dm: Call proper helper to determine dax support
[linux/fpc-iii.git] / drivers / spi / spi-atmel.c
blobabbc1582f457eb51bce95d8eaca748347f65e4e1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
5 * Copyright (C) 2006 Atmel Corporation
6 */
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
28 /* SPI register offsets */
29 #define SPI_CR 0x0000
30 #define SPI_MR 0x0004
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
33 #define SPI_SR 0x0010
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_FMR 0x0040
42 #define SPI_FLR 0x0044
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
64 #define SPI_TXFCLR_OFFSET 16
65 #define SPI_TXFCLR_SIZE 1
66 #define SPI_RXFCLR_OFFSET 17
67 #define SPI_RXFCLR_SIZE 1
68 #define SPI_FIFOEN_OFFSET 30
69 #define SPI_FIFOEN_SIZE 1
70 #define SPI_FIFODIS_OFFSET 31
71 #define SPI_FIFODIS_SIZE 1
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET 0
75 #define SPI_MSTR_SIZE 1
76 #define SPI_PS_OFFSET 1
77 #define SPI_PS_SIZE 1
78 #define SPI_PCSDEC_OFFSET 2
79 #define SPI_PCSDEC_SIZE 1
80 #define SPI_FDIV_OFFSET 3
81 #define SPI_FDIV_SIZE 1
82 #define SPI_MODFDIS_OFFSET 4
83 #define SPI_MODFDIS_SIZE 1
84 #define SPI_WDRBT_OFFSET 5
85 #define SPI_WDRBT_SIZE 1
86 #define SPI_LLB_OFFSET 7
87 #define SPI_LLB_SIZE 1
88 #define SPI_PCS_OFFSET 16
89 #define SPI_PCS_SIZE 4
90 #define SPI_DLYBCS_OFFSET 24
91 #define SPI_DLYBCS_SIZE 8
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET 0
95 #define SPI_RD_SIZE 16
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET 0
99 #define SPI_TD_SIZE 16
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET 0
103 #define SPI_RDRF_SIZE 1
104 #define SPI_TDRE_OFFSET 1
105 #define SPI_TDRE_SIZE 1
106 #define SPI_MODF_OFFSET 2
107 #define SPI_MODF_SIZE 1
108 #define SPI_OVRES_OFFSET 3
109 #define SPI_OVRES_SIZE 1
110 #define SPI_ENDRX_OFFSET 4
111 #define SPI_ENDRX_SIZE 1
112 #define SPI_ENDTX_OFFSET 5
113 #define SPI_ENDTX_SIZE 1
114 #define SPI_RXBUFF_OFFSET 6
115 #define SPI_RXBUFF_SIZE 1
116 #define SPI_TXBUFE_OFFSET 7
117 #define SPI_TXBUFE_SIZE 1
118 #define SPI_NSSR_OFFSET 8
119 #define SPI_NSSR_SIZE 1
120 #define SPI_TXEMPTY_OFFSET 9
121 #define SPI_TXEMPTY_SIZE 1
122 #define SPI_SPIENS_OFFSET 16
123 #define SPI_SPIENS_SIZE 1
124 #define SPI_TXFEF_OFFSET 24
125 #define SPI_TXFEF_SIZE 1
126 #define SPI_TXFFF_OFFSET 25
127 #define SPI_TXFFF_SIZE 1
128 #define SPI_TXFTHF_OFFSET 26
129 #define SPI_TXFTHF_SIZE 1
130 #define SPI_RXFEF_OFFSET 27
131 #define SPI_RXFEF_SIZE 1
132 #define SPI_RXFFF_OFFSET 28
133 #define SPI_RXFFF_SIZE 1
134 #define SPI_RXFTHF_OFFSET 29
135 #define SPI_RXFTHF_SIZE 1
136 #define SPI_TXFPTEF_OFFSET 30
137 #define SPI_TXFPTEF_SIZE 1
138 #define SPI_RXFPTEF_OFFSET 31
139 #define SPI_RXFPTEF_SIZE 1
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET 0
143 #define SPI_CPOL_SIZE 1
144 #define SPI_NCPHA_OFFSET 1
145 #define SPI_NCPHA_SIZE 1
146 #define SPI_CSAAT_OFFSET 3
147 #define SPI_CSAAT_SIZE 1
148 #define SPI_BITS_OFFSET 4
149 #define SPI_BITS_SIZE 4
150 #define SPI_SCBR_OFFSET 8
151 #define SPI_SCBR_SIZE 8
152 #define SPI_DLYBS_OFFSET 16
153 #define SPI_DLYBS_SIZE 8
154 #define SPI_DLYBCT_OFFSET 24
155 #define SPI_DLYBCT_SIZE 8
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET 0
159 #define SPI_RXCTR_SIZE 16
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET 0
163 #define SPI_TXCTR_SIZE 16
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET 0
167 #define SPI_RXNCR_SIZE 16
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET 0
171 #define SPI_TXNCR_SIZE 16
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET 0
175 #define SPI_RXTEN_SIZE 1
176 #define SPI_RXTDIS_OFFSET 1
177 #define SPI_RXTDIS_SIZE 1
178 #define SPI_TXTEN_OFFSET 8
179 #define SPI_TXTEN_SIZE 1
180 #define SPI_TXTDIS_OFFSET 9
181 #define SPI_TXTDIS_SIZE 1
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET 0
185 #define SPI_TXRDYM_SIZE 2
186 #define SPI_RXRDYM_OFFSET 4
187 #define SPI_RXRDYM_SIZE 2
188 #define SPI_TXFTHRES_OFFSET 16
189 #define SPI_TXFTHRES_SIZE 6
190 #define SPI_RXFTHRES_OFFSET 24
191 #define SPI_RXFTHRES_SIZE 6
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET 0
195 #define SPI_TXFL_SIZE 6
196 #define SPI_RXFL_OFFSET 16
197 #define SPI_RXFL_SIZE 6
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT 0
201 #define SPI_BITS_9_BPT 1
202 #define SPI_BITS_10_BPT 2
203 #define SPI_BITS_11_BPT 3
204 #define SPI_BITS_12_BPT 4
205 #define SPI_BITS_13_BPT 5
206 #define SPI_BITS_14_BPT 6
207 #define SPI_BITS_15_BPT 7
208 #define SPI_BITS_16_BPT 8
209 #define SPI_ONE_DATA 0
210 #define SPI_TWO_DATA 1
211 #define SPI_FOUR_DATA 2
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
224 /* Register access macros */
225 #ifdef CONFIG_AVR32
226 #define spi_readl(port, reg) \
227 __raw_readl((port)->regs + SPI_##reg)
228 #define spi_writel(port, reg, value) \
229 __raw_writel((value), (port)->regs + SPI_##reg)
231 #define spi_readw(port, reg) \
232 __raw_readw((port)->regs + SPI_##reg)
233 #define spi_writew(port, reg, value) \
234 __raw_writew((value), (port)->regs + SPI_##reg)
236 #define spi_readb(port, reg) \
237 __raw_readb((port)->regs + SPI_##reg)
238 #define spi_writeb(port, reg, value) \
239 __raw_writeb((value), (port)->regs + SPI_##reg)
240 #else
241 #define spi_readl(port, reg) \
242 readl_relaxed((port)->regs + SPI_##reg)
243 #define spi_writel(port, reg, value) \
244 writel_relaxed((value), (port)->regs + SPI_##reg)
246 #define spi_readw(port, reg) \
247 readw_relaxed((port)->regs + SPI_##reg)
248 #define spi_writew(port, reg, value) \
249 writew_relaxed((value), (port)->regs + SPI_##reg)
251 #define spi_readb(port, reg) \
252 readb_relaxed((port)->regs + SPI_##reg)
253 #define spi_writeb(port, reg, value) \
254 writeb_relaxed((value), (port)->regs + SPI_##reg)
255 #endif
256 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
257 * cache operations; better heuristics consider wordsize and bitrate.
