1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Atmel AT32 and AT91 SPI Controllers
5 * Copyright (C) 2006 Atmel Corporation
8 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
28 /* SPI register offsets */
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_FMR 0x0040
42 #define SPI_FLR 0x0044
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
64 #define SPI_TXFCLR_OFFSET 16
65 #define SPI_TXFCLR_SIZE 1
66 #define SPI_RXFCLR_OFFSET 17
67 #define SPI_RXFCLR_SIZE 1
68 #define SPI_FIFOEN_OFFSET 30
69 #define SPI_FIFOEN_SIZE 1
70 #define SPI_FIFODIS_OFFSET 31
71 #define SPI_FIFODIS_SIZE 1
74 #define SPI_MSTR_OFFSET 0
75 #define SPI_MSTR_SIZE 1
76 #define SPI_PS_OFFSET 1
78 #define SPI_PCSDEC_OFFSET 2
79 #define SPI_PCSDEC_SIZE 1
80 #define SPI_FDIV_OFFSET 3
81 #define SPI_FDIV_SIZE 1
82 #define SPI_MODFDIS_OFFSET 4
83 #define SPI_MODFDIS_SIZE 1
84 #define SPI_WDRBT_OFFSET 5
85 #define SPI_WDRBT_SIZE 1
86 #define SPI_LLB_OFFSET 7
87 #define SPI_LLB_SIZE 1
88 #define SPI_PCS_OFFSET 16
89 #define SPI_PCS_SIZE 4
90 #define SPI_DLYBCS_OFFSET 24
91 #define SPI_DLYBCS_SIZE 8
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET 0
95 #define SPI_RD_SIZE 16
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET 0
99 #define SPI_TD_SIZE 16
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET 0
103 #define SPI_RDRF_SIZE 1
104 #define SPI_TDRE_OFFSET 1
105 #define SPI_TDRE_SIZE 1
106 #define SPI_MODF_OFFSET 2
107 #define SPI_MODF_SIZE 1
108 #define SPI_OVRES_OFFSET 3
109 #define SPI_OVRES_SIZE 1
110 #define SPI_ENDRX_OFFSET 4
111 #define SPI_ENDRX_SIZE 1
112 #define SPI_ENDTX_OFFSET 5
113 #define SPI_ENDTX_SIZE 1
114 #define SPI_RXBUFF_OFFSET 6
115 #define SPI_RXBUFF_SIZE 1
116 #define SPI_TXBUFE_OFFSET 7
117 #define SPI_TXBUFE_SIZE 1
118 #define SPI_NSSR_OFFSET 8
119 #define SPI_NSSR_SIZE 1
120 #define SPI_TXEMPTY_OFFSET 9
121 #define SPI_TXEMPTY_SIZE 1
122 #define SPI_SPIENS_OFFSET 16
123 #define SPI_SPIENS_SIZE 1
124 #define SPI_TXFEF_OFFSET 24
125 #define SPI_TXFEF_SIZE 1
126 #define SPI_TXFFF_OFFSET 25
127 #define SPI_TXFFF_SIZE 1
128 #define SPI_TXFTHF_OFFSET 26
129 #define SPI_TXFTHF_SIZE 1
130 #define SPI_RXFEF_OFFSET 27
131 #define SPI_RXFEF_SIZE 1
132 #define SPI_RXFFF_OFFSET 28
133 #define SPI_RXFFF_SIZE 1
134 #define SPI_RXFTHF_OFFSET 29
135 #define SPI_RXFTHF_SIZE 1
136 #define SPI_TXFPTEF_OFFSET 30
137 #define SPI_TXFPTEF_SIZE 1
138 #define SPI_RXFPTEF_OFFSET 31
139 #define SPI_RXFPTEF_SIZE 1
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET 0
143 #define SPI_CPOL_SIZE 1
144 #define SPI_NCPHA_OFFSET 1
145 #define SPI_NCPHA_SIZE 1
146 #define SPI_CSAAT_OFFSET 3
147 #define SPI_CSAAT_SIZE 1
148 #define SPI_BITS_OFFSET 4
149 #define SPI_BITS_SIZE 4
150 #define SPI_SCBR_OFFSET 8
151 #define SPI_SCBR_SIZE 8
152 #define SPI_DLYBS_OFFSET 16
153 #define SPI_DLYBS_SIZE 8
154 #define SPI_DLYBCT_OFFSET 24
155 #define SPI_DLYBCT_SIZE 8
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET 0
159 #define SPI_RXCTR_SIZE 16
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET 0
163 #define SPI_TXCTR_SIZE 16
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET 0
167 #define SPI_RXNCR_SIZE 16
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET 0
171 #define SPI_TXNCR_SIZE 16
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET 0
175 #define SPI_RXTEN_SIZE 1
176 #define SPI_RXTDIS_OFFSET 1
177 #define SPI_RXTDIS_SIZE 1
178 #define SPI_TXTEN_OFFSET 8
179 #define SPI_TXTEN_SIZE 1
180 #define SPI_TXTDIS_OFFSET 9
181 #define SPI_TXTDIS_SIZE 1
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET 0
185 #define SPI_TXRDYM_SIZE 2
186 #define SPI_RXRDYM_OFFSET 4
187 #define SPI_RXRDYM_SIZE 2
188 #define SPI_TXFTHRES_OFFSET 16
189 #define SPI_TXFTHRES_SIZE 6
190 #define SPI_RXFTHRES_OFFSET 24
191 #define SPI_RXFTHRES_SIZE 6
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET 0
195 #define SPI_TXFL_SIZE 6
196 #define SPI_RXFL_OFFSET 16
197 #define SPI_RXFL_SIZE 6
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT 0
201 #define SPI_BITS_9_BPT 1
202 #define SPI_BITS_10_BPT 2
203 #define SPI_BITS_11_BPT 3
204 #define SPI_BITS_12_BPT 4
205 #define SPI_BITS_13_BPT 5
206 #define SPI_BITS_14_BPT 6
207 #define SPI_BITS_15_BPT 7
208 #define SPI_BITS_16_BPT 8
209 #define SPI_ONE_DATA 0
210 #define SPI_TWO_DATA 1
211 #define SPI_FOUR_DATA 2
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
224 /* Register access macros */
226 #define spi_readl(port, reg) \
227 __raw_readl((port)->regs + SPI_##reg)
228 #define spi_writel(port, reg, value) \
229 __raw_writel((value), (port)->regs + SPI_##reg)
231 #define spi_readw(port, reg) \
