1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/uaccess.h>
78 /* flags stating the success for a syscall */
79 #define AUDITSC_INVALID 0
80 #define AUDITSC_SUCCESS 1
81 #define AUDITSC_FAILURE 2
83 /* no execve audit message should be longer than this (userspace limits),
84 * see the note near the top of audit_log_execve_info() about this value */
85 #define MAX_EXECVE_AUDIT_LEN 7500
87 /* max length to print of cmdline/proctitle value during audit */
88 #define MAX_PROCTITLE_AUDIT_LEN 128
90 /* number of audit rules */
93 /* determines whether we collect data for signals sent */
96 struct audit_aux_data
{
97 struct audit_aux_data
*next
;
101 #define AUDIT_AUX_IPCPERM 0
103 /* Number of target pids per aux struct. */
104 #define AUDIT_AUX_PIDS 16
106 struct audit_aux_data_pids
{
107 struct audit_aux_data d
;
108 pid_t target_pid
[AUDIT_AUX_PIDS
];
109 kuid_t target_auid
[AUDIT_AUX_PIDS
];
110 kuid_t target_uid
[AUDIT_AUX_PIDS
];
111 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
112 u32 target_sid
[AUDIT_AUX_PIDS
];
113 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
117 struct audit_aux_data_bprm_fcaps
{
118 struct audit_aux_data d
;
119 struct audit_cap_data fcap
;
120 unsigned int fcap_ver
;
121 struct audit_cap_data old_pcap
;
122 struct audit_cap_data new_pcap
;
125 struct audit_tree_refs
{
126 struct audit_tree_refs
*next
;
127 struct audit_chunk
*c
[31];
130 static inline int open_arg(int flags
, int mask
)
132 int n
= ACC_MODE(flags
);
133 if (flags
& (O_TRUNC
| O_CREAT
))
134 n
|= AUDIT_PERM_WRITE
;
138 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
145 switch (audit_classify_syscall(ctx
->arch
, n
)) {
147 if ((mask
& AUDIT_PERM_WRITE
) &&
148 audit_match_class(AUDIT_CLASS_WRITE
, n
))
150 if ((mask
& AUDIT_PERM_READ
) &&
151 audit_match_class(AUDIT_CLASS_READ
, n
))
153 if ((mask
& AUDIT_PERM_ATTR
) &&
154 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
157 case 1: /* 32bit on biarch */
158 if ((mask
& AUDIT_PERM_WRITE
) &&
159 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
161 if ((mask
& AUDIT_PERM_READ
) &&
162 audit_match_class(AUDIT_CLASS_READ_32
, n
))
164 if ((mask
& AUDIT_PERM_ATTR
) &&
165 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
169 return mask
& ACC_MODE(ctx
->argv
[1]);
171 return mask
& ACC_MODE(ctx
->argv
[2]);
172 case 4: /* socketcall */
173 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
175 return mask
& AUDIT_PERM_EXEC
;
181 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
183 struct audit_names
*n
;
184 umode_t mode
= (umode_t
)val
;
189 list_for_each_entry(n
, &ctx
->names_list
, list
) {
190 if ((n
->ino
!= -1) &&
191 ((n
->mode
& S_IFMT
) == mode
))
199 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
200 * ->first_trees points to its beginning, ->trees - to the current end of data.
201 * ->tree_count is the number of free entries in array pointed to by ->trees.
202 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
203 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
204 * it's going to remain 1-element for almost any setup) until we free context itself.
205 * References in it _are_ dropped - at the same time we free/drop aux stuff.
208 #ifdef CONFIG_AUDIT_TREE
209 static void audit_set_auditable(struct audit_context
*ctx
)
213 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
217 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
219 struct audit_tree_refs
*p
= ctx
->trees
;
220 int left
= ctx
->tree_count
;
222 p
->c
[--left
] = chunk
;
223 ctx
->tree_count
= left
;
232 ctx
->tree_count
= 30;
238 static int grow_tree_refs(struct audit_context
*ctx
)
240 struct audit_tree_refs
*p
= ctx
->trees
;
241 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
247 p
->next
= ctx
->trees
;
249 ctx
->first_trees
= ctx
->trees
;
250 ctx
->tree_count
= 31;
255 static void unroll_tree_refs(struct audit_context
*ctx
,
256 struct audit_tree_refs
*p
, int count
)
258 #ifdef CONFIG_AUDIT_TREE
259 struct audit_tree_refs
*q
;
262 /* we started with empty chain */
263 p
= ctx
->first_trees
;
265 /* if the very first allocation has failed, nothing to do */
270 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
272 audit_put_chunk(q
->c
[n
]);
276 while (n
-- > ctx
->tree_count
) {
277 audit_put_chunk(q
->c
[n
]);
281 ctx
->tree_count
= count
;
285 static void free_tree_refs(struct audit_context
*ctx
)
287 struct audit_tree_refs
*p
, *q
;
288 for (p
= ctx
->first_trees
; p
; p
= q
) {
294 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
296 #ifdef CONFIG_AUDIT_TREE
297 struct audit_tree_refs
*p
;
302 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
303 for (n
= 0; n
< 31; n
++)
304 if (audit_tree_match(p
->c
[n
], tree
))
309 for (n
= ctx
->tree_count
; n
< 31; n
++)
310 if (audit_tree_match(p
->c
[n
], tree
))
317 static int audit_compare_uid(kuid_t uid
,
318 struct audit_names
*name
,
319 struct audit_field
*f
,
320 struct audit_context
*ctx
)
322 struct audit_names
*n
;
326 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
332 list_for_each_entry(n
, &ctx
->names_list
, list
) {
333 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
341 static int audit_compare_gid(kgid_t gid
,
342 struct audit_names
*name
,
343 struct audit_field
*f
,
344 struct audit_context
*ctx
)
346 struct audit_names
*n
;
350 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
356 list_for_each_entry(n
, &ctx
->names_list
, list
) {
357 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
365 static int audit_field_compare(struct task_struct
*tsk
,
366 const struct cred
*cred
,
367 struct audit_field
*f
,
368 struct audit_context
*ctx
,
369 struct audit_names
*name
)
372 /* process to file object comparisons */
373 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
374 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
375 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
376 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
377 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
378 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
379 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
380 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
381 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
382 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
383 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
384 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
385 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
386 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
387 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
388 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
389 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
390 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
391 /* uid comparisons */
392 case AUDIT_COMPARE_UID_TO_AUID
:
393 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
394 case AUDIT_COMPARE_UID_TO_EUID
:
395 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
396 case AUDIT_COMPARE_UID_TO_SUID
:
397 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
398 case AUDIT_COMPARE_UID_TO_FSUID
:
399 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
400 /* auid comparisons */
401 case AUDIT_COMPARE_AUID_TO_EUID
:
402 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
403 case AUDIT_COMPARE_AUID_TO_SUID
:
404 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
405 case AUDIT_COMPARE_AUID_TO_FSUID
:
406 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
407 /* euid comparisons */
408 case AUDIT_COMPARE_EUID_TO_SUID
:
409 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
410 case AUDIT_COMPARE_EUID_TO_FSUID
:
411 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
412 /* suid comparisons */
413 case AUDIT_COMPARE_SUID_TO_FSUID
:
414 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
415 /* gid comparisons */
416 case AUDIT_COMPARE_GID_TO_EGID
:
417 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
418 case AUDIT_COMPARE_GID_TO_SGID
:
419 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
420 case AUDIT_COMPARE_GID_TO_FSGID
:
421 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
422 /* egid comparisons */
423 case AUDIT_COMPARE_EGID_TO_SGID
:
424 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
425 case AUDIT_COMPARE_EGID_TO_FSGID
:
426 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
427 /* sgid comparison */
428 case AUDIT_COMPARE_SGID_TO_FSGID
:
429 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
431 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
437 /* Determine if any context name data matches a rule's watch data */
438 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
441 * If task_creation is true, this is an explicit indication that we are
442 * filtering a task rule at task creation time. This and tsk == current are
443 * the only situations where tsk->cred may be accessed without an rcu read lock.
