1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
5 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 #include <linux/slab.h>
10 #include <linux/highmem.h>
11 #include <linux/pagemap.h>
12 #include <asm/byteorder.h>
13 #include <linux/swap.h>
14 #include <linux/pipe_fs_i.h>
15 #include <linux/mpage.h>
16 #include <linux/quotaops.h>
17 #include <linux/blkdev.h>
18 #include <linux/uio.h>
21 #include <cluster/masklog.h>
28 #include "extent_map.h"
35 #include "refcounttree.h"
36 #include "ocfs2_trace.h"
38 #include "buffer_head_io.h"
43 static int ocfs2_symlink_get_block(struct inode
*inode
, sector_t iblock
,
44 struct buffer_head
*bh_result
, int create
)
48 struct ocfs2_dinode
*fe
= NULL
;
49 struct buffer_head
*bh
= NULL
;
50 struct buffer_head
*buffer_cache_bh
= NULL
;
51 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
54 trace_ocfs2_symlink_get_block(
55 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
56 (unsigned long long)iblock
, bh_result
, create
);
58 BUG_ON(ocfs2_inode_is_fast_symlink(inode
));
60 if ((iblock
<< inode
->i_sb
->s_blocksize_bits
) > PATH_MAX
+ 1) {
61 mlog(ML_ERROR
, "block offset > PATH_MAX: %llu",
62 (unsigned long long)iblock
);
66 status
= ocfs2_read_inode_block(inode
, &bh
);
71 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
73 if ((u64
)iblock
>= ocfs2_clusters_to_blocks(inode
->i_sb
,
74 le32_to_cpu(fe
->i_clusters
))) {
76 mlog(ML_ERROR
, "block offset is outside the allocated size: "
77 "%llu\n", (unsigned long long)iblock
);
81 /* We don't use the page cache to create symlink data, so if
82 * need be, copy it over from the buffer cache. */
83 if (!buffer_uptodate(bh_result
) && ocfs2_inode_is_new(inode
)) {
84 u64 blkno
= le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) +
86 buffer_cache_bh
= sb_getblk(osb
->sb
, blkno
);
87 if (!buffer_cache_bh
) {
89 mlog(ML_ERROR
, "couldn't getblock for symlink!\n");
93 /* we haven't locked out transactions, so a commit
94 * could've happened. Since we've got a reference on
95 * the bh, even if it commits while we're doing the
96 * copy, the data is still good. */
97 if (buffer_jbd(buffer_cache_bh
)
98 && ocfs2_inode_is_new(inode
)) {
99 kaddr
= kmap_atomic(bh_result
->b_page
);
101 mlog(ML_ERROR
, "couldn't kmap!\n");
104 memcpy(kaddr
+ (bh_result
->b_size
* iblock
),
105 buffer_cache_bh
->b_data
,
107 kunmap_atomic(kaddr
);
108 set_buffer_uptodate(bh_result
);
110 brelse(buffer_cache_bh
);
113 map_bh(bh_result
, inode
->i_sb
,
114 le64_to_cpu(fe
->id2
.i_list
.l_recs
[0].e_blkno
) + iblock
);
124 static int ocfs2_lock_get_block(struct inode
*inode
, sector_t iblock
,
125 struct buffer_head
*bh_result
, int create
)
128 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
130 down_read(&oi
->ip_alloc_sem
);
131 ret
= ocfs2_get_block(inode
, iblock
, bh_result
, create
);
132 up_read(&oi
->ip_alloc_sem
);
137 int ocfs2_get_block(struct inode
*inode
, sector_t iblock
,
138 struct buffer_head
*bh_result
, int create
)
141 unsigned int ext_flags
;
142 u64 max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
143 u64 p_blkno
, count
, past_eof
;
144 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
147 (unsigned long long)iblock
, bh_result
, create
);
149 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_SYSTEM_FILE
)
150 mlog(ML_NOTICE
, "get_block on system inode 0x%p (%lu)\n",
151 inode
, inode
->i_ino
);
153 if (S_ISLNK(inode
->i_mode
)) {
154 /* this always does I/O for some reason. */
155 err
= ocfs2_symlink_get_block(inode
, iblock
, bh_result
, create
);
159 err
= ocfs2_extent_map_get_blocks(inode
, iblock
, &p_blkno
, &count
,
162 mlog(ML_ERROR
, "Error %d from get_blocks(0x%p, %llu, 1, "
163 "%llu, NULL)\n", err
, inode
, (unsigned long long)iblock
,
164 (unsigned long long)p_blkno
);
168 if (max_blocks
< count
)
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
175 * allows __block_write_begin() to zero.
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
182 if (create
&& p_blkno
== 0 && ocfs2_sparse_alloc(osb
)) {
183 clear_buffer_dirty(bh_result
);
184 clear_buffer_uptodate(bh_result
);
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno
&& !(ext_flags
& OCFS2_EXT_UNWRITTEN
))
190 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
192 bh_result
->b_size
= count
<< inode
->i_blkbits
;
194 if (!ocfs2_sparse_alloc(osb
)) {
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock
,
200 (unsigned long long)p_blkno
,
201 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
202 mlog(ML_ERROR
, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode
), OCFS2_I(inode
)->ip_clusters
);
208 past_eof
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
211 (unsigned long long)past_eof
);
212 if (create
&& (iblock
>= past_eof
))
213 set_buffer_new(bh_result
);
222 int ocfs2_read_inline_data(struct inode
*inode
, struct page
*page
,
223 struct buffer_head
*di_bh
)
227 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
229 if (!(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
)) {
230 ocfs2_error(inode
->i_sb
, "Inode %llu lost inline data flag\n",
231 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
235 size
= i_size_read(inode
);
237 if (size
> PAGE_SIZE
||
238 size
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
)) {
239 ocfs2_error(inode
->i_sb
,
240 "Inode %llu has with inline data has bad size: %Lu\n",
241 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
242 (unsigned long long)size
);
246 kaddr
= kmap_atomic(page
);
248 memcpy(kaddr
, di
->id2
.i_data
.id_data
, size
);
249 /* Clear the remaining part of the page */
250 memset(kaddr
+ size
, 0, PAGE_SIZE
- size
);
251 flush_dcache_page(page
);
252 kunmap_atomic(kaddr
);
254 SetPageUptodate(page
);
259 static int ocfs2_readpage_inline(struct inode
*inode
, struct page
*page
)
262 struct buffer_head
*di_bh
= NULL
;
264 BUG_ON(!PageLocked(page
));
265 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
));
267 ret
= ocfs2_read_inode_block(inode
, &di_bh
);
273 ret
= ocfs2_read_inline_data(inode
, page
, di_bh
);
281 static int ocfs2_readpage(struct file
*file
, struct page
*page
)
283 struct inode
*inode
= page
->mapping
->host
;
284 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
285 loff_t start
= (loff_t
)page
->index
<< PAGE_SHIFT
;
288 trace_ocfs2_readpage((unsigned long long)oi
->ip_blkno
,
289 (page
? page
->index
: 0));
291 ret
= ocfs2_inode_lock_with_page(inode
, NULL
, 0, page
);
293 if (ret
== AOP_TRUNCATED_PAGE
)
299 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
304 ret
= AOP_TRUNCATED_PAGE
;
307 down_read(&oi
->ip_alloc_sem
);
308 up_read(&oi
->ip_alloc_sem
);
309 goto out_inode_unlock
;
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318 * and notice that the page they just read isn't needed.
320 * XXX sys_readahead() seems to get that wrong?