232 __raw_readw((port)->regs + SPI_##reg)
233 #define spi_writew(port, reg, value) \
234 __raw_writew((value), (port)->regs + SPI_##reg)
236 #define spi_readb(port, reg) \
237 __raw_readb((port)->regs + SPI_##reg)
238 #define spi_writeb(port, reg, value) \
239 __raw_writeb((value), (port)->regs + SPI_##reg)
241 #define spi_readl(port, reg) \
242 readl_relaxed((port)->regs + SPI_##reg)
243 #define spi_writel(port, reg, value) \
244 writel_relaxed((value), (port)->regs + SPI_##reg)
246 #define spi_readw(port, reg) \
247 readw_relaxed((port)->regs + SPI_##reg)
248 #define spi_writew(port, reg, value) \
249 writew_relaxed((value), (port)->regs + SPI_##reg)
251 #define spi_readb(port, reg) \
252 readb_relaxed((port)->regs + SPI_##reg)
253 #define spi_writeb(port, reg, value) \
254 writeb_relaxed((value), (port)->regs + SPI_##reg)
256 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
257 * cache operations; better heuristics consider wordsize and bitrate.
259 #define DMA_MIN_BYTES 16
261 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
263 #define AUTOSUSPEND_TIMEOUT 2000
265 struct atmel_spi_caps
{
268 bool has_dma_support
;
269 bool has_pdc_support
;
273 * The core SPI transfer engine just talks to a register bank to set up
274 * DMA transfers; transfer queue progress is driven by IRQs. The clock
275 * framework provides the base clock, subdivided for each spi_device.
285 struct platform_device
*pdev
;
286 unsigned long spi_clk
;
288 struct spi_transfer
*current_transfer
;
289 int current_remaining_bytes
;
291 dma_addr_t dma_addr_rx_bbuf
;
292 dma_addr_t dma_addr_tx_bbuf
;
296 struct completion xfer_completion
;
298 struct atmel_spi_caps caps
;
309 /* Controller-specific per-slave state */
310 struct atmel_spi_device
{
311 struct gpio_desc
*npcs_pin
;
315 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
316 #define INVALID_DMA_ADDRESS 0xffffffff
319 * Version 2 of the SPI controller has
321 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
322 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
324 * - SPI_CSRx.SBCR allows faster clocking
326 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
328 return as
->caps
.is_spi2
;
332 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
333 * they assume that spi slave device state will not change on deselect, so
334 * that automagic deselection is OK. ("NPCSx rises if no data is to be
335 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
336 * controllers have CSAAT and friends.
338 * Since the CSAAT functionality is a bit weird on newer controllers as
339 * well, we use GPIO to control nCSx pins on all controllers, updating
340 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
341 * support active-high chipselects despite the controller's belief that
342 * only active-low devices/systems exists.
344 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
345 * right when driven with GPIO. ("Mode Fault does not allow more than one
346 * Master on Chip Select 0.") No workaround exists for that ... so for
347 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
348 * and (c) will trigger that first erratum in some cases.
351 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
353 struct atmel_spi_device
*asd
= spi
->controller_state
;
356 if (atmel_spi_is_v2(as
)) {
357 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, asd
->csr
);
358 /* For the low SPI version, there is a issue that PDC transfer
359 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
361 spi_writel(as
, CSR0
, asd
->csr
);
362 if (as
->caps
.has_wdrbt
) {
364 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
370 SPI_BF(PCS
, ~(0x01 << spi
->chip_select
))
375 mr
= spi_readl(as
, MR
);
376 if (as
->use_cs_gpios
)
377 gpiod_set_value(asd
->npcs_pin
, 1);
379 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
383 /* Make sure clock polarity is correct */
384 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
385 csr
= spi_readl(as
, CSR0
+ 4 * i
);
386 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
387 spi_writel(as
, CSR0
+ 4 * i
,
388 csr
^ SPI_BIT(CPOL
));
391 mr
= spi_readl(as
, MR
);
392 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
393 if (as
->use_cs_gpios
&& spi
->chip_select
!= 0)
394 gpiod_set_value(asd
->npcs_pin
, 1);
395 spi_writel(as
, MR
, mr
);
398 dev_dbg(&spi
->dev
, "activate NPCS, mr %08x\n", mr
);
401 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
403 struct atmel_spi_device
*asd
= spi
->controller_state
;
406 /* only deactivate *this* device; sometimes transfers to
407 * another device may be active when this routine is called.