445 static int audit_filter_rules(struct task_struct
*tsk
,
446 struct audit_krule
*rule
,
447 struct audit_context
*ctx
,
448 struct audit_names
*name
,
449 enum audit_state
*state
,
452 const struct cred
*cred
;
456 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
458 for (i
= 0; i
< rule
->field_count
; i
++) {
459 struct audit_field
*f
= &rule
->fields
[i
];
460 struct audit_names
*n
;
466 pid
= task_pid_nr(tsk
);
467 result
= audit_comparator(pid
, f
->op
, f
->val
);
472 ctx
->ppid
= task_ppid_nr(tsk
);
473 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
477 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
480 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
483 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
486 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
489 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
490 if (f
->op
== Audit_equal
) {
492 result
= in_group_p(f
->gid
);
493 } else if (f
->op
== Audit_not_equal
) {
495 result
= !in_group_p(f
->gid
);
499 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
500 if (f
->op
== Audit_equal
) {
502 result
= in_egroup_p(f
->gid
);
503 } else if (f
->op
== Audit_not_equal
) {
505 result
= !in_egroup_p(f
->gid
);
509 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
512 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
515 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
519 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
523 if (ctx
&& ctx
->return_valid
)
524 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
527 if (ctx
&& ctx
->return_valid
) {
529 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
531 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
536 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
537 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
540 list_for_each_entry(n
, &ctx
->names_list
, list
) {
541 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
542 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
551 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
552 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
555 list_for_each_entry(n
, &ctx
->names_list
, list
) {
556 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
557 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
566 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
568 list_for_each_entry(n
, &ctx
->names_list
, list
) {
569 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
578 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
580 list_for_each_entry(n
, &ctx
->names_list
, list
) {
581 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
590 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
592 list_for_each_entry(n
, &ctx
->names_list
, list
) {
593 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
602 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
606 result
= match_tree_refs(ctx
, rule
->tree
);
611 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
613 case AUDIT_LOGINUID_SET
:
614 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
616 case AUDIT_SUBJ_USER
:
617 case AUDIT_SUBJ_ROLE
:
618 case AUDIT_SUBJ_TYPE
:
621 /* NOTE: this may return negative values indicating
622 a temporary error. We simply treat this as a
623 match for now to avoid losing information that
624 may be wanted. An error message will also be
628 security_task_getsecid(tsk
, &sid
);
631 result
= security_audit_rule_match(sid
, f
->type
,
640 case AUDIT_OBJ_LEV_LOW
:
641 case AUDIT_OBJ_LEV_HIGH
:
642 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
645 /* Find files that match */
647 result
= security_audit_rule_match(
648 name
->osid
, f
->type
, f
->op
,
651 list_for_each_entry(n
, &ctx
->names_list
, list
) {
652 if (security_audit_rule_match(n
->osid
, f
->type
,
660 /* Find ipc objects that match */
661 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
663 if (security_audit_rule_match(ctx
->ipc
.osid
,
674 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
676 case AUDIT_FILTERKEY
:
677 /* ignore this field for filtering */
681 result
= audit_match_perm(ctx
, f
->val
);
684 result
= audit_match_filetype(ctx
, f
->val
);
686 case AUDIT_FIELD_COMPARE
:
687 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
695 if (rule
->prio
<= ctx
->prio
)
697 if (rule
->filterkey
) {
698 kfree(ctx
->filterkey
);
699 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
701 ctx
->prio
= rule
->prio
;
703 switch (rule
->action
) {
704 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
705 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
710 /* At process creation time, we can determine if system-call auditing is
711 * completely disabled for this task. Since we only have the task
712 * structure at this point, we can only check uid and gid.
714 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
716 struct audit_entry
*e
;
717 enum audit_state state
;
720 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
721 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
723 if (state
== AUDIT_RECORD_CONTEXT
)
724 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
730 return AUDIT_BUILD_CONTEXT
;
733 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
737 if (val
> 0xffffffff)
740 word
= AUDIT_WORD(val
);
741 if (word
>= AUDIT_BITMASK_SIZE
)
744 bit
= AUDIT_BIT(val
);
746 return rule
->mask
[word
] & bit
;
749 /* At syscall entry and exit time, this filter is called if the
750 * audit_state is not low enough that auditing cannot take place, but is
751 * also not high enough that we already know we have to write an audit
752 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
754 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
755 struct audit_context
*ctx
,
756 struct list_head
*list
)
758 struct audit_entry
*e
;
759 enum audit_state state
;
761 if (audit_pid
&& tsk
->tgid
== audit_pid
)
762 return AUDIT_DISABLED
;
765 if (!list_empty(list
)) {
766 list_for_each_entry_rcu(e
, list
, list
) {
767 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
768 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
771 ctx
->current_state
= state
;
777 return AUDIT_BUILD_CONTEXT
;
781 * Given an audit_name check the inode hash table to see if they match.
782 * Called holding the rcu read lock to protect the use of audit_inode_hash
784 static int audit_filter_inode_name(struct task_struct
*tsk
,
785 struct audit_names
*n
,
786 struct audit_context
*ctx
) {
787 int h
= audit_hash_ino((u32
)n
->ino
);
788 struct list_head
*list
= &audit_inode_hash
[h
];
789 struct audit_entry
*e
;
790 enum audit_state state
;
792 if (list_empty(list
))
795 list_for_each_entry_rcu(e
, list
, list
) {
796 if (audit_in_mask(&e
->rule
, ctx
->major
) &&
797 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
798 ctx
->current_state
= state
;
806 /* At syscall exit time, this filter is called if any audit_names have been
807 * collected during syscall processing. We only check rules in sublists at hash
808 * buckets applicable to the inode numbers in audit_names.
