1 // SPDX-License-Identifier: GPL-2.0
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
15 #include "writeback.h"
17 #include <linux/blkdev.h>
18 #include <linux/buffer_head.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
28 unsigned int bch_cutoff_writeback
;
29 unsigned int bch_cutoff_writeback_sync
;
31 static const char bcache_magic
[] = {
32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
36 static const char invalid_uuid
[] = {
37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
41 static struct kobject
*bcache_kobj
;
42 struct mutex bch_register_lock
;
43 bool bcache_is_reboot
;
44 LIST_HEAD(bch_cache_sets
);
45 static LIST_HEAD(uncached_devices
);
47 static int bcache_major
;
48 static DEFINE_IDA(bcache_device_idx
);
49 static wait_queue_head_t unregister_wait
;
50 struct workqueue_struct
*bcache_wq
;
51 struct workqueue_struct
*bch_journal_wq
;
54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
55 /* limitation of partitions number on single bcache device */
56 #define BCACHE_MINORS 128
57 /* limitation of bcache devices number on single system */
58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
62 static const char *read_super(struct cache_sb
*sb
, struct block_device
*bdev
,
67 struct buffer_head
*bh
= __bread(bdev
, 1, SB_SIZE
);
73 s
= (struct cache_sb
*) bh
->b_data
;
75 sb
->offset
= le64_to_cpu(s
->offset
);
76 sb
->version
= le64_to_cpu(s
->version
);
78 memcpy(sb
->magic
, s
->magic
, 16);
79 memcpy(sb
->uuid
, s
->uuid
, 16);
80 memcpy(sb
->set_uuid
, s
->set_uuid
, 16);
81 memcpy(sb
->label
, s
->label
, SB_LABEL_SIZE
);
83 sb
->flags
= le64_to_cpu(s
->flags
);
84 sb
->seq
= le64_to_cpu(s
->seq
);
85 sb
->last_mount
= le32_to_cpu(s
->last_mount
);
86 sb
->first_bucket
= le16_to_cpu(s
->first_bucket
);
87 sb
->keys
= le16_to_cpu(s
->keys
);
89 for (i
= 0; i
< SB_JOURNAL_BUCKETS
; i
++)
90 sb
->d
[i
] = le64_to_cpu(s
->d
[i
]);
92 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
93 sb
->version
, sb
->flags
, sb
->seq
, sb
->keys
);
95 err
= "Not a bcache superblock";
96 if (sb
->offset
!= SB_SECTOR
)
99 if (memcmp(sb
->magic
, bcache_magic
, 16))
102 err
= "Too many journal buckets";
103 if (sb
->keys
> SB_JOURNAL_BUCKETS
)
106 err
= "Bad checksum";
107 if (s
->csum
!= csum_set(s
))
111 if (bch_is_zero(sb
->uuid
, 16))
114 sb
->block_size
= le16_to_cpu(s
->block_size
);
116 err
= "Superblock block size smaller than device block size";
117 if (sb
->block_size
<< 9 < bdev_logical_block_size(bdev
))
120 switch (sb
->version
) {
121 case BCACHE_SB_VERSION_BDEV
:
122 sb
->data_offset
= BDEV_DATA_START_DEFAULT
;
124 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET
:
125 sb
->data_offset
= le64_to_cpu(s
->data_offset
);
127 err
= "Bad data offset";
128 if (sb
->data_offset
< BDEV_DATA_START_DEFAULT
)
132 case BCACHE_SB_VERSION_CDEV
:
133 case BCACHE_SB_VERSION_CDEV_WITH_UUID
:
134 sb
->nbuckets
= le64_to_cpu(s
->nbuckets
);
135 sb
->bucket_size
= le16_to_cpu(s
->bucket_size
);
137 sb
->nr_in_set
= le16_to_cpu(s
->nr_in_set
);
138 sb
->nr_this_dev
= le16_to_cpu(s
->nr_this_dev
);
140 err
= "Too many buckets";
141 if (sb
->nbuckets
> LONG_MAX
)
144 err
= "Not enough buckets";
145 if (sb
->nbuckets
< 1 << 7)
148 err
= "Bad block/bucket size";
149 if (!is_power_of_2(sb
->block_size
) ||
150 sb
->block_size
> PAGE_SECTORS
||
151 !is_power_of_2(sb
->bucket_size
) ||
152 sb
->bucket_size
< PAGE_SECTORS
)
155 err
= "Invalid superblock: device too small";
156 if (get_capacity(bdev
->bd_disk
) <
157 sb
->bucket_size
* sb
->nbuckets
)
161 if (bch_is_zero(sb
->set_uuid
, 16))
164 err
= "Bad cache device number in set";
165 if (!sb
->nr_in_set
||
166 sb
->nr_in_set
<= sb
->nr_this_dev
||
167 sb
->nr_in_set
> MAX_CACHES_PER_SET
)
170 err
= "Journal buckets not sequential";
171 for (i
= 0; i
< sb
->keys
; i
++)
172 if (sb
->d
[i
] != sb
->first_bucket
+ i
)
175 err
= "Too many journal buckets";
176 if (sb
->first_bucket
+ sb
->keys
> sb
->nbuckets
)
179 err
= "Invalid superblock: first bucket comes before end of super";
180 if (sb
->first_bucket
* sb
->bucket_size
< 16)
185 err
= "Unsupported superblock version";
189 sb
->last_mount
= (u32
)ktime_get_real_seconds();
192 get_page(bh
->b_page
);
199 static void write_bdev_super_endio(struct bio
*bio
)
201 struct cached_dev
*dc
= bio
->bi_private
;
204 bch_count_backing_io_errors(dc
, bio
);
206 closure_put(&dc
->sb_write
);
209 static void __write_super(struct cache_sb
*sb
, struct bio
*bio
)
211 struct cache_sb
*out
= page_address(bio_first_page_all(bio
));
214 bio
->bi_iter
.bi_sector
= SB_SECTOR
;
215 bio
->bi_iter
.bi_size
= SB_SIZE
;
216 bio_set_op_attrs(bio
, REQ_OP_WRITE
, REQ_SYNC
|REQ_META
);
217 bch_bio_map(bio
, NULL
);
219 out
->offset
= cpu_to_le64(sb
->offset
);
220 out
->version
= cpu_to_le64(sb
->version
);
222 memcpy(out
->uuid
, sb
->uuid
, 16);
223 memcpy(out
->set_uuid
, sb
->set_uuid
, 16);
224 memcpy(out
->label
, sb
->label
, SB_LABEL_SIZE
);
226 out
->flags
= cpu_to_le64(sb
->flags
);
227 out
->seq
= cpu_to_le64(sb
->seq
);
229 out
->last_mount
= cpu_to_le32(sb
->last_mount
);
230 out
->first_bucket
= cpu_to_le16(sb
->first_bucket
);
231 out
->keys
= cpu_to_le16(sb
->keys
);
233 for (i
= 0; i
< sb
->keys
; i
++)
234 out
->d
[i
] = cpu_to_le64(sb
->d
[i
]);
236 out
->csum
= csum_set(out
);
238 pr_debug("ver %llu, flags %llu, seq %llu",
239 sb
->version
, sb
->flags
, sb
->seq
);
244 static void bch_write_bdev_super_unlock(struct closure
*cl
)
246 struct cached_dev
*dc
= container_of(cl
, struct cached_dev
, sb_write
);
248 up(&dc
->sb_write_mutex
);
251 void bch_write_bdev_super(struct cached_dev
*dc
, struct closure
*parent
)
253 struct closure
*cl
= &dc
->sb_write
;
254 struct bio
*bio
= &dc
->sb_bio
;
256 down(&dc
->sb_write_mutex
);
257 closure_init(cl
, parent
);
260 bio_set_dev(bio
, dc
->bdev
);
261 bio
->bi_end_io
= write_bdev_super_endio
;
262 bio
->bi_private
= dc
;
265 /* I/O request sent to backing device */
266 __write_super(&dc
->sb
, bio
);
268 closure_return_with_destructor(cl
, bch_write_bdev_super_unlock
);
271 static void write_super_endio(struct bio
*bio
)
273 struct cache
*ca
= bio
->bi_private
;
276 bch_count_io_errors(ca
, bio
->bi_status
, 0,
277 "writing superblock");
278 closure_put(&ca
->set
->sb_write
);
281 static void bcache_write_super_unlock(struct closure
*cl
)
283 struct cache_set
*c
= container_of(cl
, struct cache_set
, sb_write
);
285 up(&c
->sb_write_mutex
);
288 void bcache_write_super(struct cache_set
*c
)
290 struct closure
*cl
= &c
->sb_write
;
294 down(&c
->sb_write_mutex
);
295 closure_init(cl
, &c
->cl
);
299 for_each_cache(ca
, c
, i
) {
300 struct bio
*bio
= &ca
->sb_bio
;
302 ca
->sb
.version
= BCACHE_SB_VERSION_CDEV_WITH_UUID
;
303 ca
->sb
.seq
= c
->sb
.seq
;
304 ca
->sb
.last_mount
= c
->sb
.last_mount
;
306 SET_CACHE_SYNC(&ca
->sb
, CACHE_SYNC(&c
->sb
));
309 bio_set_dev(bio
, ca
->bdev
);
310 bio
->bi_end_io
= write_super_endio
;
311 bio
->bi_private
= ca
;
314 __write_super(&ca
->sb
, bio
);
317 closure_return_with_destructor(cl
, bcache_write_super_unlock
);
322 static void uuid_endio(struct bio
*bio
)
324 struct closure
*cl
= bio
->bi_private
;
325 struct cache_set
*c
= container_of(cl
, struct cache_set
, uuid_write
);
327 cache_set_err_on(bio
->bi_status
, c
, "accessing uuids");
328 bch_bbio_free(bio
, c
);
332 static void uuid_io_unlock(struct closure
*cl
)
334 struct cache_set
*c
= container_of(cl
, struct cache_set
, uuid_write
);
336 up(&c
->uuid_write_mutex
);
339 static void uuid_io(struct cache_set
*c
, int op
, unsigned long op_flags
,
340 struct bkey
*k
, struct closure
*parent
)
342 struct closure
*cl
= &c
->uuid_write
;
343 struct uuid_entry
*u
;
348 down(&c
->uuid_write_mutex
);
349 closure_init(cl
, parent
);
351 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
