cheaper and more intelligent than dumb load limiting
1490 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1491 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1494 void ip_rt_send_redirect(struct sk_buff
*skb
)
1496 struct rtable
*rt
= skb
->rtable
;
1497 struct in_device
*in_dev
= in_dev_get(rt
->u
.dst
.dev
);
1502 if (!IN_DEV_TX_REDIRECTS(in_dev
))
1505 /* No redirected packets during ip_rt_redirect_silence;
1506 * reset the algorithm.
1508 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1509 rt
->u
.dst
.rate_tokens
= 0;
1511 /* Too many ignored redirects; do not send anything
1512 * set u.dst.rate_last to the last seen redirected packet.
1514 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1515 rt
->u
.dst
.rate_last
= jiffies
;
1519 /* Check for load limit; set rate_last to the latest sent
1522 if (rt
->u
.dst
.rate_tokens
== 0 ||
1524 (rt
->u
.dst
.rate_last
+
1525 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1526 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1527 rt
->u
.dst
.rate_last
= jiffies
;
1528 ++rt
->u
.dst
.rate_tokens
;
1529 #ifdef CONFIG_IP_ROUTE_VERBOSE
1530 if (IN_DEV_LOG_MARTIANS(in_dev
) &&
1531 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1533 printk(KERN_WARNING
"host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1534 &rt
->rt_src
, rt
->rt_iif
,
1535 &rt
->rt_dst
, &rt
->rt_gateway
);
1542 static int ip_error(struct sk_buff
*skb
)
1544 struct rtable
*rt
= skb
->rtable
;
1548 switch (rt
->u
.dst
.error
) {
1553 code
= ICMP_HOST_UNREACH
;
1556 code
= ICMP_NET_UNREACH
;
1557 IP_INC_STATS_BH(dev_net(rt
->u
.dst
.dev
),
1558 IPSTATS_MIB_INNOROUTES
);
1561 code
= ICMP_PKT_FILTERED
;
1566 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1567 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1568 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1569 rt
->u
.dst
.rate_last
= now
;
1570 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1571 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1572 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1575 out
: kfree_skb(skb
);
1580 * The last two values are not from the RFC but
1581 * are needed for AMPRnet AX.25 paths.
1584 static const unsigned short mtu_plateau
[] =
1585 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1587 static inline unsigned short guess_mtu(unsigned short old_mtu
)
1591 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1592 if (old_mtu
> mtu_plateau
[i
])
1593 return mtu_plateau
[i
];
1597 unsigned short ip_rt_frag_needed(struct net
*net
, struct iphdr
*iph
,
1598 unsigned short new_mtu
,
1599 struct net_device
*dev
)
1602 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1604 int ikeys
[2] = { dev
->ifindex
, 0 };
1605 __be32 skeys
[2] = { iph
->saddr
, 0, };
1606 __be32 daddr
= iph
->daddr
;
1607 unsigned short est_mtu
= 0;
1609 if (ipv4_config
.no_pmtu_disc
)
1612 for (k
= 0; k
< 2; k
++) {
1613 for (i
= 0; i
< 2; i
++) {
1614 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1618 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1619 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1620 unsigned short mtu
= new_mtu
;
1622 if (rth
->fl
.fl4_dst
!= daddr
||
1623 rth
->fl
.fl4_src
!= skeys
[i
] ||
1624 rth
->rt_dst
!= daddr
||
1625 rth
->rt_src
!= iph
->saddr
||
1626 rth
->fl
.oif
!= ikeys
[k
] ||
1628 dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
) ||
1629 !net_eq(dev_net(rth
->u
.dst
.dev
), net
) ||
1633 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1635 /* BSD 4.2 compatibility hack :-( */
1637 old_mtu
>= dst_mtu(&rth
->u
.dst
) &&
1638 old_mtu
>= 68 + (iph
->ihl
<< 2))
1639 old_mtu
-= iph
->ihl
<< 2;
1641 mtu
= guess_mtu(old_mtu
);
1643 if (mtu
<= dst_mtu(&rth
->u
.dst
)) {
1644 if (mtu
< dst_mtu(&rth
->u
.dst
)) {
1645 dst_confirm(&rth
->u
.dst
);
1646 if (mtu
< ip_rt_min_pmtu
) {
1647 mtu
= ip_rt_min_pmtu
;
1648 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1651 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1652 dst_set_expires(&rth
->u
.dst
,
1661 return est_mtu
? : new_mtu
;
1664 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1666 if (dst_mtu(dst
) > mtu
&& mtu
>= 68 &&
1667 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1668 if (mtu
< ip_rt_min_pmtu
) {
1669 mtu
= ip_rt_min_pmtu
;
1670 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1672 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1673 dst_set_expires(dst
, ip_rt_mtu_expires
);
1674 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1678 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1683 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1685 struct rtable
*rt
= (struct rtable
*) dst
;
1686 struct inet_peer
*peer
= rt
->peer
;
1687 struct in_device
*idev
= rt
->idev
;
1700 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1703 struct rtable
*rt
= (struct rtable
*) dst
;
1704 struct in_device
*idev
= rt
->idev
;
1705 if (dev
!= dev_net(dev
)->loopback_dev
&& idev
&& idev
->dev
== dev
) {
1706 struct in_device
*loopback_idev
=
1707 in_dev_get(dev_net(dev
)->loopback_dev
);
1708 if (loopback_idev
) {
1709 rt
->idev
= loopback_idev
;
1715 static void ipv4_link_failure(struct sk_buff
*skb
)
1719 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1723 dst_set_expires(&rt
->u
.dst
, 0);
1726 static int ip_rt_bug(struct sk_buff
*skb
)
1728 printk(KERN_DEBUG
"ip_rt_bug: %pI4 -> %pI4, %s\n",
1729 &ip_hdr(skb
)->saddr
, &ip_hdr(skb
)->daddr
,
1730 skb
->dev
? skb
->dev
->name
: "?");
1736 We do not cache source address of outgoing interface,
1737 because it is used only by IP RR, TS and SRR options,
1738 so that it out of fast path.