322 if (start
>= i_size_read(inode
)) {
323 zero_user(page
, 0, PAGE_SIZE
);
324 SetPageUptodate(page
);
329 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
330 ret
= ocfs2_readpage_inline(inode
, page
);
332 ret
= block_read_full_page(page
, ocfs2_get_block
);
336 up_read(&oi
->ip_alloc_sem
);
338 ocfs2_inode_unlock(inode
, 0);
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
354 static int ocfs2_readpages(struct file
*filp
, struct address_space
*mapping
,
355 struct list_head
*pages
, unsigned nr_pages
)
358 struct inode
*inode
= mapping
->host
;
359 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
367 ret
= ocfs2_inode_lock_full(inode
, NULL
, 0, OCFS2_LOCK_NONBLOCK
);
371 if (down_read_trylock(&oi
->ip_alloc_sem
) == 0) {
372 ocfs2_inode_unlock(inode
, 0);
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
380 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
387 last
= lru_to_page(pages
);
388 start
= (loff_t
)last
->index
<< PAGE_SHIFT
;
389 if (start
>= i_size_read(inode
))
392 err
= mpage_readpages(mapping
, pages
, nr_pages
, ocfs2_get_block
);
395 up_read(&oi
->ip_alloc_sem
);
396 ocfs2_inode_unlock(inode
, 0);
401 /* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
412 static int ocfs2_writepage(struct page
*page
, struct writeback_control
*wbc
)
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page
->mapping
->host
)->ip_blkno
,
418 return block_write_full_page(page
, ocfs2_get_block
, wbc
);
421 /* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425 int walk_page_buffers( handle_t
*handle
,
426 struct buffer_head
*head
,
430 int (*fn
)( handle_t
*handle
,
431 struct buffer_head
*bh
))
433 struct buffer_head
*bh
;
434 unsigned block_start
, block_end
;
435 unsigned blocksize
= head
->b_size
;
437 struct buffer_head
*next
;
439 for ( bh
= head
, block_start
= 0;
440 ret
== 0 && (bh
!= head
|| !block_start
);
441 block_start
= block_end
, bh
= next
)
443 next
= bh
->b_this_page
;
444 block_end
= block_start
+ blocksize
;
445 if (block_end
<= from
|| block_start
>= to
) {
446 if (partial
&& !buffer_uptodate(bh
))
450 err
= (*fn
)(handle
, bh
);
457 static sector_t
ocfs2_bmap(struct address_space
*mapping
, sector_t block
)
462 struct inode
*inode
= mapping
->host
;
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode
)->ip_blkno
,
465 (unsigned long long)block
);
468 * The swap code (ab-)uses ->bmap to get a block mapping and then
469 * bypasseѕ the file system for actual I/O. We really can't allow
470 * that on refcounted inodes, so we have to skip out here. And yes,
471 * 0 is the magic code for a bmap error..
473 if (ocfs2_is_refcount_inode(inode
))
476 /* We don't need to lock journal system files, since they aren't
477 * accessed concurrently from multiple nodes.
479 if (!INODE_JOURNAL(inode
)) {
480 err
= ocfs2_inode_lock(inode
, NULL
, 0);
486 down_read(&OCFS2_I(inode
)->ip_alloc_sem
);
489 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
490 err
= ocfs2_extent_map_get_blocks(inode
, block
, &p_blkno
, NULL
,
493 if (!INODE_JOURNAL(inode
)) {
494 up_read(&OCFS2_I(inode
)->ip_alloc_sem
);
495 ocfs2_inode_unlock(inode
, 0);
499 mlog(ML_ERROR
, "get_blocks() failed, block = %llu\n",
500 (unsigned long long)block
);
506 status
= err
? 0 : p_blkno
;
511 static int ocfs2_releasepage(struct page
*page
, gfp_t wait
)
513 if (!page_has_buffers(page
))
515 return try_to_free_buffers(page
);
518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super
*osb
,
523 unsigned int cluster_start
= 0, cluster_end
= PAGE_SIZE
;
525 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
)) {
528 cpp
= 1 << (PAGE_SHIFT
- osb
->s_clustersize_bits
);
530 cluster_start
= cpos
% cpp
;
531 cluster_start
= cluster_start
<< osb
->s_clustersize_bits
;
533 cluster_end
= cluster_start
+ osb
->s_clustersize
;
536 BUG_ON(cluster_start
> PAGE_SIZE
);
537 BUG_ON(cluster_end
> PAGE_SIZE
);
540 *start
= cluster_start
;
546 * 'from' and 'to' are the region in the page to avoid zeroing.
548 * If pagesize > clustersize, this function will avoid zeroing outside
549 * of the cluster boundary.
551 * from == to == 0 is code for "zero the entire cluster region"
553 static void ocfs2_clear_page_regions(struct page
*page
,
554 struct ocfs2_super
*osb
, u32 cpos
,
555 unsigned from
, unsigned to
)
558 unsigned int cluster_start
, cluster_end
;
560 ocfs2_figure_cluster_boundaries(osb
, cpos
, &cluster_start
, &cluster_end
);
562 kaddr
= kmap_atomic(page
);
565 if (from
> cluster_start
)
566 memset(kaddr
+ cluster_start
, 0, from
- cluster_start
);
567 if (to
< cluster_end
)
568 memset(kaddr
+ to
, 0, cluster_end
- to
);
570 memset(kaddr
+ cluster_start
, 0, cluster_end
- cluster_start
);
573 kunmap_atomic(kaddr
);
577 * Nonsparse file systems fully allocate before we get to the write
578 * code. This prevents ocfs2_write() from tagging the write as an
579 * allocating one, which means ocfs2_map_page_blocks() might try to
580 * read-in the blocks at the tail of our file. Avoid reading them by
581 * testing i_size against each block offset.
583 static int ocfs2_should_read_blk(struct inode
*inode
, struct page
*page
,
584 unsigned int block_start
)
586 u64 offset
= page_offset(page
) + block_start
;
588 if (ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
591 if (i_size_read(inode
) > offset
)
598 * Some of this taken from __block_write_begin(). We already have our
599 * mapping by now though, and the entire write will be allocating or
600 * it won't, so not much need to use BH_New.
602 * This will also skip zeroing, which is handled externally.
604 int ocfs2_map_page_blocks(struct page
*page
, u64
*p_blkno
,
605 struct inode
*inode
, unsigned int from
,
606 unsigned int to
, int new)
609 struct buffer_head
*head
, *bh
, *wait
[2], **wait_bh
= wait
;
610 unsigned int block_end
, block_start
;
611 unsigned int bsize
= i_blocksize(inode
);
613 if (!page_has_buffers(page
))
614 create_empty_buffers(page
, bsize
, 0);
616 head
= page_buffers(page
);
617 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
618 bh
= bh
->b_this_page
, block_start
+= bsize
) {
619 block_end
= block_start
+ bsize
;
621 clear_buffer_new(bh
);
624 * Ignore blocks outside of our i/o range -
625 * they may belong to unallocated clusters.
627 if (block_start
>= to
|| block_end
<= from
) {
628 if (PageUptodate(page
))
629 set_buffer_uptodate(bh
);
634 * For an allocating write with cluster size >= page
635 * size, we always write the entire page.
640 if (!buffer_mapped(bh
)) {
641 map_bh(bh
, inode
->i_sb
, *p_blkno
);
642 clean_bdev_bh_alias(bh
);
645 if (PageUptodate(page
)) {
646 if (!buffer_uptodate(bh
))
647 set_buffer_uptodate(bh
);
648 } else if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
650 ocfs2_should_read_blk(inode
, page
, block_start
) &&
651 (block_start
< from
|| block_end
> to
)) {
652 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
656 *p_blkno
= *p_blkno
+ 1;
660 * If we issued read requests - let them complete.
662 while(wait_bh
> wait
) {
663 wait_on_buffer(*--wait_bh
);
664 if (!buffer_uptodate(*wait_bh
))
668 if (ret
== 0 || !new)
672 * If we get -EIO above, zero out any newly allocated blocks
673 * to avoid exposing stale data.
678 block_end
= block_start
+ bsize
;
679 if (block_end
<= from
)
681 if (block_start
>= to
)
684 zero_user(page
, block_start
, bh
->b_size
);
685 set_buffer_uptodate(bh
);
686 mark_buffer_dirty(bh
);
689 block_start
= block_end
;
690 bh
= bh
->b_this_page
;
691 } while (bh
!= head
);
696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
697 #define OCFS2_MAX_CTXT_PAGES 1
699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
704 struct ocfs2_unwritten_extent
{
705 struct list_head ue_node
;
706 struct list_head ue_ip_node
;
712 * Describe the state of a single cluster to be written to.
