2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION
);
78 MODULE_LICENSE("GPL");
80 static int hpsa_allow_any
;
81 module_param(hpsa_allow_any
, int, S_IRUGO
|S_IWUSR
);
82 MODULE_PARM_DESC(hpsa_allow_any
,
83 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode
;
85 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
86 MODULE_PARM_DESC(hpsa_simple_mode
,
87 "Use 'simple mode' rather than 'performant mode'");
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id
[] = {
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
131 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
132 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
133 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
134 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
135 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
137 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
138 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
139 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
140 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
141 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
142 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
143 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
147 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
149 /* board_id = Subsystem Device ID & Vendor ID
150 * product = Marketing Name for the board
151 * access = Address of the struct of function pointers
153 static struct board_type products
[] = {
154 {0x3241103C, "Smart Array P212", &SA5_access
},
155 {0x3243103C, "Smart Array P410", &SA5_access
},
156 {0x3245103C, "Smart Array P410i", &SA5_access
},
157 {0x3247103C, "Smart Array P411", &SA5_access
},
158 {0x3249103C, "Smart Array P812", &SA5_access
},
159 {0x324A103C, "Smart Array P712m", &SA5_access
},
160 {0x324B103C, "Smart Array P711m", &SA5_access
},
161 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
162 {0x3350103C, "Smart Array P222", &SA5_access
},
163 {0x3351103C, "Smart Array P420", &SA5_access
},
164 {0x3352103C, "Smart Array P421", &SA5_access
},
165 {0x3353103C, "Smart Array P822", &SA5_access
},
166 {0x3354103C, "Smart Array P420i", &SA5_access
},
167 {0x3355103C, "Smart Array P220i", &SA5_access
},
168 {0x3356103C, "Smart Array P721m", &SA5_access
},
169 {0x1921103C, "Smart Array P830i", &SA5_access
},
170 {0x1922103C, "Smart Array P430", &SA5_access
},
171 {0x1923103C, "Smart Array P431", &SA5_access
},
172 {0x1924103C, "Smart Array P830", &SA5_access
},
173 {0x1926103C, "Smart Array P731m", &SA5_access
},
174 {0x1928103C, "Smart Array P230i", &SA5_access
},
175 {0x1929103C, "Smart Array P530", &SA5_access
},
176 {0x21BD103C, "Smart Array P244br", &SA5_access
},
177 {0x21BE103C, "Smart Array P741m", &SA5_access
},
178 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
179 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
180 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
181 {0x21C2103C, "Smart Array P440", &SA5_access
},
182 {0x21C3103C, "Smart Array P441", &SA5_access
},
183 {0x21C4103C, "Smart Array", &SA5_access
},
184 {0x21C5103C, "Smart Array P841", &SA5_access
},
185 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
186 {0x21C7103C, "Smart HBA H240", &SA5_access
},
187 {0x21C8103C, "Smart HBA H241", &SA5_access
},
188 {0x21C9103C, "Smart Array", &SA5_access
},
189 {0x21CA103C, "Smart Array P246br", &SA5_access
},
190 {0x21CB103C, "Smart Array P840", &SA5_access
},
191 {0x21CC103C, "Smart Array", &SA5_access
},
192 {0x21CD103C, "Smart Array", &SA5_access
},
193 {0x21CE103C, "Smart HBA", &SA5_access
},
194 {0x05809005, "SmartHBA-SA", &SA5_access
},
195 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
196 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
197 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
198 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
199 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
200 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
201 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
202 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
203 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
204 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
205 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy
;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle
;
212 static int number_of_controllers
;
214 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
215 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
216 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
);
219 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
,
223 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
224 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
