1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75 #define AUDIT_NAMES 20
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
80 /* no execve audit message should be longer than this (userspace limits) */
81 #define MAX_EXECVE_AUDIT_LEN 7500
83 /* number of audit rules */
86 /* determines whether we collect data for signals sent */
89 struct audit_cap_data
{
90 kernel_cap_t permitted
;
91 kernel_cap_t inheritable
;
93 unsigned int fE
; /* effective bit of a file capability */
94 kernel_cap_t effective
; /* effective set of a process */
98 /* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
105 int name_len
; /* number of name's characters to log */
106 unsigned name_put
; /* call __putname() for this name */
114 struct audit_cap_data fcap
;
115 unsigned int fcap_ver
;
118 struct audit_aux_data
{
119 struct audit_aux_data
*next
;
123 #define AUDIT_AUX_IPCPERM 0
125 /* Number of target pids per aux struct. */
126 #define AUDIT_AUX_PIDS 16
128 struct audit_aux_data_execve
{
129 struct audit_aux_data d
;
132 struct mm_struct
*mm
;
135 struct audit_aux_data_pids
{
136 struct audit_aux_data d
;
137 pid_t target_pid
[AUDIT_AUX_PIDS
];
138 uid_t target_auid
[AUDIT_AUX_PIDS
];
139 uid_t target_uid
[AUDIT_AUX_PIDS
];
140 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
141 u32 target_sid
[AUDIT_AUX_PIDS
];
142 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
146 struct audit_aux_data_bprm_fcaps
{
147 struct audit_aux_data d
;
148 struct audit_cap_data fcap
;
149 unsigned int fcap_ver
;
150 struct audit_cap_data old_pcap
;
151 struct audit_cap_data new_pcap
;
154 struct audit_aux_data_capset
{
155 struct audit_aux_data d
;
157 struct audit_cap_data cap
;
160 struct audit_tree_refs
{
161 struct audit_tree_refs
*next
;
162 struct audit_chunk
*c
[31];
165 /* The per-task audit context. */
166 struct audit_context
{
167 int dummy
; /* must be the first element */
168 int in_syscall
; /* 1 if task is in a syscall */
169 enum audit_state state
, current_state
;
170 unsigned int serial
; /* serial number for record */
171 int major
; /* syscall number */
172 struct timespec ctime
; /* time of syscall entry */
173 unsigned long argv
[4]; /* syscall arguments */
174 long return_code
;/* syscall return code */
176 int return_valid
; /* return code is valid */
178 struct audit_names names
[AUDIT_NAMES
];
179 char * filterkey
; /* key for rule that triggered record */
181 struct audit_context
*previous
; /* For nested syscalls */
182 struct audit_aux_data
*aux
;
183 struct audit_aux_data
*aux_pids
;
184 struct sockaddr_storage
*sockaddr
;
186 /* Save things to print about task_struct */
188 uid_t uid
, euid
, suid
, fsuid
;
189 gid_t gid
, egid
, sgid
, fsgid
;
190 unsigned long personality
;
196 unsigned int target_sessionid
;
198 char target_comm
[TASK_COMM_LEN
];
200 struct audit_tree_refs
*trees
, *first_trees
;
201 struct list_head killed_trees
;
219 unsigned long qbytes
;
223 struct mq_attr mqstat
;
232 unsigned int msg_prio
;
233 struct timespec abs_timeout
;
242 struct audit_cap_data cap
;
257 static inline int open_arg(int flags
, int mask
)
259 int n
= ACC_MODE(flags
);
260 if (flags
& (O_TRUNC
| O_CREAT
))
261 n
|= AUDIT_PERM_WRITE
;
265 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
272 switch (audit_classify_syscall(ctx
->arch
, n
)) {
274 if ((mask
& AUDIT_PERM_WRITE
) &&
275 audit_match_class(AUDIT_CLASS_WRITE
, n
))
277 if ((mask
& AUDIT_PERM_READ
) &&
278 audit_match_class(AUDIT_CLASS_READ
, n
))
280 if ((mask
& AUDIT_PERM_ATTR
) &&
281 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
284 case 1: /* 32bit on biarch */
285 if ((mask
& AUDIT_PERM_WRITE
) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
288 if ((mask
& AUDIT_PERM_READ
) &&
289 audit_match_class(AUDIT_CLASS_READ_32
, n
))
291 if ((mask
& AUDIT_PERM_ATTR
) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
296 return mask
& ACC_MODE(ctx
->argv
[1]);
298 return mask
& ACC_MODE(ctx
->argv
[2]);
299 case 4: /* socketcall */
300 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
302 return mask
& AUDIT_PERM_EXEC
;
308 static int audit_match_filetype(struct audit_context
*ctx
, int which
)
310 unsigned index
= which
& ~S_IFMT
;
311 mode_t mode
= which
& S_IFMT
;
316 if (index
>= ctx
->name_count
)
318 if (ctx
->names
[index
].ino
== -1)
320 if ((ctx
->names
[index
].mode
^ mode
) & S_IFMT
)
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
335 #ifdef CONFIG_AUDIT_TREE
336 static void audit_set_auditable(struct audit_context
*ctx
)
340 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
344 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
346 struct audit_tree_refs
*p
= ctx
->trees
;
347 int left
= ctx
->tree_count
;
349 p
->c
[--left
] = chunk
;
350 ctx
->tree_count
= left
;
359 ctx
->tree_count
= 30;
365 static int grow_tree_refs(struct audit_context
*ctx
)
367 struct audit_tree_refs
*p
= ctx
->trees
;
368 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
374 p
->next
= ctx
->trees
;
376 ctx
->first_trees
= ctx
->trees
;
377 ctx
->tree_count
= 31;
382 static void unroll_tree_refs(struct audit_context
*ctx
,
383 struct audit_tree_refs
*p
, int count
)
385 #ifdef CONFIG_AUDIT_TREE
386 struct audit_tree_refs
*q
;
389 /* we started with empty chain */
390 p
= ctx
->first_trees
;
392 /* if the very first allocation has failed, nothing to do */
397 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
399 audit_put_chunk(q
->c
[n
]);
403 while (n
-- > ctx
->tree_count
) {
404 audit_put_chunk(q
->c
[n
]);
408 ctx
->tree_count
= count
;
412 static void free_tree_refs(struct audit_context
*ctx
)
414 struct audit_tree_refs
*p
, *q
;
415 for (p
= ctx
->first_trees
; p
; p
= q
) {
421 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
423 #ifdef CONFIG_AUDIT_TREE
424 struct audit_tree_refs
*p
;
429 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
430 for (n
= 0; n
< 31; n
++)
431 if (audit_tree_match(p
->c
[n
], tree
))
436 for (n
= ctx
->tree_count
; n
< 31; n
++)
437 if (audit_tree_match(p
->c
[n
], tree
))
444 /* Determine if any context name data matches a rule's watch data */
445 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
448 * If task_creation is true, this is an explicit indication that we are
449 * filtering a task rule at task creation time. This and tsk == current are
450 * the only situations where tsk->cred may be accessed without an rcu read lock.