259 #define DMA_MIN_BYTES 16
261 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
263 #define AUTOSUSPEND_TIMEOUT 2000
265 struct atmel_spi_caps {
266 bool is_spi2;
267 bool has_wdrbt;
268 bool has_dma_support;
269 bool has_pdc_support;
273 * The core SPI transfer engine just talks to a register bank to set up
274 * DMA transfers; transfer queue progress is driven by IRQs. The clock
275 * framework provides the base clock, subdivided for each spi_device.
277 struct atmel_spi {
278 spinlock_t lock;
279 unsigned long flags;
281 phys_addr_t phybase;
282 void __iomem *regs;
283 int irq;
284 struct clk *clk;
285 struct platform_device *pdev;
286 unsigned long spi_clk;
288 struct spi_transfer *current_transfer;
289 int current_remaining_bytes;
290 int done_status;
291 dma_addr_t dma_addr_rx_bbuf;
292 dma_addr_t dma_addr_tx_bbuf;
293 void *addr_rx_bbuf;
294 void *addr_tx_bbuf;
296 struct completion xfer_completion;
298 struct atmel_spi_caps caps;
300 bool use_dma;
301 bool use_pdc;
302 bool use_cs_gpios;
304 bool keep_cs;
306 u32 fifo_size;
309 /* Controller-specific per-slave state */
310 struct atmel_spi_device {
311 struct gpio_desc *npcs_pin;
312 u32 csr;
315 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
316 #define INVALID_DMA_ADDRESS 0xffffffff
319 * Version 2 of the SPI controller has
320 * - CR.LASTXFER
321 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
322 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
323 * - SPI_CSRx.CSAAT
324 * - SPI_CSRx.SBCR allows faster clocking
326 static bool atmel_spi_is_v2(struct atmel_spi *as)
328 return as->caps.is_spi2;
332 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
333 * they assume that spi slave device state will not change on deselect, so
334 * that automagic deselection is OK. ("NPCSx rises if no data is to be
335 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
336 * controllers have CSAAT and friends.
338 * Since the CSAAT functionality is a bit weird on newer controllers as
339 * well, we use GPIO to control nCSx pins on all controllers, updating
340 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
341 * support active-high chipselects despite the controller's belief that
342 * only active-low devices/systems exists.
344 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
345 * right when driven with GPIO. ("Mode Fault does not allow more than one
346 * Master on Chip Select 0.") No workaround exists for that ... so for
347 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
348 * and (c) will trigger that first erratum in some cases.
351 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
353 struct atmel_spi_device *asd = spi->controller_state;
354 u32 mr;
356 if (atmel_spi_is_v2(as)) {
357 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
358 /* For the low SPI version, there is a issue that PDC transfer
359 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
361 spi_writel(as, CSR0, asd->csr);
362 if (as->caps.has_wdrbt) {
363 spi_writel(as, MR,
364 SPI_BF(PCS, ~(0x01 << spi->chip_select))
365 | SPI_BIT(WDRBT)
366 | SPI_BIT(MODFDIS)
367 | SPI_BIT(MSTR));
368 } else {
369 spi_writel(as, MR,
370 SPI_BF(PCS, ~(0x01 << spi->chip_select))
371 | SPI_BIT(MODFDIS)
372 | SPI_BIT(MSTR));
375 mr = spi_readl(as, MR);
376 if (as->use_cs_gpios)
377 gpiod_set_value(asd->npcs_pin, 1);
378 } else {
379 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
380 int i;
381 u32 csr;
383 /* Make sure clock polarity is correct */
384 for (i = 0; i < spi->master->num_chipselect; i++) {
385 csr = spi_readl(as, CSR0 + 4 * i);
386 if ((csr ^ cpol) & SPI_BIT(CPOL))
387 spi_writel(as, CSR0 + 4 * i,
388 csr ^ SPI_BIT(CPOL));
391 mr = spi_readl(as, MR);
392 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
393 if (as->use_cs_gpios && spi->chip_select != 0)
394 gpiod_set_value(asd->npcs_pin, 1);
395 spi_writel(as, MR, mr);
398 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
401 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
403 struct atmel_spi_device *asd = spi->controller_state;
404 u32 mr;
406 /* only deactivate *this* device; sometimes transfers to
407 * another device may be active when this routine is called.
