gro: Allow tunnel stacking in the case of FOU/GUE
[linux/fpc-iii.git] / drivers / clocksource / sh_tmu.c
blobb6b8fa3cd211fc6b03460f678168d0f6568362f0
1 /*
2 * SuperH Timer Support - TMU
4 * Copyright (C) 2009 Magnus Damm
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
35 enum sh_tmu_model {
36 SH_TMU,
37 SH_TMU_SH3,
40 struct sh_tmu_device;
42 struct sh_tmu_channel {
43 struct sh_tmu_device *tmu;
44 unsigned int index;
46 void __iomem *base;
47 int irq;
49 unsigned long rate;
50 unsigned long periodic;
51 struct clock_event_device ced;
52 struct clocksource cs;
53 bool cs_enabled;
54 unsigned int enable_count;
57 struct sh_tmu_device {
58 struct platform_device *pdev;
60 void __iomem *mapbase;
61 struct clk *clk;
63 enum sh_tmu_model model;
65 raw_spinlock_t lock; /* Protect the shared start/stop register */
67 struct sh_tmu_channel *channels;
68 unsigned int num_channels;
70 bool has_clockevent;
71 bool has_clocksource;
74 #define TSTR -1 /* shared register */
75 #define TCOR 0 /* channel register */
76 #define TCNT 1 /* channel register */
77 #define TCR 2 /* channel register */
79 #define TCR_UNF (1 << 8)
80 #define TCR_UNIE (1 << 5)
81 #define TCR_TPSC_CLK4 (0 << 0)
82 #define TCR_TPSC_CLK16 (1 << 0)
83 #define TCR_TPSC_CLK64 (2 << 0)
84 #define TCR_TPSC_CLK256 (3 << 0)
85 #define TCR_TPSC_CLK1024 (4 << 0)
86 #define TCR_TPSC_MASK (7 << 0)
88 static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
90 unsigned long offs;
92 if (reg_nr == TSTR) {
93 switch (ch->tmu->model) {
94 case SH_TMU_SH3:
95 return ioread8(ch->tmu->mapbase + 2);
96 case SH_TMU:
97 return ioread8(ch->tmu->mapbase + 4);
101 offs = reg_nr << 2;
103 if (reg_nr == TCR)
104 return ioread16(ch->base + offs);
105 else
106 return ioread32(ch->base + offs);
109 static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
110 unsigned long value)
112 unsigned long offs;
114 if (reg_nr == TSTR) {
115 switch (ch->tmu->model) {
116 case SH_TMU_SH3:
117 return iowrite8(value, ch->tmu->mapbase + 2);
118 case SH_TMU:
119 return iowrite8(value, ch->tmu->mapbase + 4);
123 offs = reg_nr << 2;
125 if (reg_nr == TCR)
126 iowrite16(value, ch->base + offs);
127 else
128 iowrite32(value, ch->base + offs);
131 static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
133 unsigned long flags, value;
135 /* start stop register shared by multiple timer channels */
136 raw_spin_lock_irqsave(&ch->tmu->lock, flags);
137 value = sh_tmu_read(ch, TSTR);
139 if (start)
140 value |= 1 << ch->index;
141 else
142 value &= ~(1 << ch->index);
144 sh_tmu_write(ch, TSTR, value);
145 raw_spin_unlock_irqrestore(&ch->tmu->lock, flags);
148 static int __sh_tmu_enable(struct sh_tmu_channel *ch)
150 int ret;
152 /* enable clock */
153 ret = clk_enable(ch->tmu->clk);
154 if (ret) {
155 dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n",
156 ch->index);
157 return ret;
160 /* make sure channel is disabled */
161 sh_tmu_start_stop_ch(ch, 0);
163 /* maximum timeout */
164 sh_tmu_write(ch, TCOR, 0xffffffff);
165 sh_tmu_write(ch, TCNT, 0xffffffff);
167 /* configure channel to parent clock / 4, irq off */
168 ch->rate = clk_get_rate(ch->tmu->clk) / 4;
169 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
171 /* enable channel */
172 sh_tmu_start_stop_ch(ch, 1);
174 return 0;
177 static int sh_tmu_enable(struct sh_tmu_channel *ch)
179 if (ch->enable_count++ > 0)
180 return 0;
182 pm_runtime_get_sync(&ch->tmu->pdev->dev);
183 dev_pm_syscore_device(&ch->tmu->pdev->dev, true);
185 return __sh_tmu_enable(ch);
188 static void __sh_tmu_disable(struct sh_tmu_channel *ch)
190 /* disable channel */
191 sh_tmu_start_stop_ch(ch, 0);
193 /* disable interrupts in TMU block */
194 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
196 /* stop clock */
197 clk_disable(ch->tmu->clk);
200 static void sh_tmu_disable(struct sh_tmu_channel *ch)
202 if (WARN_ON(ch->enable_count == 0))
203 return;
205 if (--ch->enable_count > 0)
206 return;
208 __sh_tmu_disable(ch);
210 dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
211 pm_runtime_put(&ch->tmu->pdev->dev);
214 static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
215 int periodic)
217 /* stop timer */
218 sh_tmu_start_stop_ch(ch, 0);
220 /* acknowledge interrupt */
221 sh_tmu_read(ch, TCR);
223 /* enable interrupt */
224 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