452 static int audit_filter_rules(struct task_struct
*tsk
,
453 struct audit_krule
*rule
,
454 struct audit_context
*ctx
,
455 struct audit_names
*name
,
456 enum audit_state
*state
,
459 const struct cred
*cred
;
460 int i
, j
, need_sid
= 1;
463 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
465 for (i
= 0; i
< rule
->field_count
; i
++) {
466 struct audit_field
*f
= &rule
->fields
[i
];
471 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
476 ctx
->ppid
= task_ppid_nr(tsk
);
477 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
481 result
= audit_comparator(cred
->uid
, f
->op
, f
->val
);
484 result
= audit_comparator(cred
->euid
, f
->op
, f
->val
);
487 result
= audit_comparator(cred
->suid
, f
->op
, f
->val
);
490 result
= audit_comparator(cred
->fsuid
, f
->op
, f
->val
);
493 result
= audit_comparator(cred
->gid
, f
->op
, f
->val
);
496 result
= audit_comparator(cred
->egid
, f
->op
, f
->val
);
499 result
= audit_comparator(cred
->sgid
, f
->op
, f
->val
);
502 result
= audit_comparator(cred
->fsgid
, f
->op
, f
->val
);
505 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
509 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
513 if (ctx
&& ctx
->return_valid
)
514 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
517 if (ctx
&& ctx
->return_valid
) {
519 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
521 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
526 result
= audit_comparator(MAJOR(name
->dev
),
529 for (j
= 0; j
< ctx
->name_count
; j
++) {
530 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
539 result
= audit_comparator(MINOR(name
->dev
),
542 for (j
= 0; j
< ctx
->name_count
; j
++) {
543 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
552 result
= (name
->ino
== f
->val
);
554 for (j
= 0; j
< ctx
->name_count
; j
++) {
555 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
564 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
568 result
= match_tree_refs(ctx
, rule
->tree
);
573 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
575 case AUDIT_SUBJ_USER
:
576 case AUDIT_SUBJ_ROLE
:
577 case AUDIT_SUBJ_TYPE
:
580 /* NOTE: this may return negative values indicating
581 a temporary error. We simply treat this as a
582 match for now to avoid losing information that
583 may be wanted. An error message will also be
587 security_task_getsecid(tsk
, &sid
);
590 result
= security_audit_rule_match(sid
, f
->type
,
599 case AUDIT_OBJ_LEV_LOW
:
600 case AUDIT_OBJ_LEV_HIGH
:
601 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
604 /* Find files that match */
606 result
= security_audit_rule_match(
607 name
->osid
, f
->type
, f
->op
,
610 for (j
= 0; j
< ctx
->name_count
; j
++) {
611 if (security_audit_rule_match(
620 /* Find ipc objects that match */
621 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
623 if (security_audit_rule_match(ctx
->ipc
.osid
,
634 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
636 case AUDIT_FILTERKEY
:
637 /* ignore this field for filtering */
641 result
= audit_match_perm(ctx
, f
->val
);
644 result
= audit_match_filetype(ctx
, f
->val
);
653 if (rule
->prio
<= ctx
->prio
)
655 if (rule
->filterkey
) {
656 kfree(ctx
->filterkey
);
657 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
659 ctx
->prio
= rule
->prio
;
661 switch (rule
->action
) {
662 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
663 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
668 /* At process creation time, we can determine if system-call auditing is
669 * completely disabled for this task. Since we only have the task
670 * structure at this point, we can only check uid and gid.
672 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
674 struct audit_entry
*e
;
675 enum audit_state state
;
678 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
679 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
681 if (state
== AUDIT_RECORD_CONTEXT
)
682 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
688 return AUDIT_BUILD_CONTEXT
;
691 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
695 if (val
> 0xffffffff)
698 word
= AUDIT_WORD(val
);
699 if (word
>= AUDIT_BITMASK_SIZE
)
702 bit
= AUDIT_BIT(val
);
704 return rule
->mask
[word
] & bit
;
707 /* At syscall entry and exit time, this filter is called if the
708 * audit_state is not low enough that auditing cannot take place, but is
709 * also not high enough that we already know we have to write an audit
710 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
712 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
713 struct audit_context
*ctx
,
714 struct list_head
*list
)
716 struct audit_entry
*e
;
717 enum audit_state state
;
719 if (audit_pid
&& tsk
->tgid
== audit_pid
)
720 return AUDIT_DISABLED
;
723 if (!list_empty(list
)) {
724 list_for_each_entry_rcu(e
, list
, list
) {
725 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
726 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
729 ctx
->current_state
= state
;
735 return AUDIT_BUILD_CONTEXT
;
738 /* At syscall exit time, this filter is called if any audit_names[] have been
739 * collected during syscall processing. We only check rules in sublists at hash
740 * buckets applicable to the inode numbers in audit_names[].
741 * Regarding audit_state, same rules apply as for audit_filter_syscall().
743 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
746 struct audit_entry
*e
;
747 enum audit_state state
;
749 if (audit_pid
&& tsk
->tgid
== audit_pid
)
753 for (i
= 0; i
< ctx
->name_count
; i
++) {
754 struct audit_names
*n
= &ctx
->names
[i
];
755 int h
= audit_hash_ino((u32
)n
->ino
);
756 struct list_head
*list
= &audit_inode_hash
[h
];
758 if (list_empty(list
))
761 list_for_each_entry_rcu(e
, list
, list
) {
762 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
763 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
,
766 ctx
->current_state
= state
;
774 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
778 struct audit_context
*context
= tsk
->audit_context
;
780 if (likely(!context
))
782 context
->return_valid
= return_valid
;
785 * we need to fix up the return code in the audit logs if the actual
786 * return codes are later going to be fixed up by the arch specific
789 * This is actually a test for:
790 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
791 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
793 * but is faster than a bunch of ||
795 if (unlikely(return_code
<= -ERESTARTSYS
) &&
796 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
797 (return_code
!= -ENOIOCTLCMD
))
798 context
->return_code
= -EINTR
;
800 context
->return_code
= return_code
;
802 if (context
->in_syscall
&& !context
->dummy
) {
803 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
804 audit_filter_inodes(tsk
, context
);
807 tsk
->audit_context
= NULL
;
811 static inline void audit_free_names(struct audit_context
*context
)
816 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
817 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
818 " name_count=%d put_count=%d"
819 " ino_count=%d [NOT freeing]\n",
821 context
->serial
, context
->major
, context
->in_syscall
,
822 context
->name_count
, context
->put_count
,
824 for (i
= 0; i
< context
->name_count
; i
++) {
825 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
826 context
->names
[i
].name
,
827 context
->names
[i
].name
?: "(null)");
834 context
->put_count
= 0;
835 context
->ino_count
= 0;
838 for (i
= 0; i
< context
->name_count
; i
++) {
839 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
840 __putname(context
->names
[i
].name
);
842 context
->name_count
= 0;
843 path_put(&context
->pwd
);
844 context
->pwd
.dentry
= NULL
;
845 context
->pwd
.mnt
= NULL
;
848 static inline void audit_free_aux(struct audit_context