409 mr
= spi_readl(as
, MR
);
410 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
411 mr
= SPI_BFINS(PCS
, 0xf, mr
);
412 spi_writel(as
, MR
, mr
);
415 dev_dbg(&spi
->dev
, "DEactivate NPCS, mr %08x\n", mr
);
417 if (!as
->use_cs_gpios
)
418 spi_writel(as
, CR
, SPI_BIT(LASTXFER
));
419 else if (atmel_spi_is_v2(as
) || spi
->chip_select
!= 0)
420 gpiod_set_value(asd
->npcs_pin
, 0);
423 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
425 spin_lock_irqsave(&as
->lock
, as
->flags
);
428 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
430 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
433 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer
*xfer
)
435 return is_vmalloc_addr(xfer
->tx_buf
) || is_vmalloc_addr(xfer
->rx_buf
);
438 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
439 struct spi_transfer
*xfer
)
441 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
444 static bool atmel_spi_can_dma(struct spi_master
*master
,
445 struct spi_device
*spi
,
446 struct spi_transfer
*xfer
)
448 struct atmel_spi
*as
= spi_master_get_devdata(master
);
450 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
))
451 return atmel_spi_use_dma(as
, xfer
) &&
452 !atmel_spi_is_vmalloc_xfer(xfer
);
454 return atmel_spi_use_dma(as
, xfer
);
458 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
,
459 struct dma_slave_config
*slave_config
,
462 struct spi_master
*master
= platform_get_drvdata(as
->pdev
);
465 if (bits_per_word
> 8) {
466 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
467 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
469 slave_config
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
470 slave_config
->src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
473 slave_config
->dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
474 slave_config
->src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
475 slave_config
->src_maxburst
= 1;
476 slave_config
->dst_maxburst
= 1;
477 slave_config
->device_fc
= false;
480 * This driver uses fixed peripheral select mode (PS bit set to '0' in
481 * the Mode Register).
482 * So according to the datasheet, when FIFOs are available (and
483 * enabled), the Transmit FIFO operates in Multiple Data Mode.
484 * In this mode, up to 2 data, not 4, can be written into the Transmit
485 * Data Register in a single access.
486 * However, the first data has to be written into the lowest 16 bits and
487 * the second data into the highest 16 bits of the Transmit
488 * Data Register. For 8bit data (the most frequent case), it would
489 * require to rework tx_buf so each data would actualy fit 16 bits.
490 * So we'd rather write only one data at the time. Hence the transmit
491 * path works the same whether FIFOs are available (and enabled) or not.
493 slave_config
->direction
= DMA_MEM_TO_DEV
;
494 if (dmaengine_slave_config(master
->dma_tx
, slave_config
)) {
495 dev_err(&as
->pdev
->dev
,
496 "failed to configure tx dma channel\n");
501 * This driver configures the spi controller for master mode (MSTR bit
502 * set to '1' in the Mode Register).
503 * So according to the datasheet, when FIFOs are available (and
504 * enabled), the Receive FIFO operates in Single Data Mode.
505 * So the receive path works the same whether FIFOs are available (and
508 slave_config
->direction
= DMA_DEV_TO_MEM
;
509 if (dmaengine_slave_config(master
->dma_rx
, slave_config
)) {
510 dev_err(&as
->pdev
->dev
,
511 "failed to configure rx dma channel\n");
518 static int atmel_spi_configure_dma(struct spi_master
*master
,
519 struct atmel_spi
*as
)
521 struct dma_slave_config slave_config
;
522 struct device
*dev
= &as
->pdev
->dev
;
527 dma_cap_set(DMA_SLAVE
, mask
);
529 master
->dma_tx
= dma_request_slave_channel_reason(dev
, "tx");
530 if (IS_ERR(master
->dma_tx
)) {
531 err
= PTR_ERR(master
->dma_tx
);
532 if (err
== -EPROBE_DEFER
) {
533 dev_warn(dev
, "no DMA channel available at the moment\n");
537 "DMA TX channel not available, SPI unable to use DMA\n");
543 * No reason to check EPROBE_DEFER here since we have already requested
544 * tx channel. If it fails here, it's for another reason.
546 master
->dma_rx
= dma_request_slave_channel(dev
, "rx");
548 if (!master
->dma_rx
) {
550 "DMA RX channel not available, SPI unable to use DMA\n");
555 err
= atmel_spi_dma_slave_config(as
, &slave_config
, 8);
559 dev_info(&as
->pdev
->dev
,
560 "Using %s (tx) and %s (rx) for DMA transfers\n",
561 dma_chan_name(master
->dma_tx
),
562 dma_chan_name(master
->dma_rx
));
567 dma_release_channel(master
->dma_rx
);
568 if (!IS_ERR(master
->dma_tx
))
569 dma_release_channel(master
->dma_tx
);
571 master
->dma_tx
= master
->dma_rx
= NULL
;
575 static void atmel_spi_stop_dma(struct spi_master
*master
)
578 dmaengine_terminate_all(master
->dma_rx
);
580 dmaengine_terminate_all(master
->dma_tx
);
583 static void atmel_spi_release_dma(struct spi_master
*master
)
585 if (master
->dma_rx
) {
586 dma_release_channel(master
->dma_rx
);
587 master
->dma_rx
= NULL
;
589 if (master
->dma_tx
) {
590 dma_release_channel(master
->dma_tx
);
591 master
->dma_tx
= NULL
;
595 /* This function is called by the DMA driver from tasklet context */
596 static void dma_callback(void *data
)
598 struct spi_master
*master
= data
;
599 struct atmel_spi
*as
= spi_master_get_devdata(master
);
601 if (is_vmalloc_addr(as
->current_transfer
->rx_buf
) &&
602 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
603 memcpy(as
->current_transfer
->rx_buf
, as
->addr_rx_bbuf
,
604 as
->current_transfer
->len
);
606 complete(&as
->xfer_completion
);
610 * Next transfer using PIO without FIFO.
612 static void atmel_spi_next_xfer_single(struct spi_master
*master
,
613 struct spi_transfer
*xfer
)
615 struct atmel_spi
*as
= spi_master_get_devdata(master
);
616 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
618 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
620 /* Make sure data is not remaining in RDR */
622 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
627 if (xfer
->bits_per_word
> 8)
628 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
630 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
632 dev_dbg(master
->dev
.parent
,
633 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
634 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
635 xfer
->bits_per_word
);
637 /* Enable relevant interrupts */
638 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
642 * Next transfer using PIO with FIFO.
