2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
30 #include "xhci-trace.h"
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
39 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
,
40 unsigned int cycle_state
, gfp_t flags
)
42 struct xhci_segment
*seg
;
46 seg
= kzalloc(sizeof *seg
, flags
);
50 seg
->trbs
= dma_pool_alloc(xhci
->segment_pool
, flags
, &dma
);
56 memset(seg
->trbs
, 0, TRB_SEGMENT_SIZE
);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state
== 0) {
59 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
60 seg
->trbs
[i
].link
.control
|= cpu_to_le32(TRB_CYCLE
);
68 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
71 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
77 static void xhci_free_segments_for_ring(struct xhci_hcd
*xhci
,
78 struct xhci_segment
*first
)
80 struct xhci_segment
*seg
;
83 while (seg
!= first
) {
84 struct xhci_segment
*next
= seg
->next
;
85 xhci_segment_free(xhci
, seg
);
88 xhci_segment_free(xhci
, first
);
92 * Make the prev segment point to the next segment.
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment. The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
99 struct xhci_segment
*next
, enum xhci_ring_type type
)
106 if (type
!= TYPE_EVENT
) {
107 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
108 cpu_to_le64(next
->dma
);
110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
112 val
&= ~TRB_TYPE_BITMASK
;
113 val
|= TRB_TYPE(TRB_LINK
);
114 /* Always set the chain bit with 0.95 hardware */
115 /* Set chain bit for isoc rings on AMD 0.96 host */
116 if (xhci_link_trb_quirk(xhci
) ||
117 (type
== TYPE_ISOC
&&
118 (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
120 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
125 * Link the ring to the new segments.
126 * Set Toggle Cycle for the new ring if needed.
128 static void xhci_link_rings(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
129 struct xhci_segment
*first
, struct xhci_segment
*last
,
130 unsigned int num_segs
)
132 struct xhci_segment
*next
;
134 if (!ring
|| !first
|| !last
)
137 next
= ring
->enq_seg
->next
;
138 xhci_link_segments(xhci
, ring
->enq_seg
, first
, ring
->type
);
139 xhci_link_segments(xhci
, last
, next
, ring
->type
);
140 ring
->num_segs
+= num_segs
;
141 ring
->num_trbs_free
+= (TRBS_PER_SEGMENT
- 1) * num_segs
;
143 if (ring
->type
!= TYPE_EVENT
&& ring
->enq_seg
== ring
->last_seg
) {
144 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
145 &= ~cpu_to_le32(LINK_TOGGLE
);
146 last
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
147 |= cpu_to_le32(LINK_TOGGLE
);
148 ring
->last_seg
= last
;
153 * We need a radix tree for mapping physical addresses of TRBs to which stream
154 * ID they belong to. We need to do this because the host controller won't tell
155 * us which stream ring the TRB came from. We could store the stream ID in an
156 * event data TRB, but that doesn't help us for the cancellation case, since the
157 * endpoint may stop before it reaches that event data TRB.
159 * The radix tree maps the upper portion of the TRB DMA address to a ring
160 * segment that has the same upper portion of DMA addresses. For example, say I
161 * have segments of size 1KB, that are always 1KB aligned. A segment may
162 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
163 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
164 * pass the radix tree a key to get the right stream ID:
166 * 0x10c90fff >> 10 = 0x43243
167 * 0x10c912c0 >> 10 = 0x43244
168 * 0x10c91400 >> 10 = 0x43245
170 * Obviously, only those TRBs with DMA addresses that are within the segment
171 * will make the radix tree return the stream ID for that ring.
173 * Caveats for the radix tree:
175 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
180 * extended systems (where the DMA address can be bigger than 32-bits),
181 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
183 static int xhci_insert_segment_mapping(struct radix_tree_root
*trb_address_map
,
184 struct xhci_ring
*ring
,
185 struct xhci_segment
*seg
,
191 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
192 /* Skip any segments that were already added. */
193 if (radix_tree_lookup(trb_address_map
, key
))
196 ret
= radix_tree_maybe_preload(mem_flags
);
199 ret
= radix_tree_insert(trb_address_map
,
201 radix_tree_preload_end();
205 static void xhci_remove_segment_mapping(struct radix_tree_root
*trb_address_map
,
206 struct xhci_segment
*seg
)
210 key
= (unsigned long)(seg
->dma
>> TRB_SEGMENT_SHIFT
);
211 if (radix_tree_lookup(trb_address_map
, key
))
212 radix_tree_delete(trb_address_map
, key
);
215 static int xhci_update_stream_segment_mapping(
216 struct radix_tree_root
*trb_address_map
,
217 struct xhci_ring
*ring
,
218 struct xhci_segment
*first_seg
,
219 struct xhci_segment
*last_seg
,
222 struct xhci_segment
*seg
;
223 struct xhci_segment
*failed_seg
;
226 if (WARN_ON_ONCE(trb_address_map
== NULL
))
231 ret
= xhci_insert_segment_mapping(trb_address_map
,
232 ring
, seg
, mem_flags
);
238 } while (seg
!= first_seg
);
246 xhci_remove_segment_mapping(trb_address_map
, seg
);
247 if (seg
== failed_seg
)
250 } while (seg
!= first_seg
);
255 static void xhci_remove_stream_mapping(struct xhci_ring
*ring
)
257 struct xhci_segment
*seg
;
259 if (WARN_ON_ONCE(ring
->trb_address_map
== NULL
))
262 seg
= ring
->first_seg
;
264 xhci_remove_segment_mapping(ring
->trb_address_map
, seg
);
266 } while (seg
!= ring
->first_seg
);
269 static int xhci_update_stream_mapping(struct xhci_ring
*ring
, gfp_t mem_flags
)
271 return xhci_update_stream_segment_mapping(ring
->trb_address_map
, ring
,
272 ring
->first_seg
, ring
->last_seg
, mem_flags
);
275 /* XXX: Do we need the hcd structure in all these functions? */
276 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
281 if (ring
->first_seg
) {
282 if (ring
->type
== TYPE_STREAM
)
283 xhci_remove_stream_mapping(ring
);
284 xhci_free_segments_for_ring(xhci
, ring
->first_seg
);
290 static void xhci_initialize_ring_info(struct xhci_ring
*ring
,
291 unsigned int cycle_state
)
293 /* The ring is empty, so the enqueue pointer == dequeue pointer */
294 ring
->enqueue
= ring
->first_seg
->trbs
;
295 ring
->enq_seg
= ring
->first_seg
;
296 ring
->dequeue
= ring
->enqueue
;
297 ring
->deq_seg
= ring
->first_seg
;
298 /* The ring is initialized to 0. The producer must write 1 to the cycle
299 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
300 * compare CCS to the cycle bit to check ownership, so CCS = 1.
302 * New rings are initialized with cycle state equal to 1; if we are
303 * handling ring expansion, set the cycle state equal to the old ring.
305 ring
->cycle_state
= cycle_state
;
306 /* Not necessary for new rings, but needed for re-initialized rings */
307 ring
->enq_updates
= 0;
308 ring
->deq_updates
= 0;
311 * Each segment has a link TRB, and leave an extra TRB for SW
314 ring
->num_trbs_free
= ring
->num_segs
* (TRBS_PER_SEGMENT
- 1) - 1;
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd
*xhci
,
319 struct xhci_segment
**first
, struct xhci_segment
**last
,
320 unsigned int num_segs
, unsigned int cycle_state
,
321 enum xhci_ring_type type
, gfp_t flags
)
323 struct xhci_segment
*prev
;
325 prev
= xhci_segment_alloc(xhci
, cycle_state
, flags
);
331 while (num_segs
> 0) {
332 struct xhci_segment
*next
;
334 next
= xhci_segment_alloc(xhci
, cycle_state
, flags
);
339 xhci_segment_free(xhci
, prev
);
344 xhci_link_segments(xhci
, prev
, next
, type
);
349 xhci_link_segments(xhci
, prev
, *first
, type
);
356 * Create a new ring with zero or more segments.
358 * Link each segment together into a ring.
359 * Set the end flag and the cycle toggle bit on the last segment.
360 * See section 4.9.1 and figures 15 and 16.