*context
)
850 struct audit_aux_data
*aux
;
852 while ((aux
= context
->aux
)) {
853 context
->aux
= aux
->next
;
856 while ((aux
= context
->aux_pids
)) {
857 context
->aux_pids
= aux
->next
;
862 static inline void audit_zero_context(struct audit_context
*context
,
863 enum audit_state state
)
865 memset(context
, 0, sizeof(*context
));
866 context
->state
= state
;
867 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
870 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
872 struct audit_context
*context
;
874 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
876 audit_zero_context(context
, state
);
877 INIT_LIST_HEAD(&context
->killed_trees
);
882 * audit_alloc - allocate an audit context block for a task
885 * Filter on the task information and allocate a per-task audit context
886 * if necessary. Doing so turns on system call auditing for the
887 * specified task. This is called from copy_process, so no lock is
890 int audit_alloc(struct task_struct
*tsk
)
892 struct audit_context
*context
;
893 enum audit_state state
;
896 if (likely(!audit_ever_enabled
))
897 return 0; /* Return if not auditing. */
899 state
= audit_filter_task(tsk
, &key
);
900 if (likely(state
== AUDIT_DISABLED
))
903 if (!(context
= audit_alloc_context(state
))) {
905 audit_log_lost("out of memory in audit_alloc");
908 context
->filterkey
= key
;
910 tsk
->audit_context
= context
;
911 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
915 static inline void audit_free_context(struct audit_context
*context
)
917 struct audit_context
*previous
;
921 previous
= context
->previous
;
922 if (previous
|| (count
&& count
< 10)) {
924 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
925 " freeing multiple contexts (%d)\n",
926 context
->serial
, context
->major
,
927 context
->name_count
, count
);
929 audit_free_names(context
);
930 unroll_tree_refs(context
, NULL
, 0);
931 free_tree_refs(context
);
932 audit_free_aux(context
);
933 kfree(context
->filterkey
);
934 kfree(context
->sockaddr
);
939 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
942 void audit_log_task_context(struct audit_buffer
*ab
)
949 security_task_getsecid(current
, &sid
);
953 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
955 if (error
!= -EINVAL
)
960 audit_log_format(ab
, " subj=%s", ctx
);
961 security_release_secctx(ctx
, len
);
965 audit_panic("error in audit_log_task_context");
969 EXPORT_SYMBOL(audit_log_task_context
);
971 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
973 char name
[sizeof(tsk
->comm
)];
974 struct mm_struct
*mm
= tsk
->mm
;
975 struct vm_area_struct
*vma
;
979 get_task_comm(name
, tsk
);
980 audit_log_format(ab
, " comm=");
981 audit_log_untrustedstring(ab
, name
);
984 down_read(&mm
->mmap_sem
);
987 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
989 audit_log_d_path(ab
, "exe=",
990 &vma
->vm_file
->f_path
);
995 up_read(&mm
->mmap_sem
);
997 audit_log_task_context(ab
);
1000 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
1001 uid_t auid
, uid_t uid
, unsigned int sessionid
,
1002 u32 sid
, char *comm
)
1004 struct audit_buffer
*ab
;
1009 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1013 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
1015 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1016 audit_log_format(ab
, " obj=(none)");
1019 audit_log_format(ab
, " obj=%s", ctx
);
1020 security_release_secctx(ctx
, len
);
1022 audit_log_format(ab
, " ocomm=");
1023 audit_log_untrustedstring(ab
, comm
);
1030 * to_send and len_sent accounting are very loose estimates. We aren't
1031 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1032 * within about 500 bytes (next page boundary)
1034 * why snprintf? an int is up to 12 digits long. if we just assumed when
1035 * logging that a[%d]= was going to be 16 characters long we would be wasting
1036 * space in every audit message. In one 7500 byte message we can log up to
1037 * about 1000 min size arguments. That comes down to about 50% waste of space
1038 * if we didn't do the snprintf to find out how long arg_num_len was.
1040 static int audit_log_single_execve_arg(struct audit_context
*context
,
1041 struct audit_buffer
**ab
,
1044 const char __user
*p
,
1047 char arg_num_len_buf
[12];
1048 const char __user
*tmp_p
= p
;
1049 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1050 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1051 size_t len
, len_left
, to_send
;
1052 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1053 unsigned int i
, has_cntl
= 0, too_long
= 0;
1056 /* strnlen_user includes the null we don't want to send */
1057 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1060 * We just created this mm, if we can't find the strings
1061 * we just copied into it something is _very_ wrong. Similar
1062 * for strings that are too long, we should not have created
1065 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1067 send_sig(SIGKILL
, current
, 0);
1071 /* walk the whole argument looking for non-ascii chars */
1073 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1074 to_send
= MAX_EXECVE_AUDIT_LEN
;
1077 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1079 * There is no reason for this copy to be short. We just
1080 * copied them here, and the mm hasn't been exposed to user-
1085 send_sig(SIGKILL
, current
, 0);
1088 buf
[to_send
] = '\0';
1089 has_cntl
= audit_string_contains_control(buf
, to_send
);
1092 * hex messages get logged as 2 bytes, so we can only
1093 * send half as much in each message
1095 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1098 len_left
-= to_send
;
1100 } while (len_left
> 0);
1104 if (len
> max_execve_audit_len
)
1107 /* rewalk the argument actually logging the message */
1108 for (i
= 0; len_left
> 0; i
++) {
1111 if (len_left
> max_execve_audit_len
)
1112 to_send
= max_execve_audit_len
;
1116 /* do we have space left to send this argument in this ab? */
1117 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1119 room_left
-= (to_send
* 2);
1121 room_left
-= to_send
;
1122 if (room_left
< 0) {
1125 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1131 * first record needs to say how long the original string was
1132 * so we can be sure nothing was lost.
1134 if ((i
== 0) && (too_long
))
1135 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1136 has_cntl
? 2*len
: len
);
1139 * normally arguments are small enough to fit and we already
1140 * filled buf above when we checked for control characters
1141 * so don't bother with another copy_from_user
1143 if (len
>= max_execve_audit_len
)
1144 ret
= copy_from_user(buf
, p
, to_send
);
1149 send_sig(SIGKILL
, current
, 0);
1152 buf
[to_send
] = '\0';
1154 /* actually log it */
1155 audit_log_format(*ab
, " a%d", arg_num
);
1157 audit_log_format(*ab
, "[%d]", i
);
1158 audit_log_format(*ab
, "=");
1160 audit_log_n_hex(*ab
, buf
, to_send
);
1162 audit_log_string(*ab
, buf
);
1165 len_left
-= to_send
;
1166 *len_sent
+= arg_num_len
;
1168 *len_sent
+= to_send
* 2;
1170 *len_sent
+= to_send
;
1172 /* include the null we didn't log */
1176 static void audit_log_execve_info(struct audit_context
*context
,
1177 struct audit_buffer
**ab
,
1178 struct audit_aux_data_execve
*axi
)
1181 size_t len
, len_sent
= 0;
1182 const char __user
*p
;
1185 if (axi
->mm
!= current
->mm
)
1186 return; /* execve failed, no additional info */
1188 p
= (const char __user
*)axi
->mm
->arg_start
;
1190 audit_log_format(*ab
, "argc=%d", axi
->argc
);
1193 * we need some kernel buffer to hold the userspace args. Just
1194 * allocate one big one rather than allocating one of the right size
1195 * for every single argument inside audit_log_single_execve_arg()
1196 * should be <8k allocation so should be pretty safe.