409 mr = spi_readl(as, MR);
410 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
411 mr = SPI_BFINS(PCS, 0xf, mr);
412 spi_writel(as, MR, mr);
415 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
417 if (!as->use_cs_gpios)
418 spi_writel(as, CR, SPI_BIT(LASTXFER));
419 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
420 gpiod_set_value(asd->npcs_pin, 0);
423 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
425 spin_lock_irqsave(&as->lock, as->flags);
428 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
430 spin_unlock_irqrestore(&as->lock, as->flags);
433 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
435 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
438 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
439 struct spi_transfer *xfer)
441 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
444 static bool atmel_spi_can_dma(struct spi_master *master,
445 struct spi_device *spi,
446 struct spi_transfer *xfer)
448 struct atmel_spi *as = spi_master_get_devdata(master);
450 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
451 return atmel_spi_use_dma(as, xfer) &&
452 !atmel_spi_is_vmalloc_xfer(xfer);
453 else
454 return atmel_spi_use_dma(as, xfer);
458 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
459 struct dma_slave_config *slave_config,
460 u8 bits_per_word)
462 struct spi_master *master = platform_get_drvdata(as->pdev);
463 int err = 0;
465 if (bits_per_word > 8) {
466 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
467 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 } else {
469 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
470 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
473 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
474 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
475 slave_config->src_maxburst = 1;
476 slave_config->dst_maxburst = 1;
477 slave_config->device_fc = false;
480 * This driver uses fixed peripheral select mode (PS bit set to '0' in
481 * the Mode Register).
482 * So according to the datasheet, when FIFOs are available (and
483 * enabled), the Transmit FIFO operates in Multiple Data Mode.
484 * In this mode, up to 2 data, not 4, can be written into the Transmit
485 * Data Register in a single access.
486 * However, the first data has to be written into the lowest 16 bits and
487 * the second data into the highest 16 bits of the Transmit
488 * Data Register. For 8bit data (the most frequent case), it would
489 * require to rework tx_buf so each data would actualy fit 16 bits.
490 * So we'd rather write only one data at the time. Hence the transmit
491 * path works the same whether FIFOs are available (and enabled) or not.
493 slave_config->direction = DMA_MEM_TO_DEV;
494 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
495 dev_err(&as->pdev->dev,
496 "failed to configure tx dma channel\n");
497 err = -EINVAL;
501 * This driver configures the spi controller for master mode (MSTR bit
502 * set to '1' in the Mode Register).
503 * So according to the datasheet, when FIFOs are available (and
504 * enabled), the Receive FIFO operates in Single Data Mode.
505 * So the receive path works the same whether FIFOs are available (and
506 * enabled) or not.
508 slave_config->direction = DMA_DEV_TO_MEM;
509 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
510 dev_err(&as->pdev->dev,
511 "failed to configure rx dma channel\n");
512 err = -EINVAL;
515 return err;
518 static int atmel_spi_configure_dma(struct spi_master *master,
519 struct atmel_spi *as)
521 struct dma_slave_config slave_config;
522 struct device *dev = &as->pdev->dev;
523 int err;
525 dma_cap_mask_t mask;
526 dma_cap_zero(mask);
527 dma_cap_set(DMA_SLAVE, mask);
529 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
530 if (IS_ERR(master->dma_tx)) {
531 err = PTR_ERR(master->dma_tx);
532 if (err == -EPROBE_DEFER) {
533 dev_warn(dev, "no DMA channel available at the moment\n");
534 goto error_clear;
536 dev_err(dev,
537 "DMA TX channel not available, SPI unable to use DMA\n");
538 err = -EBUSY;
539 goto error_clear;
543 * No reason to check EPROBE_DEFER here since we have already requested
544 * tx channel. If it fails here, it's for another reason.
546 master->dma_rx = dma_request_slave_channel(dev, "rx");
548 if (!master->dma_rx) {
549 dev_err(dev,
550 "DMA RX channel not available, SPI unable to use DMA\n");
551 err = -EBUSY;
552 goto error;
555 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
556 if (err)
557 goto error;
559 dev_info(&as->pdev->dev,
560 "Using %s (tx) and %s (rx) for DMA transfers\n",
561 dma_chan_name(master->dma_tx),
562 dma_chan_name(master->dma_rx));
564 return 0;
565 error:
566 if (master->dma_rx)
567 dma_release_channel(master->dma_rx);
568 if (!IS_ERR(master->dma_tx))
569 dma_release_channel(master->dma_tx);
570 error_clear:
571 master->dma_tx = master->dma_rx = NULL;
572 return err;
575 static void atmel_spi_stop_dma(struct spi_master *master)
577 if (master->dma_rx)
578 dmaengine_terminate_all(master->dma_rx);
579 if (master->dma_tx)
580 dmaengine_terminate_all(master->dma_tx);
583 static void atmel_spi_release_dma(struct spi_master *master)
585 if (master->dma_rx) {
586 dma_release_channel(master->dma_rx);
587 master->dma_rx = NULL;
589 if (master->dma_tx) {
590 dma_release_channel(master->dma_tx);
591 master->dma_tx = NULL;
595 /* This function is called by the DMA driver from tasklet context */
596 static void dma_callback(void *data)
598 struct spi_master *master = data;
599 struct atmel_spi *as = spi_master_get_devdata(master);
601 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
602 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
603 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
604 as->current_transfer->len);
606 complete(&as->xfer_completion);
610 * Next transfer using PIO without FIFO.
612 static void atmel_spi_next_xfer_single(struct spi_master *master,
613 struct spi_transfer *xfer)
615 struct atmel_spi *as = spi_master_get_devdata(master);
616 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
618 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
620 /* Make sure data is not remaining in RDR */
621 spi_readl(as, RDR);
622 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
623 spi_readl(as, RDR);
624 cpu_relax();
627 if (xfer->bits_per_word > 8)
628 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
629 else
630 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
632 dev_dbg(master->dev.parent,
633 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
634 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
635 xfer->bits_per_word);
637 /* Enable relevant interrupts */
638 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
642 * Next transfer using PIO with FIFO.
644 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
645 struct spi_transfer *xfer)
647 struct atmel_spi *as = spi_master_get_devdata(master);
648 u32 current_remaining_data, num_data;
649 u32 offset = xfer->len - as->current_remaining_bytes;
650 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
651 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
652 u16 td0, td1;
653 u32 fifomr;
655 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
657 /* Compute the number of data to transfer in the current iteration */
658 current_remaining_data = ((xfer->bits_per_word > 8) ?