1740 BTW remember: "addr" is allowed to be not aligned
1744 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1747 struct fib_result res
;
1749 if (rt
->fl
.iif
== 0)
1751 else if (fib_lookup(dev_net(rt
->u
.dst
.dev
), &rt
->fl
, &res
) == 0) {
1752 src
= FIB_RES_PREFSRC(res
);
1755 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1757 memcpy(addr
, &src
, 4);
1760 #ifdef CONFIG_NET_CLS_ROUTE
1761 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1763 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1764 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1765 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1766 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1770 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1772 struct fib_info
*fi
= res
->fi
;
1775 if (FIB_RES_GW(*res
) &&
1776 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1777 rt
->rt_gateway
= FIB_RES_GW(*res
);
1778 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1779 sizeof(rt
->u
.dst
.metrics
));
1780 if (fi
->fib_mtu
== 0) {
1781 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1782 if (dst_metric_locked(&rt
->u
.dst
, RTAX_MTU
) &&
1783 rt
->rt_gateway
!= rt
->rt_dst
&&
1784 rt
->u
.dst
.dev
->mtu
> 576)
1785 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1787 #ifdef CONFIG_NET_CLS_ROUTE
1788 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1791 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1793 if (dst_metric(&rt
->u
.dst
, RTAX_HOPLIMIT
) == 0)
1794 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1795 if (dst_mtu(&rt
->u
.dst
) > IP_MAX_MTU
)
1796 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1797 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) == 0)
1798 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1800 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) > 65535 - 40)
1801 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1803 #ifdef CONFIG_NET_CLS_ROUTE
1804 #ifdef CONFIG_IP_MULTIPLE_TABLES
1805 set_class_tag(rt
, fib_rules_tclass(res
));
1807 set_class_tag(rt
, itag
);
1809 rt
->rt_type
= res
->type
;
1812 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1813 u8 tos
, struct net_device
*dev
, int our
)
1818 struct in_device
*in_dev
= in_dev_get(dev
);
1821 /* Primary sanity checks. */
1826 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1827 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1830 if (ipv4_is_zeronet(saddr
)) {
1831 if (!ipv4_is_local_multicast(daddr
))
1833 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1834 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1835 dev
, &spec_dst
, &itag
) < 0)
1838 rth
= dst_alloc(&ipv4_dst_ops
);
1842 rth
->u
.dst
.output
= ip_rt_bug
;
1844 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1845 rth
->u
.dst
.flags
= DST_HOST
;
1846 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1847 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1848 rth
->fl
.fl4_dst
= daddr
;
1849 rth
->rt_dst
= daddr
;
1850 rth
->fl
.fl4_tos
= tos
;
1851 rth
->fl
.mark
= skb
->mark
;
1852 rth
->fl
.fl4_src
= saddr
;
1853 rth
->rt_src
= saddr
;
1854 #ifdef CONFIG_NET_CLS_ROUTE
1855 rth
->u
.dst
.tclassid
= itag
;
1858 rth
->fl
.iif
= dev
->ifindex
;
1859 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1860 dev_hold(rth
->u
.dst
.dev
);
1861 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1863 rth
->rt_gateway
= daddr
;
1864 rth
->rt_spec_dst
= spec_dst
;
1865 rth
->rt_genid
= rt_genid(dev_net(dev
));
1866 rth
->rt_flags
= RTCF_MULTICAST
;
1867 rth
->rt_type
= RTN_MULTICAST
;
1869 rth
->u
.dst
.input
= ip_local_deliver
;
1870 rth
->rt_flags
|= RTCF_LOCAL
;
1873 #ifdef CONFIG_IP_MROUTE
1874 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1875 rth
->u
.dst
.input
= ip_mr_input
;
1877 RT_CACHE_STAT_INC(in_slow_mc
);
1880 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
, rt_genid(dev_net(dev
)));
1881 return rt_intern_hash(hash
, rth
, &skb
->rtable
);
1893 static void ip_handle_martian_source(struct net_device
*dev
,
1894 struct in_device
*in_dev
,
1895 struct sk_buff
*skb
,
1899 RT_CACHE_STAT_INC(in_martian_src
);
1900 #ifdef CONFIG_IP_ROUTE_VERBOSE
1901 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1903 * RFC1812 recommendation, if source is martian,
1904 * the only hint is MAC header.
1906 printk(KERN_WARNING
"martian source %pI4 from %pI4, on dev %s\n",
1907 &daddr
, &saddr
, dev
->name
);
1908 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1910 const unsigned char *p
= skb_mac_header(skb
);
1911 printk(KERN_WARNING
"ll header: ");
1912 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1914 if (i
< (dev
->hard_header_len
- 1))
1923 static int __mkroute_input(struct sk_buff
*skb
,
1924 struct fib_result
*res
,
1925 struct in_device
*in_dev
,
1926 __be32 daddr
, __be32 saddr
, u32 tos
,
1927 struct rtable
**result
)
1932 struct in_device
*out_dev
;
1937 /* get a working reference to the output device */
1938 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1939 if (out_dev
== NULL
) {
1940 if (net_ratelimit())
1941 printk(KERN_CRIT
"Bug in ip_route_input" \
1942 "_slow(). Please, report\n");
1947 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1948 in_dev
->dev
, &spec_dst
, &itag
);
1950 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1958 flags
|= RTCF_DIRECTSRC
;
1960 if (out_dev
== in_dev
&& err
&&
1961 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1962 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1963 flags
|= RTCF_DOREDIRECT
;
1965 if (skb
->protocol
!= htons(ETH_P_IP
)) {
1966 /* Not IP (i.e. ARP). Do not create route, if it is
1967 * invalid for proxy arp. DNAT routes are always valid.
