2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
30 #include "dev-replace.h"
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
61 struct list_head list
;
62 struct reada_control
*rc
;
70 struct list_head extctl
;
73 struct reada_zone
*zones
[BTRFS_MAX_MIRRORS
];
75 struct btrfs_device
*scheduled_for
;
82 struct list_head list
;
85 struct btrfs_device
*device
;
86 struct btrfs_device
*devs
[BTRFS_MAX_MIRRORS
]; /* full list, incl
92 struct reada_machine_work
{
93 struct btrfs_work work
;
94 struct btrfs_fs_info
*fs_info
;
97 static void reada_extent_put(struct btrfs_fs_info
*, struct reada_extent
*);
98 static void reada_control_release(struct kref
*kref
);
99 static void reada_zone_release(struct kref
*kref
);
100 static void reada_start_machine(struct btrfs_fs_info
*fs_info
);
101 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
);
103 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
104 struct btrfs_key
*top
, int level
, u64 generation
);
107 /* in case of err, eb might be NULL */
108 static int __readahead_hook(struct btrfs_root
*root
, struct extent_buffer
*eb
,
116 struct reada_extent
*re
;
117 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
118 struct list_head list
;
119 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
120 struct btrfs_device
*for_dev
;
123 level
= btrfs_header_level(eb
);
126 spin_lock(&fs_info
->reada_lock
);
127 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
130 spin_unlock(&fs_info
->reada_lock
);
135 spin_lock(&re
->lock
);
137 * just take the full list from the extent. afterwards we
138 * don't need the lock anymore
140 list_replace_init(&re
->extctl
, &list
);
141 for_dev
= re
->scheduled_for
;
142 re
->scheduled_for
= NULL
;
143 spin_unlock(&re
->lock
);
146 nritems
= level
? btrfs_header_nritems(eb
) : 0;
147 generation
= btrfs_header_generation(eb
);
149 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 * effectively ignoring the content. In a next step we could
151 * trigger more readahead depending from the content, e.g.
152 * fetch the checksums for the extents in the leaf.
156 * this is the error case, the extent buffer has not been
157 * read correctly. We won't access anything from it and
158 * just cleanup our data structures. Effectively this will
159 * cut the branch below this node from read ahead.
165 for (i
= 0; i
< nritems
; i
++) {
166 struct reada_extctl
*rec
;
168 struct btrfs_key key
;
169 struct btrfs_key next_key
;
171 btrfs_node_key_to_cpu(eb
, &key
, i
);
173 btrfs_node_key_to_cpu(eb
, &next_key
, i
+ 1);
176 bytenr
= btrfs_node_blockptr(eb
, i
);
177 n_gen
= btrfs_node_ptr_generation(eb
, i
);
179 list_for_each_entry(rec
, &list
, list
) {
180 struct reada_control
*rc
= rec
->rc
;
183 * if the generation doesn't match, just ignore this
184 * extctl. This will probably cut off a branch from
185 * prefetch. Alternatively one could start a new (sub-)
186 * prefetch for this branch, starting again from root.