644 static void atmel_spi_next_xfer_fifo(struct spi_master
*master
,
645 struct spi_transfer
*xfer
)
647 struct atmel_spi
*as
= spi_master_get_devdata(master
);
648 u32 current_remaining_data
, num_data
;
649 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
650 const u16
*words
= (const u16
*)((u8
*)xfer
->tx_buf
+ offset
);
651 const u8
*bytes
= (const u8
*)((u8
*)xfer
->tx_buf
+ offset
);
655 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_fifo\n");
657 /* Compute the number of data to transfer in the current iteration */
658 current_remaining_data
= ((xfer
->bits_per_word
> 8) ?
659 ((u32
)as
->current_remaining_bytes
>> 1) :
660 (u32
)as
->current_remaining_bytes
);
661 num_data
= min(current_remaining_data
, as
->fifo_size
);
663 /* Flush RX and TX FIFOs */
664 spi_writel(as
, CR
, SPI_BIT(RXFCLR
) | SPI_BIT(TXFCLR
));
665 while (spi_readl(as
, FLR
))
668 /* Set RX FIFO Threshold to the number of data to transfer */
669 fifomr
= spi_readl(as
, FMR
);
670 spi_writel(as
, FMR
, SPI_BFINS(RXFTHRES
, num_data
, fifomr
));
672 /* Clear FIFO flags in the Status Register, especially RXFTHF */
673 (void)spi_readl(as
, SR
);
676 while (num_data
>= 2) {
677 if (xfer
->bits_per_word
> 8) {
685 spi_writel(as
, TDR
, (td1
<< 16) | td0
);
690 if (xfer
->bits_per_word
> 8)
695 spi_writew(as
, TDR
, td0
);
699 dev_dbg(master
->dev
.parent
,
700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
702 xfer
->bits_per_word
);
705 * Enable RX FIFO Threshold Flag interrupt to be notified about
706 * transfer completion.
708 spi_writel(as
, IER
, SPI_BIT(RXFTHF
) | SPI_BIT(OVRES
));
712 * Next transfer using PIO.
714 static void atmel_spi_next_xfer_pio(struct spi_master
*master
,
715 struct spi_transfer
*xfer
)
717 struct atmel_spi
*as
= spi_master_get_devdata(master
);
720 atmel_spi_next_xfer_fifo(master
, xfer
);
722 atmel_spi_next_xfer_single(master
, xfer
);
726 * Submit next transfer for DMA.
728 static int atmel_spi_next_xfer_dma_submit(struct spi_master
*master
,
729 struct spi_transfer
*xfer
,
732 struct atmel_spi
*as
= spi_master_get_devdata(master
);
733 struct dma_chan
*rxchan
= master
->dma_rx
;
734 struct dma_chan
*txchan
= master
->dma_tx
;
735 struct dma_async_tx_descriptor
*rxdesc
;
736 struct dma_async_tx_descriptor
*txdesc
;
737 struct dma_slave_config slave_config
;
740 dev_vdbg(master
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
742 /* Check that the channels are available */
743 if (!rxchan
|| !txchan
)
746 /* release lock for DMA operations */
747 atmel_spi_unlock(as
);
751 if (atmel_spi_dma_slave_config(as
, &slave_config
,
752 xfer
->bits_per_word
))
755 /* Send both scatterlists */
756 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
757 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
758 rxdesc
= dmaengine_prep_slave_single(rxchan
,
759 as
->dma_addr_rx_bbuf
,
765 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
775 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
776 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
777 memcpy(as
->addr_tx_bbuf
, xfer
->tx_buf
, xfer
->len
);
778 txdesc
= dmaengine_prep_slave_single(txchan
,
779 as
->dma_addr_tx_bbuf
,
780 xfer
->len
, DMA_MEM_TO_DEV
,
784 txdesc
= dmaengine_prep_slave_sg(txchan
,
794 dev_dbg(master
->dev
.parent
,
795 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
796 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
797 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
799 /* Enable relevant interrupts */
800 spi_writel(as
, IER
, SPI_BIT(OVRES
));
802 /* Put the callback on the RX transfer only, that should finish last */
803 rxdesc
->callback
= dma_callback
;
804 rxdesc
->callback_param
= master
;
806 /* Submit and fire RX and TX with TX last so we're ready to read! */
807 cookie
= rxdesc
->tx_submit(rxdesc
);
808 if (dma_submit_error(cookie
))
810 cookie
= txdesc
->tx_submit(txdesc
);
811 if (dma_submit_error(cookie
))
813 rxchan
->device
->device_issue_pending(rxchan
);
814 txchan
->device
->device_issue_pending(txchan
);
821 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
822 atmel_spi_stop_dma(master
);
828 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
829 struct spi_transfer
*xfer
,
834 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
835 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
836 if (*plen
> master
->max_dma_len
)
837 *plen
= master
->max_dma_len
;
840 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
841 struct spi_device
*spi
,
842 struct spi_transfer
*xfer
)
845 unsigned long bus_hz
;
847 /* v1 chips start out at half the peripheral bus speed. */
848 bus_hz
= as
->spi_clk
;
849 if (!atmel_spi_is_v2(as
))
853 * Calculate the lowest divider that satisfies the
854 * constraint, assuming div32/fdiv/mbz == 0.
856 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
859 * If the resulting divider doesn't fit into the
860 * register bitfield, we can't satisfy the constraint.