352 struct bio
*bio
= bch_bbio_alloc(c
);
354 bio
->bi_opf
= REQ_SYNC
| REQ_META
| op_flags
;
355 bio
->bi_iter
.bi_size
= KEY_SIZE(k
) << 9;
357 bio
->bi_end_io
= uuid_endio
;
358 bio
->bi_private
= cl
;
359 bio_set_op_attrs(bio
, op
, REQ_SYNC
|REQ_META
|op_flags
);
360 bch_bio_map(bio
, c
->uuids
);
362 bch_submit_bbio(bio
, c
, k
, i
);
364 if (op
!= REQ_OP_WRITE
)
368 bch_extent_to_text(buf
, sizeof(buf
), k
);
369 pr_debug("%s UUIDs at %s", op
== REQ_OP_WRITE
? "wrote" : "read", buf
);
371 for (u
= c
->uuids
; u
< c
->uuids
+ c
->nr_uuids
; u
++)
372 if (!bch_is_zero(u
->uuid
, 16))
373 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
374 u
- c
->uuids
, u
->uuid
, u
->label
,
375 u
->first_reg
, u
->last_reg
, u
->invalidated
);
377 closure_return_with_destructor(cl
, uuid_io_unlock
);
380 static char *uuid_read(struct cache_set
*c
, struct jset
*j
, struct closure
*cl
)
382 struct bkey
*k
= &j
->uuid_bucket
;
384 if (__bch_btree_ptr_invalid(c
, k
))
385 return "bad uuid pointer";
387 bkey_copy(&c
->uuid_bucket
, k
);
388 uuid_io(c
, REQ_OP_READ
, 0, k
, cl
);
390 if (j
->version
< BCACHE_JSET_VERSION_UUIDv1
) {
391 struct uuid_entry_v0
*u0
= (void *) c
->uuids
;
392 struct uuid_entry
*u1
= (void *) c
->uuids
;
398 * Since the new uuid entry is bigger than the old, we have to
399 * convert starting at the highest memory address and work down
400 * in order to do it in place
403 for (i
= c
->nr_uuids
- 1;
406 memcpy(u1
[i
].uuid
, u0
[i
].uuid
, 16);
407 memcpy(u1
[i
].label
, u0
[i
].label
, 32);
409 u1
[i
].first_reg
= u0
[i
].first_reg
;
410 u1
[i
].last_reg
= u0
[i
].last_reg
;
411 u1
[i
].invalidated
= u0
[i
].invalidated
;
421 static int __uuid_write(struct cache_set
*c
)
427 closure_init_stack(&cl
);
428 lockdep_assert_held(&bch_register_lock
);
430 if (bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, 1, true))
433 SET_KEY_SIZE(&k
.key
, c
->sb
.bucket_size
);
434 uuid_io(c
, REQ_OP_WRITE
, 0, &k
.key
, &cl
);
437 /* Only one bucket used for uuid write */
438 ca
= PTR_CACHE(c
, &k
.key
, 0);
439 atomic_long_add(ca
->sb
.bucket_size
, &ca
->meta_sectors_written
);
441 bkey_copy(&c
->uuid_bucket
, &k
.key
);
446 int bch_uuid_write(struct cache_set
*c
)
448 int ret
= __uuid_write(c
);
451 bch_journal_meta(c
, NULL
);
456 static struct uuid_entry
*uuid_find(struct cache_set
*c
, const char *uuid
)
458 struct uuid_entry
*u
;
461 u
< c
->uuids
+ c
->nr_uuids
; u
++)
462 if (!memcmp(u
->uuid
, uuid
, 16))
468 static struct uuid_entry
*uuid_find_empty(struct cache_set
*c
)
470 static const char zero_uuid
[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
472 return uuid_find(c
, zero_uuid
);
476 * Bucket priorities/gens:
478 * For each bucket, we store on disk its
482 * See alloc.c for an explanation of the gen. The priority is used to implement
483 * lru (and in the future other) cache replacement policies; for most purposes
484 * it's just an opaque integer.
486 * The gens and the priorities don't have a whole lot to do with each other, and
487 * it's actually the gens that must be written out at specific times - it's no
488 * big deal if the priorities don't get written, if we lose them we just reuse
489 * buckets in suboptimal order.
491 * On disk they're stored in a packed array, and in as many buckets are required
492 * to fit them all. The buckets we use to store them form a list; the journal
493 * header points to the first bucket, the first bucket points to the second
496 * This code is used by the allocation code; periodically (whenever it runs out
497 * of buckets to allocate from) the allocation code will invalidate some
498 * buckets, but it can't use those buckets until their new gens are safely on
502 static void prio_endio(struct bio
*bio
)
504 struct cache
*ca
= bio
->bi_private
;
506 cache_set_err_on(bio
->bi_status
, ca
->set
, "accessing priorities");
507 bch_bbio_free(bio
, ca
->set
);
508 closure_put(&ca
->prio
);
511 static void prio_io(struct cache
*ca
, uint64_t bucket
, int op
,
512 unsigned long op_flags
)
514 struct closure
*cl
= &ca
->prio
;
515 struct bio
*bio
= bch_bbio_alloc(ca
->set
);
517 closure_init_stack(cl
);
519 bio
->bi_iter
.bi_sector
= bucket
* ca
->sb
.bucket_size
;
520 bio_set_dev(bio
, ca
->bdev
);
521 bio
->bi_iter
.bi_size
= bucket_bytes(ca
);
523 bio
->bi_end_io
= prio_endio
;
524 bio
->bi_private
= ca
;
525 bio_set_op_attrs(bio
, op
, REQ_SYNC
|REQ_META
|op_flags
);
526 bch_bio_map(bio
, ca
->disk_buckets
);
528 closure_bio_submit(ca
->set
, bio
, &ca
->prio
);
532 int bch_prio_write(struct cache
*ca
, bool wait
)
538 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu",
539 fifo_used(&ca
->free
[RESERVE_PRIO
]),
540 fifo_used(&ca
->free
[RESERVE_NONE
]),
541 fifo_used(&ca
->free_inc
));
544 * Pre-check if there are enough free buckets. In the non-blocking
545 * scenario it's better to fail early rather than starting to allocate
546 * buckets and do a cleanup later in case of failure.
549 size_t avail
= fifo_used(&ca
->free
[RESERVE_PRIO
]) +
550 fifo_used(&ca
->free
[RESERVE_NONE
]);
551 if (prio_buckets(ca
) > avail
)
555 closure_init_stack(&cl
);
557 lockdep_assert_held(&ca
->set
->bucket_lock
);
559 ca
->disk_buckets
->seq
++;
561 atomic_long_add(ca
->sb
.bucket_size
* prio_buckets(ca
),
562 &ca
->meta_sectors_written
);
564 for (i
= prio_buckets(ca
) - 1; i
>= 0; --i
) {
566 struct prio_set
*p
= ca
->disk_buckets
;
567 struct bucket_disk
*d
= p
->data
;
568 struct bucket_disk
*end
= d
+ prios_per_bucket(ca
);
570 for (b
= ca
->buckets
+ i
* prios_per_bucket(ca
);
571 b
< ca
->buckets
+ ca
->sb
.nbuckets
&& d
< end
;
573 d
->prio
= cpu_to_le16(b
->prio
);
577 p
->next_bucket
= ca
->prio_buckets
[i
+ 1];
578 p
->magic
= pset_magic(&ca
->sb
);
579 p
->csum
= bch_crc64(&p
->magic
, bucket_bytes(ca
) - 8);
581 bucket
= bch_bucket_alloc(ca
, RESERVE_PRIO
, wait
);
582 BUG_ON(bucket
== -1);
584 mutex_unlock(&ca
->set
->bucket_lock
);
585 prio_io(ca
, bucket
, REQ_OP_WRITE
, 0);
586 mutex_lock(&ca
->set
->bucket_lock
);
588 ca
->prio_buckets
[i
] = bucket
;
589 atomic_dec_bug(&ca
->buckets
[bucket
].pin
);
592 mutex_unlock(&ca
->set
->bucket_lock
);
594 bch_journal_meta(ca
->set
, &cl
);
597 mutex_lock(&ca
->set
->bucket_lock
);
600 * Don't want the old priorities to get garbage collected until after we
601 * finish writing the new ones, and they're journalled
603 for (i
= 0; i
< prio_buckets(ca
); i
++) {
604 if (ca
->prio_last_buckets
[i
])
605 __bch_bucket_free(ca
,
606 &ca
->buckets
[ca
->prio_last_buckets
[i
]]);
608 ca
->prio_last_buckets
[i
] = ca
->prio_buckets
[i
];
613 static void prio_read(struct cache
*ca
, uint64_t bucket
)
615 struct prio_set
*p
= ca
->disk_buckets
;
616 struct bucket_disk
*d
= p
->data
+ prios_per_bucket(ca
), *end
= d
;
618 unsigned int bucket_nr
= 0;
620 for (b
= ca
->buckets
;
621 b
< ca
->buckets
+ ca
->sb
.nbuckets
;
624 ca
->prio_buckets
[bucket_nr
] = bucket
;
625 ca
->prio_last_buckets
[bucket_nr
] = bucket
;
628 prio_io(ca
, bucket
, REQ_OP_READ
, 0);
631 bch_crc64(&p
->magic
, bucket_bytes(ca
) - 8))
632 pr_warn("bad csum reading priorities");
634 if (p
->magic
!= pset_magic(&ca
->sb
))
635 pr_warn("bad magic reading priorities");
637 bucket
= p
->next_bucket
;
641 b
->prio
= le16_to_cpu(d
->prio
);
642 b
->gen
= b
->last_gc
= d
->gen
;
648 static int open_dev(struct block_device
*b
, fmode_t mode
)
650 struct bcache_device
*d
= b
->bd_disk
->private_data
;
652 if (test_bit(BCACHE_DEV_CLOSING
, &d
->flags
))
659 static void release_dev(struct gendisk
*b
, fmode_t mode
)
661 struct bcache_device
*d
= b
->private_data
;
666 static int ioctl_dev(struct block_device
*b
, fmode_t mode
,
667 unsigned int cmd
, unsigned long arg
)
669 struct bcache_device
*d
= b
->bd_disk
->private_data
;
671 return d
->ioctl(d