362 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
363 unsigned int num_segs
, unsigned int cycle_state
,
364 enum xhci_ring_type type
, gfp_t flags
)
366 struct xhci_ring
*ring
;
369 ring
= kzalloc(sizeof *(ring
), flags
);
373 ring
->num_segs
= num_segs
;
374 INIT_LIST_HEAD(&ring
->td_list
);
379 ret
= xhci_alloc_segments_for_ring(xhci
, &ring
->first_seg
,
380 &ring
->last_seg
, num_segs
, cycle_state
, type
, flags
);
384 /* Only event ring does not use link TRB */
385 if (type
!= TYPE_EVENT
) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring
->last_seg
->trbs
[TRBS_PER_SEGMENT
- 1].link
.control
|=
388 cpu_to_le32(LINK_TOGGLE
);
390 xhci_initialize_ring_info(ring
, cycle_state
);
398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd
*xhci
,
399 struct xhci_virt_device
*virt_dev
,
400 unsigned int ep_index
)
404 rings_cached
= virt_dev
->num_rings_cached
;
405 if (rings_cached
< XHCI_MAX_RINGS_CACHED
) {
406 virt_dev
->ring_cache
[rings_cached
] =
407 virt_dev
->eps
[ep_index
].ring
;
408 virt_dev
->num_rings_cached
++;
409 xhci_dbg(xhci
, "Cached old ring, "
410 "%d ring%s cached\n",
411 virt_dev
->num_rings_cached
,
412 (virt_dev
->num_rings_cached
> 1) ? "s" : "");
414 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
415 xhci_dbg(xhci
, "Ring cache full (%d rings), "
417 virt_dev
->num_rings_cached
);
419 virt_dev
->eps
[ep_index
].ring
= NULL
;
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423 * pointers to the beginning of the ring.
425 static void xhci_reinit_cached_ring(struct xhci_hcd
*xhci
,
426 struct xhci_ring
*ring
, unsigned int cycle_state
,
427 enum xhci_ring_type type
)
429 struct xhci_segment
*seg
= ring
->first_seg
;
434 sizeof(union xhci_trb
)*TRBS_PER_SEGMENT
);
435 if (cycle_state
== 0) {
436 for (i
= 0; i
< TRBS_PER_SEGMENT
; i
++)
437 seg
->trbs
[i
].link
.control
|=
438 cpu_to_le32(TRB_CYCLE
);
440 /* All endpoint rings have link TRBs */
441 xhci_link_segments(xhci
, seg
, seg
->next
, type
);
443 } while (seg
!= ring
->first_seg
);
445 xhci_initialize_ring_info(ring
, cycle_state
);
446 /* td list should be empty since all URBs have been cancelled,
447 * but just in case...
449 INIT_LIST_HEAD(&ring
->td_list
);
453 * Expand an existing ring.
454 * Look for a cached ring or allocate a new ring which has same segment numbers
455 * and link the two rings.
457 int xhci_ring_expansion(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
,
458 unsigned int num_trbs
, gfp_t flags
)
460 struct xhci_segment
*first
;
461 struct xhci_segment
*last
;
462 unsigned int num_segs
;
463 unsigned int num_segs_needed
;
466 num_segs_needed
= (num_trbs
+ (TRBS_PER_SEGMENT
- 1) - 1) /
467 (TRBS_PER_SEGMENT
- 1);
469 /* Allocate number of segments we needed, or double the ring size */
470 num_segs
= ring
->num_segs
> num_segs_needed
?
471 ring
->num_segs
: num_segs_needed
;
473 ret
= xhci_alloc_segments_for_ring(xhci
, &first
, &last
,
474 num_segs
, ring
->cycle_state
, ring
->type
, flags
);
478 if (ring
->type
== TYPE_STREAM
)
479 ret
= xhci_update_stream_segment_mapping(ring
->trb_address_map
,
480 ring
, first
, last
, flags
);
482 struct xhci_segment
*next
;
485 xhci_segment_free(xhci
, first
);
493 xhci_link_rings(xhci
, ring
, first
, last
, num_segs
);
494 xhci_dbg_trace(xhci
, trace_xhci_dbg_ring_expansion
,
495 "ring expansion succeed, now has %d segments",
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
503 static struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
504 int type
, gfp_t flags
)
506 struct xhci_container_ctx
*ctx
;
508 if ((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
))
511 ctx
= kzalloc(sizeof(*ctx
), flags
);
516 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
517 if (type
== XHCI_CTX_TYPE_INPUT
)
518 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
520 ctx
->bytes
= dma_pool_alloc(xhci
->device_pool
, flags
, &ctx
->dma
);
525 memset(ctx
->bytes
, 0, ctx
->size
);
529 static void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
530 struct xhci_container_ctx
*ctx
)
534 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
538 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(struct xhci_hcd
*xhci
,
539 struct xhci_container_ctx
*ctx
)
541 if (ctx
->type
!= XHCI_CTX_TYPE_INPUT
)
544 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
547 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
548 struct xhci_container_ctx
*ctx
)
550 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
551 return (struct xhci_slot_ctx
*)ctx
->bytes
;
553 return (struct xhci_slot_ctx
*)
554 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
557 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
558 struct xhci_container_ctx
*ctx
,
559 unsigned int ep_index
)
561 /* increment ep index by offset of start of ep ctx array */
563 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
566 return (struct xhci_ep_ctx
*)
567 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
571 /***************** Streams structures manipulation *************************/
573 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
574 unsigned int num_stream_ctxs
,
575 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
577 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
578 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
580 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
581 dma_free_coherent(dev
, size
,
583 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
584 return dma_pool_free(xhci
->small_streams_pool
,
587 return dma_pool_free(xhci
->medium_streams_pool
,
592 * The stream context array for each endpoint with bulk streams enabled can
593 * vary in size, based on:
594 * - how many streams the endpoint supports,
595 * - the maximum primary stream array size the host controller supports,
596 * - and how many streams the device driver asks for.
598 * The stream context array must be a power of 2, and can be as small as
599 * 64 bytes or as large as 1MB.
601 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
602 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
605 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
606 size_t size
= sizeof(struct xhci_stream_ctx
) * num_stream_ctxs
;
608 if (size
> MEDIUM_STREAM_ARRAY_SIZE
)
609 return dma_alloc_coherent(dev
, size
,
611 else if (size
<= SMALL_STREAM_ARRAY_SIZE
)
612 return dma_pool_alloc(xhci
->small_streams_pool
,
615 return dma_pool_alloc(xhci
->medium_streams_pool
,
619 struct xhci_ring
*xhci_dma_to_transfer_ring(
620 struct xhci_virt_ep
*ep
,
623 if (ep
->ep_state
& EP_HAS_STREAMS
)
624 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
625 address
>> TRB_SEGMENT_SHIFT
);
629 struct xhci_ring
*xhci_stream_id_to_ring(
630 struct xhci_virt_device
*dev
,
631 unsigned int ep_index
,
632 unsigned int stream_id
)
634 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
638 if (!ep
->stream_info
)
641 if (stream_id
> ep
->stream_info
->num_streams
)
643 return ep
->stream_info
->stream_rings
[stream_id
];
647 * Change an endpoint's internal structure so it supports stream IDs. The
648 * number of requested streams includes stream 0, which cannot be used by device
651 * The number of stream contexts in the stream context array may be bigger than
652 * the number of streams the driver wants to use. This is because the number of
653 * stream context array entries must be a power of two.
655 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
656 unsigned int num_stream_ctxs
,
657 unsigned int num_streams
, gfp_t mem_flags
)
659 struct xhci_stream_info
*stream_info
;
661 struct xhci_ring
*cur_ring
;
665 xhci_dbg(xhci
, "Allocating %u streams and %u "
666 "stream context array entries.\n",
667 num_streams
, num_stream_ctxs
);
668 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
669 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
672 xhci
->cmd_ring_reserved_trbs
++;
674 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
678 stream_info
->num_streams
= num_streams
;
679 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
681 /* Initialize the array of virtual pointers to stream rings. */
682 stream_info
->stream_rings
= kzalloc(
683 sizeof(struct xhci_ring
*)*num_streams
,
685 if (!stream_info
->stream_rings
)
688 /* Initialize the array of DMA addresses for stream rings for the HW. */
689 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
690 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
692 if (!stream_info
->stream_ctx_array
)
694 memset(stream_info
->stream_ctx_array
, 0,
695 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
697 /* Allocate everything needed to free the stream rings later */
698 stream_info
->free_streams_command
=
699 xhci_alloc_command(xhci
, true, true, mem_flags
);
700 if (!stream_info
->free_streams_command
)
703 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
705 /* Allocate rings for all the streams that the driver will use,
706 * and add their segment DMA addresses to the radix tree.