714 struct ocfs2_write_cluster_desc
{
718 * Give this a unique field because c_phys eventually gets
722 unsigned c_clear_unwritten
;
723 unsigned c_needs_zero
;
726 struct ocfs2_write_ctxt
{
727 /* Logical cluster position / len of write */
731 /* First cluster allocated in a nonsparse extend */
732 u32 w_first_new_cpos
;
734 /* Type of caller. Must be one of buffer, mmap, direct. */
735 ocfs2_write_type_t w_type
;
737 struct ocfs2_write_cluster_desc w_desc
[OCFS2_MAX_CLUSTERS_PER_PAGE
];
740 * This is true if page_size > cluster_size.
742 * It triggers a set of special cases during write which might
743 * have to deal with allocating writes to partial pages.
745 unsigned int w_large_pages
;
748 * Pages involved in this write.
750 * w_target_page is the page being written to by the user.
752 * w_pages is an array of pages which always contains
753 * w_target_page, and in the case of an allocating write with
754 * page_size < cluster size, it will contain zero'd and mapped
755 * pages adjacent to w_target_page which need to be written
756 * out in so that future reads from that region will get
759 unsigned int w_num_pages
;
760 struct page
*w_pages
[OCFS2_MAX_CTXT_PAGES
];
761 struct page
*w_target_page
;
764 * w_target_locked is used for page_mkwrite path indicating no unlocking
765 * against w_target_page in ocfs2_write_end_nolock.
767 unsigned int w_target_locked
:1;
770 * ocfs2_write_end() uses this to know what the real range to
771 * write in the target should be.
773 unsigned int w_target_from
;
774 unsigned int w_target_to
;
777 * We could use journal_current_handle() but this is cleaner,
782 struct buffer_head
*w_di_bh
;
784 struct ocfs2_cached_dealloc_ctxt w_dealloc
;
786 struct list_head w_unwritten_list
;
787 unsigned int w_unwritten_count
;
790 void ocfs2_unlock_and_free_pages(struct page
**pages
, int num_pages
)
794 for(i
= 0; i
< num_pages
; i
++) {
796 unlock_page(pages
[i
]);
797 mark_page_accessed(pages
[i
]);
803 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt
*wc
)
808 * w_target_locked is only set to true in the page_mkwrite() case.
809 * The intent is to allow us to lock the target page from write_begin()
810 * to write_end(). The caller must hold a ref on w_target_page.
812 if (wc
->w_target_locked
) {
813 BUG_ON(!wc
->w_target_page
);
814 for (i
= 0; i
< wc
->w_num_pages
; i
++) {
815 if (wc
->w_target_page
== wc
->w_pages
[i
]) {
816 wc
->w_pages
[i
] = NULL
;
820 mark_page_accessed(wc
->w_target_page
);
821 put_page(wc
->w_target_page
);
823 ocfs2_unlock_and_free_pages(wc
->w_pages
, wc
->w_num_pages
);
826 static void ocfs2_free_unwritten_list(struct inode
*inode
,
827 struct list_head
*head
)
829 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
830 struct ocfs2_unwritten_extent
*ue
= NULL
, *tmp
= NULL
;
832 list_for_each_entry_safe(ue
, tmp
, head
, ue_node
) {
833 list_del(&ue
->ue_node
);
834 spin_lock(&oi
->ip_lock
);
835 list_del(&ue
->ue_ip_node
);
836 spin_unlock(&oi
->ip_lock
);
841 static void ocfs2_free_write_ctxt(struct inode
*inode
,
842 struct ocfs2_write_ctxt
*wc
)
844 ocfs2_free_unwritten_list(inode
, &wc
->w_unwritten_list
);
845 ocfs2_unlock_pages(wc
);
850 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt
**wcp
,
851 struct ocfs2_super
*osb
, loff_t pos
,
852 unsigned len
, ocfs2_write_type_t type
,
853 struct buffer_head
*di_bh
)
856 struct ocfs2_write_ctxt
*wc
;
858 wc
= kzalloc(sizeof(struct ocfs2_write_ctxt
), GFP_NOFS
);
862 wc
->w_cpos
= pos
>> osb
->s_clustersize_bits
;
863 wc
->w_first_new_cpos
= UINT_MAX
;
864 cend
= (pos
+ len
- 1) >> osb
->s_clustersize_bits
;
865 wc
->w_clen
= cend
- wc
->w_cpos
+ 1;
870 if (unlikely(PAGE_SHIFT
> osb
->s_clustersize_bits
))
871 wc
->w_large_pages
= 1;
873 wc
->w_large_pages
= 0;
875 ocfs2_init_dealloc_ctxt(&wc
->w_dealloc
);
876 INIT_LIST_HEAD(&wc
->w_unwritten_list
);
884 * If a page has any new buffers, zero them out here, and mark them uptodate
885 * and dirty so they'll be written out (in order to prevent uninitialised
886 * block data from leaking). And clear the new bit.
888 static void ocfs2_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
890 unsigned int block_start
, block_end
;
891 struct buffer_head
*head
, *bh
;
893 BUG_ON(!PageLocked(page
));
894 if (!page_has_buffers(page
))
897 bh
= head
= page_buffers(page
);
900 block_end
= block_start
+ bh
->b_size
;
902 if (buffer_new(bh
)) {
903 if (block_end
> from
&& block_start
< to
) {
904 if (!PageUptodate(page
)) {
907 start
= max(from
, block_start
);
908 end
= min(to
, block_end
);
910 zero_user_segment(page
, start
, end
);
911 set_buffer_uptodate(bh
);
914 clear_buffer_new(bh
);
915 mark_buffer_dirty(bh
);
919 block_start
= block_end
;
920 bh
= bh
->b_this_page
;
921 } while (bh
!= head
);
925 * Only called when we have a failure during allocating write to write
926 * zero's to the newly allocated region.
928 static void ocfs2_write_failure(struct inode
*inode
,
929 struct ocfs2_write_ctxt
*wc
,
930 loff_t user_pos
, unsigned user_len
)
933 unsigned from
= user_pos
& (PAGE_SIZE
- 1),
934 to
= user_pos
+ user_len
;
935 struct page
*tmppage
;
937 if (wc
->w_target_page
)
938 ocfs2_zero_new_buffers(wc
->w_target_page
, from
, to
);
940 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
941 tmppage
= wc
->w_pages
[i
];
943 if (tmppage
&& page_has_buffers(tmppage
)) {
944 if (ocfs2_should_order_data(inode
))
945 ocfs2_jbd2_inode_add_write(wc
->w_handle
, inode
,
948 block_commit_write(tmppage
, from
, to
);
953 static int ocfs2_prepare_page_for_write(struct inode
*inode
, u64
*p_blkno
,
954 struct ocfs2_write_ctxt
*wc
,
955 struct page
*page
, u32 cpos
,
956 loff_t user_pos
, unsigned user_len
,
960 unsigned int map_from
= 0, map_to
= 0;
961 unsigned int cluster_start
, cluster_end
;
962 unsigned int user_data_from
= 0, user_data_to
= 0;
964 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode
->i_sb
), cpos
,
965 &cluster_start
, &cluster_end
);
967 /* treat the write as new if the a hole/lseek spanned across
970 new = new | ((i_size_read(inode
) <= page_offset(page
)) &&
971 (page_offset(page
) <= user_pos
));
973 if (page
== wc
->w_target_page
) {
974 map_from
= user_pos
& (PAGE_SIZE
- 1);
975 map_to
= map_from
+ user_len
;
978 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
979 cluster_start
, cluster_end
,
982 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
983 map_from
, map_to
, new);
989 user_data_from
= map_from
;
990 user_data_to
= map_to
;
992 map_from
= cluster_start
;
993 map_to
= cluster_end
;
997 * If we haven't allocated the new page yet, we
998 * shouldn't be writing it out without copying user
999 * data. This is likely a math error from the caller.