1969 if (out_dev
== in_dev
) {
1976 rth
= dst_alloc(&ipv4_dst_ops
);
1982 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1983 rth
->u
.dst
.flags
= DST_HOST
;
1984 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1985 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1986 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
1987 rth
->u
.dst
.flags
|= DST_NOXFRM
;
1988 rth
->fl
.fl4_dst
= daddr
;
1989 rth
->rt_dst
= daddr
;
1990 rth
->fl
.fl4_tos
= tos
;
1991 rth
->fl
.mark
= skb
->mark
;
1992 rth
->fl
.fl4_src
= saddr
;
1993 rth
->rt_src
= saddr
;
1994 rth
->rt_gateway
= daddr
;
1996 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
1997 rth
->u
.dst
.dev
= (out_dev
)->dev
;
1998 dev_hold(rth
->u
.dst
.dev
);
1999 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2001 rth
->rt_spec_dst
= spec_dst
;
2003 rth
->u
.dst
.input
= ip_forward
;
2004 rth
->u
.dst
.output
= ip_output
;
2005 rth
->rt_genid
= rt_genid(dev_net(rth
->u
.dst
.dev
));
2007 rt_set_nexthop(rth
, res
, itag
);
2009 rth
->rt_flags
= flags
;
2014 /* release the working reference to the output device */
2015 in_dev_put(out_dev
);
2019 static int ip_mkroute_input(struct sk_buff
*skb
,
2020 struct fib_result
*res
,
2021 const struct flowi
*fl
,
2022 struct in_device
*in_dev
,
2023 __be32 daddr
, __be32 saddr
, u32 tos
)
2025 struct rtable
* rth
= NULL
;
2029 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2030 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
2031 fib_select_multipath(fl
, res
);
2034 /* create a routing cache entry */
2035 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
2039 /* put it into the cache */
2040 hash
= rt_hash(daddr
, saddr
, fl
->iif
,
2041 rt_genid(dev_net(rth
->u
.dst
.dev
)));
2042 return rt_intern_hash(hash
, rth
, &skb
->rtable
);
2046 * NOTE. We drop all the packets that has local source
2047 * addresses, because every properly looped back packet
2048 * must have correct destination already attached by output routine.
2050 * Such approach solves two big problems:
2051 * 1. Not simplex devices are handled properly.
2052 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2055 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2056 u8 tos
, struct net_device
*dev
)
2058 struct fib_result res
;
2059 struct in_device
*in_dev
= in_dev_get(dev
);
2060 struct flowi fl
= { .nl_u
= { .ip4_u
=
2064 .scope
= RT_SCOPE_UNIVERSE
,
2067 .iif
= dev
->ifindex
};
2070 struct rtable
* rth
;
2075 struct net
* net
= dev_net(dev
);
2077 /* IP on this device is disabled. */
2082 /* Check for the most weird martians, which can be not detected
2086 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
2087 ipv4_is_loopback(saddr
))
2088 goto martian_source
;
2090 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
2093 /* Accept zero addresses only to limited broadcast;
2094 * I even do not know to fix it or not. Waiting for complains :-)
2096 if (ipv4_is_zeronet(saddr
))
2097 goto martian_source
;
2099 if (ipv4_is_lbcast(daddr
) || ipv4_is_zeronet(daddr
) ||
2100 ipv4_is_loopback(daddr
))
2101 goto martian_destination
;
2104 * Now we are ready to route packet.
2106 if ((err
= fib_lookup(net
, &fl
, &res
)) != 0) {
2107 if (!IN_DEV_FORWARD(in_dev
))
2113 RT_CACHE_STAT_INC(in_slow_tot
);
2115 if (res
.type
== RTN_BROADCAST
)
2118 if (res
.type
== RTN_LOCAL
) {
2120 result
= fib_validate_source(saddr
, daddr
, tos
,
2121 net
->loopback_dev
->ifindex
,
2122 dev
, &spec_dst
, &itag
);
2124 goto martian_source
;
2126 flags
|= RTCF_DIRECTSRC
;
2131 if (!IN_DEV_FORWARD(in_dev
))
2133 if (res
.type
!= RTN_UNICAST
)
2134 goto martian_destination
;
2136 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
2144 if (skb
->protocol
!= htons(ETH_P_IP
))
2147 if (ipv4_is_zeronet(saddr
))
2148 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
2150 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
2153 goto martian_source
;
2155 flags
|= RTCF_DIRECTSRC
;
2157 flags
|= RTCF_BROADCAST
;
2158 res
.type
= RTN_BROADCAST
;
2159 RT_CACHE_STAT_INC(in_brd
);
2162 rth
= dst_alloc(&ipv4_dst_ops
);
2166 rth
->u
.dst
.output
= ip_rt_bug
;
2167 rth
->rt_genid
= rt_genid(net
);
2169 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2170 rth
->u
.dst
.flags
= DST_HOST
;
2171 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2172 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2173 rth
->fl
.fl4_dst
= daddr
;
2174 rth
->rt_dst
= daddr
;
2175 rth
->fl
.fl4_tos
= tos
;
2176 rth
->fl
.mark
= skb
->mark
;
2177 rth
->fl
.fl4_src
= saddr
;
2178 rth
->rt_src
= saddr
;
2179 #ifdef CONFIG_NET_CLS_ROUTE
2180 rth
->u
.dst
.tclassid
= itag
;
2183 rth
->fl
.iif
= dev
->ifindex
;
2184 rth
->u
.dst
.dev
= net
->loopback_dev
;
2185 dev_hold(rth
->u
.dst
.dev
);
2186 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2187 rth
->rt_gateway
= daddr
;
2188 rth
->rt_spec_dst
= spec_dst
;
2189 rth
->u
.dst
.input
= ip_local_deliver
;
2190 rth
->rt_flags
= flags
|RTCF_LOCAL
;
2191 if (res
.type
== RTN_UNREACHABLE
) {
2192 rth
->u
.dst
.input
= ip_error
;
2193 rth
->u
.dst
.error
= -err
;
2194 rth
->rt_flags
&= ~RTCF_LOCAL
;
2196 rth
->rt_type
= res
.type
;
2197 hash
= rt_hash(daddr
, saddr
, fl
.iif
, rt_genid(net
));
2198 err
= rt_intern_hash(hash
, rth
, &skb
->rtable
);
2202 RT_CACHE_STAT_INC(in_no_route
);
2203 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2204 res
.type
= RTN_UNREACHABLE
;
2210 * Do not cache martian addresses: they should be logged (RFC1812)
2212 martian_destination
:
2213 RT_CACHE_STAT_INC(in_martian_dst
);
2214 #ifdef CONFIG_IP_ROUTE_VERBOSE
2215 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2216 printk(KERN_WARNING
"martian destination %pI4 from %pI4, dev %s\n",
2217 &daddr
, &saddr
, dev
->name
);
2221 err
= -EHOSTUNREACH
;
2233 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2237 int ip_route_input(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2238 u8 tos
, struct net_device
*dev
)
2240 struct rtable
* rth
;
2242 int iif
= dev
->ifindex
;
2247 if (!rt_caching(net
))
2250 tos
&= IPTOS_RT_MASK
;
2251 hash
= rt_hash(daddr
, saddr
, iif
, rt_genid(net
));
2254 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2255 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2256 if (((rth
->fl
.fl4_dst
^ daddr
) |
2257 (rth
->fl
.fl4_src
^ saddr
) |
2258 (rth
->fl
.iif
^ iif
) |
2260 (rth
->fl
.fl4_tos
^ tos
)) == 0 &&
2261 rth
->fl
.mark
== skb
->mark
&&
2262 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2263 !rt_is_expired(rth
)) {
2264 dst_use(&rth
->u
.dst
, jiffies
);
2265 RT_CACHE_STAT_INC(in_hit
);
2270 RT_CACHE_STAT_INC(in_hlist_search
);
2275 /* Multicast recognition logic is moved from route cache to here.