659 ((u32)as->current_remaining_bytes >> 1) :
660 (u32)as->current_remaining_bytes);
661 num_data = min(current_remaining_data, as->fifo_size);
663 /* Flush RX and TX FIFOs */
664 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
665 while (spi_readl(as, FLR))
666 cpu_relax();
668 /* Set RX FIFO Threshold to the number of data to transfer */
669 fifomr = spi_readl(as, FMR);
670 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
672 /* Clear FIFO flags in the Status Register, especially RXFTHF */
673 (void)spi_readl(as, SR);
675 /* Fill TX FIFO */
676 while (num_data >= 2) {
677 if (xfer->bits_per_word > 8) {
678 td0 = *words++;
679 td1 = *words++;
680 } else {
681 td0 = *bytes++;
682 td1 = *bytes++;
685 spi_writel(as, TDR, (td1 << 16) | td0);
686 num_data -= 2;
689 if (num_data) {
690 if (xfer->bits_per_word > 8)
691 td0 = *words++;
692 else
693 td0 = *bytes++;
695 spi_writew(as, TDR, td0);
696 num_data--;
699 dev_dbg(master->dev.parent,
700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
702 xfer->bits_per_word);
705 * Enable RX FIFO Threshold Flag interrupt to be notified about
706 * transfer completion.
708 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
712 * Next transfer using PIO.
714 static void atmel_spi_next_xfer_pio(struct spi_master *master,
715 struct spi_transfer *xfer)
717 struct atmel_spi *as = spi_master_get_devdata(master);
719 if (as->fifo_size)
720 atmel_spi_next_xfer_fifo(master, xfer);
721 else
722 atmel_spi_next_xfer_single(master, xfer);
726 * Submit next transfer for DMA.
728 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
729 struct spi_transfer *xfer,
730 u32 *plen)
732 struct atmel_spi *as = spi_master_get_devdata(master);
733 struct dma_chan *rxchan = master->dma_rx;
734 struct dma_chan *txchan = master->dma_tx;
735 struct dma_async_tx_descriptor *rxdesc;
736 struct dma_async_tx_descriptor *txdesc;
737 struct dma_slave_config slave_config;
738 dma_cookie_t cookie;
740 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742 /* Check that the channels are available */
743 if (!rxchan || !txchan)
744 return -ENODEV;
746 /* release lock for DMA operations */
747 atmel_spi_unlock(as);
749 *plen = xfer->len;
751 if (atmel_spi_dma_slave_config(as, &slave_config,
752 xfer->bits_per_word))
753 goto err_exit;
755 /* Send both scatterlists */
756 if (atmel_spi_is_vmalloc_xfer(xfer) &&
757 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
758 rxdesc = dmaengine_prep_slave_single(rxchan,
759 as->dma_addr_rx_bbuf,
760 xfer->len,
761 DMA_DEV_TO_MEM,
762 DMA_PREP_INTERRUPT |
763 DMA_CTRL_ACK);
764 } else {
765 rxdesc = dmaengine_prep_slave_sg(rxchan,
766 xfer->rx_sg.sgl,
767 xfer->rx_sg.nents,
768 DMA_DEV_TO_MEM,
769 DMA_PREP_INTERRUPT |
770 DMA_CTRL_ACK);
772 if (!rxdesc)
773 goto err_dma;
775 if (atmel_spi_is_vmalloc_xfer(xfer) &&
776 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
777 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
778 txdesc = dmaengine_prep_slave_single(txchan,
779 as->dma_addr_tx_bbuf,
780 xfer->len, DMA_MEM_TO_DEV,
781 DMA_PREP_INTERRUPT |
782 DMA_CTRL_ACK);
783 } else {
784 txdesc = dmaengine_prep_slave_sg(txchan,
785 xfer->tx_sg.sgl,
786 xfer->tx_sg.nents,
787 DMA_MEM_TO_DEV,
788 DMA_PREP_INTERRUPT |
789 DMA_CTRL_ACK);
791 if (!txdesc)
792 goto err_dma;
794 dev_dbg(master->dev.parent,
795 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
796 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
797 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
799 /* Enable relevant interrupts */
800 spi_writel(as, IER, SPI_BIT(OVRES));
802 /* Put the callback on the RX transfer only, that should finish last */
803 rxdesc->callback = dma_callback;
804 rxdesc->callback_param = master;
806 /* Submit and fire RX and TX with TX last so we're ready to read! */
807 cookie = rxdesc->tx_submit(rxdesc);
808 if (dma_submit_error(cookie))
809 goto err_dma;
810 cookie = txdesc->tx_submit(txdesc);
811 if (dma_submit_error(cookie))
812 goto err_dma;
813 rxchan->device->device_issue_pending(rxchan);
814 txchan->device->device_issue_pending(txchan);
816 /* take back lock */
817 atmel_spi_lock(as);
818 return 0;
820 err_dma:
821 spi_writel(as, IDR, SPI_BIT(OVRES));
822 atmel_spi_stop_dma(master);
823 err_exit:
824 atmel_spi_lock(as);
825 return -ENOMEM;
828 static void atmel_spi_next_xfer_data(struct spi_master *master,
829 struct spi_transfer *xfer,
830 dma_addr_t *tx_dma,
831 dma_addr_t *rx_dma,
832 u32 *plen)
834 *rx_dma = xfer->rx_dma + xfer->len - *plen;
835 *tx_dma = xfer->tx_dma + xfer->len - *plen;
836 if (*plen > master->max_dma_len)
837 *plen = master->max_dma_len;
840 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
841 struct spi_device *spi,
842 struct spi_transfer *xfer)
844 u32 scbr, csr;
845 unsigned long bus_hz;
847 /* v1 chips start out at half the peripheral bus speed. */
848 bus_hz = as->spi_clk;
849 if (!atmel_spi_is_v2(as))
850 bus_hz /= 2;
853 * Calculate the lowest divider that satisfies the
854 * constraint, assuming div32/fdiv/mbz == 0.
856 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
859 * If the resulting divider doesn't fit into the
860 * register bitfield, we can't satisfy the constraint.
862 if (scbr >= (1 << SPI_SCBR_SIZE)) {
863 dev_err(&spi->dev,
864 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
865 xfer->speed_hz, scbr, bus_hz/255);
866 return -EINVAL;
868 if (scbr == 0) {
869 dev_err(&spi->dev,
870 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
871 xfer->speed_hz, scbr, bus_hz);
872 return -EINVAL;
874 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
875 csr = SPI_BFINS(SCBR, scbr, csr);
876 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
878 return 0;
882 * Submit next transfer for PDC.