809 * Regarding audit_state, same rules apply as for audit_filter_syscall().
811 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
813 struct audit_names
*n
;
815 if (audit_pid
&& tsk
->tgid
== audit_pid
)
820 list_for_each_entry(n
, &ctx
->names_list
, list
) {
821 if (audit_filter_inode_name(tsk
, n
, ctx
))
827 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
828 static inline struct audit_context
*audit_take_context(struct task_struct
*tsk
,
832 struct audit_context
*context
= tsk
->audit_context
;
836 context
->return_valid
= return_valid
;
839 * we need to fix up the return code in the audit logs if the actual
840 * return codes are later going to be fixed up by the arch specific
843 * This is actually a test for:
844 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
845 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
847 * but is faster than a bunch of ||
849 if (unlikely(return_code
<= -ERESTARTSYS
) &&
850 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
851 (return_code
!= -ENOIOCTLCMD
))
852 context
->return_code
= -EINTR
;
854 context
->return_code
= return_code
;
856 if (context
->in_syscall
&& !context
->dummy
) {
857 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
858 audit_filter_inodes(tsk
, context
);
861 tsk
->audit_context
= NULL
;
865 static inline void audit_proctitle_free(struct audit_context
*context
)
867 kfree(context
->proctitle
.value
);
868 context
->proctitle
.value
= NULL
;
869 context
->proctitle
.len
= 0;
872 static inline void audit_free_names(struct audit_context
*context
)
874 struct audit_names
*n
, *next
;
877 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
880 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
881 " name_count=%d put_count=%d ino_count=%d"
882 " [NOT freeing]\n", __FILE__
, __LINE__
,
883 context
->serial
, context
->major
, context
->in_syscall
,
884 context
->name_count
, context
->put_count
,
886 list_for_each_entry(n
, &context
->names_list
, list
) {
887 pr_err("names[%d] = %p = %s\n", i
++, n
->name
,
888 n
->name
->name
?: "(null)");
895 context
->put_count
= 0;
896 context
->ino_count
= 0;
899 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
901 if (n
->name
&& n
->name_put
)
902 final_putname(n
->name
);
906 context
->name_count
= 0;
907 path_put(&context
->pwd
);
908 context
->pwd
.dentry
= NULL
;
909 context
->pwd
.mnt
= NULL
;
912 static inline void audit_free_aux(struct audit_context
*context
)
914 struct audit_aux_data
*aux
;
916 while ((aux
= context
->aux
)) {
917 context
->aux
= aux
->next
;
920 while ((aux
= context
->aux_pids
)) {
921 context
->aux_pids
= aux
->next
;
926 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
928 struct audit_context
*context
;
930 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
933 context
->state
= state
;
934 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
935 INIT_LIST_HEAD(&context
->killed_trees
);
936 INIT_LIST_HEAD(&context
->names_list
);
941 * audit_alloc - allocate an audit context block for a task
944 * Filter on the task information and allocate a per-task audit context
945 * if necessary. Doing so turns on system call auditing for the
946 * specified task. This is called from copy_process, so no lock is
949 int audit_alloc(struct task_struct
*tsk
)
951 struct audit_context
*context
;
952 enum audit_state state
;
955 if (likely(!audit_ever_enabled
))
956 return 0; /* Return if not auditing. */
958 state
= audit_filter_task(tsk
, &key
);
959 if (state
== AUDIT_DISABLED
) {
960 clear_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
964 if (!(context
= audit_alloc_context(state
))) {
966 audit_log_lost("out of memory in audit_alloc");
969 context
->filterkey
= key
;
971 tsk
->audit_context
= context
;
972 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
976 static inline void audit_free_context(struct audit_context
*context
)
978 audit_free_names(context
);
979 unroll_tree_refs(context
, NULL
, 0);
980 free_tree_refs(context
);
981 audit_free_aux(context
);
982 kfree(context
->filterkey
);
983 kfree(context
->sockaddr
);
984 audit_proctitle_free(context
);
988 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
989 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
992 struct audit_buffer
*ab
;
997 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1001 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
1002 from_kuid(&init_user_ns
, auid
),
1003 from_kuid(&init_user_ns
, uid
), sessionid
);
1005 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1006 audit_log_format(ab
, " obj=(none)");
1009 audit_log_format(ab
, " obj=%s", ctx
);
1010 security_release_secctx(ctx
, len
);
1013 audit_log_format(ab
, " ocomm=");
1014 audit_log_untrustedstring(ab
, comm
);
1020 static void audit_log_execve_info(struct audit_context
*context
,
1021 struct audit_buffer
**ab
)
1035 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1037 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1038 * data we put in the audit record for this argument (see the
1039 * code below) ... at this point in time 96 is plenty */
1042 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1043 * current value of 7500 is not as important as the fact that it
1044 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1045 * room if we go over a little bit in the logging below */
1046 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1047 len_max
= MAX_EXECVE_AUDIT_LEN
;
1049 /* scratch buffer to hold the userspace args */
1050 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1052 audit_panic("out of memory for argv string");
1057 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1062 require_data
= true;
1067 /* NOTE: we don't ever want to trust this value for anything
1068 * serious, but the audit record format insists we
1069 * provide an argument length for really long arguments,
1070 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1071 * to use strncpy_from_user() to obtain this value for
1072 * recording in the log, although we don't use it
1073 * anywhere here to avoid a double-fetch problem */
1075 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1077 /* read more data from userspace */
1079 /* can we make more room in the buffer? */
1080 if (buf
!= buf_head
) {
1081 memmove(buf_head
, buf
, len_buf
);
1085 /* fetch as much as we can of the argument */
1086 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1088 if (len_tmp
== -EFAULT
) {
1089 /* unable to copy from userspace */
1090 send_sig(SIGKILL
, current
, 0);
1092 } else if (len_tmp
== (len_max
- len_buf
)) {
1093 /* buffer is not large enough */
1094 require_data
= true;
1095 /* NOTE: if we are going to span multiple
1096 * buffers force the encoding so we stand
1097 * a chance at a sane len_full value and
1098 * consistent record encoding */
1100 len_full
= len_full
* 2;
1103 require_data
= false;
1105 encode
= audit_string_contains_control(
1107 /* try to use a trusted value for len_full */
1108 if (len_full
< len_max
)
1109 len_full
= (encode
?