707 * Stream 0 is reserved.
709 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
710 stream_info
->stream_rings
[cur_stream
] =
711 xhci_ring_alloc(xhci
, 2, 1, TYPE_STREAM
, mem_flags
);
712 cur_ring
= stream_info
->stream_rings
[cur_stream
];
715 cur_ring
->stream_id
= cur_stream
;
716 cur_ring
->trb_address_map
= &stream_info
->trb_address_map
;
717 /* Set deq ptr, cycle bit, and stream context type */
718 addr
= cur_ring
->first_seg
->dma
|
719 SCT_FOR_CTX(SCT_PRI_TR
) |
720 cur_ring
->cycle_state
;
721 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
723 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
724 cur_stream
, (unsigned long long) addr
);
726 ret
= xhci_update_stream_mapping(cur_ring
, mem_flags
);
728 xhci_ring_free(xhci
, cur_ring
);
729 stream_info
->stream_rings
[cur_stream
] = NULL
;
733 /* Leave the other unused stream ring pointers in the stream context
734 * array initialized to zero. This will cause the xHC to give us an
735 * error if the device asks for a stream ID we don't have setup (if it
736 * was any other way, the host controller would assume the ring is
737 * "empty" and wait forever for data to be queued to that stream ID).
743 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
744 cur_ring
= stream_info
->stream_rings
[cur_stream
];
746 xhci_ring_free(xhci
, cur_ring
);
747 stream_info
->stream_rings
[cur_stream
] = NULL
;
750 xhci_free_command(xhci
, stream_info
->free_streams_command
);
752 kfree(stream_info
->stream_rings
);
756 xhci
->cmd_ring_reserved_trbs
--;
760 * Sets the MaxPStreams field and the Linear Stream Array field.
761 * Sets the dequeue pointer to the stream context array.
763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
764 struct xhci_ep_ctx
*ep_ctx
,
765 struct xhci_stream_info
*stream_info
)
767 u32 max_primary_streams
;
768 /* MaxPStreams is the number of stream context array entries, not the
769 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
770 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
772 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
773 xhci_dbg_trace(xhci
, trace_xhci_dbg_context_change
,
774 "Setting number of stream ctx array entries to %u",
775 1 << (max_primary_streams
+ 1));
776 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
777 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
779 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785 * not at the beginning of the ring).
787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
788 struct xhci_ep_ctx
*ep_ctx
,
789 struct xhci_virt_ep
*ep
)
792 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
793 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
794 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
797 /* Frees all stream contexts associated with the endpoint,
799 * Caller should fix the endpoint context streams fields.
801 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
802 struct xhci_stream_info
*stream_info
)
805 struct xhci_ring
*cur_ring
;
810 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
812 cur_ring
= stream_info
->stream_rings
[cur_stream
];
814 xhci_ring_free(xhci
, cur_ring
);
815 stream_info
->stream_rings
[cur_stream
] = NULL
;
818 xhci_free_command(xhci
, stream_info
->free_streams_command
);
819 xhci
->cmd_ring_reserved_trbs
--;
820 if (stream_info
->stream_ctx_array
)
821 xhci_free_stream_ctx(xhci
,
822 stream_info
->num_stream_ctxs
,
823 stream_info
->stream_ctx_array
,
824 stream_info
->ctx_array_dma
);
826 kfree(stream_info
->stream_rings
);
831 /***************** Device context manipulation *************************/
833 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
834 struct xhci_virt_ep
*ep
)
836 init_timer(&ep
->stop_cmd_timer
);
837 ep
->stop_cmd_timer
.data
= (unsigned long) ep
;
838 ep
->stop_cmd_timer
.function
= xhci_stop_endpoint_command_watchdog
;
842 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
843 struct xhci_virt_device
*virt_dev
,
846 struct list_head
*tt_list_head
;
847 struct xhci_tt_bw_info
*tt_info
, *next
;
848 bool slot_found
= false;
850 /* If the device never made it past the Set Address stage,
851 * it may not have the real_port set correctly.
853 if (virt_dev
->real_port
== 0 ||
854 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
855 xhci_dbg(xhci
, "Bad real port.\n");
859 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
860 list_for_each_entry_safe(tt_info
, next
, tt_list_head
, tt_list
) {
861 /* Multi-TT hubs will have more than one entry */
862 if (tt_info
->slot_id
== slot_id
) {
864 list_del(&tt_info
->tt_list
);
866 } else if (slot_found
) {
872 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
873 struct xhci_virt_device
*virt_dev
,
874 struct usb_device
*hdev
,
875 struct usb_tt
*tt
, gfp_t mem_flags
)
877 struct xhci_tt_bw_info
*tt_info
;
878 unsigned int num_ports
;
884 num_ports
= hdev
->maxchild
;
886 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
887 struct xhci_interval_bw_table
*bw_table
;
889 tt_info
= kzalloc(sizeof(*tt_info
), mem_flags
);
892 INIT_LIST_HEAD(&tt_info
->tt_list
);
893 list_add(&tt_info
->tt_list
,
894 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
895 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
897 tt_info
->ttport
= i
+1;
898 bw_table
= &tt_info
->bw_table
;
899 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
900 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
905 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
910 /* All the xhci_tds in the ring's TD list should be freed at this point.
911 * Should be called with xhci->lock held if there is any chance the TT lists
912 * will be manipulated by the configure endpoint, allocate device, or update
913 * hub functions while this function is removing the TT entries from the list.
915 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
917 struct xhci_virt_device
*dev
;
919 int old_active_eps
= 0;
921 /* Slot ID 0 is reserved */
922 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
925 dev
= xhci
->devs
[slot_id
];
926 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
931 old_active_eps
= dev
->tt_info
->active_eps
;
933 for (i
= 0; i
< 31; ++i
) {
934 if (dev
->eps
[i
].ring
)
935 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
936 if (dev
->eps
[i
].stream_info
)
937 xhci_free_stream_info(xhci
,
938 dev
->eps
[i
].stream_info
);
939 /* Endpoints on the TT/root port lists should have been removed
940 * when usb_disable_device() was called for the device.
941 * We can't drop them anyway, because the udev might have gone
942 * away by this point, and we can't tell what speed it was.
944 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
945 xhci_warn(xhci
, "Slot %u endpoint %u "
946 "not removed from BW list!\n",
949 /* If this is a hub, free the TT(s) from the TT list */
950 xhci_free_tt_info(xhci
, dev
, slot_id
);
951 /* If necessary, update the number of active TTs on this root port */
952 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
954 if (dev
->ring_cache
) {
955 for (i
= 0; i
< dev
->num_rings_cached
; i
++)
956 xhci_ring_free(xhci
, dev
->ring_cache
[i
]);
957 kfree(dev
->ring_cache
);
961 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
963 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
965 kfree(xhci
->devs
[slot_id
]);
966 xhci
->devs
[slot_id
] = NULL
;
969 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
970 struct usb_device
*udev
, gfp_t flags
)
972 struct xhci_virt_device
*dev
;
975 /* Slot ID 0 is reserved */
976 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
977 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
981 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
982 if (!xhci
->devs
[slot_id
])
984 dev
= xhci
->devs
[slot_id
];
986 /* Allocate the (output) device context that will be used in the HC. */
987 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
991 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
992 (unsigned long long)dev
->out_ctx
->dma
);
994 /* Allocate the (input) device context for address device command */
995 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
999 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
1000 (unsigned long long)dev
->in_ctx
->dma
);
1002 /* Initialize the cancellation list and watchdog timers for each ep */
1003 for (i
= 0; i
< 31; i
++) {
1004 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
1005 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
1006 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
1009 /* Allocate endpoint 0 ring */
1010 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 2, 1, TYPE_CTRL
, flags
);
1011 if (!dev
->eps
[0].ring
)
1014 /* Allocate pointers to the ring cache */
1015 dev
->ring_cache
= kzalloc(
1016 sizeof(struct xhci_ring
*)*XHCI_MAX_RINGS_CACHED
,
1018 if (!dev
->ring_cache
)
1020 dev
->num_rings_cached
= 0;
1022 init_completion(&dev
->cmd_completion
);
1025 /* Point to output device context in dcbaa. */
1026 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
1027 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1029 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
1030 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
1034 xhci_free_virt_device(xhci
, slot_id
);
1038 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
1039 struct usb_device
*udev
)
1041 struct xhci_virt_device
*virt_dev
;
1042 struct xhci_ep_ctx
*ep0_ctx
;
1043 struct xhci_ring
*ep_ring
;
1045 virt_dev
= xhci
->devs
[udev
->slot_id
];
1046 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
1047 ep_ring
= virt_dev
->eps
[0].ring
;
1049 * FIXME we don't keep track of the dequeue pointer very well after a
1050 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1051 * host to our enqueue pointer. This should only be called after a
1052 * configured device has reset, so all control transfers should have
1053 * been completed or cancelled before the reset.