862 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
864 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
865 xfer
->speed_hz
, scbr
, bus_hz
/255);
870 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
871 xfer
->speed_hz
, scbr
, bus_hz
);
874 csr
= spi_readl(as
, CSR0
+ 4 * spi
->chip_select
);
875 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
876 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
882 * Submit next transfer for PDC.
883 * lock is held, spi irq is blocked
885 static void atmel_spi_pdc_next_xfer(struct spi_master
*master
,
886 struct spi_message
*msg
,
887 struct spi_transfer
*xfer
)
889 struct atmel_spi
*as
= spi_master_get_devdata(master
);
891 dma_addr_t tx_dma
, rx_dma
;
893 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
895 len
= as
->current_remaining_bytes
;
896 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
897 as
->current_remaining_bytes
-= len
;
899 spi_writel(as
, RPR
, rx_dma
);
900 spi_writel(as
, TPR
, tx_dma
);
902 if (msg
->spi
->bits_per_word
> 8)
904 spi_writel(as
, RCR
, len
);
905 spi_writel(as
, TCR
, len
);
907 dev_dbg(&msg
->spi
->dev
,
908 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
909 xfer
, xfer
->len
, xfer
->tx_buf
,
910 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
911 (unsigned long long)xfer
->rx_dma
);
913 if (as
->current_remaining_bytes
) {
914 len
= as
->current_remaining_bytes
;
915 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
916 as
->current_remaining_bytes
-= len
;
918 spi_writel(as
, RNPR
, rx_dma
);
919 spi_writel(as
, TNPR
, tx_dma
);
921 if (msg
->spi
->bits_per_word
> 8)
923 spi_writel(as
, RNCR
, len
);
924 spi_writel(as
, TNCR
, len
);
926 dev_dbg(&msg
->spi
->dev
,
927 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
928 xfer
, xfer
->len
, xfer
->tx_buf
,
929 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
930 (unsigned long long)xfer
->rx_dma
);
933 /* REVISIT: We're waiting for RXBUFF before we start the next
934 * transfer because we need to handle some difficult timing
935 * issues otherwise. If we wait for TXBUFE in one transfer and
936 * then starts waiting for RXBUFF in the next, it's difficult
937 * to tell the difference between the RXBUFF interrupt we're
938 * actually waiting for and the RXBUFF interrupt of the
941 * It should be doable, though. Just not now...
943 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
944 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
948 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
949 * - The buffer is either valid for CPU access, else NULL
950 * - If the buffer is valid, so is its DMA address
952 * This driver manages the dma address unless message->is_dma_mapped.
955 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
957 struct device
*dev
= &as
->pdev
->dev
;
959 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
961 /* tx_buf is a const void* where we need a void * for the dma
963 void *nonconst_tx
= (void *)xfer
->tx_buf
;
965 xfer
->tx_dma
= dma_map_single(dev
,
966 nonconst_tx
, xfer
->len
,
968 if (dma_mapping_error(dev
, xfer
->tx_dma
))
972 xfer
->rx_dma
= dma_map_single(dev
,
973 xfer
->rx_buf
, xfer
->len
,
975 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
977 dma_unmap_single(dev
,
978 xfer
->tx_dma
, xfer
->len
,
986 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
987 struct spi_transfer
*xfer
)
989 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
990 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
991 xfer
->len
, DMA_TO_DEVICE
);
992 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
993 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
994 xfer
->len
, DMA_FROM_DEVICE
);
997 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
999 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1003 atmel_spi_pump_single_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1007 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
1009 if (xfer
->bits_per_word
> 8) {
1010 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
1011 *rxp16
= spi_readl(as
, RDR
);
1013 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
1014 *rxp
= spi_readl(as
, RDR
);
1016 if (xfer
->bits_per_word
> 8) {
1017 if (as
->current_remaining_bytes
> 2)
1018 as
->current_remaining_bytes
-= 2;
1020 as
->current_remaining_bytes
= 0;
1022 as
->current_remaining_bytes
--;
1027 atmel_spi_pump_fifo_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1029 u32 fifolr
= spi_readl(as
, FLR
);
1030 u32 num_bytes
, num_data
= SPI_BFEXT(RXFL
, fifolr
);
1031 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
1032 u16
*words
= (u16
*)((u8
*)xfer
->rx_buf
+ offset
);
1033 u8
*bytes
= (u8
*)((u8
*)xfer
->rx_buf
+ offset
);
1034 u16 rd
; /* RD field is the lowest 16 bits of RDR */
1036 /* Update the number of remaining bytes to transfer */
1037 num_bytes
= ((xfer
->bits_per_word
> 8) ?
1041 if (as
->current_remaining_bytes
> num_bytes
)
1042 as
->current_remaining_bytes
-= num_bytes
;
1044 as
->current_remaining_bytes
= 0;
1046 /* Handle odd number of bytes when data are more than 8bit width */
1047 if (xfer
->bits_per_word
> 8)
1048 as
->current_remaining_bytes
&= ~0x1;
1052 rd
= spi_readl(as
, RDR
);
1053 if (xfer
->bits_per_word
> 8)
1063 * Must update "current_remaining_bytes" to keep track of data
1067 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1070 atmel_spi_pump_fifo_data(as
, xfer
);
1072 atmel_spi_pump_single_data(as
, xfer
);
1077 * No need for locking in this Interrupt handler: done_status is the
1078 * only information modified.
1081 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
1083 struct spi_master
*master
= dev_id
;
1084 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1085 u32 status
, pending
, imr
;
1086 struct spi_transfer
*xfer
;
1089 imr
= spi_readl(as
, IMR
);
1090 status
= spi_readl(as
, SR
);
1091 pending
= status
& imr
;
1093 if (pending
& SPI_BIT(OVRES
)) {
1095 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
1096 dev_warn(master
->dev
.parent
, "overrun\n");
1099 * When we get an overrun, we disregard the current
1100 * transfer. Data will not be copied back from any
1101 * bounce buffer and msg->actual_len will not be
1102 * updated with the last xfer.