225 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
226 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
227 struct scsi_cmnd
*scmd
);
228 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
229 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
231 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
232 #define VPD_PAGE (1 << 8)
233 #define HPSA_SIMPLE_ERROR_BITS 0x03
235 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
236 static void hpsa_scan_start(struct Scsi_Host
*);
237 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
238 unsigned long elapsed_time
);
239 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
241 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
242 static int hpsa_eh_abort_handler(struct scsi_cmnd
*scsicmd
);
243 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
244 static int hpsa_slave_configure(struct scsi_device
*sdev
);
245 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
247 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
248 static int check_for_unit_attention(struct ctlr_info
*h
,
249 struct CommandList
*c
);
250 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
251 struct CommandList
*c
);
252 /* performant mode helper functions */
253 static void calc_bucket_map(int *bucket
, int num_buckets
,
254 int nsgs
, int min_blocks
, u32
*bucket_map
);
255 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
256 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
257 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
258 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
259 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
261 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
262 unsigned long *memory_bar
);
263 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
);
264 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
266 static inline void finish_cmd(struct CommandList
*c
);
267 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
268 #define BOARD_NOT_READY 0
269 #define BOARD_READY 1
270 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
271 static void hpsa_flush_cache(struct ctlr_info
*h
);
272 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
273 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
274 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
275 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
276 static u32
lockup_detected(struct ctlr_info
*h
);
277 static int detect_controller_lockup(struct ctlr_info
*h
);
278 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
);
280 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
282 unsigned long *priv
= shost_priv(sdev
->host
);
283 return (struct ctlr_info
*) *priv
;
286 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
288 unsigned long *priv
= shost_priv(sh
);
289 return (struct ctlr_info
*) *priv
;
292 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
294 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
297 static inline bool hpsa_is_pending_event(struct CommandList
*c
)
299 return c
->abort_pending
|| c
->reset_pending
;
302 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
303 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
304 u8
*sense_key
, u8
*asc
, u8
*ascq
)
306 struct scsi_sense_hdr sshdr
;
313 if (sense_data_len
< 1)
316 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
318 *sense_key
= sshdr
.sense_key
;
324 static int check_for_unit_attention(struct ctlr_info
*h
,
325 struct CommandList
*c
)
327 u8 sense_key
, asc
, ascq
;
330 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
331 sense_len
= sizeof(c
->err_info
->SenseInfo
);
333 sense_len
= c
->err_info
->SenseLen
;
335 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
336 &sense_key
, &asc
, &ascq
);
337 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
342 dev_warn(&h
->pdev
->dev
,
343 "%s: a state change detected, command retried\n",
347 dev_warn(&h
->pdev
->dev
,
348 "%s: LUN failure detected\n", h
->devname
);
350 case REPORT_LUNS_CHANGED
:
351 dev_warn(&h
->pdev
->dev
,
352 "%s: report LUN data changed\n", h
->devname
);
354 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
355 * target (array) devices.
359 dev_warn(&h
->pdev
->dev
,
360 "%s: a power on or device reset detected\n",
363 case UNIT_ATTENTION_CLEARED
:
364 dev_warn(&h
->pdev
->dev
,
365 "%s: unit attention cleared by another initiator\n",
369 dev_warn(&h
->pdev
->dev
,
370 "%s: unknown unit attention detected\n",
377 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
379 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
380 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
381 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
383 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
387 static u32