, mode
, cmd
, arg
);
674 static const struct block_device_operations bcache_ops
= {
676 .release
= release_dev
,
678 .owner
= THIS_MODULE
,
681 void bcache_device_stop(struct bcache_device
*d
)
683 if (!test_and_set_bit(BCACHE_DEV_CLOSING
, &d
->flags
))
686 * - cached device: cached_dev_flush()
687 * - flash dev: flash_dev_flush()
689 closure_queue(&d
->cl
);
692 static void bcache_device_unlink(struct bcache_device
*d
)
694 lockdep_assert_held(&bch_register_lock
);
696 if (d
->c
&& !test_and_set_bit(BCACHE_DEV_UNLINK_DONE
, &d
->flags
)) {
700 sysfs_remove_link(&d
->c
->kobj
, d
->name
);
701 sysfs_remove_link(&d
->kobj
, "cache");
703 for_each_cache(ca
, d
->c
, i
)
704 bd_unlink_disk_holder(ca
->bdev
, d
->disk
);
708 static void bcache_device_link(struct bcache_device
*d
, struct cache_set
*c
,
715 for_each_cache(ca
, d
->c
, i
)
716 bd_link_disk_holder(ca
->bdev
, d
->disk
);
718 snprintf(d
->name
, BCACHEDEVNAME_SIZE
,
719 "%s%u", name
, d
->id
);
721 ret
= sysfs_create_link(&d
->kobj
, &c
->kobj
, "cache");
723 pr_err("Couldn't create device -> cache set symlink");
725 ret
= sysfs_create_link(&c
->kobj
, &d
->kobj
, d
->name
);
727 pr_err("Couldn't create cache set -> device symlink");
729 clear_bit(BCACHE_DEV_UNLINK_DONE
, &d
->flags
);
732 static void bcache_device_detach(struct bcache_device
*d
)
734 lockdep_assert_held(&bch_register_lock
);
736 atomic_dec(&d
->c
->attached_dev_nr
);
738 if (test_bit(BCACHE_DEV_DETACHING
, &d
->flags
)) {
739 struct uuid_entry
*u
= d
->c
->uuids
+ d
->id
;
741 SET_UUID_FLASH_ONLY(u
, 0);
742 memcpy(u
->uuid
, invalid_uuid
, 16);
743 u
->invalidated
= cpu_to_le32((u32
)ktime_get_real_seconds());
744 bch_uuid_write(d
->c
);
747 bcache_device_unlink(d
);
749 d
->c
->devices
[d
->id
] = NULL
;
750 closure_put(&d
->c
->caching
);
754 static void bcache_device_attach(struct bcache_device
*d
, struct cache_set
*c
,
761 if (id
>= c
->devices_max_used
)
762 c
->devices_max_used
= id
+ 1;
764 closure_get(&c
->caching
);
767 static inline int first_minor_to_idx(int first_minor
)
769 return (first_minor
/BCACHE_MINORS
);
772 static inline int idx_to_first_minor(int idx
)
774 return (idx
* BCACHE_MINORS
);
777 static void bcache_device_free(struct bcache_device
*d
)
779 struct gendisk
*disk
= d
->disk
;
781 lockdep_assert_held(&bch_register_lock
);
784 pr_info("%s stopped", disk
->disk_name
);
786 pr_err("bcache device (NULL gendisk) stopped");
789 bcache_device_detach(d
);
792 bool disk_added
= (disk
->flags
& GENHD_FL_UP
) != 0;
798 blk_cleanup_queue(disk
->queue
);
800 ida_simple_remove(&bcache_device_idx
,
801 first_minor_to_idx(disk
->first_minor
));
806 bioset_exit(&d
->bio_split
);
807 kvfree(d
->full_dirty_stripes
);
808 kvfree(d
->stripe_sectors_dirty
);
810 closure_debug_destroy(&d
->cl
);
813 static int bcache_device_init(struct bcache_device
*d
, unsigned int block_size
,
816 struct request_queue
*q
;
817 const size_t max_stripes
= min_t(size_t, INT_MAX
,
818 SIZE_MAX
/ sizeof(atomic_t
));
823 d
->stripe_size
= 1 << 31;
825 n
= DIV_ROUND_UP_ULL(sectors
, d
->stripe_size
);
826 if (!n
|| n
> max_stripes
) {
827 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
833 n
= d
->nr_stripes
* sizeof(atomic_t
);
834 d
->stripe_sectors_dirty
= kvzalloc(n
, GFP_KERNEL
);
835 if (!d
->stripe_sectors_dirty
)
838 n
= BITS_TO_LONGS(d
->nr_stripes
) * sizeof(unsigned long);
839 d
->full_dirty_stripes
= kvzalloc(n
, GFP_KERNEL
);
840 if (!d
->full_dirty_stripes
)
843 idx
= ida_simple_get(&bcache_device_idx
, 0,
844 BCACHE_DEVICE_IDX_MAX
, GFP_KERNEL
);
848 if (bioset_init(&d
->bio_split
, 4, offsetof(struct bbio
, bio
),
849 BIOSET_NEED_BVECS
|BIOSET_NEED_RESCUER
))
852 d
->disk
= alloc_disk(BCACHE_MINORS
);
856 set_capacity(d
->disk
, sectors
);
857 snprintf(d
->disk
->disk_name
, DISK_NAME_LEN
, "bcache%i", idx
);
859 d
->disk
->major
= bcache_major
;
860 d
->disk
->first_minor
= idx_to_first_minor(idx
);
861 d
->disk
->fops
= &bcache_ops
;
862 d
->disk
->private_data
= d
;
864 q
= blk_alloc_queue(GFP_KERNEL
);
868 blk_queue_make_request(q
, NULL
);
871 q
->backing_dev_info
->congested_data
= d
;
872 q
->limits
.max_hw_sectors
= UINT_MAX
;
873 q
->limits
.max_sectors
= UINT_MAX
;
874 q
->limits
.max_segment_size
= UINT_MAX
;
875 q
->limits
.max_segments
= BIO_MAX_PAGES
;
876 blk_queue_max_discard_sectors(q
, UINT_MAX
);
877 q
->limits
.discard_granularity
= 512;
878 q
->limits
.io_min
= block_size
;
879 q
->limits
.logical_block_size
= block_size
;
880 q
->limits
.physical_block_size
= block_size
;
881 blk_queue_flag_set(QUEUE_FLAG_NONROT
, d
->disk
->queue
);
882 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, d
->disk
->queue
);
883 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, d
->disk
->queue
);
885 blk_queue_write_cache(q
, true, true);
890 ida_simple_remove(&bcache_device_idx
, idx
);
897 static void calc_cached_dev_sectors(struct cache_set
*c
)
899 uint64_t sectors
= 0;
900 struct cached_dev
*dc
;
902 list_for_each_entry(dc
, &c
->cached_devs
, list
)
903 sectors
+= bdev_sectors(dc
->bdev
);
905 c
->cached_dev_sectors
= sectors
;
908 #define BACKING_DEV_OFFLINE_TIMEOUT 5
909 static int cached_dev_status_update(void *arg
)
911 struct cached_dev
*dc
= arg
;
912 struct request_queue
*q
;
915 * If this delayed worker is stopping outside, directly quit here.
916 * dc->io_disable might be set via sysfs interface, so check it
919 while (!kthread_should_stop() && !dc
->io_disable
) {
920 q
= bdev_get_queue(dc
->bdev
);
921 if (blk_queue_dying(q
))
922 dc
->offline_seconds
++;
924 dc
->offline_seconds
= 0;
926 if (dc
->offline_seconds
>= BACKING_DEV_OFFLINE_TIMEOUT
) {
927 pr_err("%s: device offline for %d seconds",
928 dc
->backing_dev_name
,
929 BACKING_DEV_OFFLINE_TIMEOUT
);
930 pr_err("%s: disable I/O request due to backing "
931 "device offline", dc
->disk
.name
);
932 dc
->io_disable
= true;
933 /* let others know earlier that io_disable is true */
935 bcache_device_stop(&dc
->disk
);
938 schedule_timeout_interruptible(HZ
);
941 wait_for_kthread_stop();
946 int bch_cached_dev_run(struct cached_dev
*dc
)
948 struct bcache_device
*d
= &dc
->disk
;
949 char *buf
= kmemdup_nul(dc
->sb
.label
, SB_LABEL_SIZE
, GFP_KERNEL
);
952 kasprintf(GFP_KERNEL
, "CACHED_UUID=%pU", dc
->sb
.uuid
),
953 kasprintf(GFP_KERNEL
, "CACHED_LABEL=%s", buf
? : ""),
957 if (dc
->io_disable
) {
958 pr_err("I/O disabled on cached dev %s",
959 dc
->backing_dev_name
);
966 if (atomic_xchg(&dc
->running
, 1)) {
970 pr_info("cached dev %s is running already",
971 dc
->backing_dev_name
);
976 BDEV_STATE(&dc
->sb
) != BDEV_STATE_NONE
) {
979 closure_init_stack(&cl
);
981 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_STALE
);
982 bch_write_bdev_super(dc
, &cl
);
987 bd_link_disk_holder(dc
->bdev
, dc
->disk
.disk
);
989 * won't show up in the uevent file, use udevadm monitor -e instead
990 * only class / kset properties are persistent
992 kobject_uevent_env(&disk_to_dev(d
->disk
)->kobj
, KOBJ_CHANGE
, env
);
997 if (sysfs_create_link(&d
->kobj
, &disk_to_dev(d
->disk
)->kobj
, "dev") ||
998 sysfs_create_link(&disk_to_dev(d
->disk
)->kobj
,
999 &d
->kobj
, "bcache")) {
1000 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks");
1004 dc
->status_update_thread
= kthread_run(cached_dev_status_update
,
1005 dc
, "bcache_status_update");
1006 if (IS_ERR(dc
->status_update_thread
)) {
1007 pr_warn("failed to create bcache_status_update kthread, "
1008 "continue to run without monitoring backing "
1016 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1017 * work dc->writeback_rate_update is running. Wait until the routine
1018 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1019 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1020 * seconds, give up waiting here and continue to cancel it too.