1110 len_tmp
* 2 : len_tmp
);
1114 buf_head
[len_buf
] = '\0';
1116 /* length of the buffer in the audit record? */
1117 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1120 /* write as much as we can to the audit log */
1122 /* NOTE: some magic numbers here - basically if we
1123 * can't fit a reasonable amount of data into the
1124 * existing audit buffer, flush it and start with
1126 if ((sizeof(abuf
) + 8) > len_rem
) {
1129 *ab
= audit_log_start(context
,
1130 GFP_KERNEL
, AUDIT_EXECVE
);
1135 /* create the non-arg portion of the arg record */
1137 if (require_data
|| (iter
> 0) ||
1138 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1140 len_tmp
+= snprintf(&abuf
[len_tmp
],
1141 sizeof(abuf
) - len_tmp
,
1145 len_tmp
+= snprintf(&abuf
[len_tmp
],
1146 sizeof(abuf
) - len_tmp
,
1147 " a%d[%d]=", arg
, iter
++);
1149 len_tmp
+= snprintf(&abuf
[len_tmp
],
1150 sizeof(abuf
) - len_tmp
,
1152 WARN_ON(len_tmp
>= sizeof(abuf
));
1153 abuf
[sizeof(abuf
) - 1] = '\0';
1155 /* log the arg in the audit record */
1156 audit_log_format(*ab
, "%s", abuf
);
1160 if (len_abuf
> len_rem
)
1161 len_tmp
= len_rem
/ 2; /* encoding */
1162 audit_log_n_hex(*ab
, buf
, len_tmp
);
1163 len_rem
-= len_tmp
* 2;
1164 len_abuf
-= len_tmp
* 2;
1166 if (len_abuf
> len_rem
)
1167 len_tmp
= len_rem
- 2; /* quotes */
1168 audit_log_n_string(*ab
, buf
, len_tmp
);
1169 len_rem
-= len_tmp
+ 2;
1170 /* don't subtract the "2" because we still need
1171 * to add quotes to the remaining string */
1172 len_abuf
-= len_tmp
;
1178 /* ready to move to the next argument? */
1179 if ((len_buf
== 0) && !require_data
) {
1183 require_data
= true;
1186 } while (arg
< context
->execve
.argc
);
1188 /* NOTE: the caller handles the final audit_log_end() call */
1194 static void show_special(struct audit_context
*context
, int *call_panic
)
1196 struct audit_buffer
*ab
;
1199 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1203 switch (context
->type
) {
1204 case AUDIT_SOCKETCALL
: {
1205 int nargs
= context
->socketcall
.nargs
;
1206 audit_log_format(ab
, "nargs=%d", nargs
);
1207 for (i
= 0; i
< nargs
; i
++)
1208 audit_log_format(ab
, " a%d=%lx", i
,
1209 context
->socketcall
.args
[i
]);
1212 u32 osid
= context
->ipc
.osid
;
1214 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1215 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1216 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1221 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1222 audit_log_format(ab
, " osid=%u", osid
);
1225 audit_log_format(ab
, " obj=%s", ctx
);
1226 security_release_secctx(ctx
, len
);
1229 if (context
->ipc
.has_perm
) {
1231 ab
= audit_log_start(context
, GFP_KERNEL
,
1232 AUDIT_IPC_SET_PERM
);
1235 audit_log_format(ab
,
1236 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1237 context
->ipc
.qbytes
,
1238 context
->ipc
.perm_uid
,
1239 context
->ipc
.perm_gid
,
1240 context
->ipc
.perm_mode
);
1243 case AUDIT_MQ_OPEN
: {
1244 audit_log_format(ab
,
1245 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1246 "mq_msgsize=%ld mq_curmsgs=%ld",
1247 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1248 context
->mq_open
.attr
.mq_flags
,
1249 context
->mq_open
.attr
.mq_maxmsg
,
1250 context
->mq_open
.attr
.mq_msgsize
,
1251 context
->mq_open
.attr
.mq_curmsgs
);
1253 case AUDIT_MQ_SENDRECV
: {
1254 audit_log_format(ab
,
1255 "mqdes=%d msg_len=%zd msg_prio=%u "
1256 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1257 context
->mq_sendrecv
.mqdes
,
1258 context
->mq_sendrecv
.msg_len
,
1259 context
->mq_sendrecv
.msg_prio
,
1260 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1261 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1263 case AUDIT_MQ_NOTIFY
: {
1264 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1265 context
->mq_notify
.mqdes
,
1266 context
->mq_notify
.sigev_signo
);
1268 case AUDIT_MQ_GETSETATTR
: {
1269 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1270 audit_log_format(ab
,
1271 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1273 context
->mq_getsetattr
.mqdes
,
1274 attr
->mq_flags
, attr
->mq_maxmsg
,
1275 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1277 case AUDIT_CAPSET
: {
1278 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1279 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1280 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1281 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1284 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1285 context
->mmap
.flags
);
1287 case AUDIT_EXECVE
: {
1288 audit_log_execve_info(context
, &ab
);
1294 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1296 char *end
= proctitle
+ len
- 1;
1297 while (end
> proctitle
&& !isprint(*end
))
1300 /* catch the case where proctitle is only 1 non-print character */
1301 len
= end
- proctitle
+ 1;
1302 len
-= isprint(proctitle
[len
-1]) == 0;
1306 static void audit_log_proctitle(struct task_struct
*tsk
,
1307 struct audit_context
*context
)
1311 char *msg
= "(null)";
1312 int len
= strlen(msg
);
1313 struct audit_buffer
*ab
;
1315 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1317 return; /* audit_panic or being filtered */
1319 audit_log_format(ab
, "proctitle=");
1322 if (!context
->proctitle
.value
) {
1323 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1326 /* Historically called this from procfs naming */
1327 res
= get_cmdline(tsk
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1332 res
= audit_proctitle_rtrim(buf
, res
);
1337 context
->proctitle
.value
= buf
;
1338 context
->proctitle
.len
= res
;
1340 msg
= context
->proctitle
.value
;
1341 len
= context
->proctitle
.len
;
1343 audit_log_n_untrustedstring(ab
, msg
, len
);
1347 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1349 int i
, call_panic
= 0;
1350 struct audit_buffer
*ab
;
1351 struct audit_aux_data
*aux
;
1352 struct audit_names
*n
;
1354 /* tsk == current */
1355 context
->personality
= tsk
->personality
;
1357 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1359 return; /* audit_panic has been called */
1360 audit_log_format(ab
, "arch=%x syscall=%d",
1361 context
->arch
, context
->major
);
1362 if (context
->personality
!= PER_LINUX
)
1363 audit_log_format(ab
, " per=%lx", context
->personality
);
1364 if (context
->return_valid
)
1365 audit_log_format(ab
, " success=%s exit=%ld",
1366 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1367 context
->return_code
);
1369 audit_log_format(ab
,
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1375 context
->name_count
);
1377 audit_log_task_info(ab
, tsk
);
1378 audit_log_key(ab
, context
->filterkey
);
1381 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1383 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1385 continue; /* audit_panic has been called */
1387 switch (aux
->type
) {
1389 case AUDIT_BPRM_FCAPS
: {
1390 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1391 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1392 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1393 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1394 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1395 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1396 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1397 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1398 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1399 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1400 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1408 show_special(context
, &call_panic
);
1410 if (context
->fds
[0] >= 0) {
1411 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1413 audit_log_format(ab
, "fd0=%d fd1=%d",
1414 context
->fds
[0], context
->fds
[1]);
1419 if (context
->sockaddr_len
) {
1420 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1422 audit_log_format(ab
, "saddr=");
1423 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1424 context
->sockaddr_len
);
1429 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1430 struct audit_aux_data_pids
*axs
= (void *)aux
;
1432 for (i
= 0; i
< axs
->pid_count
; i
++)
1433 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1434 axs
->target_auid
[i
],
1436 axs
->target_sessionid
[i
],
1438 axs
->target_comm
[i
]))
1442 if (context
->target_pid
&&
1443 audit_log_pid_context(context
, context
->target_pid
,
1444 context
->target_auid
, context
->target_uid
,
1445 context
->target_sessionid
,
1446 context
->target_sid
, context
->target_comm
))
1449 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1450 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1452 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1458 list_for_each_entry(n
, &context
->names_list
, list
) {
1461 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1464 audit_log_proctitle(tsk
, context
);
1466 /* Send end of event record to help user space know we are finished */
1467 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1471 audit_panic("error converting sid to string");
1475 * audit_free - free a per-task audit context
1476 * @tsk: task whose audit context block to free
1478 * Called from copy_process and do_exit
1480 void __audit_free(struct task_struct
*tsk
)
1482 struct audit_context
*context
;
1484 context
= audit_take_context(tsk
, 0, 0);
1488 /* Check for system calls that do not go through the exit
1489 * function (e.g., exit_group), then free context block.