1003 map_from
= cluster_start
;
1004 map_to
= cluster_end
;
1006 ret
= ocfs2_map_page_blocks(page
, p_blkno
, inode
,
1007 cluster_start
, cluster_end
, new);
1015 * Parts of newly allocated pages need to be zero'd.
1017 * Above, we have also rewritten 'to' and 'from' - as far as
1018 * the rest of the function is concerned, the entire cluster
1019 * range inside of a page needs to be written.
1021 * We can skip this if the page is up to date - it's already
1022 * been zero'd from being read in as a hole.
1024 if (new && !PageUptodate(page
))
1025 ocfs2_clear_page_regions(page
, OCFS2_SB(inode
->i_sb
),
1026 cpos
, user_data_from
, user_data_to
);
1028 flush_dcache_page(page
);
1035 * This function will only grab one clusters worth of pages.
1037 static int ocfs2_grab_pages_for_write(struct address_space
*mapping
,
1038 struct ocfs2_write_ctxt
*wc
,
1039 u32 cpos
, loff_t user_pos
,
1040 unsigned user_len
, int new,
1041 struct page
*mmap_page
)
1044 unsigned long start
, target_index
, end_index
, index
;
1045 struct inode
*inode
= mapping
->host
;
1048 target_index
= user_pos
>> PAGE_SHIFT
;
1051 * Figure out how many pages we'll be manipulating here. For
1052 * non allocating write, we just change the one
1053 * page. Otherwise, we'll need a whole clusters worth. If we're
1054 * writing past i_size, we only need enough pages to cover the
1055 * last page of the write.
1058 wc
->w_num_pages
= ocfs2_pages_per_cluster(inode
->i_sb
);
1059 start
= ocfs2_align_clusters_to_page_index(inode
->i_sb
, cpos
);
1061 * We need the index *past* the last page we could possibly
1062 * touch. This is the page past the end of the write or
1063 * i_size, whichever is greater.
1065 last_byte
= max(user_pos
+ user_len
, i_size_read(inode
));
1066 BUG_ON(last_byte
< 1);
1067 end_index
= ((last_byte
- 1) >> PAGE_SHIFT
) + 1;
1068 if ((start
+ wc
->w_num_pages
) > end_index
)
1069 wc
->w_num_pages
= end_index
- start
;
1071 wc
->w_num_pages
= 1;
1072 start
= target_index
;
1074 end_index
= (user_pos
+ user_len
- 1) >> PAGE_SHIFT
;
1076 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1079 if (index
>= target_index
&& index
<= end_index
&&
1080 wc
->w_type
== OCFS2_WRITE_MMAP
) {
1082 * ocfs2_pagemkwrite() is a little different
1083 * and wants us to directly use the page
1086 lock_page(mmap_page
);
1088 /* Exit and let the caller retry */
1089 if (mmap_page
->mapping
!= mapping
) {
1090 WARN_ON(mmap_page
->mapping
);
1091 unlock_page(mmap_page
);
1096 get_page(mmap_page
);
1097 wc
->w_pages
[i
] = mmap_page
;
1098 wc
->w_target_locked
= true;
1099 } else if (index
>= target_index
&& index
<= end_index
&&
1100 wc
->w_type
== OCFS2_WRITE_DIRECT
) {
1101 /* Direct write has no mapping page. */
1102 wc
->w_pages
[i
] = NULL
;
1105 wc
->w_pages
[i
] = find_or_create_page(mapping
, index
,
1107 if (!wc
->w_pages
[i
]) {
1113 wait_for_stable_page(wc
->w_pages
[i
]);
1115 if (index
== target_index
)
1116 wc
->w_target_page
= wc
->w_pages
[i
];
1120 wc
->w_target_locked
= false;
1125 * Prepare a single cluster for write one cluster into the file.
1127 static int ocfs2_write_cluster(struct address_space
*mapping
,
1128 u32
*phys
, unsigned int new,
1129 unsigned int clear_unwritten
,
1130 unsigned int should_zero
,
1131 struct ocfs2_alloc_context
*data_ac
,
1132 struct ocfs2_alloc_context
*meta_ac
,
1133 struct ocfs2_write_ctxt
*wc
, u32 cpos
,
1134 loff_t user_pos
, unsigned user_len
)
1138 struct inode
*inode
= mapping
->host
;
1139 struct ocfs2_extent_tree et
;
1140 int bpc
= ocfs2_clusters_to_blocks(inode
->i_sb
, 1);
1146 * This is safe to call with the page locks - it won't take
1147 * any additional semaphores or cluster locks.
1150 ret
= ocfs2_add_inode_data(OCFS2_SB(inode
->i_sb
), inode
,
1151 &tmp_pos
, 1, !clear_unwritten
,
1152 wc
->w_di_bh
, wc
->w_handle
,
1153 data_ac
, meta_ac
, NULL
);
1155 * This shouldn't happen because we must have already
1156 * calculated the correct meta data allocation required. The
1157 * internal tree allocation code should know how to increase
1158 * transaction credits itself.
1160 * If need be, we could handle -EAGAIN for a
1161 * RESTART_TRANS here.
1163 mlog_bug_on_msg(ret
== -EAGAIN
,
1164 "Inode %llu: EAGAIN return during allocation.\n",
1165 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
1170 } else if (clear_unwritten
) {
1171 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1173 ret
= ocfs2_mark_extent_written(inode
, &et
,
1174 wc
->w_handle
, cpos
, 1, *phys
,
1175 meta_ac
, &wc
->w_dealloc
);
1183 * The only reason this should fail is due to an inability to
1184 * find the extent added.
1186 ret
= ocfs2_get_clusters(inode
, cpos
, phys
, NULL
, NULL
);
1188 mlog(ML_ERROR
, "Get physical blkno failed for inode %llu, "
1189 "at logical cluster %u",
1190 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, cpos
);
1196 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, *phys
);
1198 p_blkno
+= (user_pos
>> inode
->i_sb
->s_blocksize_bits
) & (u64
)(bpc
- 1);
1200 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
1203 /* This is the direct io target page. */
1204 if (wc
->w_pages
[i
] == NULL
) {
1209 tmpret
= ocfs2_prepare_page_for_write(inode
, &p_blkno
, wc
,
1210 wc
->w_pages
[i
], cpos
,
1221 * We only have cleanup to do in case of allocating write.
1224 ocfs2_write_failure(inode
, wc
, user_pos
, user_len
);
1231 static int ocfs2_write_cluster_by_desc(struct address_space
*mapping
,
1232 struct ocfs2_alloc_context
*data_ac
,
1233 struct ocfs2_alloc_context
*meta_ac
,
1234 struct ocfs2_write_ctxt
*wc
,
1235 loff_t pos
, unsigned len
)
1239 unsigned int local_len
= len
;
1240 struct ocfs2_write_cluster_desc
*desc
;
1241 struct ocfs2_super
*osb
= OCFS2_SB(mapping
->host
->i_sb
);
1243 for (i
= 0; i
< wc
->w_clen
; i
++) {
1244 desc
= &wc
->w_desc
[i
];
1247 * We have to make sure that the total write passed in
1248 * doesn't extend past a single cluster.
1251 cluster_off
= pos
& (osb
->s_clustersize
- 1);
1252 if ((cluster_off
+ local_len
) > osb
->s_clustersize
)
1253 local_len
= osb
->s_clustersize
- cluster_off
;
1255 ret
= ocfs2_write_cluster(mapping
, &desc
->c_phys
,
1257 desc
->c_clear_unwritten
,
1260 wc
, desc
->c_cpos
, pos
, local_len
);
1276 * ocfs2_write_end() wants to know which parts of the target page it
1277 * should complete the write on. It's easiest to compute them ahead of
1278 * time when a more complete view of the write is available.
1280 static void ocfs2_set_target_boundaries(struct ocfs2_super
*osb
,
1281 struct ocfs2_write_ctxt
*wc
,
1282 loff_t pos
, unsigned len
, int alloc
)
1284 struct ocfs2_write_cluster_desc
*desc
;
1286 wc
->w_target_from
= pos
& (PAGE_SIZE
- 1);
1287 wc
->w_target_to
= wc
->w_target_from
+ len
;
1293 * Allocating write - we may have different boundaries based
1294 * on page size and cluster size.