1055 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
1057 | ep_ring
->cycle_state
);
1061 * The xHCI roothub may have ports of differing speeds in any order in the port
1062 * status registers. xhci->port_array provides an array of the port speed for
1063 * each offset into the port status registers.
1065 * The xHCI hardware wants to know the roothub port number that the USB device
1066 * is attached to (or the roothub port its ancestor hub is attached to). All we
1067 * know is the index of that port under either the USB 2.0 or the USB 3.0
1068 * roothub, but that doesn't give us the real index into the HW port status
1069 * registers. Call xhci_find_raw_port_number() to get real index.
1071 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
1072 struct usb_device
*udev
)
1074 struct usb_device
*top_dev
;
1075 struct usb_hcd
*hcd
;
1077 if (udev
->speed
== USB_SPEED_SUPER
)
1078 hcd
= xhci
->shared_hcd
;
1080 hcd
= xhci
->main_hcd
;
1082 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1083 top_dev
= top_dev
->parent
)
1084 /* Found device below root hub */;
1086 return xhci_find_raw_port_number(hcd
, top_dev
->portnum
);
1089 /* Setup an xHCI virtual device for a Set Address command */
1090 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
1092 struct xhci_virt_device
*dev
;
1093 struct xhci_ep_ctx
*ep0_ctx
;
1094 struct xhci_slot_ctx
*slot_ctx
;
1097 struct usb_device
*top_dev
;
1099 dev
= xhci
->devs
[udev
->slot_id
];
1100 /* Slot ID 0 is reserved */
1101 if (udev
->slot_id
== 0 || !dev
) {
1102 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
1106 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
1107 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
1109 /* 3) Only the control endpoint is valid - one endpoint context */
1110 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1111 switch (udev
->speed
) {
1112 case USB_SPEED_SUPER
:
1113 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1114 max_packets
= MAX_PACKET(512);
1116 case USB_SPEED_HIGH
:
1117 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1118 max_packets
= MAX_PACKET(64);
1120 /* USB core guesses at a 64-byte max packet first for FS devices */
1121 case USB_SPEED_FULL
:
1122 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1123 max_packets
= MAX_PACKET(64);
1126 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1127 max_packets
= MAX_PACKET(8);
1129 case USB_SPEED_WIRELESS
:
1130 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1134 /* Speed was set earlier, this shouldn't happen. */
1137 /* Find the root hub port this device is under */
1138 port_num
= xhci_find_real_port_number(xhci
, udev
);
1141 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1142 /* Set the port number in the virtual_device to the faked port number */
1143 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1144 top_dev
= top_dev
->parent
)
1145 /* Found device below root hub */;
1146 dev
->fake_port
= top_dev
->portnum
;
1147 dev
->real_port
= port_num
;
1148 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1149 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1151 /* Find the right bandwidth table that this device will be a part of.
1152 * If this is a full speed device attached directly to a root port (or a
1153 * decendent of one), it counts as a primary bandwidth domain, not a
1154 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1155 * will never be created for the HS root hub.
1157 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1158 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1160 struct xhci_root_port_bw_info
*rh_bw
;
1161 struct xhci_tt_bw_info
*tt_bw
;
1163 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1164 /* Find the right TT. */
1165 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1166 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1169 if (!dev
->udev
->tt
->multi
||
1171 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1172 dev
->bw_table
= &tt_bw
->bw_table
;
1173 dev
->tt_info
= tt_bw
;
1178 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1181 /* Is this a LS/FS device under an external HS hub? */
1182 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1183 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1184 (udev
->ttport
<< 8));
1185 if (udev
->tt
->multi
)
1186 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1188 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1189 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1191 /* Step 4 - ring already allocated */
1193 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1195 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1199 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1200 dev
->eps
[0].ring
->cycle_state
);
1202 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1208 * Convert interval expressed as 2^(bInterval - 1) == interval into
1209 * straight exponent value 2^n == interval.
1212 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1213 struct usb_host_endpoint
*ep
)
1215 unsigned int interval
;
1217 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1218 if (interval
!= ep
->desc
.bInterval
- 1)
1219 dev_warn(&udev
->dev
,
1220 "ep %#x - rounding interval to %d %sframes\n",
1221 ep
->desc
.bEndpointAddress
,
1223 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1225 if (udev
->speed
== USB_SPEED_FULL
) {
1227 * Full speed isoc endpoints specify interval in frames,
1228 * not microframes. We are using microframes everywhere,
1229 * so adjust accordingly.
1231 interval
+= 3; /* 1 frame = 2^3 uframes */
1238 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239 * microframes, rounded down to nearest power of 2.
1241 static unsigned int xhci_microframes_to_exponent(struct usb_device
*udev
,
1242 struct usb_host_endpoint
*ep
, unsigned int desc_interval
,
1243 unsigned int min_exponent
, unsigned int max_exponent
)
1245 unsigned int interval
;
1247 interval
= fls(desc_interval
) - 1;
1248 interval
= clamp_val(interval
, min_exponent
, max_exponent
);
1249 if ((1 << interval
) != desc_interval
)
1250 dev_warn(&udev
->dev
,
1251 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252 ep
->desc
.bEndpointAddress
,
1259 static unsigned int xhci_parse_microframe_interval(struct usb_device
*udev
,
1260 struct usb_host_endpoint
*ep
)
1262 if (ep
->desc
.bInterval
== 0)
1264 return xhci_microframes_to_exponent(udev
, ep
,
1265 ep
->desc
.bInterval
, 0, 15);
1269 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1270 struct usb_host_endpoint
*ep
)
1272 return xhci_microframes_to_exponent(udev
, ep
,
1273 ep
->desc
.bInterval
* 8, 3, 10);
1276 /* Return the polling or NAK interval.
1278 * The polling interval is expressed in "microframes". If xHCI's Interval field
1279 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1284 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1285 struct usb_host_endpoint
*ep
)
1287 unsigned int interval
= 0;
1289 switch (udev
->speed
) {
1290 case USB_SPEED_HIGH
:
1292 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1293 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1294 interval
= xhci_parse_microframe_interval(udev
, ep
);
1297 /* Fall through - SS and HS isoc/int have same decoding */
1299 case USB_SPEED_SUPER
:
1300 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1301 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1302 interval
= xhci_parse_exponent_interval(udev
, ep
);
1306 case USB_SPEED_FULL
:
1307 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1308 interval
= xhci_parse_exponent_interval(udev
, ep
);
1312 * Fall through for interrupt endpoint interval decoding
1313 * since it uses the same rules as low speed interrupt
1318 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1319 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1321 interval
= xhci_parse_frame_interval(udev
, ep
);
1328 return EP_INTERVAL(interval
);
1331 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1332 * High speed endpoint descriptors can define "the number of additional
1333 * transaction opportunities per microframe", but that goes in the Max Burst
1334 * endpoint context field.
1336 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1337 struct usb_host_endpoint
*ep
)
1339 if (udev
->speed
!= USB_SPEED_SUPER
||
1340 !usb_endpoint_xfer_isoc(&ep
->desc
))
1342 return ep
->ss_ep_comp
.bmAttributes
;
1345 static u32
xhci_get_endpoint_type(struct usb_device
*udev
,
1346 struct usb_host_endpoint
*ep
)
1351 in
= usb_endpoint_dir_in(&ep
->desc
);
1352 if (usb_endpoint_xfer_control(&ep
->desc
)) {
1353 type
= EP_TYPE(CTRL_EP
);
1354 } else if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1356 type
= EP_TYPE(BULK_IN_EP
);
1358 type
= EP_TYPE(BULK_OUT_EP
);
1359 } else if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1361 type
= EP_TYPE(ISOC_IN_EP
);
1363 type
= EP_TYPE(ISOC_OUT_EP
);
1364 } else if (usb_endpoint_xfer_int(&ep
->desc
)) {
1366 type
= EP_TYPE(INT_IN_EP
);
1368 type
= EP_TYPE(INT_OUT_EP
);
1375 /* Return the maximum endpoint service interval time (ESIT) payload.