1490 * We use GFP_ATOMIC here because we might be doing this
1491 * in the context of the idle thread */
1492 /* that can happen only if we are called from do_exit() */
1493 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1494 audit_log_exit(context
, tsk
);
1495 if (!list_empty(&context
->killed_trees
))
1496 audit_kill_trees(&context
->killed_trees
);
1498 audit_free_context(context
);
1502 * audit_syscall_entry - fill in an audit record at syscall entry
1503 * @arch: architecture type
1504 * @major: major syscall type (function)
1505 * @a1: additional syscall register 1
1506 * @a2: additional syscall register 2
1507 * @a3: additional syscall register 3
1508 * @a4: additional syscall register 4
1510 * Fill in audit context at syscall entry. This only happens if the
1511 * audit context was created when the task was created and the state or
1512 * filters demand the audit context be built. If the state from the
1513 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1514 * then the record will be written at syscall exit time (otherwise, it
1515 * will only be written if another part of the kernel requests that it
1518 void __audit_syscall_entry(int arch
, int major
,
1519 unsigned long a1
, unsigned long a2
,
1520 unsigned long a3
, unsigned long a4
)
1522 struct task_struct
*tsk
= current
;
1523 struct audit_context
*context
= tsk
->audit_context
;
1524 enum audit_state state
;
1529 BUG_ON(context
->in_syscall
|| context
->name_count
);
1534 context
->arch
= arch
;
1535 context
->major
= major
;
1536 context
->argv
[0] = a1
;
1537 context
->argv
[1] = a2
;
1538 context
->argv
[2] = a3
;
1539 context
->argv
[3] = a4
;
1541 state
= context
->state
;
1542 context
->dummy
= !audit_n_rules
;
1543 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1545 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1547 if (state
== AUDIT_DISABLED
)
1550 context
->serial
= 0;
1551 context
->ctime
= CURRENT_TIME
;
1552 context
->in_syscall
= 1;
1553 context
->current_state
= state
;
1558 * audit_syscall_exit - deallocate audit context after a system call
1559 * @success: success value of the syscall
1560 * @return_code: return value of the syscall
1562 * Tear down after system call. If the audit context has been marked as
1563 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1564 * filtering, or because some other part of the kernel wrote an audit
1565 * message), then write out the syscall information. In call cases,
1566 * free the names stored from getname().
1568 void __audit_syscall_exit(int success
, long return_code
)
1570 struct task_struct
*tsk
= current
;
1571 struct audit_context
*context
;
1574 success
= AUDITSC_SUCCESS
;
1576 success
= AUDITSC_FAILURE
;
1578 context
= audit_take_context(tsk
, success
, return_code
);
1582 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1583 audit_log_exit(context
, tsk
);
1585 context
->in_syscall
= 0;
1586 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1588 if (!list_empty(&context
->killed_trees
))
1589 audit_kill_trees(&context
->killed_trees
);
1591 audit_free_names(context
);
1592 unroll_tree_refs(context
, NULL
, 0);
1593 audit_free_aux(context
);
1594 context
->aux
= NULL
;
1595 context
->aux_pids
= NULL
;
1596 context
->target_pid
= 0;
1597 context
->target_sid
= 0;
1598 context
->sockaddr_len
= 0;
1600 context
->fds
[0] = -1;
1601 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1602 kfree(context
->filterkey
);
1603 context
->filterkey
= NULL
;
1605 tsk
->audit_context
= context
;
1608 static inline void handle_one(const struct inode
*inode
)
1610 #ifdef CONFIG_AUDIT_TREE
1611 struct audit_context
*context
;
1612 struct audit_tree_refs
*p
;
1613 struct audit_chunk
*chunk
;
1615 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1617 context
= current
->audit_context
;
1619 count
= context
->tree_count
;
1621 chunk
= audit_tree_lookup(inode
);
1625 if (likely(put_tree_ref(context
, chunk
)))
1627 if (unlikely(!grow_tree_refs(context
))) {
1628 pr_warn("out of memory, audit has lost a tree reference\n");
1629 audit_set_auditable(context
);
1630 audit_put_chunk(chunk
);
1631 unroll_tree_refs(context
, p
, count
);
1634 put_tree_ref(context
, chunk
);
1638 static void handle_path(const struct dentry
*dentry
)
1640 #ifdef CONFIG_AUDIT_TREE
1641 struct audit_context
*context
;
1642 struct audit_tree_refs
*p
;
1643 const struct dentry
*d
, *parent
;
1644 struct audit_chunk
*drop
;
1648 context
= current
->audit_context
;
1650 count
= context
->tree_count
;
1655 seq
= read_seqbegin(&rename_lock
);
1657 struct inode
*inode
= d
->d_inode
;
1658 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1659 struct audit_chunk
*chunk
;
1660 chunk
= audit_tree_lookup(inode
);
1662 if (unlikely(!put_tree_ref(context
, chunk
))) {
1668 parent
= d
->d_parent
;
1673 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1676 /* just a race with rename */
1677 unroll_tree_refs(context
, p
, count
);
1680 audit_put_chunk(drop
);
1681 if (grow_tree_refs(context
)) {
1682 /* OK, got more space */
1683 unroll_tree_refs(context
, p
, count
);
1687 pr_warn("out of memory, audit has lost a tree reference\n");
1688 unroll_tree_refs(context
, p
, count
);
1689 audit_set_auditable(context
);
1696 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1699 struct audit_names
*aname
;
1701 if (context
->name_count
< AUDIT_NAMES
) {
1702 aname
= &context
->preallocated_names
[context
->name_count
];
1703 memset(aname
, 0, sizeof(*aname
));
1705 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1708 aname
->should_free
= true;
1711 aname
->ino
= (unsigned long)-1;
1713 list_add_tail(&aname
->list
, &context
->names_list
);
1715 context
->name_count
++;
1717 context
->ino_count
++;
1723 * audit_reusename - fill out filename with info from existing entry
1724 * @uptr: userland ptr to pathname
1726 * Search the audit_names list for the current audit context. If there is an
1727 * existing entry with a matching "uptr" then return the filename
1728 * associated with that audit_name. If not, return NULL.