lockup_detected(struct ctlr_info
*h
);
388 static ssize_t
host_show_lockup_detected(struct device
*dev
,
389 struct device_attribute
*attr
, char *buf
)
393 struct Scsi_Host
*shost
= class_to_shost(dev
);
395 h
= shost_to_hba(shost
);
396 ld
= lockup_detected(h
);
398 return sprintf(buf
, "ld=%d\n", ld
);
401 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
402 struct device_attribute
*attr
,
403 const char *buf
, size_t count
)
407 struct Scsi_Host
*shost
= class_to_shost(dev
);
410 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
412 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
413 strncpy(tmpbuf
, buf
, len
);
415 if (sscanf(tmpbuf
, "%d", &status
) != 1)
417 h
= shost_to_hba(shost
);
418 h
->acciopath_status
= !!status
;
419 dev_warn(&h
->pdev
->dev
,
420 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
421 h
->acciopath_status
? "enabled" : "disabled");
425 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
426 struct device_attribute
*attr
,
427 const char *buf
, size_t count
)
429 int debug_level
, len
;
431 struct Scsi_Host
*shost
= class_to_shost(dev
);
434 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
436 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
437 strncpy(tmpbuf
, buf
, len
);
439 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
443 h
= shost_to_hba(shost
);
444 h
->raid_offload_debug
= debug_level
;
445 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
446 h
->raid_offload_debug
);
450 static ssize_t
host_store_rescan(struct device
*dev
,
451 struct device_attribute
*attr
,
452 const char *buf
, size_t count
)
455 struct Scsi_Host
*shost
= class_to_shost(dev
);
456 h
= shost_to_hba(shost
);
457 hpsa_scan_start(h
->scsi_host
);
461 static ssize_t
host_show_firmware_revision(struct device
*dev
,
462 struct device_attribute
*attr
, char *buf
)
465 struct Scsi_Host
*shost
= class_to_shost(dev
);
466 unsigned char *fwrev
;
468 h
= shost_to_hba(shost
);
469 if (!h
->hba_inquiry_data
)
471 fwrev
= &h
->hba_inquiry_data
[32];
472 return snprintf(buf
, 20, "%c%c%c%c\n",
473 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
476 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
477 struct device_attribute
*attr
, char *buf
)
479 struct Scsi_Host
*shost
= class_to_shost(dev
);
480 struct ctlr_info
*h
= shost_to_hba(shost
);
482 return snprintf(buf
, 20, "%d\n",
483 atomic_read(&h
->commands_outstanding
));
486 static ssize_t
host_show_transport_mode(struct device
*dev
,
487 struct device_attribute
*attr
, char *buf
)
490 struct Scsi_Host
*shost
= class_to_shost(dev
);
492 h
= shost_to_hba(shost
);
493 return snprintf(buf
, 20, "%s\n",
494 h
->transMethod
& CFGTBL_Trans_Performant
?
495 "performant" : "simple");
498 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
499 struct device_attribute
*attr
, char *buf
)
502 struct Scsi_Host
*shost
= class_to_shost(dev
);
504 h
= shost_to_hba(shost
);
505 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
506 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
509 /* List of controllers which cannot be hard reset on kexec with reset_devices */
510 static u32 unresettable_controller
[] = {
511 0x324a103C, /* Smart Array P712m */
512 0x324b103C, /* Smart Array P711m */
513 0x3223103C, /* Smart Array P800 */
514 0x3234103C, /* Smart Array P400 */
515 0x3235103C, /* Smart Array P400i */
516 0x3211103C, /* Smart Array E200i */
517 0x3212103C, /* Smart Array E200 */
518 0x3213103C, /* Smart Array E200i */
519 0x3214103C, /* Smart Array E200i */
520 0x3215103C, /* Smart Array E200i */
521 0x3237103C, /* Smart Array E500 */
522 0x323D103C, /* Smart Array P700m */
523 0x40800E11, /* Smart Array 5i */
524 0x409C0E11, /* Smart Array 6400 */
525 0x409D0E11, /* Smart Array 6400 EM */
526 0x40700E11, /* Smart Array 5300 */
527 0x40820E11, /* Smart Array 532 */
528 0x40830E11, /* Smart Array 5312 */
529 0x409A0E11, /* Smart Array 641 */
530 0x409B0E11, /* Smart Array 642 */
531 0x40910E11, /* Smart Array 6i */
534 /* List of controllers which cannot even be soft reset */
535 static u32 soft_unresettable_controller
[] = {
536 0x40800E11, /* Smart Array 5i */
537 0x40700E11, /* Smart Array 5300 */
538 0x40820E11, /* Smart Array 532 */
539 0x40830E11, /* Smart Array 5312 */
540 0x409A0E11, /* Smart Array 641 */
541 0x409B0E11, /* Smart Array 642 */
542 0x40910E11, /* Smart Array 6i */
543 /* Exclude 640x boards. These are two pci devices in one slot
544 * which share a battery backed cache module. One controls the
545 * cache, the other accesses the cache through the one that controls
546 * it. If we reset the one controlling the cache, the other will
547 * likely not be happy. Just forbid resetting this conjoined mess.
548 * The 640x isn't really supported by hpsa anyway.