1376 * Basically, this is the maxpacket size, multiplied by the burst size
1379 static u32
xhci_get_max_esit_payload(struct xhci_hcd
*xhci
,
1380 struct usb_device
*udev
,
1381 struct usb_host_endpoint
*ep
)
1386 /* Only applies for interrupt or isochronous endpoints */
1387 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1388 usb_endpoint_xfer_bulk(&ep
->desc
))
1391 if (udev
->speed
== USB_SPEED_SUPER
)
1392 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1394 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1395 max_burst
= (usb_endpoint_maxp(&ep
->desc
) & 0x1800) >> 11;
1396 /* A 0 in max burst means 1 transfer per ESIT */
1397 return max_packet
* (max_burst
+ 1);
1400 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1401 * Drivers will have to call usb_alloc_streams() to do that.
1403 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1404 struct xhci_virt_device
*virt_dev
,
1405 struct usb_device
*udev
,
1406 struct usb_host_endpoint
*ep
,
1409 unsigned int ep_index
;
1410 struct xhci_ep_ctx
*ep_ctx
;
1411 struct xhci_ring
*ep_ring
;
1412 unsigned int max_packet
;
1413 unsigned int max_burst
;
1414 enum xhci_ring_type type
;
1415 u32 max_esit_payload
;
1418 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1419 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1421 endpoint_type
= xhci_get_endpoint_type(udev
, ep
);
1424 ep_ctx
->ep_info2
= cpu_to_le32(endpoint_type
);
1426 type
= usb_endpoint_type(&ep
->desc
);
1427 /* Set up the endpoint ring */
1428 virt_dev
->eps
[ep_index
].new_ring
=
1429 xhci_ring_alloc(xhci
, 2, 1, type
, mem_flags
);
1430 if (!virt_dev
->eps
[ep_index
].new_ring
) {
1431 /* Attempt to use the ring cache */
1432 if (virt_dev
->num_rings_cached
== 0)
1434 virt_dev
->eps
[ep_index
].new_ring
=
1435 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
];
1436 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
] = NULL
;
1437 virt_dev
->num_rings_cached
--;
1438 xhci_reinit_cached_ring(xhci
, virt_dev
->eps
[ep_index
].new_ring
,
1441 virt_dev
->eps
[ep_index
].skip
= false;
1442 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1443 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
| ep_ring
->cycle_state
);
1445 ep_ctx
->ep_info
= cpu_to_le32(xhci_get_endpoint_interval(udev
, ep
)
1446 | EP_MULT(xhci_get_endpoint_mult(udev
, ep
)));
1448 /* FIXME dig Mult and streams info out of ep companion desc */
1450 /* Allow 3 retries for everything but isoc;
1451 * CErr shall be set to 0 for Isoch endpoints.
1453 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1454 ep_ctx
->ep_info2
|= cpu_to_le32(ERROR_COUNT(3));
1456 ep_ctx
->ep_info2
|= cpu_to_le32(ERROR_COUNT(0));
1458 /* Set the max packet size and max burst */
1459 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1461 switch (udev
->speed
) {
1462 case USB_SPEED_SUPER
:
1463 /* dig out max burst from ep companion desc */
1464 max_burst
= ep
->ss_ep_comp
.bMaxBurst
;
1466 case USB_SPEED_HIGH
:
1467 /* Some devices get this wrong */
1468 if (usb_endpoint_xfer_bulk(&ep
->desc
))
1470 /* bits 11:12 specify the number of additional transaction
1471 * opportunities per microframe (USB 2.0, section 9.6.6)
1473 if (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1474 usb_endpoint_xfer_int(&ep
->desc
)) {
1475 max_burst
= (usb_endpoint_maxp(&ep
->desc
)
1479 case USB_SPEED_FULL
:
1485 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
) |
1486 MAX_BURST(max_burst
));
1487 max_esit_payload
= xhci_get_max_esit_payload(xhci
, udev
, ep
);
1488 ep_ctx
->tx_info
= cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload
));
1491 * XXX no idea how to calculate the average TRB buffer length for bulk
1492 * endpoints, as the driver gives us no clue how big each scatter gather
1493 * list entry (or buffer) is going to be.
1495 * For isochronous and interrupt endpoints, we set it to the max
1496 * available, until we have new API in the USB core to allow drivers to
1497 * declare how much bandwidth they actually need.
1499 * Normally, it would be calculated by taking the total of the buffer
1500 * lengths in the TD and then dividing by the number of TRBs in a TD,
1501 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1502 * use Event Data TRBs, and we don't chain in a link TRB on short
1503 * transfers, we're basically dividing by 1.
1505 * xHCI 1.0 specification indicates that the Average TRB Length should
1506 * be set to 8 for control endpoints.
1508 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
== 0x100)
1509 ep_ctx
->tx_info
|= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1512 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload
));
1514 /* FIXME Debug endpoint context */
1518 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1519 struct xhci_virt_device
*virt_dev
,
1520 struct usb_host_endpoint
*ep
)
1522 unsigned int ep_index
;
1523 struct xhci_ep_ctx
*ep_ctx
;
1525 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1526 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1528 ep_ctx
->ep_info
= 0;
1529 ep_ctx
->ep_info2
= 0;
1531 ep_ctx
->tx_info
= 0;
1532 /* Don't free the endpoint ring until the set interface or configuration
1537 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1539 bw_info
->ep_interval
= 0;
1541 bw_info
->num_packets
= 0;
1542 bw_info
->max_packet_size
= 0;
1544 bw_info
->max_esit_payload
= 0;
1547 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1548 struct xhci_container_ctx
*in_ctx
,
1549 struct xhci_input_control_ctx
*ctrl_ctx
,
1550 struct xhci_virt_device
*virt_dev
)
1552 struct xhci_bw_info
*bw_info
;
1553 struct xhci_ep_ctx
*ep_ctx
;
1554 unsigned int ep_type
;
1557 for (i
= 1; i
< 31; ++i
) {
1558 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1560 /* We can't tell what endpoint type is being dropped, but
1561 * unconditionally clearing the bandwidth info for non-periodic
1562 * endpoints should be harmless because the info will never be
1563 * set in the first place.
1565 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1566 /* Dropped endpoint */
1567 xhci_clear_endpoint_bw_info(bw_info
);
1571 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1572 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1573 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1575 /* Ignore non-periodic endpoints */
1576 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1577 ep_type
!= ISOC_IN_EP
&&
1578 ep_type
!= INT_IN_EP
)
1581 /* Added or changed endpoint */
1582 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1583 le32_to_cpu(ep_ctx
->ep_info
));
1584 /* Number of packets and mult are zero-based in the
1585 * input context, but we want one-based for the
1588 bw_info
->mult
= CTX_TO_EP_MULT(
1589 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1590 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1591 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1592 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1593 le32_to_cpu(ep_ctx
->ep_info2
));
1594 bw_info
->type
= ep_type
;
1595 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1596 le32_to_cpu(ep_ctx
->tx_info
));
1601 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command.
1605 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1606 struct xhci_container_ctx
*in_ctx
,
1607 struct xhci_container_ctx
*out_ctx
,
1608 unsigned int ep_index
)
1610 struct xhci_ep_ctx
*out_ep_ctx
;
1611 struct xhci_ep_ctx
*in_ep_ctx
;
1613 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1614 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1616 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1617 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1618 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1619 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623 * Useful when you want to change one particular aspect of the endpoint and then
1624 * issue a configure endpoint command. Only the context entries field matters,
1625 * but we'll copy the whole thing anyway.