1198 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1200 audit_panic("out of memory for argv string\n");
1204 for (i
= 0; i
< axi
->argc
; i
++) {
1205 len
= audit_log_single_execve_arg(context
, ab
, i
,
1214 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1218 audit_log_format(ab
, " %s=", prefix
);
1219 CAP_FOR_EACH_U32(i
) {
1220 audit_log_format(ab
, "%08x", cap
->cap
[(_KERNEL_CAPABILITY_U32S
-1) - i
]);
1224 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1226 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1227 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1230 if (!cap_isclear(*perm
)) {
1231 audit_log_cap(ab
, "cap_fp", perm
);
1234 if (!cap_isclear(*inh
)) {
1235 audit_log_cap(ab
, "cap_fi", inh
);
1240 audit_log_format(ab
, " cap_fe=%d cap_fver=%x", name
->fcap
.fE
, name
->fcap_ver
);
1243 static void show_special(struct audit_context
*context
, int *call_panic
)
1245 struct audit_buffer
*ab
;
1248 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1252 switch (context
->type
) {
1253 case AUDIT_SOCKETCALL
: {
1254 int nargs
= context
->socketcall
.nargs
;
1255 audit_log_format(ab
, "nargs=%d", nargs
);
1256 for (i
= 0; i
< nargs
; i
++)
1257 audit_log_format(ab
, " a%d=%lx", i
,
1258 context
->socketcall
.args
[i
]);
1261 u32 osid
= context
->ipc
.osid
;
1263 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#o",
1264 context
->ipc
.uid
, context
->ipc
.gid
, context
->ipc
.mode
);
1268 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1269 audit_log_format(ab
, " osid=%u", osid
);
1272 audit_log_format(ab
, " obj=%s", ctx
);
1273 security_release_secctx(ctx
, len
);
1276 if (context
->ipc
.has_perm
) {
1278 ab
= audit_log_start(context
, GFP_KERNEL
,
1279 AUDIT_IPC_SET_PERM
);
1280 audit_log_format(ab
,
1281 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1282 context
->ipc
.qbytes
,
1283 context
->ipc
.perm_uid
,
1284 context
->ipc
.perm_gid
,
1285 context
->ipc
.perm_mode
);
1290 case AUDIT_MQ_OPEN
: {
1291 audit_log_format(ab
,
1292 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1293 "mq_msgsize=%ld mq_curmsgs=%ld",
1294 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1295 context
->mq_open
.attr
.mq_flags
,
1296 context
->mq_open
.attr
.mq_maxmsg
,
1297 context
->mq_open
.attr
.mq_msgsize
,
1298 context
->mq_open
.attr
.mq_curmsgs
);
1300 case AUDIT_MQ_SENDRECV
: {
1301 audit_log_format(ab
,
1302 "mqdes=%d msg_len=%zd msg_prio=%u "
1303 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1304 context
->mq_sendrecv
.mqdes
,
1305 context
->mq_sendrecv
.msg_len
,
1306 context
->mq_sendrecv
.msg_prio
,
1307 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1308 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1310 case AUDIT_MQ_NOTIFY
: {
1311 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1312 context
->mq_notify
.mqdes
,
1313 context
->mq_notify
.sigev_signo
);
1315 case AUDIT_MQ_GETSETATTR
: {
1316 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1317 audit_log_format(ab
,
1318 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1320 context
->mq_getsetattr
.mqdes
,
1321 attr
->mq_flags
, attr
->mq_maxmsg
,
1322 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1324 case AUDIT_CAPSET
: {
1325 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1326 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1327 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1328 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1331 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1332 context
->mmap
.flags
);
1338 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1340 const struct cred
*cred
;
1341 int i
, call_panic
= 0;
1342 struct audit_buffer
*ab
;
1343 struct audit_aux_data
*aux
;
1346 /* tsk == current */
1347 context
->pid
= tsk
->pid
;
1349 context
->ppid
= task_ppid_nr(tsk
);
1350 cred
= current_cred();
1351 context
->uid
= cred
->uid
;
1352 context
->gid
= cred
->gid
;
1353 context
->euid
= cred
->euid
;
1354 context
->suid
= cred
->suid
;
1355 context
->fsuid
= cred
->fsuid
;
1356 context
->egid
= cred
->egid
;
1357 context
->sgid
= cred
->sgid
;
1358 context
->fsgid
= cred
->fsgid
;
1359 context
->personality
= tsk
->personality
;
1361 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1363 return; /* audit_panic has been called */
1364 audit_log_format(ab
, "arch=%x syscall=%d",
1365 context
->arch
, context
->major
);
1366 if (context
->personality
!= PER_LINUX
)
1367 audit_log_format(ab
, " per=%lx", context
->personality
);
1368 if (context
->return_valid
)
1369 audit_log_format(ab
, " success=%s exit=%ld",
1370 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1371 context
->return_code
);
1373 spin_lock_irq(&tsk
->sighand
->siglock
);
1374 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1375 tty
= tsk
->signal
->tty
->name
;
1378 spin_unlock_irq(&tsk
->sighand
->siglock
);
1380 audit_log_format(ab
,
1381 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1382 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1383 " euid=%u suid=%u fsuid=%u"
1384 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1389 context
->name_count
,
1395 context
->euid
, context
->suid
, context
->fsuid
,
1396 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1400 audit_log_task_info(ab
, tsk
);
1401 audit_log_key(ab
, context
->filterkey
);
1404 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1406 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1408 continue; /* audit_panic has been called */
1410 switch (aux
->type
) {
1412 case AUDIT_EXECVE
: {
1413 struct audit_aux_data_execve
*axi
= (void *)aux
;
1414 audit_log_execve_info(context
, &ab
, axi
);
1417 case AUDIT_BPRM_FCAPS
: {
1418 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1419 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1420 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1421 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1422 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1423 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1424 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1425 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1426 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1427 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1428 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1436 show_special(context
, &call_panic
);
1438 if (context
->fds
[0] >= 0) {
1439 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1441 audit_log_format(ab
, "fd0=%d fd1=%d",
1442 context
->fds
[0], context
->fds
[1]);
1447 if (context
->sockaddr_len
) {
1448 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1450 audit_log_format(ab
, "saddr=");
1451 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1452 context
->sockaddr_len
);
1457 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1458 struct audit_aux_data_pids
*axs
= (void *)aux
;
1460 for (i
= 0; i
< axs
->pid_count
; i
++)
1461 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1462 axs
->target_auid
[i
],
1464 axs
->target_sessionid
[i
],
1466 axs
->target_comm
[i
]))
1470 if (context
->target_pid
&&
1471 audit_log_pid_context(context
, context
->target_pid
,
1472 context
->target_auid
, context
->target_uid
,
1473 context
->target_sessionid
,
1474 context
->target_sid
, context
->target_comm
))
1477 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1478 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1480 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1484 for (i
= 0; i
< context
->name_count
; i
++) {
1485 struct audit_names
*n
= &context
->names
[i
];
1487 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1489 continue; /* audit_panic has been called */
1491 audit_log_format(ab
, "item=%d", i
);
1494 switch(n
->name_len
) {
1495 case AUDIT_NAME_FULL
:
1496 /* log the full path */
1497 audit_log_format(ab
, " name=");
1498 audit_log_untrustedstring(ab
, n
->name
);
1501 /* name was specified as a relative path and the
1502 * directory component is the cwd */
1503 audit_log_d_path(ab
, "name=", &context
->pwd
);
1506 /* log the name's directory component */
1507 audit_log_format(ab
, " name=");
1508 audit_log_n_untrustedstring(ab
, n
->name
,
1512 audit_log_format(ab
, " name=(null)");
1514 if (n
->ino
!= (unsigned long)-1) {
1515 audit_log_format(ab
, " inode=%lu"
1516 " dev=%02x:%02x mode=%#o"
1517 " ouid=%u ogid=%u rdev=%02x:%02x",
1530 if (security_secid_to_secctx(
1531 n
->osid
, &ctx
, &len
)) {
1532 audit_log_format(ab
, " osid=%u", n
->osid
);
1535 audit_log_format(ab
, " obj=%s", ctx
);
1536 security_release_secctx(ctx
, len
);
1540 audit_log_fcaps(ab
, n
);
1545 /* Send end of event record to help user space know we are finished */
1546 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1550 audit_panic("error converting sid to string");
1554 * audit_free - free a per-task audit context
1555 * @tsk: task whose audit context block to free
1557 * Called from copy_process and do_exit
1559 void audit_free(struct task_struct
*tsk
)
1561 struct audit_context
*context
;
1563 context
= audit_get_context(tsk
, 0, 0);
1564 if (likely(!context
))
1567 /* Check for system calls that do not go through the exit
1568 * function (e.g., exit_group), then free context block.