187 * FIXME: move the generation check out of this loop
190 if (rec
->generation
!= generation
) {
191 btrfs_debug(root
->fs_info
,
192 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
193 key
.objectid
, key
.type
, key
.offset
,
194 rec
->generation
, generation
);
197 if (rec
->generation
== generation
&&
198 btrfs_comp_cpu_keys(&key
, &rc
->key_end
) < 0 &&
199 btrfs_comp_cpu_keys(&next_key
, &rc
->key_start
) > 0)
200 reada_add_block(rc
, bytenr
, &next_key
,
205 * free extctl records
207 while (!list_empty(&list
)) {
208 struct reada_control
*rc
;
209 struct reada_extctl
*rec
;
211 rec
= list_first_entry(&list
, struct reada_extctl
, list
);
212 list_del(&rec
->list
);
216 kref_get(&rc
->refcnt
);
217 if (atomic_dec_and_test(&rc
->elems
)) {
218 kref_put(&rc
->refcnt
, reada_control_release
);
221 kref_put(&rc
->refcnt
, reada_control_release
);
223 reada_extent_put(fs_info
, re
); /* one ref for each entry */
225 reada_extent_put(fs_info
, re
); /* our ref */
227 atomic_dec(&for_dev
->reada_in_flight
);
233 * start is passed separately in case eb in NULL, which may be the case with
236 int btree_readahead_hook(struct btrfs_root
*root
, struct extent_buffer
*eb
,
241 ret
= __readahead_hook(root
, eb
, start
, err
);
243 reada_start_machine(root
->fs_info
);
248 static struct reada_zone
*reada_find_zone(struct btrfs_fs_info
*fs_info
,
249 struct btrfs_device
*dev
, u64 logical
,
250 struct btrfs_bio
*bbio
)
253 struct reada_zone
*zone
;
254 struct btrfs_block_group_cache
*cache
= NULL
;
260 spin_lock(&fs_info
->reada_lock
);
261 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
262 logical
>> PAGE_CACHE_SHIFT
, 1);
264 kref_get(&zone
->refcnt
);
265 spin_unlock(&fs_info
->reada_lock
);
268 if (logical
>= zone
->start
&& logical
< zone
->end
)
270 spin_lock(&fs_info
->reada_lock
);
271 kref_put(&zone
->refcnt
, reada_zone_release
);
272 spin_unlock(&fs_info
->reada_lock
);
275 cache
= btrfs_lookup_block_group(fs_info
, logical
);
279 start
= cache
->key
.objectid
;
280 end
= start
+ cache
->key
.offset
- 1;
281 btrfs_put_block_group(cache
);
283 zone
= kzalloc(sizeof(*zone
), GFP_NOFS
);
289 INIT_LIST_HEAD(&zone
->list
);
290 spin_lock_init(&zone
->lock
);
292 kref_init(&zone
->refcnt
);
294 zone
->device
= dev
; /* our device always sits at index 0 */
295 for (i
= 0; i
< bbio
->num_stripes
; ++i
) {
296 /* bounds have already been checked */
297 zone
->devs
[i
] = bbio
->stripes
[i
].dev
;
299 zone
->ndevs
= bbio
->num_stripes
;
301 spin_lock(&fs_info
->reada_lock
);
302 ret
= radix_tree_insert(&dev
->reada_zones
,
303 (unsigned long)(zone
->end
>> PAGE_CACHE_SHIFT
),
306 if (ret
== -EEXIST
) {
308 ret
= radix_tree_gang_lookup(&dev
->reada_zones
, (void **)&zone
,
309 logical
>> PAGE_CACHE_SHIFT
, 1);
311 kref_get(&zone
->refcnt
);
313 spin_unlock(&fs_info
->reada_lock
);
318 static struct reada_extent
*reada_find_extent(struct btrfs_root
*root
,
320 struct btrfs_key
*top
, int level
)
323 struct reada_extent
*re
= NULL
;
324 struct reada_extent
*re_exist
= NULL
;
325 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
326 struct btrfs_bio
*bbio
= NULL
;
327 struct btrfs_device
*dev
;
328 struct btrfs_device
*prev_dev
;
333 unsigned long index
= logical
>> PAGE_CACHE_SHIFT
;
334 int dev_replace_is_ongoing
;
336 spin_lock(&fs_info
->reada_lock
);
337 re
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
340 spin_unlock(&fs_info
->reada_lock
);
345 re
= kzalloc(sizeof(*re
), GFP_NOFS
);
349 blocksize
= root
->nodesize
;
350 re
->logical
= logical
;
352 INIT_LIST_HEAD(&re
->extctl
);
353 spin_lock_init(&re
->lock
);
360 ret
= btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
, logical
, &length
,
362 if (ret
|| !bbio
|| length
< blocksize
)
365 if (bbio
->num_stripes
> BTRFS_MAX_MIRRORS
) {
366 btrfs_err(root
->fs_info
,
367 "readahead: more than %d copies not supported",
372 for (nzones
= 0; nzones
< bbio
->num_stripes
; ++nzones
) {
373 struct reada_zone
*zone
;
375 dev
= bbio
->stripes
[nzones
].dev
;
376 zone
= reada_find_zone(fs_info
, dev
, logical
, bbio
);
380 re
->zones
[nzones
] = zone
;
381 spin_lock(&zone
->lock
);
383 kref_get(&zone
->refcnt
);
385 spin_unlock(&zone
->lock
);
386 spin_lock(&fs_info
->reada_lock
);
387 kref_put(&zone
->refcnt
, reada_zone_release
);
388 spin_unlock(&fs_info
->reada_lock
);
392 /* not a single zone found, error and out */
396 /* insert extent in reada_tree + all per-device trees, all or nothing */
397 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
398 spin_lock(&fs_info
->reada_lock
);
399 ret
= radix_tree_insert(&fs_info
->reada_tree
, index
, re
);
400 if (ret
== -EEXIST
) {
401 re_exist
= radix_tree_lookup(&fs_info
->reada_tree
, index
);
404 spin_unlock(&fs_info
->reada_lock
);
405 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
409 spin_unlock(&fs_info
->reada_lock
);
410 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
414 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(
415 &fs_info
->dev_replace
);
416 for (i
= 0; i
< nzones
; ++i
) {
417 dev
= bbio
->stripes
[i
].dev
;
418 if (dev
== prev_dev
) {
420 * in case of DUP, just add the first zone. As both
421 * are on the same device, there's nothing to gain
423 * Also, it wouldn't work, as the tree is per device
424 * and adding would fail with EEXIST
430 * cannot read ahead on missing device, but for RAID5/6,
431 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
432 * device for such case.
437 if (dev_replace_is_ongoing
&&
438 dev
== fs_info
->dev_replace
.tgtdev
) {
440 * as this device is selected for reading only as
441 * a last resort, skip it for read ahead.
446 ret
= radix_tree_insert(&dev
->reada_extents
, index
, re
);
449 dev
= bbio
->stripes
[i
].dev
;
451 /* ignore whether the entry was inserted */
452 radix_tree_delete(&dev
->reada_extents
, index
);
454 BUG_ON(fs_info
== NULL
);
455 radix_tree_delete(&fs_info
->reada_tree
, index
);
456 spin_unlock(&fs_info
->reada_lock
);
457 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
461 spin_unlock(&fs_info
->reada_lock
);
462 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
464 btrfs_put_bbio(bbio
);
469 struct reada_zone
*zone
;
472 zone
= re
->zones
[nzones
];
473 kref_get(&zone
->refcnt
);
474 spin_lock(&zone
->lock
);
476 if (zone
->elems
== 0) {
478 * no fs_info->reada_lock needed, as this can't be
481 kref_put(&zone
->refcnt
, reada_zone_release
);
483 spin_unlock(&zone
->lock
);
485 spin_lock(&fs_info
->reada_lock
);
486 kref_put(&zone
->refcnt
, reada_zone_release
);
487 spin_unlock(&fs_info
->reada_lock
);
489 btrfs_put_bbio(bbio
);
494 static void reada_extent_put(struct btrfs_fs_info
*fs_info
,
495 struct reada_extent
*re
)
498 unsigned long index
= re
->logical
>> PAGE_CACHE_SHIFT
;
500 spin_lock(&fs_info
->reada_lock
);
502 spin_unlock(&fs_info
->reada_lock
);
506 radix_tree_delete(&fs_info
->reada_tree
, index
);
507 for (i
= 0; i
< re
->nzones
; ++i
) {
508 struct reada_zone
*zone
= re
->zones
[i
];
510 radix_tree_delete(&zone
->device
->reada_extents
, index
);
513 spin_unlock(&fs_info
->reada_lock
);
515 for (i
= 0; i
< re
->nzones
; ++i
) {
516 struct reada_zone
*zone
= re
->zones
[i
];
518 kref_get(&zone
->refcnt
);
519 spin_lock(&zone
->lock
);