1296 * NOTE: We can no longer compute one value from the other as
1297 * the actual write length and user provided length may be
1301 if (wc
->w_large_pages
) {
1303 * We only care about the 1st and last cluster within
1304 * our range and whether they should be zero'd or not. Either
1305 * value may be extended out to the start/end of a
1306 * newly allocated cluster.
1308 desc
= &wc
->w_desc
[0];
1309 if (desc
->c_needs_zero
)
1310 ocfs2_figure_cluster_boundaries(osb
,
1315 desc
= &wc
->w_desc
[wc
->w_clen
- 1];
1316 if (desc
->c_needs_zero
)
1317 ocfs2_figure_cluster_boundaries(osb
,
1322 wc
->w_target_from
= 0;
1323 wc
->w_target_to
= PAGE_SIZE
;
1328 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1329 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1330 * by the direct io procedure.
1331 * If this is a new extent that allocated by direct io, we should mark it in
1332 * the ip_unwritten_list.
1334 static int ocfs2_unwritten_check(struct inode
*inode
,
1335 struct ocfs2_write_ctxt
*wc
,
1336 struct ocfs2_write_cluster_desc
*desc
)
1338 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1339 struct ocfs2_unwritten_extent
*ue
= NULL
, *new = NULL
;
1342 if (!desc
->c_needs_zero
)
1346 spin_lock(&oi
->ip_lock
);
1347 /* Needs not to zero no metter buffer or direct. The one who is zero
1348 * the cluster is doing zero. And he will clear unwritten after all
1349 * cluster io finished. */
1350 list_for_each_entry(ue
, &oi
->ip_unwritten_list
, ue_ip_node
) {
1351 if (desc
->c_cpos
== ue
->ue_cpos
) {
1352 BUG_ON(desc
->c_new
);
1353 desc
->c_needs_zero
= 0;
1354 desc
->c_clear_unwritten
= 0;
1359 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
)
1363 spin_unlock(&oi
->ip_lock
);
1364 new = kmalloc(sizeof(struct ocfs2_unwritten_extent
),
1372 /* This direct write will doing zero. */
1373 new->ue_cpos
= desc
->c_cpos
;
1374 new->ue_phys
= desc
->c_phys
;
1375 desc
->c_clear_unwritten
= 0;
1376 list_add_tail(&new->ue_ip_node
, &oi
->ip_unwritten_list
);
1377 list_add_tail(&new->ue_node
, &wc
->w_unwritten_list
);
1378 wc
->w_unwritten_count
++;
1381 spin_unlock(&oi
->ip_lock
);
1388 * Populate each single-cluster write descriptor in the write context
1389 * with information about the i/o to be done.
1391 * Returns the number of clusters that will have to be allocated, as
1392 * well as a worst case estimate of the number of extent records that
1393 * would have to be created during a write to an unwritten region.
1395 static int ocfs2_populate_write_desc(struct inode
*inode
,
1396 struct ocfs2_write_ctxt
*wc
,
1397 unsigned int *clusters_to_alloc
,
1398 unsigned int *extents_to_split
)
1401 struct ocfs2_write_cluster_desc
*desc
;
1402 unsigned int num_clusters
= 0;
1403 unsigned int ext_flags
= 0;
1407 *clusters_to_alloc
= 0;
1408 *extents_to_split
= 0;
1410 for (i
= 0; i
< wc
->w_clen
; i
++) {
1411 desc
= &wc
->w_desc
[i
];
1412 desc
->c_cpos
= wc
->w_cpos
+ i
;
1414 if (num_clusters
== 0) {
1416 * Need to look up the next extent record.
1418 ret
= ocfs2_get_clusters(inode
, desc
->c_cpos
, &phys
,
1419 &num_clusters
, &ext_flags
);
1425 /* We should already CoW the refcountd extent. */
1426 BUG_ON(ext_flags
& OCFS2_EXT_REFCOUNTED
);
1429 * Assume worst case - that we're writing in
1430 * the middle of the extent.
1432 * We can assume that the write proceeds from
1433 * left to right, in which case the extent
1434 * insert code is smart enough to coalesce the
1435 * next splits into the previous records created.
1437 if (ext_flags
& OCFS2_EXT_UNWRITTEN
)
1438 *extents_to_split
= *extents_to_split
+ 2;
1441 * Only increment phys if it doesn't describe
1448 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1449 * file that got extended. w_first_new_cpos tells us
1450 * where the newly allocated clusters are so we can
1453 if (desc
->c_cpos
>= wc
->w_first_new_cpos
) {
1455 desc
->c_needs_zero
= 1;
1458 desc
->c_phys
= phys
;
1461 desc
->c_needs_zero
= 1;
1462 desc
->c_clear_unwritten
= 1;
1463 *clusters_to_alloc
= *clusters_to_alloc
+ 1;
1466 if (ext_flags
& OCFS2_EXT_UNWRITTEN
) {
1467 desc
->c_clear_unwritten
= 1;
1468 desc
->c_needs_zero
= 1;
1471 ret
= ocfs2_unwritten_check(inode
, wc
, desc
);
1485 static int ocfs2_write_begin_inline(struct address_space
*mapping
,
1486 struct inode
*inode
,
1487 struct ocfs2_write_ctxt
*wc
)
1490 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1493 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1495 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1496 if (IS_ERR(handle
)) {
1497 ret
= PTR_ERR(handle
);
1502 page
= find_or_create_page(mapping
, 0, GFP_NOFS
);
1504 ocfs2_commit_trans(osb
, handle
);
1510 * If we don't set w_num_pages then this page won't get unlocked
1511 * and freed on cleanup of the write context.
1513 wc
->w_pages
[0] = wc
->w_target_page
= page
;
1514 wc
->w_num_pages
= 1;
1516 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1517 OCFS2_JOURNAL_ACCESS_WRITE
);
1519 ocfs2_commit_trans(osb
, handle
);
1525 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
))
1526 ocfs2_set_inode_data_inline(inode
, di
);
1528 if (!PageUptodate(page
)) {
1529 ret
= ocfs2_read_inline_data(inode
, page
, wc
->w_di_bh
);
1531 ocfs2_commit_trans(osb
, handle
);
1537 wc
->w_handle
= handle
;
1542 int ocfs2_size_fits_inline_data(struct buffer_head
*di_bh
, u64 new_size
)
1544 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1546 if (new_size
<= le16_to_cpu(di
->id2
.i_data
.id_count
))
1551 static int ocfs2_try_to_write_inline_data(struct address_space
*mapping
,
1552 struct inode
*inode
, loff_t pos
,
1553 unsigned len
, struct page
*mmap_page
,
1554 struct ocfs2_write_ctxt
*wc
)
1556 int ret
, written
= 0;
1557 loff_t end
= pos
+ len
;
1558 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1559 struct ocfs2_dinode
*di
= NULL
;
1561 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi
->ip_blkno
,
1562 len
, (unsigned long long)pos
,
1563 oi
->ip_dyn_features
);
1566 * Handle inodes which already have inline data 1st.
1568 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1569 if (mmap_page
== NULL
&&
1570 ocfs2_size_fits_inline_data(wc
->w_di_bh
, end
))
1571 goto do_inline_write
;
1574 * The write won't fit - we have to give this inode an
1575 * inline extent list now.
1577 ret
= ocfs2_convert_inline_data_to_extents(inode
, wc
->w_di_bh
);
1584 * Check whether the inode can accept inline data.
1586 if (oi
->ip_clusters
!= 0 || i_size_read(inode
) != 0)
1590 * Check whether the write can fit.
1592 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1594 end
> ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
))
1598 ret
= ocfs2_write_begin_inline(mapping
, inode
, wc
);
1605 * This signals to the caller that the data can be written
1610 return written
? written
: ret
;
1614 * This function only does anything for file systems which can't
1615 * handle sparse files.