1731 __audit_reusename(const __user
char *uptr
)
1733 struct audit_context
*context
= current
->audit_context
;
1734 struct audit_names
*n
;
1736 list_for_each_entry(n
, &context
->names_list
, list
) {
1739 if (n
->name
->uptr
== uptr
)
1746 * audit_getname - add a name to the list
1747 * @name: name to add
1749 * Add a name to the list of audit names for this context.
1750 * Called from fs/namei.c:getname().
1752 void __audit_getname(struct filename
*name
)
1754 struct audit_context
*context
= current
->audit_context
;
1755 struct audit_names
*n
;
1757 if (!context
->in_syscall
) {
1758 #if AUDIT_DEBUG == 2
1759 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1760 __FILE__
, __LINE__
, context
->serial
, name
);
1767 /* The filename _must_ have a populated ->name */
1768 BUG_ON(!name
->name
);
1771 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1776 n
->name_len
= AUDIT_NAME_FULL
;
1780 if (!context
->pwd
.dentry
)
1781 get_fs_pwd(current
->fs
, &context
->pwd
);
1784 /* audit_putname - intercept a putname request
1785 * @name: name to intercept and delay for putname
1787 * If we have stored the name from getname in the audit context,
1788 * then we delay the putname until syscall exit.
1789 * Called from include/linux/fs.h:putname().
1791 void audit_putname(struct filename
*name
)
1793 struct audit_context
*context
= current
->audit_context
;
1796 if (!name
->aname
|| !context
->in_syscall
) {
1797 #if AUDIT_DEBUG == 2
1798 pr_err("%s:%d(:%d): final_putname(%p)\n",
1799 __FILE__
, __LINE__
, context
->serial
, name
);
1800 if (context
->name_count
) {
1801 struct audit_names
*n
;
1804 list_for_each_entry(n
, &context
->names_list
, list
)
1805 pr_err("name[%d] = %p = %s\n", i
++, n
->name
,
1806 n
->name
->name
?: "(null)");
1809 final_putname(name
);
1813 ++context
->put_count
;
1814 if (context
->put_count
> context
->name_count
) {
1815 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1816 " name_count=%d put_count=%d\n",
1818 context
->serial
, context
->major
,
1819 context
->in_syscall
, name
->name
,
1820 context
->name_count
, context
->put_count
);
1828 * __audit_inode - store the inode and device from a lookup
1829 * @name: name being audited
1830 * @dentry: dentry being audited
1831 * @flags: attributes for this particular entry
1833 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1836 struct audit_context
*context
= current
->audit_context
;
1837 const struct inode
*inode
= dentry
->d_inode
;
1838 struct audit_names
*n
;
1839 bool parent
= flags
& AUDIT_INODE_PARENT
;
1841 if (!context
->in_syscall
)
1848 /* The struct filename _must_ have a populated ->name */
1849 BUG_ON(!name
->name
);
1852 * If we have a pointer to an audit_names entry already, then we can
1853 * just use it directly if the type is correct.
1858 if (n
->type
== AUDIT_TYPE_PARENT
||
1859 n
->type
== AUDIT_TYPE_UNKNOWN
)
1862 if (n
->type
!= AUDIT_TYPE_PARENT
)
1867 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1868 /* does the name pointer match? */
1869 if (!n
->name
|| n
->name
->name
!= name
->name
)
1872 /* match the correct record type */
1874 if (n
->type
== AUDIT_TYPE_PARENT
||
1875 n
->type
== AUDIT_TYPE_UNKNOWN
)
1878 if (n
->type
!= AUDIT_TYPE_PARENT
)
1884 /* unable to find the name from a previous getname(). Allocate a new
1887 n
= audit_alloc_name(context
, AUDIT_TYPE_NORMAL
);
1892 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1893 n
->type
= AUDIT_TYPE_PARENT
;
1894 if (flags
& AUDIT_INODE_HIDDEN
)
1897 n
->name_len
= AUDIT_NAME_FULL
;
1898 n
->type
= AUDIT_TYPE_NORMAL
;
1900 handle_path(dentry
);
1901 audit_copy_inode(n
, dentry
, inode
);
1905 * __audit_inode_child - collect inode info for created/removed objects
1906 * @parent: inode of dentry parent
1907 * @dentry: dentry being audited
1908 * @type: AUDIT_TYPE_* value that we're looking for
1910 * For syscalls that create or remove filesystem objects, audit_inode
1911 * can only collect information for the filesystem object's parent.
1912 * This call updates the audit context with the child's information.
1913 * Syscalls that create a new filesystem object must be hooked after
1914 * the object is created. Syscalls that remove a filesystem object
1915 * must be hooked prior, in order to capture the target inode during
1916 * unsuccessful attempts.
1918 void __audit_inode_child(const struct inode
*parent
,
1919 const struct dentry
*dentry
,
1920 const unsigned char type
)
1922 struct audit_context
*context
= current
->audit_context
;
1923 const struct inode
*inode
= dentry
->d_inode
;
1924 const char *dname
= dentry
->d_name
.name
;
1925 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1927 if (!context
->in_syscall
)
1933 /* look for a parent entry first */
1934 list_for_each_entry(n
, &context
->names_list
, list
) {
1935 if (!n
->name
|| n
->type
!= AUDIT_TYPE_PARENT
)
1938 if (n
->ino
== parent
->i_ino
&&
1939 !audit_compare_dname_path(dname
, n
->name
->name
, n
->name_len
)) {
1945 /* is there a matching child entry? */
1946 list_for_each_entry(n
, &context
->names_list
, list
) {
1947 /* can only match entries that have a name */
1948 if (!n
->name
|| n
->type
!= type
)
1951 /* if we found a parent, make sure this one is a child of it */
1952 if (found_parent
&& (n
->name
!= found_parent
->name
))
1955 if (!strcmp(dname
, n
->name
->name
) ||
1956 !audit_compare_dname_path(dname
, n
->name
->name
,
1958 found_parent
->name_len
:
1965 if (!found_parent
) {
1966 /* create a new, "anonymous" parent record */
1967 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1970 audit_copy_inode(n
, NULL
, parent
);
1974 found_child
= audit_alloc_name(context
, type
);
1978 /* Re-use the name belonging to the slot for a matching parent
1979 * directory. All names for this context are relinquished in
1980 * audit_free_names() */
1982 found_child
->name
= found_parent
->name
;
1983 found_child
->name_len
= AUDIT_NAME_FULL
;
1984 /* don't call __putname() */
1985 found_child
->name_put
= false;
1989 audit_copy_inode(found_child
, dentry
, inode
);
1991 found_child
->ino
= (unsigned long)-1;
1993 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1996 * auditsc_get_stamp - get local copies of audit_context values
1997 * @ctx: audit_context for the task
1998 * @t: timespec to store time recorded in the audit_context
1999 * @serial: serial value that is recorded in the audit_context
2001 * Also sets the context as auditable.