2276 The problem was that too many Ethernet cards have broken/missing
2277 hardware multicast filters :-( As result the host on multicasting
2278 network acquires a lot of useless route cache entries, sort of
2279 SDR messages from all the world. Now we try to get rid of them.
2280 Really, provided software IP multicast filter is organized
2281 reasonably (at least, hashed), it does not result in a slowdown
2282 comparing with route cache reject entries.
2283 Note, that multicast routers are not affected, because
2284 route cache entry is created eventually.
2286 if (ipv4_is_multicast(daddr
)) {
2287 struct in_device
*in_dev
;
2290 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
2291 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
2292 ip_hdr(skb
)->protocol
);
2294 #ifdef CONFIG_IP_MROUTE
2295 || (!ipv4_is_local_multicast(daddr
) &&
2296 IN_DEV_MFORWARD(in_dev
))
2300 return ip_route_input_mc(skb
, daddr
, saddr
,
2307 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2310 static int __mkroute_output(struct rtable
**result
,
2311 struct fib_result
*res
,
2312 const struct flowi
*fl
,
2313 const struct flowi
*oldflp
,
2314 struct net_device
*dev_out
,
2318 struct in_device
*in_dev
;
2319 u32 tos
= RT_FL_TOS(oldflp
);
2322 if (ipv4_is_loopback(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2325 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2326 res
->type
= RTN_BROADCAST
;
2327 else if (ipv4_is_multicast(fl
->fl4_dst
))
2328 res
->type
= RTN_MULTICAST
;
2329 else if (ipv4_is_lbcast(fl
->fl4_dst
) || ipv4_is_zeronet(fl
->fl4_dst
))
2332 if (dev_out
->flags
& IFF_LOOPBACK
)
2333 flags
|= RTCF_LOCAL
;
2335 /* get work reference to inet device */
2336 in_dev
= in_dev_get(dev_out
);
2340 if (res
->type
== RTN_BROADCAST
) {
2341 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2343 fib_info_put(res
->fi
);
2346 } else if (res
->type
== RTN_MULTICAST
) {
2347 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2348 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2350 flags
&= ~RTCF_LOCAL
;
2351 /* If multicast route do not exist use
2352 default one, but do not gateway in this case.
2355 if (res
->fi
&& res
->prefixlen
< 4) {
2356 fib_info_put(res
->fi
);
2362 rth
= dst_alloc(&ipv4_dst_ops
);
2368 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2369 rth
->u
.dst
.flags
= DST_HOST
;
2370 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2371 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2372 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2373 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2375 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2376 rth
->fl
.fl4_tos
= tos
;
2377 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2378 rth
->fl
.oif
= oldflp
->oif
;
2379 rth
->fl
.mark
= oldflp
->mark
;
2380 rth
->rt_dst
= fl
->fl4_dst
;
2381 rth
->rt_src
= fl
->fl4_src
;
2382 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2383 /* get references to the devices that are to be hold by the routing
2385 rth
->u
.dst
.dev
= dev_out
;
2387 rth
->idev
= in_dev_get(dev_out
);
2388 rth
->rt_gateway
= fl
->fl4_dst
;
2389 rth
->rt_spec_dst
= fl
->fl4_src
;
2391 rth
->u
.dst
.output
=ip_output
;
2392 rth
->rt_genid
= rt_genid(dev_net(dev_out
));
2394 RT_CACHE_STAT_INC(out_slow_tot
);
2396 if (flags
& RTCF_LOCAL
) {
2397 rth
->u
.dst
.input
= ip_local_deliver
;
2398 rth
->rt_spec_dst
= fl
->fl4_dst
;
2400 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2401 rth
->rt_spec_dst
= fl
->fl4_src
;
2402 if (flags
& RTCF_LOCAL
&&
2403 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2404 rth
->u
.dst
.output
= ip_mc_output
;
2405 RT_CACHE_STAT_INC(out_slow_mc
);
2407 #ifdef CONFIG_IP_MROUTE
2408 if (res
->type
== RTN_MULTICAST
) {
2409 if (IN_DEV_MFORWARD(in_dev
) &&
2410 !ipv4_is_local_multicast(oldflp
->fl4_dst
)) {
2411 rth
->u
.dst
.input
= ip_mr_input
;
2412 rth
->u
.dst
.output
= ip_mc_output
;
2418 rt_set_nexthop(rth
, res
, 0);
2420 rth
->rt_flags
= flags
;
2424 /* release work reference to inet device */
2430 static int ip_mkroute_output(struct rtable
**rp
,
2431 struct fib_result
*res
,
2432 const struct flowi
*fl
,
2433 const struct flowi
*oldflp
,
2434 struct net_device
*dev_out
,
2437 struct rtable
*rth
= NULL
;
2438 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2441 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
,
2442 rt_genid(dev_net(dev_out
)));
2443 err
= rt_intern_hash(hash
, rth
, rp
);
2450 * Major route resolver routine.
2453 static int ip_route_output_slow(struct net
*net
, struct rtable
**rp
,
2454 const struct flowi
*oldflp
)
2456 u32 tos
= RT_FL_TOS(oldflp
);
2457 struct flowi fl
= { .nl_u
= { .ip4_u
=
2458 { .daddr
= oldflp
->fl4_dst
,
2459 .saddr
= oldflp
->fl4_src
,
2460 .tos
= tos
& IPTOS_RT_MASK
,
2461 .scope
= ((tos
& RTO_ONLINK
) ?