1104 * We will also not process any remaning transfers in
1107 as
->done_status
= -EIO
;
1110 /* Clear any overrun happening while cleaning up */
1113 complete(&as
->xfer_completion
);
1115 } else if (pending
& (SPI_BIT(RDRF
) | SPI_BIT(RXFTHF
))) {
1118 if (as
->current_remaining_bytes
) {
1120 xfer
= as
->current_transfer
;
1121 atmel_spi_pump_pio_data(as
, xfer
);
1122 if (!as
->current_remaining_bytes
)
1123 spi_writel(as
, IDR
, pending
);
1125 complete(&as
->xfer_completion
);
1128 atmel_spi_unlock(as
);
1130 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
1132 spi_writel(as
, IDR
, pending
);
1139 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
1141 struct spi_master
*master
= dev_id
;
1142 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1143 u32 status
, pending
, imr
;
1146 imr
= spi_readl(as
, IMR
);
1147 status
= spi_readl(as
, SR
);
1148 pending
= status
& imr
;
1150 if (pending
& SPI_BIT(OVRES
)) {
1154 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
1157 /* Clear any overrun happening while cleaning up */
1160 as
->done_status
= -EIO
;
1162 complete(&as
->xfer_completion
);
1164 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
1167 spi_writel(as
, IDR
, pending
);
1169 complete(&as
->xfer_completion
);
1175 static int atmel_spi_setup(struct spi_device
*spi
)
1177 struct atmel_spi
*as
;
1178 struct atmel_spi_device
*asd
;
1180 unsigned int bits
= spi
->bits_per_word
;
1182 as
= spi_master_get_devdata(spi
->master
);
1184 /* see notes above re chipselect */
1185 if (!as
->use_cs_gpios
&& (spi
->mode
& SPI_CS_HIGH
)) {
1186 dev_warn(&spi
->dev
, "setup: non GPIO CS can't be active-high\n");
1190 csr
= SPI_BF(BITS
, bits
- 8);
1191 if (spi
->mode
& SPI_CPOL
)
1192 csr
|= SPI_BIT(CPOL
);
1193 if (!(spi
->mode
& SPI_CPHA
))
1194 csr
|= SPI_BIT(NCPHA
);
1195 if (!as
->use_cs_gpios
)
1196 csr
|= SPI_BIT(CSAAT
);
1198 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1200 csr
|= SPI_BF(DLYBS
, 0);
1202 /* DLYBCT adds delays between words. This is useful for slow devices
1203 * that need a bit of time to setup the next transfer.
1205 csr
|= SPI_BF(DLYBCT
,
1206 (as
->spi_clk
/ 1000000 * spi
->word_delay_usecs
) >> 5);
1208 asd
= spi
->controller_state
;
1210 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1215 * If use_cs_gpios is true this means that we have "cs-gpios"
1216 * defined in the device tree node so we should have
1217 * gotten the GPIO lines from the device tree inside the
1218 * SPI core. Warn if this is not the case but continue since
1219 * CS GPIOs are after all optional.
1221 if (as
->use_cs_gpios
) {
1222 if (!spi
->cs_gpiod
) {
1224 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1226 asd
->npcs_pin
= spi
->cs_gpiod
;
1229 spi
->controller_state
= asd
;
1235 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1236 bits
, spi
->mode
, spi
->chip_select
, csr
);
1238 if (!atmel_spi_is_v2(as
))
1239 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
1244 static int atmel_spi_one_transfer(struct spi_master
*master
,
1245 struct spi_message
*msg
,
1246 struct spi_transfer
*xfer
)
1248 struct atmel_spi
*as
;
1249 struct spi_device
*spi
= msg
->spi
;
1252 struct atmel_spi_device
*asd
;
1255 unsigned long dma_timeout
;
1257 as
= spi_master_get_devdata(master
);
1259 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
1260 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
1264 asd
= spi
->controller_state
;
1265 bits
= (asd
->csr
>> 4) & 0xf;
1266 if (bits
!= xfer
->bits_per_word
- 8) {
1268 "you can't yet change bits_per_word in transfers\n");
1269 return -ENOPROTOOPT
;
1273 * DMA map early, for performance (empties dcache ASAP) and
1274 * better fault reporting.
1276 if ((!msg
->is_dma_mapped
)
1278 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1282 atmel_spi_set_xfer_speed(as
, msg
->spi
, xfer
);
1284 as
->done_status
= 0;
1285 as
->current_transfer
= xfer
;
1286 as
->current_remaining_bytes
= xfer
->len
;
1287 while (as
->current_remaining_bytes
) {
1288 reinit_completion(&as
->xfer_completion
);
1291 atmel_spi_pdc_next_xfer(master
, msg
, xfer
);
1292 } else if (atmel_spi_use_dma(as
, xfer
)) {
1293 len
= as
->current_remaining_bytes
;
1294 ret
= atmel_spi_next_xfer_dma_submit(master
,
1298 "unable to use DMA, fallback to PIO\n");
1299 atmel_spi_next_xfer_pio(master
, xfer
);
1301 as
->current_remaining_bytes
-= len
;
1302 if (as
->current_remaining_bytes
< 0)
1303 as
->current_remaining_bytes
= 0;
1306 atmel_spi_next_xfer_pio(master
, xfer
);
1309 /* interrupts are disabled, so free the lock for schedule */
1310 atmel_spi_unlock(as
);
1311 dma_timeout
= wait_for_completion_timeout(&as
->xfer_completion
,
1314 if (WARN_ON(dma_timeout
== 0)) {
1315 dev_err(&spi
->dev
, "spi transfer timeout\n");
1316 as
->done_status
= -EIO
;
1319 if (as
->done_status
)
1323 if (as
->done_status
) {
1325 dev_warn(master
->dev
.parent
,
1326 "overrun (%u/%u remaining)\n",
1327 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1330 * Clean up DMA registers and make sure the data
1331 * registers are empty.