2003 int auditsc_get_stamp(struct audit_context
*ctx
,
2004 struct timespec
*t
, unsigned int *serial
)
2006 if (!ctx
->in_syscall
)
2009 ctx
->serial
= audit_serial();
2010 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2011 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2012 *serial
= ctx
->serial
;
2015 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2020 /* global counter which is incremented every time something logs in */
2021 static atomic_t session_id
= ATOMIC_INIT(0);
2023 static int audit_set_loginuid_perm(kuid_t loginuid
)
2025 /* if we are unset, we don't need privs */
2026 if (!audit_loginuid_set(current
))
2028 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2029 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE
))
2031 /* it is set, you need permission */
2032 if (!capable(CAP_AUDIT_CONTROL
))
2034 /* reject if this is not an unset and we don't allow that */
2035 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID
) && uid_valid(loginuid
))
2040 static void audit_log_set_loginuid(kuid_t koldloginuid
, kuid_t kloginuid
,
2041 unsigned int oldsessionid
, unsigned int sessionid
,
2044 struct audit_buffer
*ab
;
2045 uid_t uid
, oldloginuid
, loginuid
;
2050 uid
= from_kuid(&init_user_ns
, task_uid(current
));
2051 oldloginuid
= from_kuid(&init_user_ns
, koldloginuid
);
2052 loginuid
= from_kuid(&init_user_ns
, kloginuid
),
2054 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2057 audit_log_format(ab
, "pid=%d uid=%u", task_pid_nr(current
), uid
);
2058 audit_log_task_context(ab
);
2059 audit_log_format(ab
, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2060 oldloginuid
, loginuid
, oldsessionid
, sessionid
, !rc
);
2065 * audit_set_loginuid - set current task's audit_context loginuid
2066 * @loginuid: loginuid value
2070 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2072 int audit_set_loginuid(kuid_t loginuid
)
2074 struct task_struct
*task
= current
;
2075 unsigned int oldsessionid
, sessionid
= (unsigned int)-1;
2079 oldloginuid
= audit_get_loginuid(current
);
2080 oldsessionid
= audit_get_sessionid(current
);
2082 rc
= audit_set_loginuid_perm(loginuid
);
2086 /* are we setting or clearing? */
2087 if (uid_valid(loginuid
))
2088 sessionid
= (unsigned int)atomic_inc_return(&session_id
);
2090 task
->sessionid
= sessionid
;
2091 task
->loginuid
= loginuid
;
2093 audit_log_set_loginuid(oldloginuid
, loginuid
, oldsessionid
, sessionid
, rc
);
2098 * __audit_mq_open - record audit data for a POSIX MQ open
2101 * @attr: queue attributes
2104 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2106 struct audit_context
*context
= current
->audit_context
;
2109 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2111 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2113 context
->mq_open
.oflag
= oflag
;
2114 context
->mq_open
.mode
= mode
;
2116 context
->type
= AUDIT_MQ_OPEN
;
2120 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2121 * @mqdes: MQ descriptor
2122 * @msg_len: Message length
2123 * @msg_prio: Message priority
2124 * @abs_timeout: Message timeout in absolute time
2127 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2128 const struct timespec
*abs_timeout
)
2130 struct audit_context
*context
= current
->audit_context
;
2131 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2134 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2136 memset(p
, 0, sizeof(struct timespec
));
2138 context
->mq_sendrecv
.mqdes
= mqdes
;
2139 context
->mq_sendrecv
.msg_len
= msg_len
;
2140 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2142 context
->type
= AUDIT_MQ_SENDRECV
;
2146 * __audit_mq_notify - record audit data for a POSIX MQ notify
2147 * @mqdes: MQ descriptor
2148 * @notification: Notification event
2152 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2154 struct audit_context
*context
= current
->audit_context
;
2157 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2159 context
->mq_notify
.sigev_signo
= 0;
2161 context
->mq_notify
.mqdes
= mqdes
;
2162 context
->type
= AUDIT_MQ_NOTIFY
;
2166 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2167 * @mqdes: MQ descriptor
2171 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2173 struct audit_context
*context
= current
->audit_context
;
2174 context
->mq_getsetattr
.mqdes
= mqdes
;
2175 context
->mq_getsetattr
.mqstat
= *mqstat
;
2176 context
->type
= AUDIT_MQ_GETSETATTR
;
2180 * audit_ipc_obj - record audit data for ipc object
2181 * @ipcp: ipc permissions
2184 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2186 struct audit_context
*context
= current
->audit_context
;
2187 context
->ipc
.uid
= ipcp
->uid
;
2188 context
->ipc
.gid
= ipcp
->gid
;
2189 context
->ipc
.mode
= ipcp
->mode
;
2190 context
->ipc
.has_perm
= 0;
2191 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2192 context
->type
= AUDIT_IPC
;
2196 * audit_ipc_set_perm - record audit data for new ipc permissions
2197 * @qbytes: msgq bytes
2198 * @uid: msgq user id
2199 * @gid: msgq group id
2200 * @mode: msgq mode (permissions)
2202 * Called only after audit_ipc_obj().
2204 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2206 struct audit_context
*context
= current
->audit_context
;
2208 context
->ipc
.qbytes
= qbytes
;
2209 context
->ipc
.perm_uid
= uid
;
2210 context
->ipc
.perm_gid
= gid
;
2211 context
->ipc
.perm_mode
= mode
;
2212 context
->ipc
.has_perm
= 1;
2215 void __audit_bprm(struct linux_binprm
*bprm
)
2217 struct audit_context
*context
= current
->audit_context
;
2219 context
->type
= AUDIT_EXECVE
;
2220 context
->execve
.argc
= bprm
->argc
;
2225 * audit_socketcall - record audit data for sys_socketcall
2226 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2230 int __audit_socketcall(int nargs
, unsigned long *args
)
2232 struct audit_context
*context
= current
->audit_context
;
2234 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2236 context
->type
= AUDIT_SOCKETCALL
;
2237 context
->socketcall
.nargs
= nargs
;
2238 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2243 * __audit_fd_pair - record audit data for pipe and socketpair
2244 * @fd1: the first file descriptor
2245 * @fd2: the second file descriptor
2248 void __audit_fd_pair(int fd1
, int fd2
)
2250 struct audit_context
*context
= current
->audit_context
;
2251 context
->fds
[0] = fd1
;
2252 context
->fds
[1] = fd2
;
2256 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2257 * @len: data length in user space
2258 * @a: data address in kernel space
2260 * Returns 0 for success or NULL context or < 0 on error.