550 0x409C0E11, /* Smart Array 6400 */
551 0x409D0E11, /* Smart Array 6400 EM */
554 static u32 needs_abort_tags_swizzled
[] = {
555 0x323D103C, /* Smart Array P700m */
556 0x324a103C, /* Smart Array P712m */
557 0x324b103C, /* SmartArray P711m */
560 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
564 for (i
= 0; i
< nelems
; i
++)
565 if (a
[i
] == board_id
)
570 static int ctlr_is_hard_resettable(u32 board_id
)
572 return !board_id_in_array(unresettable_controller
,
573 ARRAY_SIZE(unresettable_controller
), board_id
);
576 static int ctlr_is_soft_resettable(u32 board_id
)
578 return !board_id_in_array(soft_unresettable_controller
,
579 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
582 static int ctlr_is_resettable(u32 board_id
)
584 return ctlr_is_hard_resettable(board_id
) ||
585 ctlr_is_soft_resettable(board_id
);
588 static int ctlr_needs_abort_tags_swizzled(u32 board_id
)
590 return board_id_in_array(needs_abort_tags_swizzled
,
591 ARRAY_SIZE(needs_abort_tags_swizzled
), board_id
);
594 static ssize_t
host_show_resettable(struct device
*dev
,
595 struct device_attribute
*attr
, char *buf
)
598 struct Scsi_Host
*shost
= class_to_shost(dev
);
600 h
= shost_to_hba(shost
);
601 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
604 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
606 return (scsi3addr
[3] & 0xC0) == 0x40;
609 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
610 "1(+0)ADM", "UNKNOWN"
612 #define HPSA_RAID_0 0
613 #define HPSA_RAID_4 1
614 #define HPSA_RAID_1 2 /* also used for RAID 10 */
615 #define HPSA_RAID_5 3 /* also used for RAID 50 */
616 #define HPSA_RAID_51 4
617 #define HPSA_RAID_6 5 /* also used for RAID 60 */
618 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
619 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
621 static ssize_t
raid_level_show(struct device
*dev
,
622 struct device_attribute
*attr
, char *buf
)
625 unsigned char rlevel
;
627 struct scsi_device
*sdev
;
628 struct hpsa_scsi_dev_t
*hdev
;
631 sdev
= to_scsi_device(dev
);
632 h
= sdev_to_hba(sdev
);
633 spin_lock_irqsave(&h
->lock
, flags
);
634 hdev
= sdev
->hostdata
;
636 spin_unlock_irqrestore(&h
->lock
, flags
);
640 /* Is this even a logical drive? */
641 if (!is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
642 spin_unlock_irqrestore(&h
->lock
, flags
);
643 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
647 rlevel
= hdev
->raid_level
;
648 spin_unlock_irqrestore(&h
->lock
, flags
);
649 if (rlevel
> RAID_UNKNOWN
)
650 rlevel
= RAID_UNKNOWN
;
651 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
655 static ssize_t
lunid_show(struct device
*dev
,
656 struct device_attribute
*attr
, char *buf
)
659 struct scsi_device
*sdev
;
660 struct hpsa_scsi_dev_t
*hdev
;
662 unsigned char lunid
[8];
664 sdev
= to_scsi_device(dev
);
665 h
= sdev_to_hba(sdev
);
666 spin_lock_irqsave(&h
->lock
, flags
);
667 hdev
= sdev
->hostdata
;
669 spin_unlock_irqrestore(&h
->lock
, flags
);
672 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
673 spin_unlock_irqrestore(&h
->lock
, flags
);
674 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
675 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
676 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
679 static ssize_t
unique_id_show(struct device
*dev
,
680 struct device_attribute
*attr
, char *buf
)
683 struct scsi_device
*sdev
;
684 struct hpsa_scsi_dev_t
*hdev
;
686 unsigned char sn
[16];
688 sdev
= to_scsi_device(dev
);
689 h
= sdev_to_hba(sdev
);
690 spin_lock_irqsave(&h
->lock
, flags
);
691 hdev
= sdev
->hostdata
;
693 spin_unlock_irqrestore(&h
->lock
, flags
);
696 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
697 spin_unlock_irqrestore(&h
->lock
, flags
);
698 return snprintf(buf
, 16 * 2 + 2,