226 /* reload delta value in case of periodic timer */
227 if (periodic)
228 sh_tmu_write(ch, TCOR, delta);
229 else
230 sh_tmu_write(ch, TCOR, 0xffffffff);
232 sh_tmu_write(ch, TCNT, delta);
234 /* start timer */
235 sh_tmu_start_stop_ch(ch, 1);
238 static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
240 struct sh_tmu_channel *ch = dev_id;
242 /* disable or acknowledge interrupt */
243 if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
244 sh_tmu_write(ch, TCR, TCR_TPSC_CLK4);
245 else
246 sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4);
248 /* notify clockevent layer */
249 ch->ced.event_handler(&ch->ced);
250 return IRQ_HANDLED;
253 static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
255 return container_of(cs, struct sh_tmu_channel, cs);
258 static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
260 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
262 return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
265 static int sh_tmu_clocksource_enable(struct clocksource *cs)
267 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
268 int ret;
270 if (WARN_ON(ch->cs_enabled))
271 return 0;
273 ret = sh_tmu_enable(ch);
274 if (!ret) {
275 __clocksource_update_freq_hz(cs, ch->rate);
276 ch->cs_enabled = true;
279 return ret;
282 static void sh_tmu_clocksource_disable(struct clocksource *cs)
284 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
286 if (WARN_ON(!ch->cs_enabled))
287 return;
289 sh_tmu_disable(ch);
290 ch->cs_enabled = false;
293 static void sh_tmu_clocksource_suspend(struct clocksource *cs)
295 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
297 if (!ch->cs_enabled)
298 return;
300 if (--ch->enable_count == 0) {
301 __sh_tmu_disable(ch);
302 pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
306 static void sh_tmu_clocksource_resume(struct clocksource *cs)
308 struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
310 if (!ch->cs_enabled)
311 return;
313 if (ch->enable_count++ == 0) {
314 pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
315 __sh_tmu_enable(ch);
319 static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
320 const char *name)
322 struct clocksource *cs = &ch->cs;
324 cs->name = name;
325 cs->rating = 200;
326 cs->read = sh_tmu_clocksource_read;
327 cs->enable = sh_tmu_clocksource_enable;
328 cs->disable = sh_tmu_clocksource_disable;
329 cs->suspend = sh_tmu_clocksource_suspend;
330 cs->resume = sh_tmu_clocksource_resume;
331 cs->mask = CLOCKSOURCE_MASK(32);
332 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
334 dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n",
335 ch->index);
337 /* Register with dummy 1 Hz value, gets updated in ->enable() */
338 clocksource_register_hz(cs, 1);
339 return 0;
342 static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
344 return container_of(ced, struct sh_tmu_channel, ced);
347 static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
349 struct clock_event_device *ced = &ch->ced;
351 sh_tmu_enable(ch);
353 clockevents_config(ced, ch->rate);
355 if (periodic) {
356 ch->periodic = (ch->rate + HZ/2) / HZ;
357 sh_tmu_set_next(ch, ch->periodic, 1);
361 static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
362 struct clock_event_device *ced)
364 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
365 int disabled = 0;
367 /* deal with old setting first */
368 switch (ced->mode) {
369 case CLOCK_EVT_MODE_PERIODIC:
370 case CLOCK_EVT_MODE_ONESHOT:
371 sh_tmu_disable(ch);
372 disabled = 1;
373 break;
374 default:
375 break;
378 switch (mode) {
379 case CLOCK_EVT_MODE_PERIODIC:
380 dev_info(&ch->tmu->pdev->dev,
381 "ch%u: used for periodic clock events\n", ch->index);
382 sh_tmu_clock_event_start(ch, 1);
383 break;
384 case CLOCK_EVT_MODE_ONESHOT:
385 dev_info(&ch->tmu->pdev->dev,
386 "ch%u: used for oneshot clock events\n", ch->index);
387 sh_tmu_clock_event_start(ch, 0);
388 break;
389 case CLOCK_EVT_MODE_UNUSED:
390 if (!disabled)
391 sh_tmu_disable(ch);
392 break;
393 case CLOCK_EVT_MODE_SHUTDOWN:
394 default:
395 break;
399 static int sh_tmu_clock_event_next(unsigned long delta,
400 struct clock_event_device *ced)
402 struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
404 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
406 /* program new delta value */
407 sh_tmu_set_next(ch, delta, 0);
408 return 0;