2262 int __audit_sockaddr(int len
, void *a
)
2264 struct audit_context
*context
= current
->audit_context
;
2266 if (!context
->sockaddr
) {
2267 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2270 context
->sockaddr
= p
;
2273 context
->sockaddr_len
= len
;
2274 memcpy(context
->sockaddr
, a
, len
);
2278 void __audit_ptrace(struct task_struct
*t
)
2280 struct audit_context
*context
= current
->audit_context
;
2282 context
->target_pid
= task_pid_nr(t
);
2283 context
->target_auid
= audit_get_loginuid(t
);
2284 context
->target_uid
= task_uid(t
);
2285 context
->target_sessionid
= audit_get_sessionid(t
);
2286 security_task_getsecid(t
, &context
->target_sid
);
2287 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2291 * audit_signal_info - record signal info for shutting down audit subsystem
2292 * @sig: signal value
2293 * @t: task being signaled
2295 * If the audit subsystem is being terminated, record the task (pid)
2296 * and uid that is doing that.
2298 int __audit_signal_info(int sig
, struct task_struct
*t
)
2300 struct audit_aux_data_pids
*axp
;
2301 struct task_struct
*tsk
= current
;
2302 struct audit_context
*ctx
= tsk
->audit_context
;
2303 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2305 if (audit_pid
&& t
->tgid
== audit_pid
) {
2306 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2307 audit_sig_pid
= task_pid_nr(tsk
);
2308 if (uid_valid(tsk
->loginuid
))
2309 audit_sig_uid
= tsk
->loginuid
;
2311 audit_sig_uid
= uid
;
2312 security_task_getsecid(tsk
, &audit_sig_sid
);
2314 if (!audit_signals
|| audit_dummy_context())
2318 /* optimize the common case by putting first signal recipient directly
2319 * in audit_context */
2320 if (!ctx
->target_pid
) {
2321 ctx
->target_pid
= task_tgid_nr(t
);
2322 ctx
->target_auid
= audit_get_loginuid(t
);
2323 ctx
->target_uid
= t_uid
;
2324 ctx
->target_sessionid
= audit_get_sessionid(t
);
2325 security_task_getsecid(t
, &ctx
->target_sid
);
2326 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2330 axp
= (void *)ctx
->aux_pids
;
2331 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2332 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2336 axp
->d
.type
= AUDIT_OBJ_PID
;
2337 axp
->d
.next
= ctx
->aux_pids
;
2338 ctx
->aux_pids
= (void *)axp
;
2340 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2342 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2343 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2344 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2345 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2346 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2347 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2354 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2355 * @bprm: pointer to the bprm being processed
2356 * @new: the proposed new credentials
2357 * @old: the old credentials
2359 * Simply check if the proc already has the caps given by the file and if not
2360 * store the priv escalation info for later auditing at the end of the syscall
2364 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2365 const struct cred
*new, const struct cred
*old
)
2367 struct audit_aux_data_bprm_fcaps
*ax
;
2368 struct audit_context
*context
= current
->audit_context
;
2369 struct cpu_vfs_cap_data vcaps
;
2370 struct dentry
*dentry
;
2372 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2376 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2377 ax
->d
.next
= context
->aux
;
2378 context
->aux
= (void *)ax
;
2380 dentry
= dget(bprm
->file
->f_dentry
);
2381 get_vfs_caps_from_disk(dentry
, &vcaps
);
2384 ax
->fcap
.permitted
= vcaps
.permitted
;
2385 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2386 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2387 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2389 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2390 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2391 ax
->old_pcap
.effective
= old
->cap_effective
;
2393 ax
->new_pcap
.permitted
= new->cap_permitted
;
2394 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2395 ax
->new_pcap
.effective
= new->cap_effective
;
2400 * __audit_log_capset - store information about the arguments to the capset syscall
2401 * @new: the new credentials
2402 * @old: the old (current) credentials
2404 * Record the aguments userspace sent to sys_capset for later printing by the
2405 * audit system if applicable
2407 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2409 struct audit_context
*context
= current
->audit_context
;
2410 context
->capset
.pid
= task_pid_nr(current
);
2411 context
->capset
.cap
.effective
= new->cap_effective
;
2412 context
->capset
.cap
.inheritable
= new->cap_effective
;
2413 context
->capset
.cap
.permitted
= new->cap_permitted
;
2414 context
->type
= AUDIT_CAPSET
;
2417 void __audit_mmap_fd(int fd
, int flags
)
2419 struct audit_context
*context
= current
->audit_context
;
2420 context
->mmap
.fd
= fd
;
2421 context
->mmap
.flags
= flags
;
2422 context
->type
= AUDIT_MMAP
;
2425 static void audit_log_task(struct audit_buffer
*ab
)
2429 unsigned int sessionid
;
2430 struct mm_struct
*mm
= current
->mm
;
2432 auid
= audit_get_loginuid(current
);
2433 sessionid
= audit_get_sessionid(current
);
2434 current_uid_gid(&uid
, &gid
);
2436 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2437 from_kuid(&init_user_ns
, auid
),
2438 from_kuid(&init_user_ns
, uid
),
2439 from_kgid(&init_user_ns
, gid
),
2441 audit_log_task_context(ab
);
2442 audit_log_format(ab
, " pid=%d comm=", task_pid_nr(current
));
2443 audit_log_untrustedstring(ab
, current
->comm
);
2445 down_read(&mm
->mmap_sem
);
2447 audit_log_d_path(ab
, " exe=", &mm
->exe_file
->f_path
);
2448 up_read(&mm
->mmap_sem
);
2450 audit_log_format(ab
, " exe=(null)");
2454 * audit_core_dumps - record information about processes that end abnormally
2455 * @signr: signal value
2457 * If a process ends with a core dump, something fishy is going on and we
2458 * should record the event for investigation.
2460 void audit_core_dumps(long signr
)
2462 struct audit_buffer
*ab
;
2467 if (signr
== SIGQUIT
) /* don't care for those */
2470 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2474 audit_log_format(ab
, " sig=%ld", signr
);
2478 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2480 struct audit_buffer
*ab
;
2482 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2486 audit_log_format(ab
, " sig=%ld", signr
);
2487 audit_log_format(ab
, " syscall=%ld", syscall
);
2488 audit_log_format(ab
, " compat=%d", is_compat_task());
2489 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2490 audit_log_format(ab
, " code=0x%x", code
);
2494 struct list_head
*audit_killed_trees(void)
2496 struct audit_context
*ctx
= current
->audit_context
;
2497 if (likely(!ctx
|| !ctx
->in_syscall
))
2499 return &ctx
->killed_trees
;