521 if (zone
->elems
== 0) {
522 /* no fs_info->reada_lock needed, as this can't be
524 kref_put(&zone
->refcnt
, reada_zone_release
);
526 spin_unlock(&zone
->lock
);
528 spin_lock(&fs_info
->reada_lock
);
529 kref_put(&zone
->refcnt
, reada_zone_release
);
530 spin_unlock(&fs_info
->reada_lock
);
532 if (re
->scheduled_for
)
533 atomic_dec(&re
->scheduled_for
->reada_in_flight
);
538 static void reada_zone_release(struct kref
*kref
)
540 struct reada_zone
*zone
= container_of(kref
, struct reada_zone
, refcnt
);
542 radix_tree_delete(&zone
->device
->reada_zones
,
543 zone
->end
>> PAGE_CACHE_SHIFT
);
548 static void reada_control_release(struct kref
*kref
)
550 struct reada_control
*rc
= container_of(kref
, struct reada_control
,
556 static int reada_add_block(struct reada_control
*rc
, u64 logical
,
557 struct btrfs_key
*top
, int level
, u64 generation
)
559 struct btrfs_root
*root
= rc
->root
;
560 struct reada_extent
*re
;
561 struct reada_extctl
*rec
;
563 re
= reada_find_extent(root
, logical
, top
, level
); /* takes one ref */
567 rec
= kzalloc(sizeof(*rec
), GFP_NOFS
);
569 reada_extent_put(root
->fs_info
, re
);
574 rec
->generation
= generation
;
575 atomic_inc(&rc
->elems
);
577 spin_lock(&re
->lock
);
578 list_add_tail(&rec
->list
, &re
->extctl
);
579 spin_unlock(&re
->lock
);
581 /* leave the ref on the extent */
587 * called with fs_info->reada_lock held
589 static void reada_peer_zones_set_lock(struct reada_zone
*zone
, int lock
)
592 unsigned long index
= zone
->end
>> PAGE_CACHE_SHIFT
;
594 for (i
= 0; i
< zone
->ndevs
; ++i
) {
595 struct reada_zone
*peer
;
596 peer
= radix_tree_lookup(&zone
->devs
[i
]->reada_zones
, index
);
597 if (peer
&& peer
->device
!= zone
->device
)
603 * called with fs_info->reada_lock held
605 static int reada_pick_zone(struct btrfs_device
*dev
)
607 struct reada_zone
*top_zone
= NULL
;
608 struct reada_zone
*top_locked_zone
= NULL
;
610 u64 top_locked_elems
= 0;
611 unsigned long index
= 0;
614 if (dev
->reada_curr_zone
) {
615 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 0);
616 kref_put(&dev
->reada_curr_zone
->refcnt
, reada_zone_release
);
617 dev
->reada_curr_zone
= NULL
;
619 /* pick the zone with the most elements */
621 struct reada_zone
*zone
;
623 ret
= radix_tree_gang_lookup(&dev
->reada_zones
,
624 (void **)&zone
, index
, 1);
627 index
= (zone
->end
>> PAGE_CACHE_SHIFT
) + 1;
629 if (zone
->elems
> top_locked_elems
) {
630 top_locked_elems
= zone
->elems
;
631 top_locked_zone
= zone
;
634 if (zone
->elems
> top_elems
) {
635 top_elems
= zone
->elems
;
641 dev
->reada_curr_zone
= top_zone
;
642 else if (top_locked_zone
)
643 dev
->reada_curr_zone
= top_locked_zone
;
647 dev
->reada_next
= dev
->reada_curr_zone
->start
;
648 kref_get(&dev
->reada_curr_zone
->refcnt
);
649 reada_peer_zones_set_lock(dev
->reada_curr_zone
, 1);
654 static int reada_start_machine_dev(struct btrfs_fs_info
*fs_info
,
655 struct btrfs_device
*dev
)
657 struct reada_extent
*re
= NULL
;
659 struct extent_buffer
*eb
= NULL
;
665 spin_lock(&fs_info
->reada_lock
);
666 if (dev
->reada_curr_zone
== NULL
) {
667 ret
= reada_pick_zone(dev
);
669 spin_unlock(&fs_info
->reada_lock
);
674 * FIXME currently we issue the reads one extent at a time. If we have
675 * a contiguous block of extents, we could also coagulate them or use
676 * plugging to speed things up
678 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
679 dev
->reada_next
>> PAGE_CACHE_SHIFT
, 1);
680 if (ret
== 0 || re
->logical
>= dev
->reada_curr_zone
->end
) {
681 ret
= reada_pick_zone(dev
);
683 spin_unlock(&fs_info
->reada_lock
);
687 ret