411 static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
413 pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
416 static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
418 pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
421 static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
422 const char *name)
424 struct clock_event_device *ced = &ch->ced;
425 int ret;
427 ced->name = name;
428 ced->features = CLOCK_EVT_FEAT_PERIODIC;
429 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
430 ced->rating = 200;
431 ced->cpumask = cpu_possible_mask;
432 ced->set_next_event = sh_tmu_clock_event_next;
433 ced->set_mode = sh_tmu_clock_event_mode;
434 ced->suspend = sh_tmu_clock_event_suspend;
435 ced->resume = sh_tmu_clock_event_resume;
437 dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n",
438 ch->index);
440 clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
442 ret = request_irq(ch->irq, sh_tmu_interrupt,
443 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
444 dev_name(&ch->tmu->pdev->dev), ch);
445 if (ret) {
446 dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n",
447 ch->index, ch->irq);
448 return;
452 static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name,
453 bool clockevent, bool clocksource)
455 if (clockevent) {
456 ch->tmu->has_clockevent = true;
457 sh_tmu_register_clockevent(ch, name);
458 } else if (clocksource) {
459 ch->tmu->has_clocksource = true;
460 sh_tmu_register_clocksource(ch, name);
463 return 0;
466 static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index,
467 bool clockevent, bool clocksource,
468 struct sh_tmu_device *tmu)
470 /* Skip unused channels. */
471 if (!clockevent && !clocksource)
472 return 0;
474 ch->tmu = tmu;
475 ch->index = index;
477 if (tmu->model == SH_TMU_SH3)
478 ch->base = tmu->mapbase + 4 + ch->index * 12;
479 else
480 ch->base = tmu->mapbase + 8 + ch->index * 12;
482 ch->irq = platform_get_irq(tmu->pdev, index);
483 if (ch->irq < 0) {
484 dev_err(&tmu->pdev->dev, "ch%u: failed to get irq\n",
485 ch->index);
486 return ch->irq;
489 ch->cs_enabled = false;
490 ch->enable_count = 0;
492 return sh_tmu_register(ch, dev_name(&tmu->pdev->dev),
493 clockevent, clocksource);
496 static int sh_tmu_map_memory(struct sh_tmu_device *tmu)
498 struct resource *res;
500 res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0);
501 if (!res) {
502 dev_err(&tmu->pdev->dev, "failed to get I/O memory\n");
503 return -ENXIO;
506 tmu->mapbase = ioremap_nocache(res->start, resource_size(res));
507 if (tmu->mapbase == NULL)
508 return -ENXIO;
510 return 0;
513 static int sh_tmu_parse_dt(struct sh_tmu_device *tmu)
515 struct device_node *np = tmu->pdev->dev.of_node;
517 tmu->model = SH_TMU;
518 tmu->num_channels = 3;
520 of_property_read_u32(np, "#renesas,channels", &tmu->num_channels);
522 if (tmu->num_channels != 2 && tmu->num_channels != 3) {
523 dev_err(&tmu->pdev->dev, "invalid number of channels %u\n",
524 tmu->num_channels);
525 return -EINVAL;
528 return 0;
531 static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev)
533 unsigned int i;
534 int ret;
536 tmu->pdev = pdev;
538 raw_spin_lock_init(&tmu->lock);
540 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
541 ret = sh_tmu_parse_dt(tmu);
542 if (ret < 0)
543 return ret;
544 } else if (pdev->dev.platform_data) {
545 const struct platform_device_id *id = pdev->id_entry;
546 struct sh_timer_config *cfg = pdev->dev.platform_data;
548 tmu->model = id->driver_data;
549 tmu->num_channels = hweight8(cfg->channels_mask);
550 } else {
551 dev_err(&tmu->pdev->dev, "missing platform data\n");
552 return -ENXIO;
555 /* Get hold of clock. */
556 tmu->clk = clk_get(&tmu->pdev->dev, "fck");
557 if (IS_ERR(tmu->clk)) {
558 dev_err(&tmu->pdev->dev, "cannot get clock\n");
559 return PTR_ERR(tmu->clk);
562 ret = clk_prepare(tmu->clk);
563 if (ret < 0)
564 goto err_clk_put;
566 /* Map the memory resource. */
567 ret = sh_tmu_map_memory(tmu);
568 if (ret < 0) {
569 dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n");
570 goto err_clk_unprepare;
573 /* Allocate and setup the channels. */
574 tmu->channels = kzalloc(sizeof(*tmu->channels) * tmu->num_channels,
575 GFP_KERNEL);
576 if (tmu->channels == NULL) {
577 ret = -ENOMEM;
578 goto err_unmap;
582 * Use the first channel as a clock event device and the second channel
583 * as a clock source.