2465 .mark
= oldflp
->mark
,
2466 .iif
= net
->loopback_dev
->ifindex
,
2467 .oif
= oldflp
->oif
};
2468 struct fib_result res
;
2470 struct net_device
*dev_out
= NULL
;
2476 #ifdef CONFIG_IP_MULTIPLE_TABLES
2480 if (oldflp
->fl4_src
) {
2482 if (ipv4_is_multicast(oldflp
->fl4_src
) ||
2483 ipv4_is_lbcast(oldflp
->fl4_src
) ||
2484 ipv4_is_zeronet(oldflp
->fl4_src
))
2487 /* I removed check for oif == dev_out->oif here.
2488 It was wrong for two reasons:
2489 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2490 is assigned to multiple interfaces.
2491 2. Moreover, we are allowed to send packets with saddr
2492 of another iface. --ANK
2495 if (oldflp
->oif
== 0
2496 && (ipv4_is_multicast(oldflp
->fl4_dst
) ||
2497 oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2498 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2499 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2500 if (dev_out
== NULL
)
2503 /* Special hack: user can direct multicasts
2504 and limited broadcast via necessary interface
2505 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2506 This hack is not just for fun, it allows
2507 vic,vat and friends to work.
2508 They bind socket to loopback, set ttl to zero
2509 and expect that it will work.
2510 From the viewpoint of routing cache they are broken,
2511 because we are not allowed to build multicast path
2512 with loopback source addr (look, routing cache
2513 cannot know, that ttl is zero, so that packet
2514 will not leave this host and route is valid).
2515 Luckily, this hack is good workaround.
2518 fl
.oif
= dev_out
->ifindex
;
2522 if (!(oldflp
->flags
& FLOWI_FLAG_ANYSRC
)) {
2523 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2524 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2525 if (dev_out
== NULL
)
2534 dev_out
= dev_get_by_index(net
, oldflp
->oif
);
2536 if (dev_out
== NULL
)
2539 /* RACE: Check return value of inet_select_addr instead. */
2540 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2542 goto out
; /* Wrong error code */
2545 if (ipv4_is_local_multicast(oldflp
->fl4_dst
) ||
2546 oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2548 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2553 if (ipv4_is_multicast(oldflp
->fl4_dst
))
2554 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2556 else if (!oldflp
->fl4_dst
)
2557 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2563 fl
.fl4_dst
= fl
.fl4_src
;
2565 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2568 dev_out
= net
->loopback_dev
;
2570 fl
.oif
= net
->loopback_dev
->ifindex
;
2571 res
.type
= RTN_LOCAL
;
2572 flags
|= RTCF_LOCAL
;
2576 if (fib_lookup(net
, &fl
, &res
)) {
2579 /* Apparently, routing tables are wrong. Assume,
2580 that the destination is on link.
2583 Because we are allowed to send to iface
2584 even if it has NO routes and NO assigned
2585 addresses. When oif is specified, routing
2586 tables are looked up with only one purpose:
2587 to catch if destination is gatewayed, rather than
2588 direct. Moreover, if MSG_DONTROUTE is set,
2589 we send packet, ignoring both routing tables
2590 and ifaddr state. --ANK
2593 We could make it even if oif is unknown,
2594 likely IPv6, but we do not.
2597 if (fl
.fl4_src
== 0)
2598 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2600 res
.type
= RTN_UNICAST
;
2610 if (res
.type
== RTN_LOCAL
) {
2612 fl
.fl4_src
= fl
.fl4_dst
;
2615 dev_out
= net
->loopback_dev
;
2617 fl
.oif
= dev_out
->ifindex
;
2619 fib_info_put(res
.fi
);
2621 flags
|= RTCF_LOCAL
;
2625 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2626 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2627 fib_select_multipath(&fl
, &res
);
2630 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2631 fib_select_default(net
, &fl
, &res
);
2634 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2638 dev_out
= FIB_RES_DEV(res
);
2640 fl
.oif
= dev_out
->ifindex
;
2644 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2654 int __ip_route_output_key(struct net
*net
, struct rtable
**rp
,
2655 const struct flowi
*flp
)
2660 if (!rt_caching(net
))
2663 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
, rt_genid(net
));
2666 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2667 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2668 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2669 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2671 rth
->fl
.oif
== flp
->oif
&&
2672 rth
->fl
.mark
== flp
->mark
&&
2673 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2674 (IPTOS_RT_MASK
| RTO_ONLINK
)) &&
2675 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2676 !rt_is_expired(rth
)) {
2677 dst_use(&rth
->u
.dst
, jiffies
);
2678 RT_CACHE_STAT_INC(out_hit
);
2679 rcu_read_unlock_bh();
2683 RT_CACHE_STAT_INC(out_hlist_search
);
2685 rcu_read_unlock_bh();
2688 return ip_route_output_slow(net
, rp
, flp
);
2691 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2693 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2697 static struct dst_ops ipv4_dst_blackhole_ops
= {
2699 .protocol
= __constant_htons(ETH_P_IP
),
2700 .destroy
= ipv4_dst_destroy
,
2701 .check
= ipv4_dst_check
,
2702 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2703 .entries
= ATOMIC_INIT(0),
2707 static int ipv4_dst_blackhole(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2709 struct rtable