1617 * What we want to do here is fill in any hole between the current end
1618 * of allocation and the end of our write. That way the rest of the
1619 * write path can treat it as an non-allocating write, which has no
1620 * special case code for sparse/nonsparse files.
1622 static int ocfs2_expand_nonsparse_inode(struct inode
*inode
,
1623 struct buffer_head
*di_bh
,
1624 loff_t pos
, unsigned len
,
1625 struct ocfs2_write_ctxt
*wc
)
1628 loff_t newsize
= pos
+ len
;
1630 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1632 if (newsize
<= i_size_read(inode
))
1635 ret
= ocfs2_extend_no_holes(inode
, di_bh
, newsize
, pos
);
1639 /* There is no wc if this is call from direct. */
1641 wc
->w_first_new_cpos
=
1642 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
));
1647 static int ocfs2_zero_tail(struct inode
*inode
, struct buffer_head
*di_bh
,
1652 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)));
1653 if (pos
> i_size_read(inode
))
1654 ret
= ocfs2_zero_extend(inode
, di_bh
, pos
);
1659 int ocfs2_write_begin_nolock(struct address_space
*mapping
,
1660 loff_t pos
, unsigned len
, ocfs2_write_type_t type
,
1661 struct page
**pagep
, void **fsdata
,
1662 struct buffer_head
*di_bh
, struct page
*mmap_page
)
1664 int ret
, cluster_of_pages
, credits
= OCFS2_INODE_UPDATE_CREDITS
;
1665 unsigned int clusters_to_alloc
, extents_to_split
, clusters_need
= 0;
1666 struct ocfs2_write_ctxt
*wc
;
1667 struct inode
*inode
= mapping
->host
;
1668 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1669 struct ocfs2_dinode
*di
;
1670 struct ocfs2_alloc_context
*data_ac
= NULL
;
1671 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1673 struct ocfs2_extent_tree et
;
1674 int try_free
= 1, ret1
;
1677 ret
= ocfs2_alloc_write_ctxt(&wc
, osb
, pos
, len
, type
, di_bh
);
1683 if (ocfs2_supports_inline_data(osb
)) {
1684 ret
= ocfs2_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1696 /* Direct io change i_size late, should not zero tail here. */
1697 if (type
!= OCFS2_WRITE_DIRECT
) {
1698 if (ocfs2_sparse_alloc(osb
))
1699 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
1701 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
1709 ret
= ocfs2_check_range_for_refcount(inode
, pos
, len
);
1713 } else if (ret
== 1) {
1714 clusters_need
= wc
->w_clen
;
1715 ret
= ocfs2_refcount_cow(inode
, di_bh
,
1716 wc
->w_cpos
, wc
->w_clen
, UINT_MAX
);
1723 ret
= ocfs2_populate_write_desc(inode
, wc
, &clusters_to_alloc
,
1729 clusters_need
+= clusters_to_alloc
;
1731 di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1733 trace_ocfs2_write_begin_nolock(
1734 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1735 (long long)i_size_read(inode
),
1736 le32_to_cpu(di
->i_clusters
),
1737 pos
, len
, type
, mmap_page
,
1738 clusters_to_alloc
, extents_to_split
);
1741 * We set w_target_from, w_target_to here so that
1742 * ocfs2_write_end() knows which range in the target page to
1743 * write out. An allocation requires that we write the entire
1746 if (clusters_to_alloc
|| extents_to_split
) {
1748 * XXX: We are stretching the limits of
1749 * ocfs2_lock_allocators(). It greatly over-estimates
1750 * the work to be done.
1752 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
),
1754 ret
= ocfs2_lock_allocators(inode
, &et
,
1755 clusters_to_alloc
, extents_to_split
,
1756 &data_ac
, &meta_ac
);
1763 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
1765 credits
= ocfs2_calc_extend_credits(inode
->i_sb
,
1767 } else if (type
== OCFS2_WRITE_DIRECT
)
1768 /* direct write needs not to start trans if no extents alloc. */
1772 * We have to zero sparse allocated clusters, unwritten extent clusters,
1773 * and non-sparse clusters we just extended. For non-sparse writes,
1774 * we know zeros will only be needed in the first and/or last cluster.
1776 if (wc
->w_clen
&& (wc
->w_desc
[0].c_needs_zero
||
1777 wc
->w_desc
[wc
->w_clen
- 1].c_needs_zero
))
1778 cluster_of_pages
= 1;
1780 cluster_of_pages
= 0;
1782 ocfs2_set_target_boundaries(osb
, wc
, pos
, len
, cluster_of_pages
);
1784 handle
= ocfs2_start_trans(osb
, credits
);
1785 if (IS_ERR(handle
)) {
1786 ret
= PTR_ERR(handle
);
1791 wc
->w_handle
= handle
;
1793 if (clusters_to_alloc
) {
1794 ret
= dquot_alloc_space_nodirty(inode
,
1795 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1800 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), wc
->w_di_bh
,
1801 OCFS2_JOURNAL_ACCESS_WRITE
);
1808 * Fill our page array first. That way we've grabbed enough so
1809 * that we can zero and flush if we error after adding the
1812 ret
= ocfs2_grab_pages_for_write(mapping
, wc
, wc
->w_cpos
, pos
, len
,
1813 cluster_of_pages
, mmap_page
);
1814 if (ret
&& ret
!= -EAGAIN
) {
1820 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1821 * the target page. In this case, we exit with no error and no target
1822 * page. This will trigger the caller, page_mkwrite(), to re-try
1825 if (ret
== -EAGAIN
) {
1826 BUG_ON(wc
->w_target_page
);
1831 ret
= ocfs2_write_cluster_by_desc(mapping
, data_ac
, meta_ac
, wc
, pos
,
1839 ocfs2_free_alloc_context(data_ac
);
1841 ocfs2_free_alloc_context(meta_ac
);
1845 *pagep
= wc
->w_target_page
;
1849 if (clusters_to_alloc
)
1850 dquot_free_space(inode
,
1851 ocfs2_clusters_to_bytes(osb
->sb
, clusters_to_alloc
));
1853 ocfs2_commit_trans(osb
, handle
);
1857 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1858 * even in case of error here like ENOSPC and ENOMEM. So, we need
1859 * to unlock the target page manually to prevent deadlocks when
1860 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1863 if (wc
->w_target_locked
)
1864 unlock_page(mmap_page
);
1866 ocfs2_free_write_ctxt(inode
, wc
);
1869 ocfs2_free_alloc_context(data_ac
);
1873 ocfs2_free_alloc_context(meta_ac
);
1877 if (ret
== -ENOSPC
&& try_free
) {
1879 * Try to free some truncate log so that we can have enough
1880 * clusters to allocate.