1022 static void cancel_writeback_rate_update_dwork(struct cached_dev
*dc
)
1024 int time_out
= WRITEBACK_RATE_UPDATE_SECS_MAX
* HZ
;
1027 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING
,
1031 schedule_timeout_interruptible(1);
1032 } while (time_out
> 0);
1035 pr_warn("give up waiting for dc->writeback_write_update to quit");
1037 cancel_delayed_work_sync(&dc
->writeback_rate_update
);
1040 static void cached_dev_detach_finish(struct work_struct
*w
)
1042 struct cached_dev
*dc
= container_of(w
, struct cached_dev
, detach
);
1045 closure_init_stack(&cl
);
1047 BUG_ON(!test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
));
1048 BUG_ON(refcount_read(&dc
->count
));
1051 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING
, &dc
->disk
.flags
))
1052 cancel_writeback_rate_update_dwork(dc
);
1054 if (!IS_ERR_OR_NULL(dc
->writeback_thread
)) {
1055 kthread_stop(dc
->writeback_thread
);
1056 dc
->writeback_thread
= NULL
;
1059 memset(&dc
->sb
.set_uuid
, 0, 16);
1060 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_NONE
);
1062 bch_write_bdev_super(dc
, &cl
);
1065 mutex_lock(&bch_register_lock
);
1067 calc_cached_dev_sectors(dc
->disk
.c
);
1068 bcache_device_detach(&dc
->disk
);
1069 list_move(&dc
->list
, &uncached_devices
);
1071 clear_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
);
1072 clear_bit(BCACHE_DEV_UNLINK_DONE
, &dc
->disk
.flags
);
1074 mutex_unlock(&bch_register_lock
);
1076 pr_info("Caching disabled for %s", dc
->backing_dev_name
);
1078 /* Drop ref we took in cached_dev_detach() */
1079 closure_put(&dc
->disk
.cl
);
1082 void bch_cached_dev_detach(struct cached_dev
*dc
)
1084 lockdep_assert_held(&bch_register_lock
);
1086 if (test_bit(BCACHE_DEV_CLOSING
, &dc
->disk
.flags
))
1089 if (test_and_set_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
))
1093 * Block the device from being closed and freed until we're finished
1096 closure_get(&dc
->disk
.cl
);
1098 bch_writeback_queue(dc
);
1103 int bch_cached_dev_attach(struct cached_dev
*dc
, struct cache_set
*c
,
1106 uint32_t rtime
= cpu_to_le32((u32
)ktime_get_real_seconds());
1107 struct uuid_entry
*u
;
1108 struct cached_dev
*exist_dc
, *t
;
1111 if ((set_uuid
&& memcmp(set_uuid
, c
->sb
.set_uuid
, 16)) ||
1112 (!set_uuid
&& memcmp(dc
->sb
.set_uuid
, c
->sb
.set_uuid
, 16)))
1116 pr_err("Can't attach %s: already attached",
1117 dc
->backing_dev_name
);
1121 if (test_bit(CACHE_SET_STOPPING
, &c
->flags
)) {
1122 pr_err("Can't attach %s: shutting down",
1123 dc
->backing_dev_name
);
1127 if (dc
->sb
.block_size
< c
->sb
.block_size
) {
1129 pr_err("Couldn't attach %s: block size less than set's block size",
1130 dc
->backing_dev_name
);
1134 /* Check whether already attached */
1135 list_for_each_entry_safe(exist_dc
, t
, &c
->cached_devs
, list
) {
1136 if (!memcmp(dc
->sb
.uuid
, exist_dc
->sb
.uuid
, 16)) {
1137 pr_err("Tried to attach %s but duplicate UUID already attached",
1138 dc
->backing_dev_name
);
1144 u
= uuid_find(c
, dc
->sb
.uuid
);
1147 (BDEV_STATE(&dc
->sb
) == BDEV_STATE_STALE
||
1148 BDEV_STATE(&dc
->sb
) == BDEV_STATE_NONE
)) {
1149 memcpy(u
->uuid
, invalid_uuid
, 16);
1150 u
->invalidated
= cpu_to_le32((u32
)ktime_get_real_seconds());
1155 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_DIRTY
) {
1156 pr_err("Couldn't find uuid for %s in set",
1157 dc
->backing_dev_name
);
1161 u
= uuid_find_empty(c
);
1163 pr_err("Not caching %s, no room for UUID",
1164 dc
->backing_dev_name
);
1170 * Deadlocks since we're called via sysfs...
1171 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1174 if (bch_is_zero(u
->uuid
, 16)) {
1177 closure_init_stack(&cl
);
1179 memcpy(u
->uuid
, dc
->sb
.uuid
, 16);
1180 memcpy(u
->label
, dc
->sb
.label
, SB_LABEL_SIZE
);
1181 u
->first_reg
= u
->last_reg
= rtime
;
1184 memcpy(dc
->sb
.set_uuid
, c
->sb
.set_uuid
, 16);
1185 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_CLEAN
);
1187 bch_write_bdev_super(dc
, &cl
);
1190 u
->last_reg
= rtime
;
1194 bcache_device_attach(&dc
->disk
, c
, u
- c
->uuids
);
1195 list_move(&dc
->list
, &c
->cached_devs
);
1196 calc_cached_dev_sectors(c
);
1199 * dc->c must be set before dc->count != 0 - paired with the mb in
1203 refcount_set(&dc
->count
, 1);
1205 /* Block writeback thread, but spawn it */
1206 down_write(&dc
->writeback_lock
);
1207 if (bch_cached_dev_writeback_start(dc
)) {
1208 up_write(&dc
->writeback_lock
);
1209 pr_err("Couldn't start writeback facilities for %s",
1210 dc
->disk
.disk
->disk_name
);
1214 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_DIRTY
) {
1215 atomic_set(&dc
->has_dirty
, 1);
1216 bch_writeback_queue(dc
);
1219 bch_sectors_dirty_init(&dc
->disk
);
1221 ret
= bch_cached_dev_run(dc
);
1222 if (ret
&& (ret
!= -EBUSY
)) {
1223 up_write(&dc
->writeback_lock
);
1225 * bch_register_lock is held, bcache_device_stop() is not
1226 * able to be directly called. The kthread and kworker
1227 * created previously in bch_cached_dev_writeback_start()
1228 * have to be stopped manually here.
1230 kthread_stop(dc
->writeback_thread
);
1231 cancel_writeback_rate_update_dwork(dc
);
1232 pr_err("Couldn't run cached device %s",
1233 dc
->backing_dev_name
);
1237 bcache_device_link(&dc
->disk
, c
, "bdev");
1238 atomic_inc(&c
->attached_dev_nr
);
1240 /* Allow the writeback thread to proceed */
1241 up_write(&dc
->writeback_lock
);
1243 pr_info("Caching %s as %s on set %pU",
1244 dc
->backing_dev_name
,
1245 dc
->disk
.disk
->disk_name
,
1246 dc
->disk
.c
->sb
.set_uuid
);
1250 /* when dc->disk.kobj released */
1251 void bch_cached_dev_release(struct kobject
*kobj
)
1253 struct cached_dev
*dc
= container_of(kobj
, struct cached_dev
,
1256 module_put(THIS_MODULE
);
1259 static void cached_dev_free(struct closure
*cl
)
1261 struct cached_dev
*dc
= container_of(cl
, struct cached_dev
, disk
.cl
);
1263 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING
, &dc
->disk
.flags
))
1264 cancel_writeback_rate_update_dwork(dc
);
1266 if (!IS_ERR_OR_NULL(dc
->writeback_thread
))
1267 kthread_stop(dc
->writeback_thread
);
1268 if (!IS_ERR_OR_NULL(dc
->status_update_thread
))
1269 kthread_stop(dc
->status_update_thread
);
1271 mutex_lock(&bch_register_lock
);
1273 if (atomic_read(&dc
->running
))
1274 bd_unlink_disk_holder(dc
->bdev
, dc
->disk
.disk
);
1275 bcache_device_free(&dc
->disk
);
1276 list_del(&dc
->list
);
1278 mutex_unlock(&bch_register_lock
);
1280 if (dc
->sb_bio
.bi_inline_vecs
[0].bv_page
)
1281 put_page(bio_first_page_all(&dc
->sb_bio
));
1283 if (!IS_ERR_OR_NULL(dc
->bdev
))
1284 blkdev_put(dc
->bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
1286 wake_up(&unregister_wait
);
1288 kobject_put(&dc
->disk
.kobj
);
1291 static void cached_dev_flush(struct closure
*cl
)
1293 struct cached_dev
*dc
= container_of(cl
, struct cached_dev
, disk
.cl
);
1294 struct bcache_device
*d
= &dc
->disk
;
1296 mutex_lock(&bch_register_lock
);
1297 bcache_device_unlink(d
);
1298 mutex_unlock(&bch_register_lock
);
1300 bch_cache_accounting_destroy(&dc
->accounting
);
1301 kobject_del(&d
->kobj
);
1303 continue_at(cl
, cached_dev_free
, system_wq
);
1306 static int cached_dev_init(struct cached_dev
*dc
, unsigned int block_size
)
1310 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1312 __module_get(THIS_MODULE
);
1313 INIT_LIST_HEAD(&dc
->list
);
1314 closure_init(&dc
->disk
.cl
, NULL
);
1315 set_closure_fn(&dc
->disk
.cl
, cached_dev_flush
, system_wq
);
1316 kobject_init(&dc
->disk
.kobj
, &bch_cached_dev_ktype
);
1317 INIT_WORK(&dc
->detach
, cached_dev_detach_finish
);
1318 sema_init(&dc
->sb_write_mutex
, 1);
1319 INIT_LIST_HEAD(&dc
->io_lru
);
1320 spin_lock_init(&dc
->io_lock
);
1321 bch_cache_accounting_init(&dc
->accounting
, &dc
->disk
.cl
);
1323 dc
->sequential_cutoff
= 4 << 20;
1325 for (io
= dc
->io
; io
< dc
->io
+ RECENT_IO
; io
++) {
1326 list_add(&io
->lru
, &dc
->io_lru
);
1327 hlist_add_head(&io
->hash
, dc
->io_hash
+ RECENT_IO
);
1330 dc
->disk
.stripe_size
= q
->limits
.io_opt
>> 9;
1332 if (dc
->disk
.stripe_size
)
1333 dc
->partial_stripes_expensive
=
1334 q
->limits
.raid_partial_stripes_expensive
;
1336 ret
= bcache_device_init(&dc
->disk
, block_size
,
1337 dc
->bdev
->bd_part
->nr_sects
- dc
->sb
.data_offset
);
1341 dc
->disk
.disk
->queue
->backing_dev_info
->ra_pages
=
1342 max(dc
->disk
.disk
->queue
->backing_dev_info
->ra_pages
,
1343 q
->backing_dev_info
->ra_pages
);
1345 atomic_set(&dc
->io_errors
, 0);
1346 dc
->io_disable
= false;
1347 dc
->error_limit
= DEFAULT_CACHED_DEV_ERROR_LIMIT
;
1348 /* default to auto */
1349 dc
->stop_when_cache_set_failed