= radix_tree_gang_lookup(&dev
->reada_extents
, (void **)&re
,
688 dev
->reada_next
>> PAGE_CACHE_SHIFT
, 1);
691 spin_unlock(&fs_info
->reada_lock
);
694 dev
->reada_next
= re
->logical
+ fs_info
->tree_root
->nodesize
;
697 spin_unlock(&fs_info
->reada_lock
);
702 for (i
= 0; i
< re
->nzones
; ++i
) {
703 if (re
->zones
[i
]->device
== dev
) {
708 logical
= re
->logical
;
710 spin_lock(&re
->lock
);
711 if (re
->scheduled_for
== NULL
) {
712 re
->scheduled_for
= dev
;
715 spin_unlock(&re
->lock
);
717 reada_extent_put(fs_info
, re
);
722 atomic_inc(&dev
->reada_in_flight
);
723 ret
= reada_tree_block_flagged(fs_info
->extent_root
, logical
,
726 __readahead_hook(fs_info
->extent_root
, NULL
, logical
, ret
);
728 __readahead_hook(fs_info
->extent_root
, eb
, eb
->start
, ret
);
731 free_extent_buffer(eb
);
737 static void reada_start_machine_worker(struct btrfs_work
*work
)
739 struct reada_machine_work
*rmw
;
740 struct btrfs_fs_info
*fs_info
;
743 rmw
= container_of(work
, struct reada_machine_work
, work
);
744 fs_info
= rmw
->fs_info
;
748 old_ioprio
= IOPRIO_PRIO_VALUE(task_nice_ioclass(current
),
749 task_nice_ioprio(current
));
750 set_task_ioprio(current
, BTRFS_IOPRIO_READA
);
751 __reada_start_machine(fs_info
);
752 set_task_ioprio(current
, old_ioprio
);
755 static void __reada_start_machine(struct btrfs_fs_info
*fs_info
)
757 struct btrfs_device
*device
;
758 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
765 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
766 if (atomic_read(&device
->reada_in_flight
) <
768 enqueued
+= reada_start_machine_dev(fs_info
,
772 } while (enqueued
&& total
< 10000);
778 * If everything is already in the cache, this is effectively single
779 * threaded. To a) not hold the caller for too long and b) to utilize
780 * more cores, we broke the loop above after 10000 iterations and now
781 * enqueue to workers to finish it. This will distribute the load to
784 for (i
= 0; i
< 2; ++i
)
785 reada_start_machine(fs_info
);
788 static void reada_start_machine(struct btrfs_fs_info
*fs_info
)
790 struct reada_machine_work
*rmw
;
792 rmw
= kzalloc(sizeof(*rmw
), GFP_NOFS
);
794 /* FIXME we cannot handle this properly right now */
797 btrfs_init_work(&rmw
->work
, btrfs_readahead_helper
,
798 reada_start_machine_worker
, NULL
, NULL
);
799 rmw
->fs_info
= fs_info
;
801 btrfs_queue_work(fs_info
->readahead_workers
, &rmw
->work
);
805 static void dump_devs(struct btrfs_fs_info
*fs_info
, int all
)
807 struct btrfs_device
*device
;
808 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
815 spin_lock(&fs_info
->reada_lock
);
816 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
817 printk(KERN_DEBUG
"dev %lld has %d in flight\n", device
->devid
,
818 atomic_read(&device
->reada_in_flight
));
821 struct reada_zone
*zone
;
822 ret
= radix_tree_gang_lookup(&device
->reada_zones
,
823 (void **)&zone
, index
, 1);
826 printk(KERN_DEBUG
" zone %llu-%llu elems %llu locked "
827 "%d devs", zone
->start
, zone
->end
, zone
->elems
,
829 for (j
= 0; j
< zone
->ndevs
; ++j
) {
830 printk(KERN_CONT
" %lld",
831 zone
->devs
[j
]->devid
);
833 if (device
->reada_curr_zone
== zone
)
834 printk(KERN_CONT
" curr off %llu",
835 device
->reada_next
- zone
->start
);
836 printk(KERN_CONT
"\n");
837 index
= (zone
->end
>> PAGE_CACHE_SHIFT
) + 1;
842 struct reada_extent
*re
= NULL
;
844 ret
= radix_tree_gang_lookup(&device
->reada_extents
,
845 (void **)&re
, index
, 1);
849 " re: logical %llu size %u empty %d for %lld",
850 re
->logical
, fs_info
->tree_root
->nodesize
,
851 list_empty(&re
->extctl
), re
->scheduled_for
?