1569 * We use GFP_ATOMIC here because we might be doing this
1570 * in the context of the idle thread */
1571 /* that can happen only if we are called from do_exit() */
1572 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1573 audit_log_exit(context
, tsk
);
1574 if (!list_empty(&context
->killed_trees
))
1575 audit_kill_trees(&context
->killed_trees
);
1577 audit_free_context(context
);
1581 * audit_syscall_entry - fill in an audit record at syscall entry
1582 * @arch: architecture type
1583 * @major: major syscall type (function)
1584 * @a1: additional syscall register 1
1585 * @a2: additional syscall register 2
1586 * @a3: additional syscall register 3
1587 * @a4: additional syscall register 4
1589 * Fill in audit context at syscall entry. This only happens if the
1590 * audit context was created when the task was created and the state or
1591 * filters demand the audit context be built. If the state from the
1592 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1593 * then the record will be written at syscall exit time (otherwise, it
1594 * will only be written if another part of the kernel requests that it
1597 void audit_syscall_entry(int arch
, int major
,
1598 unsigned long a1
, unsigned long a2
,
1599 unsigned long a3
, unsigned long a4
)
1601 struct task_struct
*tsk
= current
;
1602 struct audit_context
*context
= tsk
->audit_context
;
1603 enum audit_state state
;
1605 if (unlikely(!context
))
1609 * This happens only on certain architectures that make system
1610 * calls in kernel_thread via the entry.S interface, instead of
1611 * with direct calls. (If you are porting to a new
1612 * architecture, hitting this condition can indicate that you
1613 * got the _exit/_leave calls backward in entry.S.)
1617 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1619 * This also happens with vm86 emulation in a non-nested manner
1620 * (entries without exits), so this case must be caught.
1622 if (context
->in_syscall
) {
1623 struct audit_context
*newctx
;
1627 "audit(:%d) pid=%d in syscall=%d;"
1628 " entering syscall=%d\n",
1629 context
->serial
, tsk
->pid
, context
->major
, major
);
1631 newctx
= audit_alloc_context(context
->state
);
1633 newctx
->previous
= context
;
1635 tsk
->audit_context
= newctx
;
1637 /* If we can't alloc a new context, the best we
1638 * can do is to leak memory (any pending putname
1639 * will be lost). The only other alternative is
1640 * to abandon auditing. */
1641 audit_zero_context(context
, context
->state
);
1644 BUG_ON(context
->in_syscall
|| context
->name_count
);
1649 context
->arch
= arch
;
1650 context
->major
= major
;
1651 context
->argv
[0] = a1
;
1652 context
->argv
[1] = a2
;
1653 context
->argv
[2] = a3
;
1654 context
->argv
[3] = a4
;
1656 state
= context
->state
;
1657 context
->dummy
= !audit_n_rules
;
1658 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1660 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1662 if (likely(state
== AUDIT_DISABLED
))
1665 context
->serial
= 0;
1666 context
->ctime
= CURRENT_TIME
;
1667 context
->in_syscall
= 1;
1668 context
->current_state
= state
;
1672 void audit_finish_fork(struct task_struct
*child
)
1674 struct audit_context
*ctx
= current
->audit_context
;
1675 struct audit_context
*p
= child
->audit_context
;
1678 if (!ctx
->in_syscall
|| ctx
->current_state
!= AUDIT_RECORD_CONTEXT
)
1680 p
->arch
= ctx
->arch
;
1681 p
->major
= ctx
->major
;
1682 memcpy(p
->argv
, ctx
->argv
, sizeof(ctx
->argv
));
1683 p
->ctime
= ctx
->ctime
;
1684 p
->dummy
= ctx
->dummy
;
1685 p
->in_syscall
= ctx
->in_syscall
;
1686 p
->filterkey
= kstrdup(ctx
->filterkey
, GFP_KERNEL
);
1687 p
->ppid
= current
->pid
;
1688 p
->prio
= ctx
->prio
;
1689 p
->current_state
= ctx
->current_state
;
1693 * audit_syscall_exit - deallocate audit context after a system call
1694 * @valid: success/failure flag
1695 * @return_code: syscall return value
1697 * Tear down after system call. If the audit context has been marked as
1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699 * filtering, or because some other part of the kernel write an audit
1700 * message), then write out the syscall information. In call cases,
1701 * free the names stored from getname().