883 * lock is held, spi irq is blocked
885 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
886 struct spi_message *msg,
887 struct spi_transfer *xfer)
889 struct atmel_spi *as = spi_master_get_devdata(master);
890 u32 len;
891 dma_addr_t tx_dma, rx_dma;
893 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
895 len = as->current_remaining_bytes;
896 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
897 as->current_remaining_bytes -= len;
899 spi_writel(as, RPR, rx_dma);
900 spi_writel(as, TPR, tx_dma);
902 if (msg->spi->bits_per_word > 8)
903 len >>= 1;
904 spi_writel(as, RCR, len);
905 spi_writel(as, TCR, len);
907 dev_dbg(&msg->spi->dev,
908 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
909 xfer, xfer->len, xfer->tx_buf,
910 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
911 (unsigned long long)xfer->rx_dma);
913 if (as->current_remaining_bytes) {
914 len = as->current_remaining_bytes;
915 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
916 as->current_remaining_bytes -= len;
918 spi_writel(as, RNPR, rx_dma);
919 spi_writel(as, TNPR, tx_dma);
921 if (msg->spi->bits_per_word > 8)
922 len >>= 1;
923 spi_writel(as, RNCR, len);
924 spi_writel(as, TNCR, len);
926 dev_dbg(&msg->spi->dev,
927 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
928 xfer, xfer->len, xfer->tx_buf,
929 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
930 (unsigned long long)xfer->rx_dma);
933 /* REVISIT: We're waiting for RXBUFF before we start the next
934 * transfer because we need to handle some difficult timing
935 * issues otherwise. If we wait for TXBUFE in one transfer and
936 * then starts waiting for RXBUFF in the next, it's difficult
937 * to tell the difference between the RXBUFF interrupt we're
938 * actually waiting for and the RXBUFF interrupt of the
939 * previous transfer.
941 * It should be doable, though. Just not now...
943 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
944 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
948 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
949 * - The buffer is either valid for CPU access, else NULL
950 * - If the buffer is valid, so is its DMA address
952 * This driver manages the dma address unless message->is_dma_mapped.
954 static int
955 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
957 struct device *dev = &as->pdev->dev;
959 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
960 if (xfer->tx_buf) {
961 /* tx_buf is a const void* where we need a void * for the dma
962 * mapping */
963 void *nonconst_tx = (void *)xfer->tx_buf;
965 xfer->tx_dma = dma_map_single(dev,
966 nonconst_tx, xfer->len,
967 DMA_TO_DEVICE);
968 if (dma_mapping_error(dev, xfer->tx_dma))
969 return -ENOMEM;
971 if (xfer->rx_buf) {
972 xfer->rx_dma = dma_map_single(dev,
973 xfer->rx_buf, xfer->len,
974 DMA_FROM_DEVICE);
975 if (dma_mapping_error(dev, xfer->rx_dma)) {
976 if (xfer->tx_buf)
977 dma_unmap_single(dev,
978 xfer->tx_dma, xfer->len,
979 DMA_TO_DEVICE);
980 return -ENOMEM;
983 return 0;
986 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
987 struct spi_transfer *xfer)
989 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
990 dma_unmap_single(master->dev.parent, xfer->tx_dma,
991 xfer->len, DMA_TO_DEVICE);
992 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
993 dma_unmap_single(master->dev.parent, xfer->rx_dma,
994 xfer->len, DMA_FROM_DEVICE);
997 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
999 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1002 static void
1003 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005 u8 *rxp;
1006 u16 *rxp16;
1007 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1009 if (xfer->bits_per_word > 8) {
1010 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1011 *rxp16 = spi_readl(as, RDR);
1012 } else {
1013 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1014 *rxp = spi_readl(as, RDR);
1016 if (xfer->bits_per_word > 8) {
1017 if (as->current_remaining_bytes > 2)
1018 as->current_remaining_bytes -= 2;
1019 else
1020 as->current_remaining_bytes = 0;
1021 } else {
1022 as->current_remaining_bytes--;
1026 static void
1027 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029 u32 fifolr = spi_readl(as, FLR);
1030 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1031 u32 offset = xfer->len - as->current_remaining_bytes;
1032 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1033 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1034 u16 rd; /* RD field is the lowest 16 bits of RDR */
1036 /* Update the number of remaining bytes to transfer */
1037 num_bytes = ((xfer->bits_per_word > 8) ?
1038 (num_data << 1) :
1039 num_data);
1041 if (as->current_remaining_bytes > num_bytes)
1042 as->current_remaining_bytes -= num_bytes;
1043 else
1044 as->current_remaining_bytes = 0;
1046 /* Handle odd number of bytes when data are more than 8bit width */
1047 if (xfer->bits_per_word > 8)
1048 as->current_remaining_bytes &= ~0x1;
1050 /* Read data */
1051 while (num_data) {
1052 rd = spi_readl(as, RDR);
1053 if (xfer->bits_per_word > 8)
1054 *words++ = rd;
1055 else
1056 *bytes++ = rd;
1057 num_data--;
1061 /* Called from IRQ
1063 * Must update "current_remaining_bytes" to keep track of data
1064 * to transfer.
1066 static void
1067 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069 if (as->fifo_size)
1070 atmel_spi_pump_fifo_data(as, xfer);
1071 else
1072 atmel_spi_pump_single_data(as, xfer);
1075 /* Interrupt
1077 * No need for locking in this Interrupt handler: done_status is the
1078 * only information modified.
1080 static irqreturn_t
1081 atmel_spi_pio_interrupt(int irq, void *dev_id)
1083 struct spi_master *master = dev_id;
1084 struct atmel_spi *as = spi_master_get_devdata(master);
1085 u32 status, pending, imr;
1086 struct spi_transfer *xfer;
1087 int ret = IRQ_NONE;
1089 imr = spi_readl(as, IMR);
1090 status = spi_readl(as, SR);
1091 pending = status & imr;
1093 if (pending & SPI_BIT(OVRES)) {
1094 ret = IRQ_HANDLED;
1095 spi_writel(as, IDR, SPI_BIT(OVRES));
1096 dev_warn(master->dev.parent, "overrun\n");
1099 * When we get an overrun, we disregard the current
1100 * transfer. Data will not be copied back from any
1101 * bounce buffer and msg->actual_len will not be
1102 * updated with the last xfer.
1104 * We will also not process any remaning transfers in
1105 * the message.