1333 spi_writel(as
, RNCR
, 0);
1334 spi_writel(as
, TNCR
, 0);
1335 spi_writel(as
, RCR
, 0);
1336 spi_writel(as
, TCR
, 0);
1337 for (timeout
= 1000; timeout
; timeout
--)
1338 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1341 dev_warn(master
->dev
.parent
,
1342 "timeout waiting for TXEMPTY");
1343 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1346 /* Clear any overrun happening while cleaning up */
1349 } else if (atmel_spi_use_dma(as
, xfer
)) {
1350 atmel_spi_stop_dma(master
);
1353 if (!msg
->is_dma_mapped
1355 atmel_spi_dma_unmap_xfer(master
, xfer
);
1360 /* only update length if no error */
1361 msg
->actual_length
+= xfer
->len
;
1364 if (!msg
->is_dma_mapped
1366 atmel_spi_dma_unmap_xfer(master
, xfer
);
1368 if (xfer
->delay_usecs
)
1369 udelay(xfer
->delay_usecs
);
1371 if (xfer
->cs_change
) {
1372 if (list_is_last(&xfer
->transfer_list
,
1376 cs_deactivate(as
, msg
->spi
);
1378 cs_activate(as
, msg
->spi
);
1385 static int atmel_spi_transfer_one_message(struct spi_master
*master
,
1386 struct spi_message
*msg
)
1388 struct atmel_spi
*as
;
1389 struct spi_transfer
*xfer
;
1390 struct spi_device
*spi
= msg
->spi
;
1393 as
= spi_master_get_devdata(master
);
1395 dev_dbg(&spi
->dev
, "new message %p submitted for %s\n",
1396 msg
, dev_name(&spi
->dev
));
1399 cs_activate(as
, spi
);
1401 as
->keep_cs
= false;
1404 msg
->actual_length
= 0;
1406 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1407 trace_spi_transfer_start(msg
, xfer
);
1409 ret
= atmel_spi_one_transfer(master
, msg
, xfer
);
1413 trace_spi_transfer_stop(msg
, xfer
);
1417 atmel_spi_disable_pdc_transfer(as
);
1419 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1421 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1423 xfer
->tx_buf
, &xfer
->tx_dma
,
1424 xfer
->rx_buf
, &xfer
->rx_dma
);
1429 cs_deactivate(as
, msg
->spi
);
1431 atmel_spi_unlock(as
);
1433 msg
->status
= as
->done_status
;
1434 spi_finalize_current_message(spi
->master
);
1439 static void atmel_spi_cleanup(struct spi_device
*spi
)
1441 struct atmel_spi_device
*asd
= spi
->controller_state
;
1446 spi
->controller_state
= NULL
;
1450 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1452 return spi_readl(as
, VERSION
) & 0x00000fff;
1455 static void atmel_get_caps(struct atmel_spi
*as
)
1457 unsigned int version
;
1459 version
= atmel_get_version(as
);
1461 as
->caps
.is_spi2
= version
> 0x121;
1462 as
->caps
.has_wdrbt
= version
>= 0x210;
1463 as
->caps
.has_dma_support
= version
>= 0x212;
1464 as
->caps
.has_pdc_support
= version
< 0x212;
1467 static void atmel_spi_init(struct atmel_spi
*as
)
1469 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1470 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1472 /* It is recommended to enable FIFOs first thing after reset */
1474 spi_writel(as
, CR
, SPI_BIT(FIFOEN
));
1476 if (as
->caps
.has_wdrbt
) {
1477 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1480 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1484 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1485 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1488 static int atmel_spi_probe(struct platform_device
*pdev
)
1490 struct resource
*regs
;
1494 struct spi_master
*master
;
1495 struct atmel_spi
*as
;
1497 /* Select default pin state */
1498 pinctrl_pm_select_default_state(&pdev
->dev
);
1500 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1504 irq
= platform_get_irq(pdev
, 0);
1508 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1510 return PTR_ERR(clk
);
1512 /* setup spi core then atmel-specific driver state */
1514 master
= spi_alloc_master(&pdev
->dev
, sizeof(*as
));
1518 /* the spi->mode bits understood by this driver: */
1519 master
->use_gpio_descriptors
= true;
1520 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1521 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1522 master
->dev
.of_node
= pdev
->dev
.of_node
;
1523 master
->bus_num
= pdev
->id
;
1524 master
->num_chipselect
= master
->dev
.of_node
? 0 : 4;
1525 master
->setup
= atmel_spi_setup
;
1526 master
->flags
= (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
);
1527 master
->transfer_one_message
= atmel_spi_transfer_one_message
;
1528 master
->cleanup
= atmel_spi_cleanup
;
1529 master
->auto_runtime_pm
= true;
1530 master
->max_dma_len
= SPI_MAX_DMA_XFER
;
1531 master
->can_dma
= atmel_spi_can_dma
;
1532 platform_set_drvdata(pdev
, master
);
1534 as
= spi_master_get_devdata(master
);
1536 spin_lock_init(&as
->lock
);
1539 as
->regs
= devm_ioremap_resource(&pdev
->dev
, regs
);
1540 if (IS_ERR(as
->regs
)) {
1541 ret
= PTR_ERR(as
->regs
);
1542 goto out_unmap_regs
;
1544 as
->phybase
= regs
->start
;
1548 init_completion(&as
->xfer_completion
);
1553 * If there are chip selects in the device tree, those will be
1554 * discovered by the SPI core when registering the SPI master
1555 * and assigned to each SPI device.