1884 ret1
= ocfs2_try_to_free_truncate_log(osb
, clusters_need
);
1895 static int ocfs2_write_begin(struct file
*file
, struct address_space
*mapping
,
1896 loff_t pos
, unsigned len
, unsigned flags
,
1897 struct page
**pagep
, void **fsdata
)
1900 struct buffer_head
*di_bh
= NULL
;
1901 struct inode
*inode
= mapping
->host
;
1903 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1910 * Take alloc sem here to prevent concurrent lookups. That way
1911 * the mapping, zeroing and tree manipulation within
1912 * ocfs2_write() will be safe against ->readpage(). This
1913 * should also serve to lock out allocation from a shared
1916 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1918 ret
= ocfs2_write_begin_nolock(mapping
, pos
, len
, OCFS2_WRITE_BUFFER
,
1919 pagep
, fsdata
, di_bh
, NULL
);
1930 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1933 ocfs2_inode_unlock(inode
, 1);
1938 static void ocfs2_write_end_inline(struct inode
*inode
, loff_t pos
,
1939 unsigned len
, unsigned *copied
,
1940 struct ocfs2_dinode
*di
,
1941 struct ocfs2_write_ctxt
*wc
)
1945 if (unlikely(*copied
< len
)) {
1946 if (!PageUptodate(wc
->w_target_page
)) {
1952 kaddr
= kmap_atomic(wc
->w_target_page
);
1953 memcpy(di
->id2
.i_data
.id_data
+ pos
, kaddr
+ pos
, *copied
);
1954 kunmap_atomic(kaddr
);
1956 trace_ocfs2_write_end_inline(
1957 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1958 (unsigned long long)pos
, *copied
,
1959 le16_to_cpu(di
->id2
.i_data
.id_count
),
1960 le16_to_cpu(di
->i_dyn_features
));
1963 int ocfs2_write_end_nolock(struct address_space
*mapping
,
1964 loff_t pos
, unsigned len
, unsigned copied
, void *fsdata
)
1967 unsigned from
, to
, start
= pos
& (PAGE_SIZE
- 1);
1968 struct inode
*inode
= mapping
->host
;
1969 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1970 struct ocfs2_write_ctxt
*wc
= fsdata
;
1971 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)wc
->w_di_bh
->b_data
;
1972 handle_t
*handle
= wc
->w_handle
;
1973 struct page
*tmppage
;
1975 BUG_ON(!list_empty(&wc
->w_unwritten_list
));
1978 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
),
1979 wc
->w_di_bh
, OCFS2_JOURNAL_ACCESS_WRITE
);
1987 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1988 ocfs2_write_end_inline(inode
, pos
, len
, &copied
, di
, wc
);
1989 goto out_write_size
;
1992 if (unlikely(copied
< len
) && wc
->w_target_page
) {
1993 if (!PageUptodate(wc
->w_target_page
))
1996 ocfs2_zero_new_buffers(wc
->w_target_page
, start
+copied
,
1999 if (wc
->w_target_page
)
2000 flush_dcache_page(wc
->w_target_page
);
2002 for(i
= 0; i
< wc
->w_num_pages
; i
++) {
2003 tmppage
= wc
->w_pages
[i
];
2005 /* This is the direct io target page. */
2006 if (tmppage
== NULL
)
2009 if (tmppage
== wc
->w_target_page
) {
2010 from
= wc
->w_target_from
;
2011 to
= wc
->w_target_to
;
2013 BUG_ON(from
> PAGE_SIZE
||
2018 * Pages adjacent to the target (if any) imply
2019 * a hole-filling write in which case we want
2020 * to flush their entire range.
2026 if (page_has_buffers(tmppage
)) {
2027 if (handle
&& ocfs2_should_order_data(inode
)) {
2029 ((loff_t
)tmppage
->index
<< PAGE_SHIFT
) +
2031 loff_t length
= to
- from
;
2032 ocfs2_jbd2_inode_add_write(handle
, inode
,
2033 start_byte
, length
);
2035 block_commit_write(tmppage
, from
, to
);
2040 /* Direct io do not update i_size here. */
2041 if (wc
->w_type
!= OCFS2_WRITE_DIRECT
) {
2043 if (pos
> i_size_read(inode
)) {
2044 i_size_write(inode
, pos
);
2045 mark_inode_dirty(inode
);
2047 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
2048 di
->i_size
= cpu_to_le64((u64
)i_size_read(inode
));
2049 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2050 di
->i_mtime
= di
->i_ctime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
2051 di
->i_mtime_nsec
= di
->i_ctime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
2053 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
2056 ocfs2_journal_dirty(handle
, wc
->w_di_bh
);
2059 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2060 * lock, or it will cause a deadlock since journal commit threads holds
2061 * this lock and will ask for the page lock when flushing the data.
2062 * put it here to preserve the unlock order.
2064 ocfs2_unlock_pages(wc
);
2067 ocfs2_commit_trans(osb
, handle
);
2069 ocfs2_run_deallocs(osb
, &wc
->w_dealloc
);
2071 brelse(wc
->w_di_bh
);
2077 static int ocfs2_write_end(struct file
*file
, struct address_space
*mapping
,
2078 loff_t pos
, unsigned len
, unsigned copied
,
2079 struct page
*page
, void *fsdata
)
2082 struct inode
*inode
= mapping
->host
;
2084 ret
= ocfs2_write_end_nolock(mapping
, pos
, len
, copied
, fsdata
);
2086 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
2087 ocfs2_inode_unlock(inode
, 1);
2092 struct ocfs2_dio_write_ctxt
{
2093 struct list_head dw_zero_list
;
2094 unsigned dw_zero_count
;
2096 pid_t dw_writer_pid
;
2099 static struct ocfs2_dio_write_ctxt
*
2100 ocfs2_dio_alloc_write_ctx(struct buffer_head
*bh
, int *alloc
)
2102 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2105 return bh
->b_private
;
2107 dwc
= kmalloc(sizeof(struct ocfs2_dio_write_ctxt
), GFP_NOFS
);
2110 INIT_LIST_HEAD(&dwc
->dw_zero_list
);
2111 dwc
->dw_zero_count
= 0;
2112 dwc
->dw_orphaned
= 0;
2113 dwc
->dw_writer_pid
= task_pid_nr(current
);
2114 bh
->b_private
= dwc
;
2120 static void ocfs2_dio_free_write_ctx(struct inode
*inode
,
2121 struct ocfs2_dio_write_ctxt
*dwc
)
2123 ocfs2_free_unwritten_list(inode
, &dwc
->dw_zero_list
);
2128 * TODO: Make this into a generic get_blocks function.
2130 * From do_direct_io in direct-io.c:
2131 * "So what we do is to permit the ->get_blocks function to populate
2132 * bh.b_size with the size of IO which is permitted at this offset and
2135 * This function is called directly from get_more_blocks in direct-io.c.
2137 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2138 * fs_count, map_bh, dio->rw == WRITE);
2140 static int ocfs2_dio_wr_get_block(struct inode
*inode
, sector_t iblock
,
2141 struct buffer_head
*bh_result
, int create
)
2143 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2144 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2145 struct ocfs2_write_ctxt
*wc
;
2146 struct ocfs2_write_cluster_desc
*desc
= NULL
;
2147 struct ocfs2_dio_write_ctxt
*dwc
= NULL
;
2148 struct buffer_head
*di_bh
= NULL
;
2150 unsigned int i_blkbits
= inode
->i_sb
->s_blocksize_bits
;
2151 loff_t pos
= iblock
<< i_blkbits
;
2152 sector_t endblk
= (i_size_read(inode
) - 1) >> i_blkbits
;
2153 unsigned len
, total_len
= bh_result
->b_size
;
2154 int ret
= 0, first_get_block
= 0;
2156 len
= osb
->s_clustersize
- (pos
& (osb
->s_clustersize
- 1));
2157 len
= min(total_len
, len
);
2160 * bh_result->b_size is count in get_more_blocks according to write
2161 * "pos" and "end", we need map twice to return different buffer state:
2162 * 1. area in file size, not set NEW;
2163 * 2. area out file size, set NEW.
2166 * |--------|---------|---------|---------
2167 * |<-------area in file------->|
2170 if ((iblock
<= endblk
) &&
2171 ((iblock
+ ((len
- 1) >> i_blkbits
)) > endblk
))
2172 len
= (endblk
- iblock
+ 1) << i_blkbits
;
2174 mlog(0, "get block of %lu at %llu:%u req %u\n",
2175 inode
->i_ino
, pos
, len
, total_len
);
2178 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2179 * we may need to add it to orphan dir. So can not fall to fast path
2180 * while file size will be changed.
2182 if (pos
+ total_len
<= i_size_read(inode
)) {
2184 /* This is the fast path for re-write. */
2185 ret
= ocfs2_lock_get_block(inode
, iblock
, bh_result
, create
);
2186 if (buffer_mapped(bh_result
) &&
2187 !buffer_new(bh_result
) &&
2191 /* Clear state set by ocfs2_get_block. */
2192 bh_result
->b_state
= 0;
2195 dwc
= ocfs2_dio_alloc_write_ctx(bh_result
, &first_get_block
);
2196 if (unlikely(dwc
== NULL
)) {
2202 if (ocfs2_clusters_for_bytes(inode
->i_sb
, pos
+ total_len
) >
2203 ocfs2_clusters_for_bytes(inode
->i_sb
, i_size_read(inode
)) &&
2204 !dwc
->dw_orphaned
) {
2206 * when we are going to alloc extents beyond file size, add the
2207 * inode to orphan dir, so we can recall those spaces when
2208 * system crashed during write.