*ort
= *rp
;
2710 struct rtable
*rt
= (struct rtable
*)
2711 dst_alloc(&ipv4_dst_blackhole_ops
);
2714 struct dst_entry
*new = &rt
->u
.dst
;
2716 atomic_set(&new->__refcnt
, 1);
2718 new->input
= dst_discard
;
2719 new->output
= dst_discard
;
2720 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2722 new->dev
= ort
->u
.dst
.dev
;
2728 rt
->idev
= ort
->idev
;
2730 in_dev_hold(rt
->idev
);
2731 rt
->rt_genid
= rt_genid(net
);
2732 rt
->rt_flags
= ort
->rt_flags
;
2733 rt
->rt_type
= ort
->rt_type
;
2734 rt
->rt_dst
= ort
->rt_dst
;
2735 rt
->rt_src
= ort
->rt_src
;
2736 rt
->rt_iif
= ort
->rt_iif
;
2737 rt
->rt_gateway
= ort
->rt_gateway
;
2738 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2739 rt
->peer
= ort
->peer
;
2741 atomic_inc(&rt
->peer
->refcnt
);
2746 dst_release(&(*rp
)->u
.dst
);
2748 return (rt
? 0 : -ENOMEM
);
2751 int ip_route_output_flow(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
,
2752 struct sock
*sk
, int flags
)
2756 if ((err
= __ip_route_output_key(net
, rp
, flp
)) != 0)
2761 flp
->fl4_src
= (*rp
)->rt_src
;
2763 flp
->fl4_dst
= (*rp
)->rt_dst
;
2764 err
= __xfrm_lookup(net
, (struct dst_entry
**)rp
, flp
, sk
,
2765 flags
? XFRM_LOOKUP_WAIT
: 0);
2766 if (err
== -EREMOTE
)
2767 err
= ipv4_dst_blackhole(net
, rp
, flp
);
2775 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2777 int ip_route_output_key(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2779 return ip_route_output_flow(net
, rp
, flp
, NULL
, 0);
2782 static int rt_fill_info(struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2783 int nowait
, unsigned int flags
)
2785 struct rtable
*rt
= skb
->rtable
;
2787 struct nlmsghdr
*nlh
;
2789 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2791 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2795 r
= nlmsg_data(nlh
);
2796 r
->rtm_family
= AF_INET
;
2797 r
->rtm_dst_len
= 32;
2799 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2800 r
->rtm_table
= RT_TABLE_MAIN
;
2801 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2802 r
->rtm_type
= rt
->rt_type
;
2803 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2804 r
->rtm_protocol
= RTPROT_UNSPEC
;
2805 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2806 if (rt
->rt_flags
& RTCF_NOTIFY
)
2807 r
->rtm_flags
|= RTM_F_NOTIFY
;
2809 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2811 if (rt
->fl
.fl4_src
) {
2812 r
->rtm_src_len
= 32;
2813 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2816 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2817 #ifdef CONFIG_NET_CLS_ROUTE
2818 if (rt
->u
.dst
.tclassid
)
2819 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2822 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2823 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2824 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2826 if (rt
->rt_dst
!= rt
->rt_gateway
)
2827 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2829 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2830 goto nla_put_failure
;
2832 error
= rt
->u
.dst
.error
;
2833 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2835 id
= rt
->peer
->ip_id_count
;
2836 if (rt
->peer
->tcp_ts_stamp
) {
2837 ts
= rt
->peer
->tcp_ts
;
2838 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2843 #ifdef CONFIG_IP_MROUTE
2844 __be32 dst
= rt
->rt_dst
;
2846 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2847 IPV4_DEVCONF_ALL(&init_net
, MC_FORWARDING
)) {
2848 int err
= ipmr_get_route(skb
, r
, nowait
);
2853 goto nla_put_failure
;
2855 if (err
== -EMSGSIZE
)
2856 goto nla_put_failure
;
2862 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2865 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2866 expires
, error
) < 0)
2867 goto nla_put_failure
;
2869 return nlmsg_end(skb
, nlh
);
2872 nlmsg_cancel(skb
, nlh
);
2876 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2878 struct net
*net
= sock_net(in_skb
->sk
);
2880 struct nlattr
*tb
[RTA_MAX
+1];
2881 struct rtable
*rt
= NULL
;
2886 struct sk_buff
*skb
;
2888 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2892 rtm
= nlmsg_data(nlh
);
2894 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2900 /* Reserve room for dummy headers, this skb can pass
2901 through good chunk of routing engine.
2903 skb_reset_mac_header(skb
);
2904 skb_reset_network_header(skb
);
2906 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2907 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2908 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2910 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2911 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2912 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2915 struct net_device
*dev
;
2917 dev
= __dev_get_by_index(net
, iif
);
2923 skb
->protocol
= htons(ETH_P_IP
);
2926 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2930 if (err
== 0 && rt
->u
.dst
.error
)
2931 err
= -rt
->u
.dst
.error
;
2938 .tos
= rtm
->rtm_tos
,
2941 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2943 err
= ip_route_output_key(net
, &rt
, &fl
);
2950 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2951 rt
->rt_flags
|= RTCF_NOTIFY
;
2953 err
= rt_fill_info(skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
2954 RTM_NEWROUTE
, 0, 0);
2958 err
= rtnl_unicast(skb