852 re
->scheduled_for
->devid
: -1);
854 for (i
= 0; i
< re
->nzones
; ++i
) {
855 printk(KERN_CONT
" zone %llu-%llu devs",
858 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
859 printk(KERN_CONT
" %lld",
860 re
->zones
[i
]->devs
[j
]->devid
);
863 printk(KERN_CONT
"\n");
864 index
= (re
->logical
>> PAGE_CACHE_SHIFT
) + 1;
873 struct reada_extent
*re
= NULL
;
875 ret
= radix_tree_gang_lookup(&fs_info
->reada_tree
, (void **)&re
,
879 if (!re
->scheduled_for
) {
880 index
= (re
->logical
>> PAGE_CACHE_SHIFT
) + 1;
884 "re: logical %llu size %u list empty %d for %lld",
885 re
->logical
, fs_info
->tree_root
->nodesize
,
886 list_empty(&re
->extctl
),
887 re
->scheduled_for
? re
->scheduled_for
->devid
: -1);
888 for (i
= 0; i
< re
->nzones
; ++i
) {
889 printk(KERN_CONT
" zone %llu-%llu devs",
892 for (i
= 0; i
< re
->nzones
; ++i
) {
893 printk(KERN_CONT
" zone %llu-%llu devs",
896 for (j
= 0; j
< re
->zones
[i
]->ndevs
; ++j
) {
897 printk(KERN_CONT
" %lld",
898 re
->zones
[i
]->devs
[j
]->devid
);
902 printk(KERN_CONT
"\n");
903 index
= (re
->logical
>> PAGE_CACHE_SHIFT
) + 1;
905 spin_unlock(&fs_info
->reada_lock
);
912 struct reada_control
*btrfs_reada_add(struct btrfs_root
*root
,
913 struct btrfs_key
*key_start
, struct btrfs_key
*key_end
)
915 struct reada_control
*rc
;
919 struct extent_buffer
*node
;
920 static struct btrfs_key max_key
= {
926 rc
= kzalloc(sizeof(*rc
), GFP_NOFS
);
928 return ERR_PTR(-ENOMEM
);
931 rc
->key_start
= *key_start
;
932 rc
->key_end
= *key_end
;
933 atomic_set(&rc
->elems
, 0);
934 init_waitqueue_head(&rc
->wait
);
935 kref_init(&rc
->refcnt
);
936 kref_get(&rc
->refcnt
); /* one ref for having elements */
938 node
= btrfs_root_node(root
);
940 level
= btrfs_header_level(node
);
941 generation
= btrfs_header_generation(node
);
942 free_extent_buffer(node
);
944 if (reada_add_block(rc
, start
, &max_key
, level
, generation
)) {
946 return ERR_PTR(-ENOMEM
);
949 reada_start_machine(root
->fs_info
);
955 int btrfs_reada_wait(void *handle
)
957 struct reada_control
*rc
= handle
;
959 while (atomic_read(&rc
->elems
)) {
960 wait_event_timeout(rc
->wait
, atomic_read(&rc
->elems
) == 0,
962 dump_devs(rc
->root
->fs_info
,
963 atomic_read(&rc
->elems
) < 10 ? 1 : 0);
966 dump_devs(rc
->root
->fs_info
, atomic_read(&rc
->elems
) < 10 ? 1 : 0);
968 kref_put(&rc
->refcnt
, reada_control_release
);
973 int btrfs_reada_wait(void *handle
)
975 struct reada_control
*rc
= handle
;
977 while (atomic_read(&rc
->elems
)) {
978 wait_event(rc
->wait
, atomic_read(&rc
->elems
) == 0);
981 kref_put(&rc
->refcnt
, reada_control_release
);
987 void btrfs_reada_detach(void *handle
)
989 struct reada_control
*rc
= handle
;
991 kref_put(&rc
->refcnt
, reada_control_release
);