= BCH_CACHED_DEV_STOP_AUTO
;
1351 bch_cached_dev_request_init(dc
);
1352 bch_cached_dev_writeback_init(dc
);
1356 /* Cached device - bcache superblock */
1358 static int register_bdev(struct cache_sb
*sb
, struct page
*sb_page
,
1359 struct block_device
*bdev
,
1360 struct cached_dev
*dc
)
1362 const char *err
= "cannot allocate memory";
1363 struct cache_set
*c
;
1366 bdevname(bdev
, dc
->backing_dev_name
);
1367 memcpy(&dc
->sb
, sb
, sizeof(struct cache_sb
));
1369 dc
->bdev
->bd_holder
= dc
;
1371 bio_init(&dc
->sb_bio
, dc
->sb_bio
.bi_inline_vecs
, 1);
1372 bio_first_bvec_all(&dc
->sb_bio
)->bv_page
= sb_page
;
1376 if (cached_dev_init(dc
, sb
->block_size
<< 9))
1379 err
= "error creating kobject";
1380 if (kobject_add(&dc
->disk
.kobj
, &part_to_dev(bdev
->bd_part
)->kobj
,
1383 if (bch_cache_accounting_add_kobjs(&dc
->accounting
, &dc
->disk
.kobj
))
1386 pr_info("registered backing device %s", dc
->backing_dev_name
);
1388 list_add(&dc
->list
, &uncached_devices
);
1389 /* attach to a matched cache set if it exists */
1390 list_for_each_entry(c
, &bch_cache_sets
, list
)
1391 bch_cached_dev_attach(dc
, c
, NULL
);
1393 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_NONE
||
1394 BDEV_STATE(&dc
->sb
) == BDEV_STATE_STALE
) {
1395 err
= "failed to run cached device";
1396 ret
= bch_cached_dev_run(dc
);
1403 pr_notice("error %s: %s", dc
->backing_dev_name
, err
);
1404 bcache_device_stop(&dc
->disk
);
1408 /* Flash only volumes */
1410 /* When d->kobj released */
1411 void bch_flash_dev_release(struct kobject
*kobj
)
1413 struct bcache_device
*d
= container_of(kobj
, struct bcache_device
,
1418 static void flash_dev_free(struct closure
*cl
)
1420 struct bcache_device
*d
= container_of(cl
, struct bcache_device
, cl
);
1422 mutex_lock(&bch_register_lock
);
1423 atomic_long_sub(bcache_dev_sectors_dirty(d
),
1424 &d
->c
->flash_dev_dirty_sectors
);
1425 bcache_device_free(d
);
1426 mutex_unlock(&bch_register_lock
);
1427 kobject_put(&d
->kobj
);
1430 static void flash_dev_flush(struct closure
*cl
)
1432 struct bcache_device
*d
= container_of(cl
, struct bcache_device
, cl
);
1434 mutex_lock(&bch_register_lock
);
1435 bcache_device_unlink(d
);
1436 mutex_unlock(&bch_register_lock
);
1437 kobject_del(&d
->kobj
);
1438 continue_at(cl
, flash_dev_free
, system_wq
);
1441 static int flash_dev_run(struct cache_set
*c
, struct uuid_entry
*u
)
1443 struct bcache_device
*d
= kzalloc(sizeof(struct bcache_device
),
1448 closure_init(&d
->cl
, NULL
);
1449 set_closure_fn(&d
->cl
, flash_dev_flush
, system_wq
);
1451 kobject_init(&d
->kobj
, &bch_flash_dev_ktype
);
1453 if (bcache_device_init(d
, block_bytes(c
), u
->sectors
))
1456 bcache_device_attach(d
, c
, u
- c
->uuids
);
1457 bch_sectors_dirty_init(d
);
1458 bch_flash_dev_request_init(d
);
1461 if (kobject_add(&d
->kobj
, &disk_to_dev(d
->disk
)->kobj
, "bcache"))
1464 bcache_device_link(d
, c
, "volume");
1468 kobject_put(&d
->kobj
);
1472 static int flash_devs_run(struct cache_set
*c
)
1475 struct uuid_entry
*u
;
1478 u
< c
->uuids
+ c
->nr_uuids
&& !ret
;
1480 if (UUID_FLASH_ONLY(u
))
1481 ret
= flash_dev_run(c
, u
);
1486 int bch_flash_dev_create(struct cache_set
*c
, uint64_t size
)
1488 struct uuid_entry
*u
;
1490 if (test_bit(CACHE_SET_STOPPING
, &c
->flags
))
1493 if (!test_bit(CACHE_SET_RUNNING
, &c
->flags
))
1496 u
= uuid_find_empty(c
);
1498 pr_err("Can't create volume, no room for UUID");
1502 get_random_bytes(u
->uuid
, 16);
1503 memset(u
->label
, 0, 32);
1504 u
->first_reg
= u
->last_reg
= cpu_to_le32((u32
)ktime_get_real_seconds());
1506 SET_UUID_FLASH_ONLY(u
, 1);
1507 u
->sectors
= size
>> 9;
1511 return flash_dev_run(c
, u
);
1514 bool bch_cached_dev_error(struct cached_dev
*dc
)
1516 if (!dc
|| test_bit(BCACHE_DEV_CLOSING
, &dc
->disk
.flags
))
1519 dc
->io_disable
= true;
1520 /* make others know io_disable is true earlier */
1523 pr_err("stop %s: too many IO errors on backing device %s\n",
1524 dc
->disk
.disk
->disk_name
, dc
->backing_dev_name
);
1526 bcache_device_stop(&dc
->disk
);
1533 bool bch_cache_set_error(struct cache_set
*c
, const char *fmt
, ...)
1537 if (c
->on_error
!= ON_ERROR_PANIC
&&
1538 test_bit(CACHE_SET_STOPPING
, &c
->flags
))
1541 if (test_and_set_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1542 pr_info("CACHE_SET_IO_DISABLE already set");
1545 * XXX: we can be called from atomic context
1546 * acquire_console_sem();
1549 pr_err("bcache: error on %pU: ", c
->sb
.set_uuid
);
1551 va_start(args
, fmt
);
1555 pr_err(", disabling caching\n");
1557 if (c
->on_error
== ON_ERROR_PANIC
)
1558 panic("panic forced after error\n");
1560 bch_cache_set_unregister(c
);
1564 /* When c->kobj released */
1565 void bch_cache_set_release(struct kobject
*kobj
)
1567 struct cache_set
*c
= container_of(kobj
, struct cache_set
, kobj
);
1570 module_put(THIS_MODULE
);
1573 static void cache_set_free(struct closure
*cl
)
1575 struct cache_set
*c
= container_of(cl
, struct cache_set
, cl
);
1579 debugfs_remove(c
->debug
);
1581 bch_open_buckets_free(c
);
1582 bch_btree_cache_free(c
);
1583 bch_journal_free(c
);
1585 mutex_lock(&bch_register_lock
);
1586 for_each_cache(ca
, c
, i
)
1589 c
->cache
[ca
->sb
.nr_this_dev
] = NULL
;
1590 kobject_put(&ca
->kobj
);
1593 bch_bset_sort_state_free(&c
->sort
);
1594 free_pages((unsigned long) c
->uuids
, ilog2(bucket_pages(c
)));
1596 if (c
->moving_gc_wq
)
1597 destroy_workqueue(c
->moving_gc_wq
);
1598 bioset_exit(&c
->bio_split
);
1599 mempool_exit(&c
->fill_iter
);
1600 mempool_exit(&c
->bio_meta
);
1601 mempool_exit(&c
->search
);
1605 mutex_unlock(&bch_register_lock
);
1607 pr_info("Cache set %pU unregistered", c
->sb
.set_uuid
);
1608 wake_up(&unregister_wait
);
1610 closure_debug_destroy(&c
->cl
);
1611 kobject_put(&c
->kobj
);
1614 static void cache_set_flush(struct closure
*cl
)
1616 struct cache_set
*c
= container_of(cl
, struct cache_set
, caching
);
1621 bch_cache_accounting_destroy(&c
->accounting
);
1623 kobject_put(&c
->internal
);
1624 kobject_del(&c
->kobj
);
1626 if (!IS_ERR_OR_NULL(c
->gc_thread
))
1627 kthread_stop(c
->gc_thread
);
1629 if (!IS_ERR_OR_NULL(c
->root
))
1630 list_add(&c
->root
->list
, &c
->btree_cache
);
1633 * Avoid flushing cached nodes if cache set is retiring
1634 * due to too many I/O errors detected.
1636 if (!test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1637 list_for_each_entry(b
, &c
->btree_cache
, list
) {
1638 mutex_lock(&b
->write_lock
);
1639 if (btree_node_dirty(b
))
1640 __bch_btree_node_write(b
, NULL
);
1641 mutex_unlock(&b
->write_lock
);
1644 for_each_cache(ca
, c
, i
)
1645 if (ca
->alloc_thread
)
1646 kthread_stop(ca
->alloc_thread
);
1648 if (c
->journal
.cur
) {
1649 cancel_delayed_work_sync(&c
->journal
.work
);
1650 /* flush last journal entry if needed */
1651 c
->journal
.work
.work
.func(&c
->journal
.work
.work
);
1658 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1659 * cache set is unregistering due to too many I/O errors. In this condition,
1660 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1661 * value and whether the broken cache has dirty data:
1663 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1664 * BCH_CACHED_STOP_AUTO 0 NO
1665 * BCH_CACHED_STOP_AUTO 1 YES
1666 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1667 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1669 * The expected behavior is, if stop_when_cache_set_failed is configured to
1670 * "auto" via sysfs interface, the bcache device will not be stopped if the
1671 * backing device is clean on the broken cache device.
1673 static void conditional_stop_bcache_device(struct cache_set
*c
,
1674 struct bcache_device
*d
,
1675 struct cached_dev
*dc
)
1677 if (dc
->stop_when_cache_set_failed
== BCH_CACHED_DEV_STOP_ALWAYS
) {
1678 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1679 d
->disk
->disk_name
, c
->sb
.set_uuid
);
1680 bcache_device_stop(d
);
1681 } else if (atomic_read(&dc
->has_dirty
)) {
1683 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1684 * and dc->has_dirty == 1
1686 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1687 d
->disk
->disk_name
);
1689 * There might be a small time gap that cache set is
1690 * released but bcache device is not. Inside this time
1691 * gap, regular I/O requests will directly go into
1692 * backing device as no cache set attached to. This
1693 * behavior may also introduce potential inconsistence
1694 * data in writeback mode while cache is dirty.
1695 * Therefore before calling bcache_device_stop() due
1696 * to a broken cache device, dc->io_disable should be
1697 * explicitly set to true.