1703 void audit_syscall_exit(int valid
, long return_code
)
1705 struct task_struct
*tsk
= current
;
1706 struct audit_context
*context
;
1708 context
= audit_get_context(tsk
, valid
, return_code
);
1710 if (likely(!context
))
1713 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1714 audit_log_exit(context
, tsk
);
1716 context
->in_syscall
= 0;
1717 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1719 if (!list_empty(&context
->killed_trees
))
1720 audit_kill_trees(&context
->killed_trees
);
1722 if (context
->previous
) {
1723 struct audit_context
*new_context
= context
->previous
;
1724 context
->previous
= NULL
;
1725 audit_free_context(context
);
1726 tsk
->audit_context
= new_context
;
1728 audit_free_names(context
);
1729 unroll_tree_refs(context
, NULL
, 0);
1730 audit_free_aux(context
);
1731 context
->aux
= NULL
;
1732 context
->aux_pids
= NULL
;
1733 context
->target_pid
= 0;
1734 context
->target_sid
= 0;
1735 context
->sockaddr_len
= 0;
1737 context
->fds
[0] = -1;
1738 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1739 kfree(context
->filterkey
);
1740 context
->filterkey
= NULL
;
1742 tsk
->audit_context
= context
;
1746 static inline void handle_one(const struct inode
*inode
)
1748 #ifdef CONFIG_AUDIT_TREE
1749 struct audit_context
*context
;
1750 struct audit_tree_refs
*p
;
1751 struct audit_chunk
*chunk
;
1753 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1755 context
= current
->audit_context
;
1757 count
= context
->tree_count
;
1759 chunk
= audit_tree_lookup(inode
);
1763 if (likely(put_tree_ref(context
, chunk
)))
1765 if (unlikely(!grow_tree_refs(context
))) {
1766 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1767 audit_set_auditable(context
);
1768 audit_put_chunk(chunk
);
1769 unroll_tree_refs(context
, p
, count
);
1772 put_tree_ref(context
, chunk
);
1776 static void handle_path(const struct dentry
*dentry
)
1778 #ifdef CONFIG_AUDIT_TREE
1779 struct audit_context
*context
;
1780 struct audit_tree_refs
*p
;
1781 const struct dentry
*d
, *parent
;
1782 struct audit_chunk
*drop
;
1786 context
= current
->audit_context
;
1788 count
= context
->tree_count
;
1793 seq
= read_seqbegin(&rename_lock
);
1795 struct inode
*inode
= d
->d_inode
;
1796 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1797 struct audit_chunk
*chunk
;
1798 chunk
= audit_tree_lookup(inode
);
1800 if (unlikely(!put_tree_ref(context
, chunk
))) {
1806 parent
= d
->d_parent
;
1811 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1814 /* just a race with rename */
1815 unroll_tree_refs(context
, p
, count
);
1818 audit_put_chunk(drop
);
1819 if (grow_tree_refs(context
)) {
1820 /* OK, got more space */
1821 unroll_tree_refs(context
, p
, count
);
1826 "out of memory, audit has lost a tree reference\n");
1827 unroll_tree_refs(context
, p
, count
);
1828 audit_set_auditable(context
);
1836 * audit_getname - add a name to the list
1837 * @name: name to add
1839 * Add a name to the list of audit names for this context.
1840 * Called from fs/namei.c:getname().
1842 void __audit_getname(const char *name
)
1844 struct audit_context
*context
= current
->audit_context
;
1846 if (IS_ERR(name
) || !name
)
1849 if (!context
->in_syscall
) {
1850 #if AUDIT_DEBUG == 2
1851 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1852 __FILE__
, __LINE__
, context
->serial
, name
);
1857 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1858 context
->names
[context
->name_count
].name
= name
;
1859 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1860 context
->names
[context
->name_count
].name_put
= 1;
1861 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1862 context
->names
[context
->name_count
].osid
= 0;
1863 ++context
->name_count
;
1864 if (!context
->pwd
.dentry
)
1865 get_fs_pwd(current
->fs
, &context
->pwd
);
1868 /* audit_putname - intercept a putname request
1869 * @name: name to intercept and delay for putname
1871 * If we have stored the name from getname in the audit context,
1872 * then we delay the putname until syscall exit.
1873 * Called from include/linux/fs.h:putname().
1875 void audit_putname(const char *name
)
1877 struct audit_context
*context
= current
->audit_context
;
1880 if (!context
->in_syscall
) {
1881 #if AUDIT_DEBUG == 2
1882 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1883 __FILE__
, __LINE__
, context
->serial
, name
);
1884 if (context
->name_count
) {
1886 for (i
= 0; i
< context
->name_count
; i
++)
1887 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1888 context
->names
[i
].name
,
1889 context
->names
[i
].name
?: "(null)");
1896 ++context
->put_count
;
1897 if (context
->put_count
> context
->name_count
) {
1898 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1899 " in_syscall=%d putname(%p) name_count=%d"
1902 context
->serial
, context
->major
,
1903 context
->in_syscall
, name
, context
->name_count
,
1904 context
->put_count
);
1911 static int audit_inc_name_count(struct audit_context
*context
,
1912 const struct inode
*inode
)
1914 if (context
->name_count
>= AUDIT_NAMES
) {
1916 printk(KERN_DEBUG
"audit: name_count maxed, losing inode data: "
1917 "dev=%02x:%02x, inode=%lu\n",
1918 MAJOR(inode
->i_sb
->s_dev
),
1919 MINOR(inode
->i_sb
->s_dev
),
1923 printk(KERN_DEBUG
"name_count maxed, losing inode data\n");
1926 context
->name_count
++;
1928 context
->ino_count
++;
1934 static inline int audit_copy_fcaps(struct audit_names
*name
, const struct dentry
*dentry
)
1936 struct cpu_vfs_cap_data caps
;
1939 memset(&name
->fcap
.permitted
, 0, sizeof(kernel_cap_t
));
1940 memset(&name
->fcap
.inheritable
, 0, sizeof(kernel_cap_t
));
1947 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
1951 name
->fcap
.permitted
= caps
.permitted
;
1952 name
->fcap
.inheritable
= caps
.inheritable
;
1953 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
1954 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
1960 /* Copy inode data into an audit_names. */
1961 static void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
1962 const struct inode
*inode
)
1964 name
->ino
= inode
->i_ino
;
1965 name
->dev
= inode
->i_sb
->s_dev
;
1966 name
->mode
= inode
->i_mode
;
1967 name
->uid
= inode
->i_uid
;
1968 name
->gid
= inode
->i_gid
;
1969 name
->rdev
= inode
->i_rdev
;
1970 security_inode_getsecid(inode
, &name
->osid
);
1971 audit_copy_fcaps(name
, dentry
);
1975 * audit_inode - store the inode and device from a lookup
1976 * @name: name being audited
1977 * @dentry: dentry being audited
1979 * Called from fs/namei.c:path_lookup().
1981 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1984 struct audit_context
*context
= current
->audit_context
;
1985 const struct inode
*inode
= dentry
->d_inode
;
1987 if (!context
->in_syscall
)
1989 if (context
->name_count
1990 && context
->names
[context
->name_count
-1].name
1991 && context
->names
[context
->name_count
-1].name
== name
)
1992 idx
= context
->name_count
- 1;
1993 else if (context
->name_count
> 1
1994 && context
->names
[context
->name_count
-2].name
1995 && context
->names
[context
->name_count
-2].name
== name
)
1996 idx
= context
->name_count
- 2;
1998 /* FIXME: how much do we care about inodes that have no
1999 * associated name? */
2000 if (audit_inc_name_count(context
, inode
))
2002 idx
= context
->name_count
- 1;
2003 context
->names
[idx
].name
= NULL
;
2005 handle_path(dentry
);
2006 audit_copy_inode(&context
->names
[idx
], dentry
, inode
);
2010 * audit_inode_child - collect inode info for created/removed objects
2011 * @dentry: dentry being audited
2012 * @parent: inode of dentry parent
2014 * For syscalls that create or remove filesystem objects, audit_inode
2015 * can only collect information for the filesystem object's parent.
2016 * This call updates the audit context with the child's information.