1627 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1628 struct xhci_container_ctx
*in_ctx
,
1629 struct xhci_container_ctx
*out_ctx
)
1631 struct xhci_slot_ctx
*in_slot_ctx
;
1632 struct xhci_slot_ctx
*out_slot_ctx
;
1634 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1635 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1637 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1638 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1639 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1640 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1647 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1648 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1650 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1651 "Allocating %d scratchpad buffers", num_sp
);
1656 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1657 if (!xhci
->scratchpad
)
1660 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1661 num_sp
* sizeof(u64
),
1662 &xhci
->scratchpad
->sp_dma
, flags
);
1663 if (!xhci
->scratchpad
->sp_array
)
1666 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1667 if (!xhci
->scratchpad
->sp_buffers
)
1670 xhci
->scratchpad
->sp_dma_buffers
=
1671 kzalloc(sizeof(dma_addr_t
) * num_sp
, flags
);
1673 if (!xhci
->scratchpad
->sp_dma_buffers
)
1676 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1677 for (i
= 0; i
< num_sp
; i
++) {
1679 void *buf
= dma_alloc_coherent(dev
, xhci
->page_size
, &dma
,
1684 xhci
->scratchpad
->sp_array
[i
] = dma
;
1685 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1686 xhci
->scratchpad
->sp_dma_buffers
[i
] = dma
;
1692 for (i
= i
- 1; i
>= 0; i
--) {
1693 dma_free_coherent(dev
, xhci
->page_size
,
1694 xhci
->scratchpad
->sp_buffers
[i
],
1695 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1697 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1700 kfree(xhci
->scratchpad
->sp_buffers
);
1703 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1704 xhci
->scratchpad
->sp_array
,
1705 xhci
->scratchpad
->sp_dma
);
1708 kfree(xhci
->scratchpad
);
1709 xhci
->scratchpad
= NULL
;
1715 static void scratchpad_free(struct xhci_hcd
*xhci
)
1719 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1721 if (!xhci
->scratchpad
)
1724 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1726 for (i
= 0; i
< num_sp
; i
++) {
1727 dma_free_coherent(dev
, xhci
->page_size
,
1728 xhci
->scratchpad
->sp_buffers
[i
],
1729 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1731 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1732 kfree(xhci
->scratchpad
->sp_buffers
);
1733 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1734 xhci
->scratchpad
->sp_array
,
1735 xhci
->scratchpad
->sp_dma
);
1736 kfree(xhci
->scratchpad
);
1737 xhci
->scratchpad
= NULL
;
1740 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1741 bool allocate_in_ctx
, bool allocate_completion
,
1744 struct xhci_command
*command
;
1746 command
= kzalloc(sizeof(*command
), mem_flags
);
1750 if (allocate_in_ctx
) {
1752 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1754 if (!command
->in_ctx
) {
1760 if (allocate_completion
) {
1761 command
->completion
=
1762 kzalloc(sizeof(struct completion
), mem_flags
);
1763 if (!command
->completion
) {
1764 xhci_free_container_ctx(xhci
, command
->in_ctx
);
1768 init_completion(command
->completion
);
1771 command
->status
= 0;
1772 INIT_LIST_HEAD(&command
->cmd_list
);
1776 void xhci_urb_free_priv(struct xhci_hcd
*xhci
, struct urb_priv
*urb_priv
)
1779 kfree(urb_priv
->td
[0]);
1784 void xhci_free_command(struct xhci_hcd
*xhci
,
1785 struct xhci_command
*command
)
1787 xhci_free_container_ctx(xhci
,
1789 kfree(command
->completion
);
1793 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1795 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1797 int i
, j
, num_ports
;
1799 del_timer_sync(&xhci
->cmd_timer
);
1801 /* Free the Event Ring Segment Table and the actual Event Ring */
1802 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
1803 if (xhci
->erst
.entries
)
1804 dma_free_coherent(dev
, size
,
1805 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
1806 xhci
->erst
.entries
= NULL
;
1807 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed ERST");
1808 if (xhci
->event_ring
)
1809 xhci_ring_free(xhci
, xhci
->event_ring
);
1810 xhci
->event_ring
= NULL
;
1811 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed event ring");
1813 if (xhci
->lpm_command
)
1814 xhci_free_command(xhci
, xhci
->lpm_command
);
1815 xhci
->lpm_command
= NULL
;
1817 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1818 xhci
->cmd_ring
= NULL
;
1819 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed command ring");
1820 xhci_cleanup_command_queue(xhci
);
1822 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
1823 for (i
= 0; i
< num_ports
&& xhci
->rh_bw
; i
++) {
1824 struct xhci_interval_bw_table
*bwt
= &xhci
->rh_bw
[i
].bw_table
;
1825 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++) {
1826 struct list_head
*ep
= &bwt
->interval_bw
[j
].endpoints
;
1827 while (!list_empty(ep
))
1828 list_del_init(ep
->next
);
1832 for (i
= 1; i
< MAX_HC_SLOTS
; ++i
)
1833 xhci_free_virt_device(xhci
, i
);
1835 if (xhci
->segment_pool
)
1836 dma_pool_destroy(xhci
->segment_pool
);
1837 xhci
->segment_pool
= NULL
;
1838 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed segment pool");
1840 if (xhci
->device_pool
)
1841 dma_pool_destroy(xhci
->device_pool
);
1842 xhci
->device_pool
= NULL
;
1843 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "Freed device context pool");
1845 if (xhci
->small_streams_pool
)
1846 dma_pool_destroy(xhci
->small_streams_pool
);
1847 xhci
->small_streams_pool
= NULL
;
1848 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1849 "Freed small stream array pool");
1851 if (xhci
->medium_streams_pool
)
1852 dma_pool_destroy(xhci
->medium_streams_pool
);
1853 xhci
->medium_streams_pool
= NULL
;
1854 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
1855 "Freed medium stream array pool");
1858 dma_free_coherent(dev
, sizeof(*xhci
->dcbaa
),
1859 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1862 scratchpad_free(xhci
);
1867 for (i
= 0; i
< num_ports
; i
++) {
1868 struct xhci_tt_bw_info
*tt
, *n
;
1869 list_for_each_entry_safe(tt
, n
, &xhci
->rh_bw
[i
].tts
, tt_list
) {
1870 list_del(&tt
->tt_list
);
1876 xhci
->cmd_ring_reserved_trbs
= 0;
1877 xhci
->num_usb2_ports
= 0;
1878 xhci
->num_usb3_ports
= 0;
1879 xhci
->num_active_eps
= 0;
1880 kfree(xhci
->usb2_ports
);
1881 kfree(xhci
->usb3_ports
);
1882 kfree(xhci
->port_array
);
1884 kfree(xhci
->ext_caps
);
1886 xhci
->page_size
= 0;
1887 xhci
->page_shift
= 0;
1888 xhci
->bus_state
[0].bus_suspended
= 0;
1889 xhci
->bus_state
[1].bus_suspended
= 0;
1892 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1893 struct xhci_segment
*input_seg
,
1894 union xhci_trb
*start_trb
,
1895 union xhci_trb
*end_trb
,
1896 dma_addr_t input_dma
,
1897 struct xhci_segment
*result_seg
,
1898 char *test_name
, int test_number
)
1900 unsigned long long start_dma
;
1901 unsigned long long end_dma
;
1902 struct xhci_segment
*seg
;
1904 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1905 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1907 seg
= trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
, false);
1908 if (seg
!= result_seg
) {
1909 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1910 test_name
, test_number
);
1911 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1912 "input DMA 0x%llx\n",
1914 (unsigned long long) input_dma
);
1915 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1916 "ending TRB %p (0x%llx DMA)\n",
1917 start_trb
, start_dma
,
1919 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1921 trb_in_td(xhci
, input_seg
, start_trb
, end_trb
, input_dma
,
1928 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1929 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
, gfp_t mem_flags
)
1932 dma_addr_t input_dma
;
1933 struct xhci_segment
*result_seg
;
1934 } simple_test_vector
[] = {
1935 /* A zeroed DMA field should fail */
1937 /* One TRB before the ring start should fail */
1938 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1939 /* One byte before the ring start should fail */
1940 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1941 /* Starting TRB should succeed */
1942 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1943 /* Ending TRB should succeed */
1944 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1945 xhci
->event_ring
->first_seg
},
1946 /* One byte after the ring end should fail */
1947 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1948 /* One TRB after the ring end should fail */
1949 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1950 /* An address of all ones should fail */
1951 { (dma_addr_t
) (~0), NULL
},
1954 struct xhci_segment
*input_seg
;
1955 union xhci_trb
*start_trb
;
1956 union xhci_trb
*end_trb
;
1957 dma_addr_t input_dma
;
1958 struct xhci_segment
*result_seg
;
1959 } complex_test_vector
[] = {
1960 /* Test feeding a valid DMA address from a different ring */
1961 { .input_seg
= xhci
->event_ring
->first_seg
,
1962 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1963 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1964 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1967 /* Test feeding a valid end TRB from a different ring */
1968 { .input_seg
= xhci
->event_ring
->first_seg
,
1969 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1970 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1971 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1974 /* Test feeding a valid start and end TRB from a different ring */
1975 { .input_seg
= xhci
->event_ring
->first_seg
,
1976 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1977 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1978 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1981 /* TRB in this ring, but after this TD */
1982 { .input_seg
= xhci
->event_ring
->first_seg
,
1983 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1984 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1985 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1988 /* TRB in this ring, but before this TD */
1989 { .input_seg
= xhci
->event_ring
->first_seg
,
1990 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1991 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1992 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1995 /* TRB in this ring, but after this wrapped TD */
1996 { .input_seg
= xhci
->event_ring
->first_seg
,
1997 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1998 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1999 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
2002 /* TRB in this ring, but before this wrapped TD */
2003 { .input_seg
= xhci
->event_ring
->first_seg
,
2004 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2005 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2006 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
2009 /* TRB not in this ring, and we have a wrapped TD */
2010 { .input_seg
= xhci
->event_ring
->first_seg
,
2011 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
2012 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
2013 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
2018 unsigned int num_tests
;
2021 num_tests
= ARRAY_SIZE(simple_test_vector
);
2022 for (i
= 0; i
< num_tests
; i
++) {
2023 ret
= xhci_test_trb_in_td(xhci
,
2024 xhci
->event_ring
->first_seg
,
2025 xhci
->event_ring
->first_seg
->trbs
,
2026 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
2027 simple_test_vector
[i
].input_dma
,
2028 simple_test_vector
[i
].result_seg
,
2034 num_tests
= ARRAY_SIZE(complex_test_vector
);
2035 for (i
= 0; i
< num_tests
; i
++) {
2036 ret
= xhci_test_trb_in_td(xhci
,
2037 complex_test_vector
[i
].input_seg
,
2038 complex_test_vector
[i
].start_trb
,
2039 complex_test_vector
[i
].end_trb
,
2040 complex_test_vector
[i
].input_dma
,
2041 complex_test_vector
[i
].result_seg
,
2046 xhci_dbg(xhci
, "TRB math tests passed.\n");
2050 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
2055 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
2056 xhci
->event_ring
->dequeue
);
2057 if (deq
== 0 && !in_interrupt())
2058 xhci_warn(xhci
, "WARN something wrong with SW event ring "
2060 /* Update HC event ring dequeue pointer */
2061 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
2062 temp
&= ERST_PTR_MASK
;
2063 /* Don't clear the EHB bit (which is RW1C) because
2064 * there might be more events to service.