585 for (i = 0; i < tmu->num_channels; ++i) {
586 ret = sh_tmu_channel_setup(&tmu->channels[i], i,
587 i == 0, i == 1, tmu);
588 if (ret < 0)
589 goto err_unmap;
592 platform_set_drvdata(pdev, tmu);
594 return 0;
596 err_unmap:
597 kfree(tmu->channels);
598 iounmap(tmu->mapbase);
599 err_clk_unprepare:
600 clk_unprepare(tmu->clk);
601 err_clk_put:
602 clk_put(tmu->clk);
603 return ret;
606 static int sh_tmu_probe(struct platform_device *pdev)
608 struct sh_tmu_device *tmu = platform_get_drvdata(pdev);
609 int ret;
611 if (!is_early_platform_device(pdev)) {
612 pm_runtime_set_active(&pdev->dev);
613 pm_runtime_enable(&pdev->dev);
616 if (tmu) {
617 dev_info(&pdev->dev, "kept as earlytimer\n");
618 goto out;
621 tmu = kzalloc(sizeof(*tmu), GFP_KERNEL);
622 if (tmu == NULL)
623 return -ENOMEM;
625 ret = sh_tmu_setup(tmu, pdev);
626 if (ret) {
627 kfree(tmu);
628 pm_runtime_idle(&pdev->dev);
629 return ret;
631 if (is_early_platform_device(pdev))
632 return 0;
634 out:
635 if (tmu->has_clockevent || tmu->has_clocksource)
636 pm_runtime_irq_safe(&pdev->dev);
637 else
638 pm_runtime_idle(&pdev->dev);
640 return 0;
643 static int sh_tmu_remove(struct platform_device *pdev)
645 return -EBUSY; /* cannot unregister clockevent and clocksource */
648 static const struct platform_device_id sh_tmu_id_table[] = {
649 { "sh-tmu", SH_TMU },
650 { "sh-tmu-sh3", SH_TMU_SH3 },
653 MODULE_DEVICE_TABLE(platform, sh_tmu_id_table);
655 static const struct of_device_id sh_tmu_of_table[] __maybe_unused = {
656 { .compatible = "renesas,tmu" },
659 MODULE_DEVICE_TABLE(of, sh_tmu_of_table);
661 static struct platform_driver sh_tmu_device_driver = {
662 .probe = sh_tmu_probe,
663 .remove = sh_tmu_remove,
664 .driver = {
665 .name = "sh_tmu",
666 .of_match_table = of_match_ptr(sh_tmu_of_table),
668 .id_table = sh_tmu_id_table,
671 static int __init sh_tmu_init(void)
673 return platform_driver_register(&sh_tmu_device_driver);
676 static void __exit sh_tmu_exit(void)
678 platform_driver_unregister(&sh_tmu_device_driver);
681 early_platform_init("earlytimer", &sh_tmu_device_driver);
682 subsys_initcall(sh_tmu_init);
683 module_exit(sh_tmu_exit);
685 MODULE_AUTHOR("Magnus Damm");
686 MODULE_DESCRIPTION("SuperH TMU Timer Driver");
687 MODULE_LICENSE("GPL v2");