2017 * Syscalls that create a new filesystem object must be hooked after
2018 * the object is created. Syscalls that remove a filesystem object
2019 * must be hooked prior, in order to capture the target inode during
2020 * unsuccessful attempts.
2022 void __audit_inode_child(const struct dentry
*dentry
,
2023 const struct inode
*parent
)
2026 struct audit_context
*context
= current
->audit_context
;
2027 const char *found_parent
= NULL
, *found_child
= NULL
;
2028 const struct inode
*inode
= dentry
->d_inode
;
2029 const char *dname
= dentry
->d_name
.name
;
2032 if (!context
->in_syscall
)
2038 /* parent is more likely, look for it first */
2039 for (idx
= 0; idx
< context
->name_count
; idx
++) {
2040 struct audit_names
*n
= &context
->names
[idx
];
2045 if (n
->ino
== parent
->i_ino
&&
2046 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2047 n
->name_len
= dirlen
; /* update parent data in place */
2048 found_parent
= n
->name
;
2053 /* no matching parent, look for matching child */
2054 for (idx
= 0; idx
< context
->name_count
; idx
++) {
2055 struct audit_names
*n
= &context
->names
[idx
];
2060 /* strcmp() is the more likely scenario */
2061 if (!strcmp(dname
, n
->name
) ||
2062 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2064 audit_copy_inode(n
, NULL
, inode
);
2066 n
->ino
= (unsigned long)-1;
2067 found_child
= n
->name
;
2073 if (!found_parent
) {
2074 if (audit_inc_name_count(context
, parent
))
2076 idx
= context
->name_count
- 1;
2077 context
->names
[idx
].name
= NULL
;
2078 audit_copy_inode(&context
->names
[idx
], NULL
, parent
);
2082 if (audit_inc_name_count(context
, inode
))
2084 idx
= context
->name_count
- 1;
2086 /* Re-use the name belonging to the slot for a matching parent
2087 * directory. All names for this context are relinquished in
2088 * audit_free_names() */
2090 context
->names
[idx
].name
= found_parent
;
2091 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
2092 /* don't call __putname() */
2093 context
->names
[idx
].name_put
= 0;
2095 context
->names
[idx
].name
= NULL
;
2099 audit_copy_inode(&context
->names
[idx
], NULL
, inode
);
2101 context
->names
[idx
].ino
= (unsigned long)-1;
2104 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2107 * auditsc_get_stamp - get local copies of audit_context values
2108 * @ctx: audit_context for the task
2109 * @t: timespec to store time recorded in the audit_context
2110 * @serial: serial value that is recorded in the audit_context
2112 * Also sets the context as auditable.
2114 int auditsc_get_stamp(struct audit_context
*ctx
,
2115 struct timespec
*t
, unsigned int *serial
)
2117 if (!ctx
->in_syscall
)
2120 ctx
->serial
= audit_serial();
2121 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2122 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2123 *serial
= ctx
->serial
;
2126 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2131 /* global counter which is incremented every time something logs in */
2132 static atomic_t session_id
= ATOMIC_INIT(0);
2135 * audit_set_loginuid - set a task's audit_context loginuid
2136 * @task: task whose audit context is being modified
2137 * @loginuid: loginuid value
2141 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2143 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
2145 unsigned int sessionid
= atomic_inc_return(&session_id
);
2146 struct audit_context
*context
= task
->audit_context
;
2148 if (context
&& context
->in_syscall
) {
2149 struct audit_buffer
*ab
;
2151 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2153 audit_log_format(ab
, "login pid=%d uid=%u "
2154 "old auid=%u new auid=%u"
2155 " old ses=%u new ses=%u",
2156 task
->pid
, task_uid(task
),
2157 task
->loginuid
, loginuid
,
2158 task
->sessionid
, sessionid
);
2162 task
->sessionid
= sessionid
;
2163 task
->loginuid
= loginuid
;
2168 * __audit_mq_open - record audit data for a POSIX MQ open
2171 * @attr: queue attributes
2174 void __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr
*attr
)
2176 struct audit_context
*context
= current
->audit_context
;
2179 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2181 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2183 context
->mq_open
.oflag
= oflag
;
2184 context
->mq_open
.mode
= mode
;
2186 context
->type
= AUDIT_MQ_OPEN
;
2190 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2191 * @mqdes: MQ descriptor
2192 * @msg_len: Message length
2193 * @msg_prio: Message priority
2194 * @abs_timeout: Message timeout in absolute time
2197 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2198 const struct timespec
*abs_timeout
)
2200 struct audit_context
*context
= current
->audit_context
;
2201 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2204 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2206 memset(p
, 0, sizeof(struct timespec
));
2208 context
->mq_sendrecv
.mqdes
= mqdes
;
2209 context
->mq_sendrecv
.msg_len
= msg_len
;
2210 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2212 context
->type
= AUDIT_MQ_SENDRECV
;
2216 * __audit_mq_notify - record audit data for a POSIX MQ notify
2217 * @mqdes: MQ descriptor
2218 * @notification: Notification event
2222 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2224 struct audit_context
*context
= current
->audit_context
;
2227 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2229 context
->mq_notify
.sigev_signo
= 0;
2231 context
->mq_notify
.mqdes
= mqdes
;
2232 context
->type
= AUDIT_MQ_NOTIFY
;
2236 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2237 * @mqdes: MQ descriptor
2241 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2243 struct audit_context
*context
= current
->audit_context
;
2244 context
->mq_getsetattr
.mqdes
= mqdes
;
2245 context
->mq_getsetattr
.mqstat
= *mqstat
;
2246 context
->type
= AUDIT_MQ_GETSETATTR
;
2250 * audit_ipc_obj - record audit data for ipc object
2251 * @ipcp: ipc permissions
2254 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2256 struct audit_context
*context
= current
->audit_context
;
2257 context
->ipc
.uid
= ipcp
->uid
;
2258 context
->ipc
.gid
= ipcp
->gid
;
2259 context
->ipc
.mode
= ipcp
->mode
;
2260 context
->ipc
.has_perm
= 0;
2261 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2262 context
->type
= AUDIT_IPC
;
2266 * audit_ipc_set_perm - record audit data for new ipc permissions
2267 * @qbytes: msgq bytes
2268 * @uid: msgq user id
2269 * @gid: msgq group id
2270 * @mode: msgq mode (permissions)
2272 * Called only after audit_ipc_obj().