1557 as
->use_cs_gpios
= true;
1558 if (atmel_spi_is_v2(as
) &&
1559 pdev
->dev
.of_node
&&
1560 !of_get_property(pdev
->dev
.of_node
, "cs-gpios", NULL
)) {
1561 as
->use_cs_gpios
= false;
1562 master
->num_chipselect
= 4;
1565 as
->use_dma
= false;
1566 as
->use_pdc
= false;
1567 if (as
->caps
.has_dma_support
) {
1568 ret
= atmel_spi_configure_dma(master
, as
);
1571 } else if (ret
== -EPROBE_DEFER
) {
1574 } else if (as
->caps
.has_pdc_support
) {
1578 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1579 as
->addr_rx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1581 &as
->dma_addr_rx_bbuf
,
1582 GFP_KERNEL
| GFP_DMA
);
1583 if (!as
->addr_rx_bbuf
) {
1584 as
->use_dma
= false;
1586 as
->addr_tx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1588 &as
->dma_addr_tx_bbuf
,
1589 GFP_KERNEL
| GFP_DMA
);
1590 if (!as
->addr_tx_bbuf
) {
1591 as
->use_dma
= false;
1592 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1594 as
->dma_addr_rx_bbuf
);
1598 dev_info(master
->dev
.parent
,
1599 " can not allocate dma coherent memory\n");
1602 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1603 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1606 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1607 0, dev_name(&pdev
->dev
), master
);
1609 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1610 0, dev_name(&pdev
->dev
), master
);
1613 goto out_unmap_regs
;
1615 /* Initialize the hardware */
1616 ret
= clk_prepare_enable(clk
);
1620 as
->spi_clk
= clk_get_rate(clk
);
1623 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1625 dev_info(&pdev
->dev
, "Using FIFO (%u data)\n", as
->fifo_size
);
1630 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1631 pm_runtime_use_autosuspend(&pdev
->dev
);
1632 pm_runtime_set_active(&pdev
->dev
);
1633 pm_runtime_enable(&pdev
->dev
);
1635 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1640 dev_info(&pdev
->dev
, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1641 atmel_get_version(as
), (unsigned long)regs
->start
,
1647 pm_runtime_disable(&pdev
->dev
);
1648 pm_runtime_set_suspended(&pdev
->dev
);
1651 atmel_spi_release_dma(master
);
1653 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1654 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1655 clk_disable_unprepare(clk
);
1659 spi_master_put(master
);
1663 static int atmel_spi_remove(struct platform_device
*pdev
)
1665 struct spi_master
*master
= platform_get_drvdata(pdev
);
1666 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1668 pm_runtime_get_sync(&pdev
->dev
);
1670 /* reset the hardware and block queue progress */
1672 atmel_spi_stop_dma(master
);
1673 atmel_spi_release_dma(master
);
1674 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1675 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1677 as
->dma_addr_tx_bbuf
);
1678 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1680 as
->dma_addr_rx_bbuf
);
1684 spin_lock_irq(&as
->lock
);
1685 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1686 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1688 spin_unlock_irq(&as
->lock
);
1690 clk_disable_unprepare(as
->clk
);
1692 pm_runtime_put_noidle(&pdev
->dev
);
1693 pm_runtime_disable(&pdev
->dev
);
1699 static int atmel_spi_runtime_suspend(struct device
*dev
)
1701 struct spi_master
*master
= dev_get_drvdata(dev
);
1702 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1704 clk_disable_unprepare(as
->clk
);
1705 pinctrl_pm_select_sleep_state(dev
);
1710 static int atmel_spi_runtime_resume(struct device
*dev
)
1712 struct spi_master
*master
= dev_get_drvdata(dev
);
1713 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1715 pinctrl_pm_select_default_state(dev
);
1717 return clk_prepare_enable(as
->clk
);
1720 #ifdef CONFIG_PM_SLEEP
1721 static int atmel_spi_suspend(struct device
*dev
)
1723 struct spi_master
*master
= dev_get_drvdata(dev
);
1726 /* Stop the queue running */
1727 ret
= spi_master_suspend(master
);
1731 if (!pm_runtime_suspended(dev
))
1732 atmel_spi_runtime_suspend(dev
);
1737 static int atmel_spi_resume(struct device
*dev
)
1739 struct spi_master
*master
= dev_get_drvdata(dev
);
1740 struct atmel_spi
*as
= spi_master_get_devdata(master
);
1743 ret
= clk_prepare_enable(as
->clk
);
1749 clk_disable_unprepare(as
->clk
);
1751 if (!pm_runtime_suspended(dev
)) {
1752 ret
= atmel_spi_runtime_resume(dev
);
1757 /* Start the queue running */
1758 return spi_master_resume(master
);
1762 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1763 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1764 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1765 atmel_spi_runtime_resume
, NULL
)
1767 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1769 #define ATMEL_SPI_PM_OPS NULL
1772 #if defined(CONFIG_OF)
1773 static const struct of_device_id atmel_spi_dt_ids
[] = {
1774 { .compatible
= "atmel,at91rm9200-spi" },
1778 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1781 static struct platform_driver atmel_spi_driver
= {
1783 .name
= "atmel_spi",
1784 .pm
= ATMEL_SPI_PM_OPS
,
1785 .of_match_table
= of_match_ptr(atmel_spi_dt_ids
),
1787 .probe
= atmel_spi_probe
,
1788 .remove
= atmel_spi_remove
,
1790 module_platform_driver(atmel_spi_driver
);
1792 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1793 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1794 MODULE_LICENSE("GPL");
1795 MODULE_ALIAS("platform:atmel_spi");