1107 as->done_status = -EIO;
1108 smp_wmb();
1110 /* Clear any overrun happening while cleaning up */
1111 spi_readl(as, SR);
1113 complete(&as->xfer_completion);
1115 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1116 atmel_spi_lock(as);
1118 if (as->current_remaining_bytes) {
1119 ret = IRQ_HANDLED;
1120 xfer = as->current_transfer;
1121 atmel_spi_pump_pio_data(as, xfer);
1122 if (!as->current_remaining_bytes)
1123 spi_writel(as, IDR, pending);
1125 complete(&as->xfer_completion);
1128 atmel_spi_unlock(as);
1129 } else {
1130 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1131 ret = IRQ_HANDLED;
1132 spi_writel(as, IDR, pending);
1135 return ret;
1138 static irqreturn_t
1139 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141 struct spi_master *master = dev_id;
1142 struct atmel_spi *as = spi_master_get_devdata(master);
1143 u32 status, pending, imr;
1144 int ret = IRQ_NONE;
1146 imr = spi_readl(as, IMR);
1147 status = spi_readl(as, SR);
1148 pending = status & imr;
1150 if (pending & SPI_BIT(OVRES)) {
1152 ret = IRQ_HANDLED;
1154 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1155 | SPI_BIT(OVRES)));
1157 /* Clear any overrun happening while cleaning up */
1158 spi_readl(as, SR);
1160 as->done_status = -EIO;
1162 complete(&as->xfer_completion);
1164 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1165 ret = IRQ_HANDLED;
1167 spi_writel(as, IDR, pending);
1169 complete(&as->xfer_completion);
1172 return ret;
1175 static int atmel_spi_setup(struct spi_device *spi)
1177 struct atmel_spi *as;
1178 struct atmel_spi_device *asd;
1179 u32 csr;
1180 unsigned int bits = spi->bits_per_word;
1182 as = spi_master_get_devdata(spi->master);
1184 /* see notes above re chipselect */
1185 if (!as->use_cs_gpios && (spi->mode & SPI_CS_HIGH)) {
1186 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1187 return -EINVAL;
1190 csr = SPI_BF(BITS, bits - 8);
1191 if (spi->mode & SPI_CPOL)
1192 csr |= SPI_BIT(CPOL);
1193 if (!(spi->mode & SPI_CPHA))
1194 csr |= SPI_BIT(NCPHA);
1195 if (!as->use_cs_gpios)
1196 csr |= SPI_BIT(CSAAT);
1198 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1200 csr |= SPI_BF(DLYBS, 0);
1202 /* DLYBCT adds delays between words. This is useful for slow devices
1203 * that need a bit of time to setup the next transfer.
1205 csr |= SPI_BF(DLYBCT,
1206 (as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1208 asd = spi->controller_state;
1209 if (!asd) {
1210 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1211 if (!asd)
1212 return -ENOMEM;
1215 * If use_cs_gpios is true this means that we have "cs-gpios"
1216 * defined in the device tree node so we should have
1217 * gotten the GPIO lines from the device tree inside the
1218 * SPI core. Warn if this is not the case but continue since
1219 * CS GPIOs are after all optional.
1221 if (as->use_cs_gpios) {
1222 if (!spi->cs_gpiod) {
1223 dev_err(&spi->dev,
1224 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1226 asd->npcs_pin = spi->cs_gpiod;
1229 spi->controller_state = asd;
1232 asd->csr = csr;
1234 dev_dbg(&spi->dev,
1235 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1236 bits, spi->mode, spi->chip_select, csr);
1238 if (!atmel_spi_is_v2(as))
1239 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1241 return 0;
1244 static int atmel_spi_one_transfer(struct spi_master *master,
1245 struct spi_message *msg,
1246 struct spi_transfer *xfer)
1248 struct atmel_spi *as;
1249 struct spi_device *spi = msg->spi;
1250 u8 bits;
1251 u32 len;
1252 struct atmel_spi_device *asd;
1253 int timeout;
1254 int ret;
1255 unsigned long dma_timeout;
1257 as = spi_master_get_devdata(master);
1259 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1260 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1261 return -EINVAL;
1264 asd = spi->controller_state;
1265 bits = (asd->csr >> 4) & 0xf;
1266 if (bits != xfer->bits_per_word - 8) {
1267 dev_dbg(&spi->dev,
1268 "you can't yet change bits_per_word in transfers\n");
1269 return -ENOPROTOOPT;
1273 * DMA map early, for performance (empties dcache ASAP) and
1274 * better fault reporting.
1276 if ((!msg->is_dma_mapped)
1277 && as->use_pdc) {
1278 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1279 return -ENOMEM;
1282 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1284 as->done_status = 0;
1285 as->current_transfer = xfer;
1286 as->current_remaining_bytes = xfer->len;
1287 while (as->current_remaining_bytes) {
1288 reinit_completion(&as->xfer_completion);
1290 if (as->use_pdc) {
1291 atmel_spi_pdc_next_xfer(master, msg, xfer);
1292 } else if (atmel_spi_use_dma(as, xfer)) {
1293 len = as->current_remaining_bytes;
1294 ret = atmel_spi_next_xfer_dma_submit(master,
1295 xfer, &len);
1296 if (ret) {
1297 dev_err(&spi->dev,
1298 "unable to use DMA, fallback to PIO\n");
1299 atmel_spi_next_xfer_pio(master, xfer);
1300 } else {
1301 as->current_remaining_bytes -= len;
1302 if (as->current_remaining_bytes < 0)
1303 as->current_remaining_bytes = 0;
1305 } else {
1306 atmel_spi_next_xfer_pio(master, xfer);
1309 /* interrupts are disabled, so free the lock for schedule */
1310 atmel_spi_unlock(as);
1311 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1312 SPI_DMA_TIMEOUT);
1313 atmel_spi_lock(as);
1314 if (WARN_ON(dma_timeout == 0)) {
1315 dev_err(&spi->dev, "spi transfer timeout\n");
1316 as->done_status = -EIO;
1319 if (as->done_status)
1320 break;
1323 if (as->done_status) {
1324 if (as->use_pdc) {
1325 dev_warn(master->dev.parent,
1326 "overrun (%u/%u remaining)\n",
1327 spi_readl(as, TCR), spi_readl(as, RCR));
1330 * Clean up DMA registers and make sure the data
1331 * registers are empty.