699 "%02X%02X%02X%02X%02X%02X%02X%02X"
700 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
701 sn
[0], sn
[1], sn
[2], sn
[3],
702 sn
[4], sn
[5], sn
[6], sn
[7],
703 sn
[8], sn
[9], sn
[10], sn
[11],
704 sn
[12], sn
[13], sn
[14], sn
[15]);
707 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
708 struct device_attribute
*attr
, char *buf
)
711 struct scsi_device
*sdev
;
712 struct hpsa_scsi_dev_t
*hdev
;
716 sdev
= to_scsi_device(dev
);
717 h
= sdev_to_hba(sdev
);
718 spin_lock_irqsave(&h
->lock
, flags
);
719 hdev
= sdev
->hostdata
;
721 spin_unlock_irqrestore(&h
->lock
, flags
);
724 offload_enabled
= hdev
->offload_enabled
;
725 spin_unlock_irqrestore(&h
->lock
, flags
);
726 return snprintf(buf
, 20, "%d\n", offload_enabled
);
730 #define PATH_STRING_LEN 50
732 static ssize_t
path_info_show(struct device
*dev
,
733 struct device_attribute
*attr
, char *buf
)
736 struct scsi_device
*sdev
;
737 struct hpsa_scsi_dev_t
*hdev
;
743 u8 path_map_index
= 0;
745 unsigned char phys_connector
[2];
746 unsigned char path
[MAX_PATHS
][PATH_STRING_LEN
];
748 memset(path
, 0, MAX_PATHS
* PATH_STRING_LEN
);
749 sdev
= to_scsi_device(dev
);
750 h
= sdev_to_hba(sdev
);
751 spin_lock_irqsave(&h
->devlock
, flags
);
752 hdev
= sdev
->hostdata
;
754 spin_unlock_irqrestore(&h
->devlock
, flags
);
759 for (i
= 0; i
< MAX_PATHS
; i
++) {
760 path_map_index
= 1<<i
;
761 if (i
== hdev
->active_path_index
)
763 else if (hdev
->path_map
& path_map_index
)
768 output_len
= snprintf(path
[i
],
769 PATH_STRING_LEN
, "[%d:%d:%d:%d] %20.20s ",
770 h
->scsi_host
->host_no
,
771 hdev
->bus
, hdev
->target
, hdev
->lun
,
772 scsi_device_type(hdev
->devtype
));
774 if (is_ext_target(h
, hdev
) ||
775 (hdev
->devtype
== TYPE_RAID
) ||
776 is_logical_dev_addr_mode(hdev
->scsi3addr
)) {
777 output_len
+= snprintf(path
[i
] + output_len
,
778 PATH_STRING_LEN
, "%s\n",
784 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
785 sizeof(phys_connector
));
786 if (phys_connector
[0] < '0')
787 phys_connector
[0] = '0';
788 if (phys_connector
[1] < '0')
789 phys_connector
[1] = '0';
790 if (hdev
->phys_connector
[i
] > 0)
791 output_len
+= snprintf(path
[i
] + output_len
,
795 if (hdev
->devtype
== TYPE_DISK
&&
796 hdev
->expose_state
!= HPSA_DO_NOT_EXPOSE
) {
797 if (box
== 0 || box
== 0xFF) {
798 output_len
+= snprintf(path
[i
] + output_len
,
803 output_len
+= snprintf(path
[i
] + output_len
,
805 "BOX: %hhu BAY: %hhu %s\n",
808 } else if (box
!= 0 && box
!= 0xFF) {
809 output_len
+= snprintf(path
[i
] + output_len
,
810 PATH_STRING_LEN
, "BOX: %hhu %s\n",
813 output_len
+= snprintf(path
[i
] + output_len
,
814 PATH_STRING_LEN
, "%s\n", active
);
817 spin_unlock_irqrestore(&h
->devlock
, flags
);
818 return snprintf(buf
, output_len
+1, "%s%s%s%s%s%s%s%s",
819 path
[0], path
[1], path
[2], path
[3],
820 path
[4], path
[5], path
[6], path
[7]);
823 static DEVICE_ATTR(raid_level
, S_IRUGO
, raid_level_show
, NULL
);
824 static DEVICE_ATTR(lunid
, S_IRUGO
, lunid_show
, NULL
);
825 static DEVICE_ATTR(unique_id
, S_IRUGO
, unique_id_show
, NULL
);
826 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
827 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
828 host_show_hp_ssd_smart_path_enabled
, NULL
);
829 static DEVICE_ATTR(path_info
, S_IRUGO
, path_info_show
, NULL
);
830 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
831 host_show_hp_ssd_smart_path_status
,
832 host_store_hp_ssd_smart_path_status
);
833 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
834 host_store_raid_offload_debug
);
835 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
836 host_show_firmware_revision
, NULL
);
837 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
838 host_show_commands_outstanding
, NULL
);