2210 ret
= ocfs2_add_inode_to_orphan(osb
, inode
);
2215 dwc
->dw_orphaned
= 1;
2218 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2224 down_write(&oi
->ip_alloc_sem
);
2226 if (first_get_block
) {
2227 if (ocfs2_sparse_alloc(osb
))
2228 ret
= ocfs2_zero_tail(inode
, di_bh
, pos
);
2230 ret
= ocfs2_expand_nonsparse_inode(inode
, di_bh
, pos
,
2238 ret
= ocfs2_write_begin_nolock(inode
->i_mapping
, pos
, len
,
2239 OCFS2_WRITE_DIRECT
, NULL
,
2240 (void **)&wc
, di_bh
, NULL
);
2246 desc
= &wc
->w_desc
[0];
2248 p_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, desc
->c_phys
);
2249 BUG_ON(p_blkno
== 0);
2250 p_blkno
+= iblock
& (u64
)(ocfs2_clusters_to_blocks(inode
->i_sb
, 1) - 1);
2252 map_bh(bh_result
, inode
->i_sb
, p_blkno
);
2253 bh_result
->b_size
= len
;
2254 if (desc
->c_needs_zero
)
2255 set_buffer_new(bh_result
);
2257 if (iblock
> endblk
)
2258 set_buffer_new(bh_result
);
2260 /* May sleep in end_io. It should not happen in a irq context. So defer
2261 * it to dio work queue. */
2262 set_buffer_defer_completion(bh_result
);
2264 if (!list_empty(&wc
->w_unwritten_list
)) {
2265 struct ocfs2_unwritten_extent
*ue
= NULL
;
2267 ue
= list_first_entry(&wc
->w_unwritten_list
,
2268 struct ocfs2_unwritten_extent
,
2270 BUG_ON(ue
->ue_cpos
!= desc
->c_cpos
);
2271 /* The physical address may be 0, fill it. */
2272 ue
->ue_phys
= desc
->c_phys
;
2274 list_splice_tail_init(&wc
->w_unwritten_list
, &dwc
->dw_zero_list
);
2275 dwc
->dw_zero_count
+= wc
->w_unwritten_count
;
2278 ret
= ocfs2_write_end_nolock(inode
->i_mapping
, pos
, len
, len
, wc
);
2282 up_write(&oi
->ip_alloc_sem
);
2283 ocfs2_inode_unlock(inode
, 1);
2291 static int ocfs2_dio_end_io_write(struct inode
*inode
,
2292 struct ocfs2_dio_write_ctxt
*dwc
,
2296 struct ocfs2_cached_dealloc_ctxt dealloc
;
2297 struct ocfs2_extent_tree et
;
2298 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2299 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
2300 struct ocfs2_unwritten_extent
*ue
= NULL
;
2301 struct buffer_head
*di_bh
= NULL
;
2302 struct ocfs2_dinode
*di
;
2303 struct ocfs2_alloc_context
*data_ac
= NULL
;
2304 struct ocfs2_alloc_context
*meta_ac
= NULL
;
2305 handle_t
*handle
= NULL
;
2306 loff_t end
= offset
+ bytes
;
2307 int ret
= 0, credits
= 0, locked
= 0;
2309 ocfs2_init_dealloc_ctxt(&dealloc
);
2311 /* We do clear unwritten, delete orphan, change i_size here. If neither
2312 * of these happen, we can skip all this. */
2313 if (list_empty(&dwc
->dw_zero_list
) &&
2314 end
<= i_size_read(inode
) &&
2318 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2319 * are in that context. */
2320 if (dwc
->dw_writer_pid
!= task_pid_nr(current
)) {
2325 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2331 down_write(&oi
->ip_alloc_sem
);
2333 /* Delete orphan before acquire i_mutex. */
2334 if (dwc
->dw_orphaned
) {
2335 BUG_ON(dwc
->dw_writer_pid
!= task_pid_nr(current
));
2337 end
= end
> i_size_read(inode
) ? end
: 0;
2339 ret
= ocfs2_del_inode_from_orphan(osb
, inode
, di_bh
,
2345 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2347 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
2349 /* Attach dealloc with extent tree in case that we may reuse extents
2350 * which are already unlinked from current extent tree due to extent
2351 * rotation and merging.
2353 et
.et_dealloc
= &dealloc
;
2355 ret
= ocfs2_lock_allocators(inode
, &et
, 0, dwc
->dw_zero_count
*2,
2356 &data_ac
, &meta_ac
);
2362 credits
= ocfs2_calc_extend_credits(inode
->i_sb
, &di
->id2
.i_list
);
2364 handle
= ocfs2_start_trans(osb
, credits
);
2365 if (IS_ERR(handle
)) {
2366 ret
= PTR_ERR(handle
);
2370 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
2371 OCFS2_JOURNAL_ACCESS_WRITE
);
2377 list_for_each_entry(ue
, &dwc
->dw_zero_list
, ue_node
) {
2378 ret
= ocfs2_mark_extent_written(inode
, &et
, handle
,
2388 if (end
> i_size_read(inode
)) {
2389 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
, end
);
2394 ocfs2_commit_trans(osb
, handle
);
2396 up_write(&oi
->ip_alloc_sem
);
2397 ocfs2_inode_unlock(inode
, 1);
2401 ocfs2_free_alloc_context(data_ac
);
2403 ocfs2_free_alloc_context(meta_ac
);
2404 ocfs2_run_deallocs(osb
, &dealloc
);
2406 inode_unlock(inode
);
2407 ocfs2_dio_free_write_ctx(inode
, dwc
);
2413 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2414 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2415 * to protect io on one node from truncation on another.
2417 static int ocfs2_dio_end_io(struct kiocb
*iocb
,
2422 struct inode
*inode
= file_inode(iocb
->ki_filp
);
2426 /* this io's submitter should not have unlocked this before we could */
2427 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb
));
2430 mlog_ratelimited(ML_ERROR
, "Direct IO failed, bytes = %lld",
2434 ret
= ocfs2_dio_end_io_write(inode
, private, offset
,
2437 ocfs2_dio_free_write_ctx(inode
, private);
2440 ocfs2_iocb_clear_rw_locked(iocb
);
2442 level
= ocfs2_iocb_rw_locked_level(iocb
);
2443 ocfs2_rw_unlock(inode
, level
);
2447 static ssize_t
ocfs2_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
2449 struct file
*file
= iocb
->ki_filp
;
2450 struct inode
*inode
= file
->f_mapping
->host
;
2451 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
2452 get_block_t
*get_block
;
2455 * Fallback to buffered I/O if we see an inode without
2458 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
2461 /* Fallback to buffered I/O if we do not support append dio. */
2462 if (iocb
->ki_pos
+ iter
->count
> i_size_read(inode
) &&
2463 !ocfs2_supports_append_dio(osb
))
2466 if (iov_iter_rw(iter
) == READ
)
2467 get_block
= ocfs2_lock_get_block
;
2469 get_block
= ocfs2_dio_wr_get_block
;
2471 return __blockdev_direct_IO(iocb
, inode
, inode
->i_sb
->s_bdev
,
2473 ocfs2_dio_end_io
, NULL
, 0);
2476 const struct address_space_operations ocfs2_aops
= {
2477 .readpage
= ocfs2_readpage
,
2478 .readpages
= ocfs2_readpages
,
2479 .writepage
= ocfs2_writepage
,
2480 .write_begin
= ocfs2_write_begin
,
2481 .write_end
= ocfs2_write_end
,
2483 .direct_IO
= ocfs2_direct_IO
,
2484 .invalidatepage
= block_invalidatepage
,
2485 .releasepage
= ocfs2_releasepage
,
2486 .migratepage
= buffer_migrate_page
,
2487 .is_partially_uptodate
= block_is_partially_uptodate
,
2488 .error_remove_page
= generic_error_remove_page
,