1699 dc
->io_disable
= true;
1700 /* make others know io_disable is true earlier */
1702 bcache_device_stop(d
);
1705 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1706 * and dc->has_dirty == 0
1708 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1709 d
->disk
->disk_name
);
1713 static void __cache_set_unregister(struct closure
*cl
)
1715 struct cache_set
*c
= container_of(cl
, struct cache_set
, caching
);
1716 struct cached_dev
*dc
;
1717 struct bcache_device
*d
;
1720 mutex_lock(&bch_register_lock
);
1722 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1727 if (!UUID_FLASH_ONLY(&c
->uuids
[i
]) &&
1728 test_bit(CACHE_SET_UNREGISTERING
, &c
->flags
)) {
1729 dc
= container_of(d
, struct cached_dev
, disk
);
1730 bch_cached_dev_detach(dc
);
1731 if (test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1732 conditional_stop_bcache_device(c
, d
, dc
);
1734 bcache_device_stop(d
);
1738 mutex_unlock(&bch_register_lock
);
1740 continue_at(cl
, cache_set_flush
, system_wq
);
1743 void bch_cache_set_stop(struct cache_set
*c
)
1745 if (!test_and_set_bit(CACHE_SET_STOPPING
, &c
->flags
))
1746 /* closure_fn set to __cache_set_unregister() */
1747 closure_queue(&c
->caching
);
1750 void bch_cache_set_unregister(struct cache_set
*c
)
1752 set_bit(CACHE_SET_UNREGISTERING
, &c
->flags
);
1753 bch_cache_set_stop(c
);
1756 #define alloc_bucket_pages(gfp, c) \
1757 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(bucket_pages(c))))
1759 struct cache_set
*bch_cache_set_alloc(struct cache_sb
*sb
)
1762 struct cache_set
*c
= kzalloc(sizeof(struct cache_set
), GFP_KERNEL
);
1767 __module_get(THIS_MODULE
);
1768 closure_init(&c
->cl
, NULL
);
1769 set_closure_fn(&c
->cl
, cache_set_free
, system_wq
);
1771 closure_init(&c
->caching
, &c
->cl
);
1772 set_closure_fn(&c
->caching
, __cache_set_unregister
, system_wq
);
1774 /* Maybe create continue_at_noreturn() and use it here? */
1775 closure_set_stopped(&c
->cl
);
1776 closure_put(&c
->cl
);
1778 kobject_init(&c
->kobj
, &bch_cache_set_ktype
);
1779 kobject_init(&c
->internal
, &bch_cache_set_internal_ktype
);
1781 bch_cache_accounting_init(&c
->accounting
, &c
->cl
);
1783 memcpy(c
->sb
.set_uuid
, sb
->set_uuid
, 16);
1784 c
->sb
.block_size
= sb
->block_size
;
1785 c
->sb
.bucket_size
= sb
->bucket_size
;
1786 c
->sb
.nr_in_set
= sb
->nr_in_set
;
1787 c
->sb
.last_mount
= sb
->last_mount
;
1788 c
->bucket_bits
= ilog2(sb
->bucket_size
);
1789 c
->block_bits
= ilog2(sb
->block_size
);
1790 c
->nr_uuids
= bucket_bytes(c
) / sizeof(struct uuid_entry
);
1791 c
->devices_max_used
= 0;
1792 atomic_set(&c
->attached_dev_nr
, 0);
1793 c
->btree_pages
= bucket_pages(c
);
1794 if (c
->btree_pages
> BTREE_MAX_PAGES
)
1795 c
->btree_pages
= max_t(int, c
->btree_pages
/ 4,
1798 sema_init(&c
->sb_write_mutex
, 1);
1799 mutex_init(&c
->bucket_lock
);
1800 init_waitqueue_head(&c
->btree_cache_wait
);
1801 init_waitqueue_head(&c
->bucket_wait
);
1802 init_waitqueue_head(&c
->gc_wait
);
1803 sema_init(&c
->uuid_write_mutex
, 1);
1805 spin_lock_init(&c
->btree_gc_time
.lock
);
1806 spin_lock_init(&c
->btree_split_time
.lock
);
1807 spin_lock_init(&c
->btree_read_time
.lock
);
1809 bch_moving_init_cache_set(c
);
1811 INIT_LIST_HEAD(&c
->list
);
1812 INIT_LIST_HEAD(&c
->cached_devs
);
1813 INIT_LIST_HEAD(&c
->btree_cache
);
1814 INIT_LIST_HEAD(&c
->btree_cache_freeable
);
1815 INIT_LIST_HEAD(&c
->btree_cache_freed
);
1816 INIT_LIST_HEAD(&c
->data_buckets
);
1818 iter_size
= (sb
->bucket_size
/ sb
->block_size
+ 1) *
1819 sizeof(struct btree_iter_set
);
1821 if (!(c
->devices
= kcalloc(c
->nr_uuids
, sizeof(void *), GFP_KERNEL
)) ||
1822 mempool_init_slab_pool(&c
->search
, 32, bch_search_cache
) ||
1823 mempool_init_kmalloc_pool(&c
->bio_meta
, 2,
1824 sizeof(struct bbio
) + sizeof(struct bio_vec
) *
1826 mempool_init_kmalloc_pool(&c
->fill_iter
, 1, iter_size
) ||
1827 bioset_init(&c
->bio_split
, 4, offsetof(struct bbio
, bio
),
1828 BIOSET_NEED_BVECS
|BIOSET_NEED_RESCUER
) ||
1829 !(c
->uuids
= alloc_bucket_pages(GFP_KERNEL
, c
)) ||
1830 !(c
->moving_gc_wq
= alloc_workqueue("bcache_gc",
1831 WQ_MEM_RECLAIM
, 0)) ||
1832 bch_journal_alloc(c
) ||
1833 bch_btree_cache_alloc(c
) ||
1834 bch_open_buckets_alloc(c
) ||
1835 bch_bset_sort_state_init(&c
->sort
, ilog2(c
->btree_pages
)))
1838 c
->congested_read_threshold_us
= 2000;
1839 c
->congested_write_threshold_us
= 20000;
1840 c
->error_limit
= DEFAULT_IO_ERROR_LIMIT
;
1841 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE
, &c
->flags
));
1845 bch_cache_set_unregister(c
);
1849 static int run_cache_set(struct cache_set
*c
)
1851 const char *err
= "cannot allocate memory";
1852 struct cached_dev
*dc
, *t
;
1857 struct journal_replay
*l
;
1859 closure_init_stack(&cl
);
1861 for_each_cache(ca
, c
, i
)
1862 c
->nbuckets
+= ca
->sb
.nbuckets
;
1865 if (CACHE_SYNC(&c
->sb
)) {
1869 err
= "cannot allocate memory for journal";
1870 if (bch_journal_read(c
, &journal
))
1873 pr_debug("btree_journal_read() done");
1875 err
= "no journal entries found";
1876 if (list_empty(&journal
))
1879 j
= &list_entry(journal
.prev
, struct journal_replay
, list
)->j
;
1881 err
= "IO error reading priorities";
1882 for_each_cache(ca
, c
, i
)
1883 prio_read(ca
, j
->prio_bucket
[ca
->sb
.nr_this_dev
]);
1886 * If prio_read() fails it'll call cache_set_error and we'll
1887 * tear everything down right away, but if we perhaps checked
1888 * sooner we could avoid journal replay.
1893 err
= "bad btree root";
1894 if (__bch_btree_ptr_invalid(c
, k
))
1897 err
= "error reading btree root";
1898 c
->root
= bch_btree_node_get(c
, NULL
, k
,
1901 if (IS_ERR_OR_NULL(c
->root
))
1904 list_del_init(&c
->root
->list
);
1905 rw_unlock(true, c
->root
);
1907 err
= uuid_read(c
, j
, &cl
);
1911 err
= "error in recovery";
1912 if (bch_btree_check(c
))
1916 * bch_btree_check() may occupy too much system memory which
1917 * has negative effects to user space application (e.g. data
1918 * base) performance. Shrink the mca cache memory proactively
1919 * here to avoid competing memory with user space workloads..
1921 if (!c
->shrinker_disabled
) {
1922 struct shrink_control sc
;
1924 sc
.gfp_mask
= GFP_KERNEL
;
1925 sc
.nr_to_scan
= c
->btree_cache_used
* c
->btree_pages
;
1926 /* first run to clear b->accessed tag */
1927 c
->shrink
.scan_objects(&c
->shrink
, &sc
);
1928 /* second run to reap non-accessed nodes */
1929 c
->shrink
.scan_objects(&c
->shrink
, &sc
);
1932 bch_journal_mark(c
, &journal
);
1933 bch_initial_gc_finish(c
);
1934 pr_debug("btree_check() done");
1937 * bcache_journal_next() can't happen sooner, or
1938 * btree_gc_finish() will give spurious errors about last_gc >
1939 * gc_gen - this is a hack but oh well.
1941 bch_journal_next(&c
->journal
);
1943 err
= "error starting allocator thread";
1944 for_each_cache(ca
, c
, i
)
1945 if (bch_cache_allocator_start(ca
))
1949 * First place it's safe to allocate: btree_check() and
1950 * btree_gc_finish() have to run before we have buckets to
1951 * allocate, and bch_bucket_alloc_set() might cause a journal
1952 * entry to be written so bcache_journal_next() has to be called
1955 * If the uuids were in the old format we have to rewrite them
1956 * before the next journal entry is written:
1958 if (j
->version
< BCACHE_JSET_VERSION_UUID
)
1961 err
= "bcache: replay journal failed";
1962 if (bch_journal_replay(c
, &journal
))
1965 pr_notice("invalidating existing data");
1967 for_each_cache(ca
, c
, i
) {
1970 ca
->sb
.keys
= clamp_t(int, ca
->sb
.nbuckets
>> 7,
1971 2, SB_JOURNAL_BUCKETS
);
1973 for (j
= 0; j
< ca
->sb
.keys
; j
++)
1974 ca
->sb
.d
[j
] = ca
->sb
.first_bucket
+ j
;
1977 bch_initial_gc_finish(c
);
1979 err
= "error starting allocator thread";
1980 for_each_cache(ca
, c
, i
)
1981 if (bch_cache_allocator_start(ca
))
1984 mutex_lock(&c
->bucket_lock
);
1985 for_each_cache(ca
, c
, i
)
1986 bch_prio_write(ca
, true);
1987 mutex_unlock(&c
->bucket_lock
);
1989 err
= "cannot allocate new UUID bucket";
1990 if (__uuid_write(c
))
1993 err
= "cannot allocate new btree root";
1994 c
->root
= __bch_btree_node_alloc(c
, NULL
, 0, true, NULL
);
1995 if (IS_ERR_OR_NULL(c
->root
))
1998 mutex_lock(&c
->root
->write_lock
);
1999 bkey_copy_key(&c
->root
->key
, &MAX_KEY
);
2000 bch_btree_node_write(c
->root
, &cl
);
2001 mutex_unlock(&c
->root
->write_lock
);
2003 bch_btree_set_root(c
->root
);
2004 rw_unlock(true, c
->root
);
2007 * We don't want to write the first journal entry until
2008 * everything is set up - fortunately journal entries won't be
2009 * written until the SET_CACHE_SYNC() here:
2011 SET_CACHE_SYNC(&c
->sb
, true);
2013 bch_journal_next(&c
->journal
);
2014 bch_journal_meta(c
, &cl
);
2017 err
= "error starting gc thread";
2018 if (bch_gc_thread_start(c
))
2022 c
->sb
.last_mount
= (u32
)ktime_get_real_seconds();
2023 bcache_write_super(c
);
2025 list_for_each_entry_safe(dc
, t
, &uncached_devices
, list
)
2026 bch_cached_dev_attach(dc
, c
, NULL
);
2030 set_bit(CACHE_SET_RUNNING
, &c
->flags
);
2033 while (!list_empty(&journal
)) {
2034 l
= list_first_entry(&journal
, struct journal_replay
, list
);
2041 bch_cache_set_error(c
, "%s", err
);
2046 static bool can_attach_cache(struct cache
*ca
, struct cache_set
*c
)
2048 return ca
->sb
.block_size
== c
->sb
.block_size
&&
2049 ca
->sb
.bucket_size
== c
->sb
.bucket_size
&&
2050 ca
->sb
.nr_in_set
== c
->sb
.nr_in_set
;
2053 static const char *register_cache_set(struct cache
*ca
)
2056 const char *err
= "cannot allocate memory";
2057 struct cache_set
*c
;
2059 list_for_each_entry(c
, &bch_cache_sets
, list
)
2060 if (!memcmp(c
->sb
.set_uuid
, ca
->sb
.set_uuid
, 16)) {
2061 if (c
->cache
[ca
->sb
.nr_this_dev
])
2062 return "duplicate cache set member";
2064 if (!can_attach_cache(ca
, c
))
2065 return "cache sb does not match set";
2067 if (!CACHE_SYNC(&ca
->sb
))
2068 SET_CACHE_SYNC(&c
->sb
, false);
2073 c
= bch_cache_set_alloc(&ca
->sb
);
2077 err
= "error creating kobject";
2078 if (kobject_add(&c
->kobj
, bcache_kobj
, "%pU", c
->sb
.set_uuid
) ||
2079 kobject_add(&c
->internal
, &c
->kobj
, "internal"))
2082 if (bch_cache_accounting_add_kobjs(&c
->accounting
, &c
->kobj
))
2085 bch_debug_init_cache_set(c
);
2087 list_add(&c
->list
, &bch_cache_sets
);
2089 sprintf(buf
, "cache%i", ca
->sb
.nr_this_dev
);
2090 if (sysfs_create_link(&ca
->kobj
, &c
->kobj
, "set") ||
2091 sysfs_create_link(&c
->kobj
, &ca
->kobj
, buf
))
2095 * A special case is both ca->sb.seq and c->sb.seq are 0,
2096 * such condition happens on a new created cache device whose
2097 * super block is never flushed yet. In this case c->sb.version
2098 * and other members should be updated too, otherwise we will
2099 * have a mistaken super block version in cache set.