, net
, NETLINK_CB(in_skb
).pid
);
2967 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2974 net
= sock_net(skb
->sk
);
2979 s_idx
= idx
= cb
->args
[1];
2980 for (h
= s_h
; h
<= rt_hash_mask
; h
++, s_idx
= 0) {
2981 if (!rt_hash_table
[h
].chain
)
2984 for (rt
= rcu_dereference(rt_hash_table
[h
].chain
), idx
= 0; rt
;
2985 rt
= rcu_dereference(rt
->u
.dst
.rt_next
), idx
++) {
2986 if (!net_eq(dev_net(rt
->u
.dst
.dev
), net
) || idx
< s_idx
)
2988 if (rt_is_expired(rt
))
2990 skb
->dst
= dst_clone(&rt
->u
.dst
);
2991 if (rt_fill_info(skb
, NETLINK_CB(cb
->skb
).pid
,
2992 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2993 1, NLM_F_MULTI
) <= 0) {
2994 dst_release(xchg(&skb
->dst
, NULL
));
2995 rcu_read_unlock_bh();
2998 dst_release(xchg(&skb
->dst
, NULL
));
3000 rcu_read_unlock_bh();
3009 void ip_rt_multicast_event(struct in_device
*in_dev
)
3011 rt_cache_flush(dev_net(in_dev
->dev
), 0);
3014 #ifdef CONFIG_SYSCTL
3015 static int ipv4_sysctl_rtcache_flush(ctl_table
*__ctl
, int write
,
3016 struct file
*filp
, void __user
*buffer
,
3017 size_t *lenp
, loff_t
*ppos
)
3024 memcpy(&ctl
, __ctl
, sizeof(ctl
));
3025 ctl
.data
= &flush_delay
;
3026 proc_dointvec(&ctl
, write
, filp
, buffer
, lenp
, ppos
);
3028 net
= (struct net
*)__ctl
->extra1
;
3029 rt_cache_flush(net
, flush_delay
);
3036 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table
*table
,
3037 void __user
*oldval
,
3038 size_t __user
*oldlenp
,
3039 void __user
*newval
,
3044 if (newlen
!= sizeof(int))
3046 if (get_user(delay
, (int __user
*)newval
))
3048 net
= (struct net
*)table
->extra1
;
3049 rt_cache_flush(net
, delay
);
3053 static void rt_secret_reschedule(int old
)
3056 int new = ip_rt_secret_interval
;
3057 int diff
= new - old
;
3064 int deleted
= del_timer_sync(&net
->ipv4
.rt_secret_timer
);
3070 long time
= net
->ipv4
.rt_secret_timer
.expires
- jiffies
;
3072 if (time
<= 0 || (time
+= diff
) <= 0)
3075 net
->ipv4
.rt_secret_timer
.expires
= time
;
3077 net
->ipv4
.rt_secret_timer
.expires
= new;
3079 net
->ipv4
.rt_secret_timer
.expires
+= jiffies
;
3080 add_timer(&net
->ipv4
.rt_secret_timer
);
3085 static int ipv4_sysctl_rt_secret_interval(ctl_table
*ctl
, int write
,
3087 void __user
*buffer
, size_t *lenp
,
3090 int old
= ip_rt_secret_interval
;
3091 int ret
= proc_dointvec_jiffies(ctl
, write
, filp
, buffer
, lenp
, ppos
);
3093 rt_secret_reschedule(old
);
3098 static int ipv4_sysctl_rt_secret_interval_strategy(ctl_table
*table
,
3099 void __user
*oldval
,
3100 size_t __user
*oldlenp
,
3101 void __user
*newval
,
3104 int old
= ip_rt_secret_interval
;
3105 int ret
= sysctl_jiffies(table
, oldval
, oldlenp
, newval
, newlen
);
3107 rt_secret_reschedule(old
);
3112 static ctl_table ipv4_route_table
[] = {
3114 .ctl_name
= NET_IPV4_ROUTE_GC_THRESH
,
3115 .procname
= "gc_thresh",
3116 .data
= &ipv4_dst_ops
.gc_thresh
,
3117 .maxlen
= sizeof(int),
3119 .proc_handler
= proc_dointvec
,
3122 .ctl_name
= NET_IPV4_ROUTE_MAX_SIZE
,
3123 .procname
= "max_size",
3124 .data
= &ip_rt_max_size
,
3125 .maxlen
= sizeof(int),
3127 .proc_handler
= proc_dointvec
,
3130 /* Deprecated. Use gc_min_interval_ms */
3132 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL
,
3133 .procname
= "gc_min_interval",
3134 .data
= &ip_rt_gc_min_interval
,
3135 .maxlen
= sizeof(int),
3137 .proc_handler
= proc_dointvec_jiffies
,
3138 .strategy
= sysctl_jiffies
,
3141 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS
,
3142 .procname
= "gc_min_interval_ms",
3143 .data
= &ip_rt_gc_min_interval
,
3144 .maxlen
= sizeof(int),
3146 .proc_handler
= proc_dointvec_ms_jiffies
,
3147 .strategy
= sysctl_ms_jiffies
,
3150 .ctl_name
= NET_IPV4_ROUTE_GC_TIMEOUT
,
3151 .procname
= "gc_timeout",
3152 .data
= &ip_rt_gc_timeout
,
3153 .maxlen
= sizeof(int),
3155 .proc_handler
= proc_dointvec_jiffies
,
3156 .strategy
= sysctl_jiffies
,
3159 .ctl_name
= NET_IPV4_ROUTE_GC_INTERVAL
,
3160 .procname
= "gc_interval",
3161 .data
= &ip_rt_gc_interval
,
3162 .maxlen
= sizeof(int),
3164 .proc_handler
= proc_dointvec_jiffies
,
3165 .strategy
= sysctl_jiffies
,
3168 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_LOAD
,
3169 .procname
= "redirect_load",
3170 .data
= &ip_rt_redirect_load
,
3171 .maxlen
= sizeof(int),
3173 .proc_handler
= proc_dointvec
,
3176 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_NUMBER
,
3177 .procname
= "redirect_number",
3178 .data
= &ip_rt_redirect_number
,
3179 .maxlen
= sizeof(int),
3181 .proc_handler
= proc_dointvec
,
3184 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_SILENCE
,
3185 .procname
= "redirect_silence",
3186 .data
= &ip_rt_redirect_silence
,
3187 .maxlen
= sizeof(int),
3189 .proc_handler
= proc_dointvec
,
3192 .ctl_name
= NET_IPV4_ROUTE_ERROR_COST
,
3193 .procname
= "error_cost",
3194 .data
= &ip_rt_error_cost
,
3195 .maxlen
= sizeof(int),
3197 .proc_handler
= proc_dointvec
,
3200 .ctl_name
= NET_IPV4_ROUTE_ERROR_BURST
,
3201 .procname
= "error_burst",
3202 .data
= &ip_rt_error_burst
,
3203 .maxlen
= sizeof(int),
3205 .proc_handler
= proc_dointvec
,
3208 .ctl_name
= NET_IPV4_ROUTE_GC_ELASTICITY
,
3209 .procname
= "gc_elasticity",
3210 .data
= &ip_rt_gc_elasticity
,
3211 .maxlen
= sizeof(int),
3213 .proc_handler
= proc_dointvec
,
3216 .ctl_name
= NET_IPV4_ROUTE_MTU_EXPIRES
,
3217 .procname
= "mtu_expires",
3218 .data