2274 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2276 struct audit_context
*context
= current
->audit_context
;
2278 context
->ipc
.qbytes
= qbytes
;
2279 context
->ipc
.perm_uid
= uid
;
2280 context
->ipc
.perm_gid
= gid
;
2281 context
->ipc
.perm_mode
= mode
;
2282 context
->ipc
.has_perm
= 1;
2285 int audit_bprm(struct linux_binprm
*bprm
)
2287 struct audit_aux_data_execve
*ax
;
2288 struct audit_context
*context
= current
->audit_context
;
2290 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2293 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2297 ax
->argc
= bprm
->argc
;
2298 ax
->envc
= bprm
->envc
;
2300 ax
->d
.type
= AUDIT_EXECVE
;
2301 ax
->d
.next
= context
->aux
;
2302 context
->aux
= (void *)ax
;
2308 * audit_socketcall - record audit data for sys_socketcall
2309 * @nargs: number of args
2313 void audit_socketcall(int nargs
, unsigned long *args
)
2315 struct audit_context
*context
= current
->audit_context
;
2317 if (likely(!context
|| context
->dummy
))
2320 context
->type
= AUDIT_SOCKETCALL
;
2321 context
->socketcall
.nargs
= nargs
;
2322 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2326 * __audit_fd_pair - record audit data for pipe and socketpair
2327 * @fd1: the first file descriptor
2328 * @fd2: the second file descriptor
2331 void __audit_fd_pair(int fd1
, int fd2
)
2333 struct audit_context
*context
= current
->audit_context
;
2334 context
->fds
[0] = fd1
;
2335 context
->fds
[1] = fd2
;
2339 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2340 * @len: data length in user space
2341 * @a: data address in kernel space
2343 * Returns 0 for success or NULL context or < 0 on error.
2345 int audit_sockaddr(int len
, void *a
)
2347 struct audit_context
*context
= current
->audit_context
;
2349 if (likely(!context
|| context
->dummy
))
2352 if (!context
->sockaddr
) {
2353 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2356 context
->sockaddr
= p
;
2359 context
->sockaddr_len
= len
;
2360 memcpy(context
->sockaddr
, a
, len
);
2364 void __audit_ptrace(struct task_struct
*t
)
2366 struct audit_context
*context
= current
->audit_context
;
2368 context
->target_pid
= t
->pid
;
2369 context
->target_auid
= audit_get_loginuid(t
);
2370 context
->target_uid
= task_uid(t
);
2371 context
->target_sessionid
= audit_get_sessionid(t
);
2372 security_task_getsecid(t
, &context
->target_sid
);
2373 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2377 * audit_signal_info - record signal info for shutting down audit subsystem
2378 * @sig: signal value
2379 * @t: task being signaled
2381 * If the audit subsystem is being terminated, record the task (pid)
2382 * and uid that is doing that.
2384 int __audit_signal_info(int sig
, struct task_struct
*t
)
2386 struct audit_aux_data_pids
*axp
;
2387 struct task_struct
*tsk
= current
;
2388 struct audit_context
*ctx
= tsk
->audit_context
;
2389 uid_t uid
= current_uid(), t_uid
= task_uid(t
);
2391 if (audit_pid
&& t
->tgid
== audit_pid
) {
2392 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2393 audit_sig_pid
= tsk
->pid
;
2394 if (tsk
->loginuid
!= -1)
2395 audit_sig_uid
= tsk
->loginuid
;
2397 audit_sig_uid
= uid
;
2398 security_task_getsecid(tsk
, &audit_sig_sid
);
2400 if (!audit_signals
|| audit_dummy_context())
2404 /* optimize the common case by putting first signal recipient directly
2405 * in audit_context */
2406 if (!ctx
->target_pid
) {
2407 ctx
->target_pid
= t
->tgid
;
2408 ctx
->target_auid
= audit_get_loginuid(t
);
2409 ctx
->target_uid
= t_uid
;
2410 ctx
->target_sessionid
= audit_get_sessionid(t
);
2411 security_task_getsecid(t
, &ctx
->target_sid
);
2412 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2416 axp
= (void *)ctx
->aux_pids
;
2417 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2418 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2422 axp
->d
.type
= AUDIT_OBJ_PID
;
2423 axp
->d
.next
= ctx
->aux_pids
;
2424 ctx
->aux_pids
= (void *)axp
;
2426 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2428 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2429 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2430 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2431 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2432 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2433 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2440 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2441 * @bprm: pointer to the bprm being processed
2442 * @new: the proposed new credentials
2443 * @old: the old credentials
2445 * Simply check if the proc already has the caps given by the file and if not
2446 * store the priv escalation info for later auditing at the end of the syscall
2450 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2451 const struct cred
*new, const struct cred
*old
)
2453 struct audit_aux_data_bprm_fcaps
*ax
;
2454 struct audit_context
*context
= current
->audit_context
;
2455 struct cpu_vfs_cap_data vcaps
;
2456 struct dentry
*dentry
;
2458 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2462 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2463 ax
->d
.next
= context
->aux
;
2464 context
->aux
= (void *)ax
;
2466 dentry
= dget(bprm
->file
->f_dentry
);
2467 get_vfs_caps_from_disk(dentry
, &vcaps
);
2470 ax
->fcap
.permitted
= vcaps
.permitted
;
2471 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2472 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2473 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2475 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2476 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2477 ax
->old_pcap
.effective
= old
->cap_effective
;
2479 ax
->new_pcap
.permitted
= new->cap_permitted
;
2480 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2481 ax
->new_pcap
.effective
= new->cap_effective
;
2486 * __audit_log_capset - store information about the arguments to the capset syscall
2487 * @pid: target pid of the capset call
2488 * @new: the new credentials
2489 * @old: the old (current) credentials
2491 * Record the aguments userspace sent to sys_capset for later printing by the
2492 * audit system if applicable
2494 void __audit_log_capset(pid_t pid
,
2495 const struct cred
*new, const struct cred
*old
)
2497 struct audit_context
*context
= current
->audit_context
;
2498 context
->capset
.pid
= pid
;
2499 context
->capset
.cap
.effective
= new->cap_effective
;
2500 context
->capset
.cap
.inheritable
= new->cap_effective
;
2501 context
->capset
.cap
.permitted
= new->cap_permitted
;
2502 context
->type
= AUDIT_CAPSET
;
2505 void __audit_mmap_fd(int fd
, int flags
)
2507 struct audit_context
*context
= current
->audit_context
;
2508 context
->mmap
.fd
= fd
;
2509 context
->mmap
.flags
= flags
;
2510 context
->type
= AUDIT_MMAP
;
2514 * audit_core_dumps - record information about processes that end abnormally
2515 * @signr: signal value
2517 * If a process ends with a core dump, something fishy is going on and we
2518 * should record the event for investigation.
2520 void audit_core_dumps(long signr
)
2522 struct audit_buffer
*ab
;
2524 uid_t auid
= audit_get_loginuid(current
), uid
;
2526 unsigned int sessionid
= audit_get_sessionid(current
);
2531 if (signr
== SIGQUIT
) /* don't care for those */
2534 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2535 current_uid_gid(&uid
, &gid
);
2536 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2537 auid
, uid
, gid
, sessionid
);
2538 security_task_getsecid(current
, &sid
);
2543 if (security_secid_to_secctx(sid
, &ctx
, &len
))
2544 audit_log_format(ab
, " ssid=%u", sid
);
2546 audit_log_format(ab
, " subj=%s", ctx
);
2547 security_release_secctx(ctx
, len
);
2550 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2551 audit_log_untrustedstring(ab
, current
->comm
);
2552 audit_log_format(ab
, " sig=%ld", signr
);
2556 struct list_head
*audit_killed_trees(void)
2558 struct audit_context
*ctx
= current
->audit_context
;
2559 if (likely(!ctx
|| !ctx
->in_syscall
))
2561 return &ctx
->killed_trees
;