2101 if (ca
->sb
.seq
> c
->sb
.seq
|| c
->sb
.seq
== 0) {
2102 c
->sb
.version
= ca
->sb
.version
;
2103 memcpy(c
->sb
.set_uuid
, ca
->sb
.set_uuid
, 16);
2104 c
->sb
.flags
= ca
->sb
.flags
;
2105 c
->sb
.seq
= ca
->sb
.seq
;
2106 pr_debug("set version = %llu", c
->sb
.version
);
2109 kobject_get(&ca
->kobj
);
2111 ca
->set
->cache
[ca
->sb
.nr_this_dev
] = ca
;
2112 c
->cache_by_alloc
[c
->caches_loaded
++] = ca
;
2114 if (c
->caches_loaded
== c
->sb
.nr_in_set
) {
2115 err
= "failed to run cache set";
2116 if (run_cache_set(c
) < 0)
2122 bch_cache_set_unregister(c
);
2128 /* When ca->kobj released */
2129 void bch_cache_release(struct kobject
*kobj
)
2131 struct cache
*ca
= container_of(kobj
, struct cache
, kobj
);
2135 BUG_ON(ca
->set
->cache
[ca
->sb
.nr_this_dev
] != ca
);
2136 ca
->set
->cache
[ca
->sb
.nr_this_dev
] = NULL
;
2139 free_pages((unsigned long) ca
->disk_buckets
, ilog2(bucket_pages(ca
)));
2140 kfree(ca
->prio_buckets
);
2143 free_heap(&ca
->heap
);
2144 free_fifo(&ca
->free_inc
);
2146 for (i
= 0; i
< RESERVE_NR
; i
++)
2147 free_fifo(&ca
->free
[i
]);
2149 if (ca
->sb_bio
.bi_inline_vecs
[0].bv_page
)
2150 put_page(bio_first_page_all(&ca
->sb_bio
));
2152 if (!IS_ERR_OR_NULL(ca
->bdev
))
2153 blkdev_put(ca
->bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
2156 module_put(THIS_MODULE
);
2159 static int cache_alloc(struct cache
*ca
)
2162 size_t btree_buckets
;
2165 const char *err
= NULL
;
2167 __module_get(THIS_MODULE
);
2168 kobject_init(&ca
->kobj
, &bch_cache_ktype
);
2170 bio_init(&ca
->journal
.bio
, ca
->journal
.bio
.bi_inline_vecs
, 8);
2173 * when ca->sb.njournal_buckets is not zero, journal exists,
2174 * and in bch_journal_replay(), tree node may split,
2175 * so bucket of RESERVE_BTREE type is needed,
2176 * the worst situation is all journal buckets are valid journal,
2177 * and all the keys need to replay,
2178 * so the number of RESERVE_BTREE type buckets should be as much
2179 * as journal buckets
2181 btree_buckets
= ca
->sb
.njournal_buckets
?: 8;
2182 free
= roundup_pow_of_two(ca
->sb
.nbuckets
) >> 10;
2185 err
= "ca->sb.nbuckets is too small";
2189 if (!init_fifo(&ca
->free
[RESERVE_BTREE
], btree_buckets
,
2191 err
= "ca->free[RESERVE_BTREE] alloc failed";
2192 goto err_btree_alloc
;
2195 if (!init_fifo_exact(&ca
->free
[RESERVE_PRIO
], prio_buckets(ca
),
2197 err
= "ca->free[RESERVE_PRIO] alloc failed";
2198 goto err_prio_alloc
;
2201 if (!init_fifo(&ca
->free
[RESERVE_MOVINGGC
], free
, GFP_KERNEL
)) {
2202 err
= "ca->free[RESERVE_MOVINGGC] alloc failed";
2203 goto err_movinggc_alloc
;
2206 if (!init_fifo(&ca
->free
[RESERVE_NONE
], free
, GFP_KERNEL
)) {
2207 err
= "ca->free[RESERVE_NONE] alloc failed";
2208 goto err_none_alloc
;
2211 if (!init_fifo(&ca
->free_inc
, free
<< 2, GFP_KERNEL
)) {
2212 err
= "ca->free_inc alloc failed";
2213 goto err_free_inc_alloc
;
2216 if (!init_heap(&ca
->heap
, free
<< 3, GFP_KERNEL
)) {
2217 err
= "ca->heap alloc failed";
2218 goto err_heap_alloc
;
2221 ca
->buckets
= vzalloc(array_size(sizeof(struct bucket
),
2224 err
= "ca->buckets alloc failed";
2225 goto err_buckets_alloc
;
2228 ca
->prio_buckets
= kzalloc(array3_size(sizeof(uint64_t),
2229 prio_buckets(ca
), 2),
2231 if (!ca
->prio_buckets
) {
2232 err
= "ca->prio_buckets alloc failed";
2233 goto err_prio_buckets_alloc
;
2236 ca
->disk_buckets
= alloc_bucket_pages(GFP_KERNEL
, ca
);
2237 if (!ca
->disk_buckets
) {
2238 err
= "ca->disk_buckets alloc failed";
2239 goto err_disk_buckets_alloc
;
2242 ca
->prio_last_buckets
= ca
->prio_buckets
+ prio_buckets(ca
);
2244 for_each_bucket(b
, ca
)
2245 atomic_set(&b
->pin
, 0);
2248 err_disk_buckets_alloc
:
2249 kfree(ca
->prio_buckets
);
2250 err_prio_buckets_alloc
:
2253 free_heap(&ca
->heap
);
2255 free_fifo(&ca
->free_inc
);
2257 free_fifo(&ca
->free
[RESERVE_NONE
]);
2259 free_fifo(&ca
->free
[RESERVE_MOVINGGC
]);
2261 free_fifo(&ca
->free
[RESERVE_PRIO
]);
2263 free_fifo(&ca
->free
[RESERVE_BTREE
]);
2266 module_put(THIS_MODULE
);
2268 pr_notice("error %s: %s", ca
->cache_dev_name
, err
);
2272 static int register_cache(struct cache_sb
*sb
, struct page
*sb_page
,
2273 struct block_device
*bdev
, struct cache
*ca
)
2275 const char *err
= NULL
; /* must be set for any error case */
2278 bdevname(bdev
, ca
->cache_dev_name
);
2279 memcpy(&ca
->sb
, sb
, sizeof(struct cache_sb
));
2281 ca
->bdev
->bd_holder
= ca
;
2283 bio_init(&ca
->sb_bio
, ca
->sb_bio
.bi_inline_vecs
, 1);
2284 bio_first_bvec_all(&ca
->sb_bio
)->bv_page
= sb_page
;
2287 if (blk_queue_discard(bdev_get_queue(bdev
)))
2288 ca
->discard
= CACHE_DISCARD(&ca
->sb
);
2290 ret
= cache_alloc(ca
);
2293 * If we failed here, it means ca->kobj is not initialized yet,
2294 * kobject_put() won't be called and there is no chance to
2295 * call blkdev_put() to bdev in bch_cache_release(). So we
2296 * explicitly call blkdev_put() here.