1333 spi_writel(as, RNCR, 0);
1334 spi_writel(as, TNCR, 0);
1335 spi_writel(as, RCR, 0);
1336 spi_writel(as, TCR, 0);
1337 for (timeout = 1000; timeout; timeout--)
1338 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1339 break;
1340 if (!timeout)
1341 dev_warn(master->dev.parent,
1342 "timeout waiting for TXEMPTY");
1343 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1344 spi_readl(as, RDR);
1346 /* Clear any overrun happening while cleaning up */
1347 spi_readl(as, SR);
1349 } else if (atmel_spi_use_dma(as, xfer)) {
1350 atmel_spi_stop_dma(master);
1353 if (!msg->is_dma_mapped
1354 && as->use_pdc)
1355 atmel_spi_dma_unmap_xfer(master, xfer);
1357 return 0;
1359 } else {
1360 /* only update length if no error */
1361 msg->actual_length += xfer->len;
1364 if (!msg->is_dma_mapped
1365 && as->use_pdc)
1366 atmel_spi_dma_unmap_xfer(master, xfer);
1368 if (xfer->delay_usecs)
1369 udelay(xfer->delay_usecs);
1371 if (xfer->cs_change) {
1372 if (list_is_last(&xfer->transfer_list,
1373 &msg->transfers)) {
1374 as->keep_cs = true;
1375 } else {
1376 cs_deactivate(as, msg->spi);
1377 udelay(10);
1378 cs_activate(as, msg->spi);
1382 return 0;
1385 static int atmel_spi_transfer_one_message(struct spi_master *master,
1386 struct spi_message *msg)
1388 struct atmel_spi *as;
1389 struct spi_transfer *xfer;
1390 struct spi_device *spi = msg->spi;
1391 int ret = 0;
1393 as = spi_master_get_devdata(master);
1395 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1396 msg, dev_name(&spi->dev));
1398 atmel_spi_lock(as);
1399 cs_activate(as, spi);
1401 as->keep_cs = false;
1403 msg->status = 0;
1404 msg->actual_length = 0;
1406 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1407 trace_spi_transfer_start(msg, xfer);
1409 ret = atmel_spi_one_transfer(master, msg, xfer);
1410 if (ret)
1411 goto msg_done;
1413 trace_spi_transfer_stop(msg, xfer);
1416 if (as->use_pdc)
1417 atmel_spi_disable_pdc_transfer(as);
1419 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1420 dev_dbg(&spi->dev,
1421 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1422 xfer, xfer->len,
1423 xfer->tx_buf, &xfer->tx_dma,
1424 xfer->rx_buf, &xfer->rx_dma);
1427 msg_done:
1428 if (!as->keep_cs)
1429 cs_deactivate(as, msg->spi);
1431 atmel_spi_unlock(as);
1433 msg->status = as->done_status;
1434 spi_finalize_current_message(spi->master);
1436 return ret;
1439 static void atmel_spi_cleanup(struct spi_device *spi)
1441 struct atmel_spi_device *asd = spi->controller_state;
1443 if (!asd)
1444 return;
1446 spi->controller_state = NULL;
1447 kfree(asd);
1450 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1452 return spi_readl(as, VERSION) & 0x00000fff;
1455 static void atmel_get_caps(struct atmel_spi *as)
1457 unsigned int version;
1459 version = atmel_get_version(as);
1461 as->caps.is_spi2 = version > 0x121;
1462 as->caps.has_wdrbt = version >= 0x210;
1463 as->caps.has_dma_support = version >= 0x212;
1464 as->caps.has_pdc_support = version < 0x212;
1467 static void atmel_spi_init(struct atmel_spi *as)
1469 spi_writel(as, CR, SPI_BIT(SWRST));
1470 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1472 /* It is recommended to enable FIFOs first thing after reset */
1473 if (as->fifo_size)
1474 spi_writel(as, CR, SPI_BIT(FIFOEN));
1476 if (as->caps.has_wdrbt) {
1477 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1478 | SPI_BIT(MSTR));
1479 } else {
1480 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1483 if (as->use_pdc)
1484 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1485 spi_writel(as, CR, SPI_BIT(SPIEN));
1488 static int atmel_spi_probe(struct platform_device *pdev)
1490 struct resource *regs;
1491 int irq;
1492 struct clk *clk;
1493 int ret;
1494 struct spi_master *master;
1495 struct atmel_spi *as;
1497 /* Select default pin state */
1498 pinctrl_pm_select_default_state(&pdev->dev);
1500 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1501 if (!regs)
1502 return -ENXIO;
1504 irq = platform_get_irq(pdev, 0);
1505 if (irq < 0)
1506 return irq;
1508 clk = devm_clk_get(&pdev->dev, "spi_clk");
1509 if (IS_ERR(clk))
1510 return PTR_ERR(clk);
1512 /* setup spi core then atmel-specific driver state */
1513 ret = -ENOMEM;
1514 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1515 if (!master)
1516 goto out_free;
1518 /* the spi->mode bits understood by this driver: */
1519 master->use_gpio_descriptors = true;
1520 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1521 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1522 master->dev.of_node = pdev->dev.of_node;
1523 master->bus_num = pdev->id;
1524 master->num_chipselect = master->dev.of_node ? 0 : 4;
1525 master->setup = atmel_spi_setup;
1526 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1527 master->transfer_one_message = atmel_spi_transfer_one_message;
1528 master->cleanup = atmel_spi_cleanup;
1529 master->auto_runtime_pm = true;
1530 master->max_dma_len = SPI_MAX_DMA_XFER;
1531 master->can_dma = atmel_spi_can_dma;
1532 platform_set_drvdata(pdev, master);
1534 as = spi_master_get_devdata(master);
1536 spin_lock_init(&as->lock);
1538 as->pdev = pdev;
1539 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1540 if (IS_ERR(as->regs)) {
1541 ret = PTR_ERR(as->regs);
1542 goto out_unmap_regs;
1544 as->phybase = regs->start;
1545 as->irq = irq;
1546 as->clk = clk;
1548 init_completion(&as->xfer_completion);
1550 atmel_get_caps(as);
1553 * If there are chip selects in the device tree, those will be
1554 * discovered by the SPI core when registering the SPI master
1555 * and assigned to each SPI device.