= &ip_rt_mtu_expires
,
3219 .maxlen
= sizeof(int),
3221 .proc_handler
= proc_dointvec_jiffies
,
3222 .strategy
= sysctl_jiffies
,
3225 .ctl_name
= NET_IPV4_ROUTE_MIN_PMTU
,
3226 .procname
= "min_pmtu",
3227 .data
= &ip_rt_min_pmtu
,
3228 .maxlen
= sizeof(int),
3230 .proc_handler
= proc_dointvec
,
3233 .ctl_name
= NET_IPV4_ROUTE_MIN_ADVMSS
,
3234 .procname
= "min_adv_mss",
3235 .data
= &ip_rt_min_advmss
,
3236 .maxlen
= sizeof(int),
3238 .proc_handler
= proc_dointvec
,
3241 .ctl_name
= NET_IPV4_ROUTE_SECRET_INTERVAL
,
3242 .procname
= "secret_interval",
3243 .data
= &ip_rt_secret_interval
,
3244 .maxlen
= sizeof(int),
3246 .proc_handler
= ipv4_sysctl_rt_secret_interval
,
3247 .strategy
= ipv4_sysctl_rt_secret_interval_strategy
,
3252 static struct ctl_table empty
[1];
3254 static struct ctl_table ipv4_skeleton
[] =
3256 { .procname
= "route", .ctl_name
= NET_IPV4_ROUTE
,
3257 .mode
= 0555, .child
= ipv4_route_table
},
3258 { .procname
= "neigh", .ctl_name
= NET_IPV4_NEIGH
,
3259 .mode
= 0555, .child
= empty
},
3263 static __net_initdata
struct ctl_path ipv4_path
[] = {
3264 { .procname
= "net", .ctl_name
= CTL_NET
, },
3265 { .procname
= "ipv4", .ctl_name
= NET_IPV4
, },
3269 static struct ctl_table ipv4_route_flush_table
[] = {
3271 .ctl_name
= NET_IPV4_ROUTE_FLUSH
,
3272 .procname
= "flush",
3273 .maxlen
= sizeof(int),
3275 .proc_handler
= ipv4_sysctl_rtcache_flush
,
3276 .strategy
= ipv4_sysctl_rtcache_flush_strategy
,
3281 static __net_initdata
struct ctl_path ipv4_route_path
[] = {
3282 { .procname
= "net", .ctl_name
= CTL_NET
, },
3283 { .procname
= "ipv4", .ctl_name
= NET_IPV4
, },
3284 { .procname
= "route", .ctl_name
= NET_IPV4_ROUTE
, },
3288 static __net_init
int sysctl_route_net_init(struct net
*net
)
3290 struct ctl_table
*tbl
;
3292 tbl
= ipv4_route_flush_table
;
3293 if (net
!= &init_net
) {
3294 tbl
= kmemdup(tbl
, sizeof(ipv4_route_flush_table
), GFP_KERNEL
);
3298 tbl
[0].extra1
= net
;
3300 net
->ipv4
.route_hdr
=
3301 register_net_sysctl_table(net
, ipv4_route_path
, tbl
);
3302 if (net
->ipv4
.route_hdr
== NULL
)
3307 if (tbl
!= ipv4_route_flush_table
)
3313 static __net_exit
void sysctl_route_net_exit(struct net
*net
)
3315 struct ctl_table
*tbl
;
3317 tbl
= net
->ipv4
.route_hdr
->ctl_table_arg
;
3318 unregister_net_sysctl_table(net
->ipv4
.route_hdr
);
3319 BUG_ON(tbl
== ipv4_route_flush_table
);
3323 static __net_initdata
struct pernet_operations sysctl_route_ops
= {
3324 .init
= sysctl_route_net_init
,
3325 .exit
= sysctl_route_net_exit
,
3330 static __net_init
int rt_secret_timer_init(struct net
*net
)
3332 atomic_set(&net
->ipv4
.rt_genid
,
3333 (int) ((num_physpages
^ (num_physpages
>>8)) ^
3334 (jiffies
^ (jiffies
>> 7))));
3336 net
->ipv4
.rt_secret_timer
.function
= rt_secret_rebuild
;
3337 net
->ipv4
.rt_secret_timer
.data
= (unsigned long)net
;
3338 init_timer_deferrable(&net
->ipv4
.rt_secret_timer
);
3340 if (ip_rt_secret_interval
) {
3341 net
->ipv4
.rt_secret_timer
.expires
=
3342 jiffies
+ net_random() % ip_rt_secret_interval
+
3343 ip_rt_secret_interval
;
3344 add_timer(&net
->ipv4
.rt_secret_timer
);
3349 static __net_exit
void rt_secret_timer_exit(struct net
*net
)
3351 del_timer_sync(&net
->ipv4
.rt_secret_timer
);
3354 static __net_initdata
struct pernet_operations rt_secret_timer_ops
= {
3355 .init
= rt_secret_timer_init
,
3356 .exit
= rt_secret_timer_exit
,
3360 #ifdef CONFIG_NET_CLS_ROUTE
3361 struct ip_rt_acct
*ip_rt_acct __read_mostly
;
3362 #endif /* CONFIG_NET_CLS_ROUTE */
3364 static __initdata
unsigned long rhash_entries
;
3365 static int __init
set_rhash_entries(char *str
)
3369 rhash_entries
= simple_strtoul(str
, &str
, 0);
3372 __setup("rhash_entries=", set_rhash_entries
);
3374 int __init
ip_rt_init(void)
3378 #ifdef CONFIG_NET_CLS_ROUTE
3379 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
));
3381 panic("IP: failed to allocate ip_rt_acct\n");
3384 ipv4_dst_ops
.kmem_cachep
=
3385 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3386 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3388 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3390 rt_hash_table
= (struct rt_hash_bucket
*)
3391 alloc_large_system_hash("IP route cache",
3392 sizeof(struct rt_hash_bucket
),
3394 (num_physpages
>= 128 * 1024) ?
3400 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3401 rt_hash_lock_init();
3403 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3404 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3409 /* All the timers, started at system startup tend
3410 to synchronize. Perturb it a bit.
3412 schedule_delayed_work(&expires_work
,
3413 net_random() % ip_rt_gc_interval
+ ip_rt_gc_interval
);
3415 if (register_pernet_subsys(&rt_secret_timer_ops
))
3416 printk(KERN_ERR
"Unable to setup rt_secret_timer\n");
3418 if (ip_rt_proc_init())
3419 printk(KERN_ERR
"Unable to create route proc files\n");
3424 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3426 #ifdef CONFIG_SYSCTL
3427 register_pernet_subsys(&sysctl_route_ops
);
3432 #ifdef CONFIG_SYSCTL
3434 * We really need to sanitize the damn ipv4 init order, then all
3435 * this nonsense will go away.
3437 void __init
ip_static_sysctl_init(void)
3439 register_sysctl_paths(ipv4_path
, ipv4_skeleton
);
3443 EXPORT_SYMBOL(__ip_select_ident
);
3444 EXPORT_SYMBOL(ip_route_input
);
3445 EXPORT_SYMBOL(ip_route_output_key
);