2298 blkdev_put(bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
2300 err
= "cache_alloc(): -ENOMEM";
2301 else if (ret
== -EPERM
)
2302 err
= "cache_alloc(): cache device is too small";
2304 err
= "cache_alloc(): unknown error";
2308 if (kobject_add(&ca
->kobj
,
2309 &part_to_dev(bdev
->bd_part
)->kobj
,
2311 err
= "error calling kobject_add";
2316 mutex_lock(&bch_register_lock
);
2317 err
= register_cache_set(ca
);
2318 mutex_unlock(&bch_register_lock
);
2325 pr_info("registered cache device %s", ca
->cache_dev_name
);
2328 kobject_put(&ca
->kobj
);
2332 pr_notice("error %s: %s", ca
->cache_dev_name
, err
);
2337 /* Global interfaces/init */
2339 static ssize_t
register_bcache(struct kobject
*k
, struct kobj_attribute
*attr
,
2340 const char *buffer
, size_t size
);
2341 static ssize_t
bch_pending_bdevs_cleanup(struct kobject
*k
,
2342 struct kobj_attribute
*attr
,
2343 const char *buffer
, size_t size
);
2345 kobj_attribute_write(register, register_bcache
);
2346 kobj_attribute_write(register_quiet
, register_bcache
);
2347 kobj_attribute_write(pendings_cleanup
, bch_pending_bdevs_cleanup
);
2349 static bool bch_is_open_backing(struct block_device
*bdev
)
2351 struct cache_set
*c
, *tc
;
2352 struct cached_dev
*dc
, *t
;
2354 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
)
2355 list_for_each_entry_safe(dc
, t
, &c
->cached_devs
, list
)
2356 if (dc
->bdev
== bdev
)
2358 list_for_each_entry_safe(dc
, t
, &uncached_devices
, list
)
2359 if (dc
->bdev
== bdev
)
2364 static bool bch_is_open_cache(struct block_device
*bdev
)
2366 struct cache_set
*c
, *tc
;
2370 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
)
2371 for_each_cache(ca
, c
, i
)
2372 if (ca
->bdev
== bdev
)
2377 static bool bch_is_open(struct block_device
*bdev
)
2379 return bch_is_open_cache(bdev
) || bch_is_open_backing(bdev
);
2382 static ssize_t
register_bcache(struct kobject
*k
, struct kobj_attribute
*attr
,
2383 const char *buffer
, size_t size
)
2387 struct cache_sb
*sb
;
2388 struct block_device
*bdev
= NULL
;
2389 struct page
*sb_page
;
2393 err
= "failed to reference bcache module";
2394 if (!try_module_get(THIS_MODULE
))
2397 /* For latest state of bcache_is_reboot */
2399 err
= "bcache is in reboot";
2400 if (bcache_is_reboot
)
2401 goto out_module_put
;
2404 err
= "cannot allocate memory";
2405 path
= kstrndup(buffer
, size
, GFP_KERNEL
);
2407 goto out_module_put
;
2409 sb
= kmalloc(sizeof(struct cache_sb
), GFP_KERNEL
);
2414 err
= "failed to open device";
2415 bdev
= blkdev_get_by_path(strim(path
),
2416 FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
,
2419 if (bdev
== ERR_PTR(-EBUSY
)) {
2420 bdev
= lookup_bdev(strim(path
));
2421 mutex_lock(&bch_register_lock
);
2422 if (!IS_ERR(bdev
) && bch_is_open(bdev
))
2423 err
= "device already registered";
2425 err
= "device busy";
2426 mutex_unlock(&bch_register_lock
);
2429 if (attr
== &ksysfs_register_quiet
)
2435 err
= "failed to set blocksize";
2436 if (set_blocksize(bdev
, 4096))
2437 goto out_blkdev_put
;
2439 err
= read_super(sb
, bdev
, &sb_page
);
2441 goto out_blkdev_put
;
2443 err
= "failed to register device";
2444 if (SB_IS_BDEV(sb
)) {
2445 struct cached_dev
*dc
= kzalloc(sizeof(*dc
), GFP_KERNEL
);
2448 goto out_put_sb_page
;
2450 mutex_lock(&bch_register_lock
);
2451 ret
= register_bdev(sb
, sb_page
, bdev
, dc
);
2452 mutex_unlock(&bch_register_lock
);
2453 /* blkdev_put() will be called in cached_dev_free() */
2456 goto out_put_sb_page
;
2459 struct cache
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2462 goto out_put_sb_page
;
2464 /* blkdev_put() will be called in bch_cache_release() */
2465 if (register_cache(sb
, sb_page
, bdev
, ca
) != 0) {
2467 goto out_put_sb_page
;
2475 module_put(THIS_MODULE
);
2482 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2489 module_put(THIS_MODULE
);
2491 pr_info("error %s: %s", path
?path
:"", err
);
2497 struct list_head list
;
2498 struct cached_dev
*dc
;
2501 static ssize_t
bch_pending_bdevs_cleanup(struct kobject
*k
,
2502 struct kobj_attribute
*attr
,
2506 LIST_HEAD(pending_devs
);
2508 struct cached_dev
*dc
, *tdc
;
2509 struct pdev
*pdev
, *tpdev
;
2510 struct cache_set
*c
, *tc
;
2512 mutex_lock(&bch_register_lock
);
2513 list_for_each_entry_safe(dc
, tdc
, &uncached_devices
, list
) {
2514 pdev
= kmalloc(sizeof(struct pdev
), GFP_KERNEL
);
2518 list_add(&pdev
->list
, &pending_devs
);
2521 list_for_each_entry_safe(pdev
, tpdev
, &pending_devs
, list
) {
2522 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
) {
2523 char *pdev_set_uuid
= pdev
->dc
->sb
.set_uuid
;
2524 char *set_uuid
= c
->sb
.uuid
;
2526 if (!memcmp(pdev_set_uuid
, set_uuid
, 16)) {
2527 list_del(&pdev
->list
);
2533 mutex_unlock(&bch_register_lock
);
2535 list_for_each_entry_safe(pdev
, tpdev
, &pending_devs
, list
) {
2536 pr_info("delete pdev %p", pdev
);
2537 list_del(&pdev
->list
);
2538 bcache_device_stop(&pdev
->dc
->disk
);
2545 static int bcache_reboot(struct notifier_block
*n
, unsigned long code
, void *x
)
2547 if (bcache_is_reboot
)
2550 if (code
== SYS_DOWN
||
2552 code
== SYS_POWER_OFF
) {
2554 unsigned long start
= jiffies
;
2555 bool stopped
= false;
2557 struct cache_set
*c
, *tc
;
2558 struct cached_dev
*dc
, *tdc
;
2560 mutex_lock(&bch_register_lock
);
2562 if (bcache_is_reboot
)
2565 /* New registration is rejected since now */
2566 bcache_is_reboot
= true;
2568 * Make registering caller (if there is) on other CPU
2569 * core know bcache_is_reboot set to true earlier
2573 if (list_empty(&bch_cache_sets
) &&
2574 list_empty(&uncached_devices
))
2577 mutex_unlock(&bch_register_lock
);
2579 pr_info("Stopping all devices:");
2582 * The reason bch_register_lock is not held to call
2583 * bch_cache_set_stop() and bcache_device_stop() is to
2584 * avoid potential deadlock during reboot, because cache
2585 * set or bcache device stopping process will acqurie
2586 * bch_register_lock too.
2588 * We are safe here because bcache_is_reboot sets to
2589 * true already, register_bcache() will reject new
2590 * registration now. bcache_is_reboot also makes sure
2591 * bcache_reboot() won't be re-entered on by other thread,
2592 * so there is no race in following list iteration by
2593 * list_for_each_entry_safe().
2595 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
)
2596 bch_cache_set_stop(c
);
2598 list_for_each_entry_safe(dc
, tdc
, &uncached_devices
, list
)
2599 bcache_device_stop(&dc
->disk
);
2603 * Give an early chance for other kthreads and
2604 * kworkers to stop themselves
2608 /* What's a condition variable? */
2610 long timeout
= start
+ 10 * HZ
- jiffies
;
2612 mutex_lock(&bch_register_lock
);
2613 stopped
= list_empty(&bch_cache_sets
) &&
2614 list_empty(&uncached_devices
);
2616 if (timeout
< 0 || stopped
)
2619 prepare_to_wait(&unregister_wait
, &wait
,
2620 TASK_UNINTERRUPTIBLE
);
2622 mutex_unlock(&bch_register_lock
);
2623 schedule_timeout(timeout
);
2626 finish_wait(&unregister_wait
, &wait
);
2629 pr_info("All devices stopped");
2631 pr_notice("Timeout waiting for devices to be closed");
2633 mutex_unlock(&bch_register_lock
);
2639 static struct notifier_block reboot
= {
2640 .notifier_call
= bcache_reboot
,
2641 .priority
= INT_MAX
, /* before any real devices */
2644 static void bcache_exit(void)
2649 kobject_put(bcache_kobj
);
2651 destroy_workqueue(bcache_wq
);
2653 destroy_workqueue(bch_journal_wq
);
2656 unregister_blkdev(bcache_major
, "bcache");
2657 unregister_reboot_notifier(&reboot
);
2658 mutex_destroy(&bch_register_lock
);
2661 /* Check and fixup module parameters */
2662 static void check_module_parameters(void)
2664 if (bch_cutoff_writeback_sync
== 0)
2665 bch_cutoff_writeback_sync
= CUTOFF_WRITEBACK_SYNC
;
2666 else if (bch_cutoff_writeback_sync
> CUTOFF_WRITEBACK_SYNC_MAX
) {
2667 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
2668 bch_cutoff_writeback_sync
, CUTOFF_WRITEBACK_SYNC_MAX
);
2669 bch_cutoff_writeback_sync
= CUTOFF_WRITEBACK_SYNC_MAX
;
2672 if (bch_cutoff_writeback
== 0)
2673 bch_cutoff_writeback
= CUTOFF_WRITEBACK
;
2674 else if (bch_cutoff_writeback
> CUTOFF_WRITEBACK_MAX
) {
2675 pr_warn("set bch_cutoff_writeback (%u) to max value %u",
2676 bch_cutoff_writeback
, CUTOFF_WRITEBACK_MAX
);
2677 bch_cutoff_writeback
= CUTOFF_WRITEBACK_MAX
;
2680 if (bch_cutoff_writeback
> bch_cutoff_writeback_sync
) {
2681 pr_warn("set bch_cutoff_writeback (%u) to %u",
2682 bch_cutoff_writeback
, bch_cutoff_writeback_sync
);
2683 bch_cutoff_writeback
= bch_cutoff_writeback_sync
;
2687 static int __init
bcache_init(void)
2689 static const struct attribute
*files
[] = {
2690 &ksysfs_register
.attr
,
2691 &ksysfs_register_quiet
.attr
,
2692 &ksysfs_pendings_cleanup
.attr
,
2696 check_module_parameters();
2698 mutex_init(&bch_register_lock
);
2699 init_waitqueue_head(&unregister_wait
);
2700 register_reboot_notifier(&reboot
);
2702 bcache_major
= register_blkdev(0, "bcache");
2703 if (bcache_major
< 0) {
2704 unregister_reboot_notifier(&reboot
);
2705 mutex_destroy(&bch_register_lock
);
2706 return bcache_major
;
2709 bcache_wq
= alloc_workqueue("bcache", WQ_MEM_RECLAIM
, 0);
2713 bch_journal_wq
= alloc_workqueue("bch_journal", WQ_MEM_RECLAIM
, 0);
2714 if (!bch_journal_wq
)
2717 bcache_kobj
= kobject_create_and_add("bcache", fs_kobj
);
2721 if (bch_request_init() ||
2722 sysfs_create_files(bcache_kobj
, files
))
2726 closure_debug_init();
2728 bcache_is_reboot
= false;
2739 module_exit(bcache_exit
);
2740 module_init(bcache_init
);
2742 module_param(bch_cutoff_writeback
, uint
, 0);
2743 MODULE_PARM_DESC(bch_cutoff_writeback
, "threshold to cutoff writeback");
2745 module_param(bch_cutoff_writeback_sync
, uint
, 0);
2746 MODULE_PARM_DESC(bch_cutoff_writeback_sync
, "hard threshold to cutoff writeback");
2748 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2749 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2750 MODULE_LICENSE("GPL");