2067 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2068 "// Write event ring dequeue pointer, "
2069 "preserving EHB bit");
2070 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
2071 &xhci
->ir_set
->erst_dequeue
);
2074 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
2075 __le32 __iomem
*addr
, u8 major_revision
, int max_caps
)
2077 u32 temp
, port_offset
, port_count
;
2080 if (major_revision
> 0x03) {
2081 xhci_warn(xhci
, "Ignoring unknown port speed, "
2082 "Ext Cap %p, revision = 0x%x\n",
2083 addr
, major_revision
);
2084 /* Ignoring port protocol we can't understand. FIXME */
2088 /* Port offset and count in the third dword, see section 7.2 */
2089 temp
= readl(addr
+ 2);
2090 port_offset
= XHCI_EXT_PORT_OFF(temp
);
2091 port_count
= XHCI_EXT_PORT_COUNT(temp
);
2092 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2093 "Ext Cap %p, port offset = %u, "
2094 "count = %u, revision = 0x%x",
2095 addr
, port_offset
, port_count
, major_revision
);
2096 /* Port count includes the current port offset */
2097 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
2098 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2101 /* cache usb2 port capabilities */
2102 if (major_revision
< 0x03 && xhci
->num_ext_caps
< max_caps
)
2103 xhci
->ext_caps
[xhci
->num_ext_caps
++] = temp
;
2105 /* Check the host's USB2 LPM capability */
2106 if ((xhci
->hci_version
== 0x96) && (major_revision
!= 0x03) &&
2107 (temp
& XHCI_L1C
)) {
2108 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2109 "xHCI 0.96: support USB2 software lpm");
2110 xhci
->sw_lpm_support
= 1;
2113 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03)) {
2114 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2115 "xHCI 1.0: support USB2 software lpm");
2116 xhci
->sw_lpm_support
= 1;
2117 if (temp
& XHCI_HLC
) {
2118 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2119 "xHCI 1.0: support USB2 hardware lpm");
2120 xhci
->hw_lpm_support
= 1;
2125 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
2126 /* Duplicate entry. Ignore the port if the revisions differ. */
2127 if (xhci
->port_array
[i
] != 0) {
2128 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
2129 " port %u\n", addr
, i
);
2130 xhci_warn(xhci
, "Port was marked as USB %u, "
2131 "duplicated as USB %u\n",
2132 xhci
->port_array
[i
], major_revision
);
2133 /* Only adjust the roothub port counts if we haven't
2134 * found a similar duplicate.
2136 if (xhci
->port_array
[i
] != major_revision
&&
2137 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
2138 if (xhci
->port_array
[i
] == 0x03)
2139 xhci
->num_usb3_ports
--;
2141 xhci
->num_usb2_ports
--;
2142 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
2144 /* FIXME: Should we disable the port? */
2147 xhci
->port_array
[i
] = major_revision
;
2148 if (major_revision
== 0x03)
2149 xhci
->num_usb3_ports
++;
2151 xhci
->num_usb2_ports
++;
2153 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2157 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2158 * specify what speeds each port is supposed to be. We can't count on the port
2159 * speed bits in the PORTSC register being correct until a device is connected,
2160 * but we need to set up the two fake roothubs with the correct number of USB
2161 * 3.0 and USB 2.0 ports at host controller initialization time.
2163 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2165 __le32 __iomem
*addr
, *tmp_addr
;
2166 u32 offset
, tmp_offset
;
2167 unsigned int num_ports
;
2168 int i
, j
, port_index
;
2171 addr
= &xhci
->cap_regs
->hcc_params
;
2172 offset
= XHCI_HCC_EXT_CAPS(readl(addr
));
2174 xhci_err(xhci
, "No Extended Capability registers, "
2175 "unable to set up roothub.\n");
2179 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2180 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
2181 if (!xhci
->port_array
)
2184 xhci
->rh_bw
= kzalloc(sizeof(*xhci
->rh_bw
)*num_ports
, flags
);
2187 for (i
= 0; i
< num_ports
; i
++) {
2188 struct xhci_interval_bw_table
*bw_table
;
2190 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2191 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2192 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2193 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2197 * For whatever reason, the first capability offset is from the
2198 * capability register base, not from the HCCPARAMS register.
2199 * See section 5.3.6 for offset calculation.
2201 addr
= &xhci
->cap_regs
->hc_capbase
+ offset
;
2204 tmp_offset
= offset
;
2206 /* count extended protocol capability entries for later caching */
2209 cap_id
= readl(tmp_addr
);
2210 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
2212 tmp_offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
2213 tmp_addr
+= tmp_offset
;
2214 } while (tmp_offset
);
2216 xhci
->ext_caps
= kzalloc(sizeof(*xhci
->ext_caps
) * cap_count
, flags
);
2217 if (!xhci
->ext_caps
)
2223 cap_id
= readl(addr
);
2224 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
2225 xhci_add_in_port(xhci
, num_ports
, addr
,
2226 (u8
) XHCI_EXT_PORT_MAJOR(cap_id
),
2228 offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
2229 if (!offset
|| (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
)
2233 * Once you're into the Extended Capabilities, the offset is
2234 * always relative to the register holding the offset.
2239 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
2240 xhci_warn(xhci
, "No ports on the roothubs?\n");
2243 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2244 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2245 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
2247 /* Place limits on the number of roothub ports so that the hub
2248 * descriptors aren't longer than the USB core will allocate.
2250 if (xhci
->num_usb3_ports
> 15) {
2251 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2252 "Limiting USB 3.0 roothub ports to 15.");
2253 xhci
->num_usb3_ports
= 15;
2255 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
2256 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2257 "Limiting USB 2.0 roothub ports to %u.",
2259 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
2263 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2264 * Not sure how the USB core will handle a hub with no ports...