1557 as->use_cs_gpios = true;
1558 if (atmel_spi_is_v2(as) &&
1559 pdev->dev.of_node &&
1560 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1561 as->use_cs_gpios = false;
1562 master->num_chipselect = 4;
1565 as->use_dma = false;
1566 as->use_pdc = false;
1567 if (as->caps.has_dma_support) {
1568 ret = atmel_spi_configure_dma(master, as);
1569 if (ret == 0) {
1570 as->use_dma = true;
1571 } else if (ret == -EPROBE_DEFER) {
1572 return ret;
1574 } else if (as->caps.has_pdc_support) {
1575 as->use_pdc = true;
1578 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1579 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1580 SPI_MAX_DMA_XFER,
1581 &as->dma_addr_rx_bbuf,
1582 GFP_KERNEL | GFP_DMA);
1583 if (!as->addr_rx_bbuf) {
1584 as->use_dma = false;
1585 } else {
1586 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1587 SPI_MAX_DMA_XFER,
1588 &as->dma_addr_tx_bbuf,
1589 GFP_KERNEL | GFP_DMA);
1590 if (!as->addr_tx_bbuf) {
1591 as->use_dma = false;
1592 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1593 as->addr_rx_bbuf,
1594 as->dma_addr_rx_bbuf);
1597 if (!as->use_dma)
1598 dev_info(master->dev.parent,
1599 " can not allocate dma coherent memory\n");
1602 if (as->caps.has_dma_support && !as->use_dma)
1603 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1605 if (as->use_pdc) {
1606 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1607 0, dev_name(&pdev->dev), master);
1608 } else {
1609 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1610 0, dev_name(&pdev->dev), master);
1612 if (ret)
1613 goto out_unmap_regs;
1615 /* Initialize the hardware */
1616 ret = clk_prepare_enable(clk);
1617 if (ret)
1618 goto out_free_irq;
1620 as->spi_clk = clk_get_rate(clk);
1622 as->fifo_size = 0;
1623 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1624 &as->fifo_size)) {
1625 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1628 atmel_spi_init(as);
1630 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1631 pm_runtime_use_autosuspend(&pdev->dev);
1632 pm_runtime_set_active(&pdev->dev);
1633 pm_runtime_enable(&pdev->dev);
1635 ret = devm_spi_register_master(&pdev->dev, master);
1636 if (ret)
1637 goto out_free_dma;
1639 /* go! */
1640 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1641 atmel_get_version(as), (unsigned long)regs->start,
1642 irq);
1644 return 0;
1646 out_free_dma:
1647 pm_runtime_disable(&pdev->dev);
1648 pm_runtime_set_suspended(&pdev->dev);
1650 if (as->use_dma)
1651 atmel_spi_release_dma(master);
1653 spi_writel(as, CR, SPI_BIT(SWRST));
1654 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1655 clk_disable_unprepare(clk);
1656 out_free_irq:
1657 out_unmap_regs:
1658 out_free:
1659 spi_master_put(master);
1660 return ret;
1663 static int atmel_spi_remove(struct platform_device *pdev)
1665 struct spi_master *master = platform_get_drvdata(pdev);
1666 struct atmel_spi *as = spi_master_get_devdata(master);
1668 pm_runtime_get_sync(&pdev->dev);
1670 /* reset the hardware and block queue progress */
1671 if (as->use_dma) {
1672 atmel_spi_stop_dma(master);
1673 atmel_spi_release_dma(master);
1674 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1675 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1676 as->addr_tx_bbuf,
1677 as->dma_addr_tx_bbuf);
1678 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1679 as->addr_rx_bbuf,
1680 as->dma_addr_rx_bbuf);
1684 spin_lock_irq(&as->lock);
1685 spi_writel(as, CR, SPI_BIT(SWRST));
1686 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1687 spi_readl(as, SR);
1688 spin_unlock_irq(&as->lock);
1690 clk_disable_unprepare(as->clk);
1692 pm_runtime_put_noidle(&pdev->dev);
1693 pm_runtime_disable(&pdev->dev);
1695 return 0;
1698 #ifdef CONFIG_PM
1699 static int atmel_spi_runtime_suspend(struct device *dev)
1701 struct spi_master *master = dev_get_drvdata(dev);
1702 struct atmel_spi *as = spi_master_get_devdata(master);
1704 clk_disable_unprepare(as->clk);
1705 pinctrl_pm_select_sleep_state(dev);
1707 return 0;
1710 static int atmel_spi_runtime_resume(struct device *dev)
1712 struct spi_master *master = dev_get_drvdata(dev);
1713 struct atmel_spi *as = spi_master_get_devdata(master);
1715 pinctrl_pm_select_default_state(dev);
1717 return clk_prepare_enable(as->clk);
1720 #ifdef CONFIG_PM_SLEEP
1721 static int atmel_spi_suspend(struct device *dev)
1723 struct spi_master *master = dev_get_drvdata(dev);
1724 int ret;
1726 /* Stop the queue running */
1727 ret = spi_master_suspend(master);
1728 if (ret)
1729 return ret;
1731 if (!pm_runtime_suspended(dev))
1732 atmel_spi_runtime_suspend(dev);
1734 return 0;
1737 static int atmel_spi_resume(struct device *dev)
1739 struct spi_master *master = dev_get_drvdata(dev);
1740 struct atmel_spi *as = spi_master_get_devdata(master);
1741 int ret;
1743 ret = clk_prepare_enable(as->clk);
1744 if (ret)
1745 return ret;
1747 atmel_spi_init(as);
1749 clk_disable_unprepare(as->clk);
1751 if (!pm_runtime_suspended(dev)) {
1752 ret = atmel_spi_runtime_resume(dev);
1753 if (ret)
1754 return ret;
1757 /* Start the queue running */
1758 return spi_master_resume(master);
1760 #endif
1762 static const struct dev_pm_ops atmel_spi_pm_ops = {
1763 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1764 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1765 atmel_spi_runtime_resume, NULL)
1767 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1768 #else
1769 #define ATMEL_SPI_PM_OPS NULL
1770 #endif
1772 #if defined(CONFIG_OF)
1773 static const struct of_device_id atmel_spi_dt_ids[] = {
1774 { .compatible = "atmel,at91rm9200-spi" },
1775 { /* sentinel */ }
1778 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1779 #endif
1781 static struct platform_driver atmel_spi_driver = {
1782 .driver = {
1783 .name = "atmel_spi",
1784 .pm = ATMEL_SPI_PM_OPS,
1785 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1787 .probe = atmel_spi_probe,
1788 .remove = atmel_spi_remove,
1790 module_platform_driver(atmel_spi_driver);
1792 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1793 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1794 MODULE_LICENSE("GPL");
1795 MODULE_ALIAS("platform:atmel_spi");