2266 if (xhci
->num_usb2_ports
) {
2267 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
2268 xhci
->num_usb2_ports
, flags
);
2269 if (!xhci
->usb2_ports
)
2273 for (i
= 0; i
< num_ports
; i
++) {
2274 if (xhci
->port_array
[i
] == 0x03 ||
2275 xhci
->port_array
[i
] == 0 ||
2276 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
2279 xhci
->usb2_ports
[port_index
] =
2280 &xhci
->op_regs
->port_status_base
+
2282 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2283 "USB 2.0 port at index %u, "
2285 xhci
->usb2_ports
[port_index
]);
2287 if (port_index
== xhci
->num_usb2_ports
)
2291 if (xhci
->num_usb3_ports
) {
2292 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
2293 xhci
->num_usb3_ports
, flags
);
2294 if (!xhci
->usb3_ports
)
2298 for (i
= 0; i
< num_ports
; i
++)
2299 if (xhci
->port_array
[i
] == 0x03) {
2300 xhci
->usb3_ports
[port_index
] =
2301 &xhci
->op_regs
->port_status_base
+
2303 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2304 "USB 3.0 port at index %u, "
2306 xhci
->usb3_ports
[port_index
]);
2308 if (port_index
== xhci
->num_usb3_ports
)
2315 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2318 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
2319 unsigned int val
, val2
;
2321 struct xhci_segment
*seg
;
2322 u32 page_size
, temp
;
2325 INIT_LIST_HEAD(&xhci
->cmd_list
);
2327 page_size
= readl(&xhci
->op_regs
->page_size
);
2328 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2329 "Supported page size register = 0x%x", page_size
);
2330 for (i
= 0; i
< 16; i
++) {
2331 if ((0x1 & page_size
) != 0)
2333 page_size
= page_size
>> 1;
2336 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2337 "Supported page size of %iK", (1 << (i
+12)) / 1024);
2339 xhci_warn(xhci
, "WARN: no supported page size\n");
2340 /* Use 4K pages, since that's common and the minimum the HC supports */
2341 xhci
->page_shift
= 12;
2342 xhci
->page_size
= 1 << xhci
->page_shift
;
2343 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2344 "HCD page size set to %iK", xhci
->page_size
/ 1024);
2347 * Program the Number of Device Slots Enabled field in the CONFIG
2348 * register with the max value of slots the HC can handle.
2350 val
= HCS_MAX_SLOTS(readl(&xhci
->cap_regs
->hcs_params1
));
2351 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2352 "// xHC can handle at most %d device slots.", val
);
2353 val2
= readl(&xhci
->op_regs
->config_reg
);
2354 val
|= (val2
& ~HCS_SLOTS_MASK
);
2355 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2356 "// Setting Max device slots reg = 0x%x.", val
);
2357 writel(val
, &xhci
->op_regs
->config_reg
);
2360 * Section 5.4.8 - doorbell array must be
2361 * "physically contiguous and 64-byte (cache line) aligned".
2363 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2367 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2368 xhci
->dcbaa
->dma
= dma
;
2369 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2370 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2371 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2372 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2375 * Initialize the ring segment pool. The ring must be a contiguous
2376 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2377 * however, the command ring segment needs 64-byte aligned segments
2378 * and our use of dma addresses in the trb_address_map radix tree needs
2379 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2381 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2382 TRB_SEGMENT_SIZE
, TRB_SEGMENT_SIZE
, xhci
->page_size
);
2384 /* See Table 46 and Note on Figure 55 */
2385 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2386 2112, 64, xhci
->page_size
);
2387 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2390 /* Linear stream context arrays don't have any boundary restrictions,
2391 * and only need to be 16-byte aligned.
2393 xhci
->small_streams_pool
=
2394 dma_pool_create("xHCI 256 byte stream ctx arrays",
2395 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2396 xhci
->medium_streams_pool
=
2397 dma_pool_create("xHCI 1KB stream ctx arrays",
2398 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2399 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2400 * will be allocated with dma_alloc_coherent()
2403 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2406 /* Set up the command ring to have one segments for now. */
2407 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, 1, TYPE_COMMAND
, flags
);
2408 if (!xhci
->cmd_ring
)
2410 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2411 "Allocated command ring at %p", xhci
->cmd_ring
);
2412 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "First segment DMA is 0x%llx",
2413 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2415 /* Set the address in the Command Ring Control register */
2416 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2417 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2418 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2419 xhci
->cmd_ring
->cycle_state
;
2420 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2421 "// Setting command ring address to 0x%x", val
);
2422 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2423 xhci_dbg_cmd_ptrs(xhci
);
2425 xhci
->lpm_command
= xhci_alloc_command(xhci
, true, true, flags
);
2426 if (!xhci
->lpm_command
)
2429 /* Reserve one command ring TRB for disabling LPM.
2430 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2431 * disabling LPM, we only need to reserve one TRB for all devices.
2433 xhci
->cmd_ring_reserved_trbs
++;
2435 val
= readl(&xhci
->cap_regs
->db_off
);
2437 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2438 "// Doorbell array is located at offset 0x%x"
2439 " from cap regs base addr", val
);
2440 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2441 xhci_dbg_regs(xhci
);
2442 xhci_print_run_regs(xhci
);
2443 /* Set ir_set to interrupt register set 0 */
2444 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2447 * Event ring setup: Allocate a normal ring, but also setup
2448 * the event ring segment table (ERST). Section 4.9.3.
2450 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
, "// Allocating event ring");
2451 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, 1, TYPE_EVENT
,
2453 if (!xhci
->event_ring
)
2455 if (xhci_check_trb_in_td_math(xhci
, flags
) < 0)
2458 xhci
->erst
.entries
= dma_alloc_coherent(dev
,
2459 sizeof(struct xhci_erst_entry
) * ERST_NUM_SEGS
, &dma
,
2461 if (!xhci
->erst
.entries
)
2463 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2464 "// Allocated event ring segment table at 0x%llx",
2465 (unsigned long long)dma
);
2467 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
2468 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
2469 xhci
->erst
.erst_dma_addr
= dma
;
2470 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2471 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2472 xhci
->erst
.num_entries
,
2474 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2476 /* set ring base address and size for each segment table entry */
2477 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
2478 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
2479 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
2480 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
2485 /* set ERST count with the number of entries in the segment table */
2486 val
= readl(&xhci
->ir_set
->erst_size
);
2487 val
&= ERST_SIZE_MASK
;
2488 val
|= ERST_NUM_SEGS
;
2489 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2490 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2492 writel(val
, &xhci
->ir_set
->erst_size
);
2494 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2495 "// Set ERST entries to point to event ring.");
2496 /* set the segment table base address */
2497 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2498 "// Set ERST base address for ir_set 0 = 0x%llx",
2499 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2500 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2501 val_64
&= ERST_PTR_MASK
;
2502 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2503 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2505 /* Set the event ring dequeue address */
2506 xhci_set_hc_event_deq(xhci
);
2507 xhci_dbg_trace(xhci
, trace_xhci_dbg_init
,
2508 "Wrote ERST address to ir_set 0.");
2509 xhci_print_ir_set(xhci
, 0);
2511 /* init command timeout timer */
2512 init_timer(&xhci
->cmd_timer
);
2513 xhci
->cmd_timer
.data
= (unsigned long) xhci
;
2514 xhci
->cmd_timer
.function
= xhci_handle_command_timeout
;
2517 * XXX: Might need to set the Interrupter Moderation Register to
2518 * something other than the default (~1ms minimum between interrupts).
2519 * See section 5.5.1.2.
2521 init_completion(&xhci
->addr_dev
);
2522 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
)
2523 xhci
->devs
[i
] = NULL
;
2524 for (i
= 0; i
< USB_MAXCHILDREN
; ++i
) {
2525 xhci
->bus_state
[0].resume_done
[i
] = 0;
2526 xhci
->bus_state
[1].resume_done
[i
] = 0;
2527 /* Only the USB 2.0 completions will ever be used. */
2528 init_completion(&xhci
->bus_state
[1].rexit_done
[i
]);
2531 if (scratchpad_alloc(xhci
, flags
))
2533 if (xhci_setup_port_arrays(xhci
, flags
))
2536 /* Enable USB 3.0 device notifications for function remote wake, which
2537 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2538 * U3 (device suspend).
2540 temp
= readl(&xhci
->op_regs
->dev_notification
);
2541 temp
&= ~DEV_NOTE_MASK
;
2542 temp
|= DEV_NOTE_FWAKE
;
2543 writel(temp
, &xhci
->op_regs
->dev_notification
);
2548 xhci_warn(xhci
, "Couldn't initialize memory\n");
2551 xhci_mem_cleanup(xhci
);