839 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
840 host_show_transport_mode
, NULL
);
841 static DEVICE_ATTR(resettable
, S_IRUGO
,
842 host_show_resettable
, NULL
);
843 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
844 host_show_lockup_detected
, NULL
);
846 static struct device_attribute
*hpsa_sdev_attrs
[] = {
847 &dev_attr_raid_level
,
850 &dev_attr_hp_ssd_smart_path_enabled
,
852 &dev_attr_lockup_detected
,
856 static struct device_attribute
*hpsa_shost_attrs
[] = {
858 &dev_attr_firmware_revision
,
859 &dev_attr_commands_outstanding
,
860 &dev_attr_transport_mode
,
861 &dev_attr_resettable
,
862 &dev_attr_hp_ssd_smart_path_status
,
863 &dev_attr_raid_offload_debug
,
867 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
868 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
870 static struct scsi_host_template hpsa_driver_template
= {
871 .module
= THIS_MODULE
,
874 .queuecommand
= hpsa_scsi_queue_command
,
875 .scan_start
= hpsa_scan_start
,
876 .scan_finished
= hpsa_scan_finished
,
877 .change_queue_depth
= hpsa_change_queue_depth
,
879 .use_clustering
= ENABLE_CLUSTERING
,
880 .eh_abort_handler
= hpsa_eh_abort_handler
,
881 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
883 .slave_alloc
= hpsa_slave_alloc
,
884 .slave_configure
= hpsa_slave_configure
,
885 .slave_destroy
= hpsa_slave_destroy
,
887 .compat_ioctl
= hpsa_compat_ioctl
,
889 .sdev_attrs
= hpsa_sdev_attrs
,
890 .shost_attrs
= hpsa_shost_attrs
,
895 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
898 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
900 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
901 return h
->access
.command_completed(h
, q
);
903 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
904 return h
->access
.command_completed(h
, q
);
906 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
907 a
= rq
->head
[rq
->current_entry
];
909 atomic_dec(&h
->commands_outstanding
);
913 /* Check for wraparound */
914 if (rq
->current_entry
== h
->max_commands
) {
915 rq
->current_entry
= 0;
922 * There are some special bits in the bus address of the
923 * command that we have to set for the controller to know
924 * how to process the command:
926 * Normal performant mode:
927 * bit 0: 1 means performant mode, 0 means simple mode.
928 * bits 1-3 = block fetch table entry
929 * bits 4-6 = command type (== 0)
932 * bit 0 = "performant mode" bit.
933 * bits 1-3 = block fetch table entry
934 * bits 4-6 = command type (== 110)
935 * (command type is needed because ioaccel1 mode
936 * commands are submitted through the same register as normal
937 * mode commands, so this is how the controller knows whether
938 * the command is normal mode or ioaccel1 mode.)
941 * bit 0 = "performant mode" bit.
942 * bits 1-4 = block fetch table entry (note extra bit)
943 * bits 4-6 = not needed, because ioaccel2 mode has
944 * a separate special register for submitting commands.
948 * set_performant_mode: Modify the tag for cciss performant
949 * set bit 0 for pull model, bits 3-1 for block fetch
952 #define DEFAULT_REPLY_QUEUE (-1)
953 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
956 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
957 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
958 if (unlikely(!h
->msix_vector
))
960 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
961 c
->Header
.ReplyQueue
=
962 raw_smp_processor_id() % h
->nreply_queues
;
964 c
->Header
.ReplyQueue
= reply_queue
% h
->nreply_queues
;
968 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
969 struct CommandList
*c
,
972 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
975 * Tell the controller to post the reply to the queue for this
976 * processor. This seems to give the best I/O throughput.
978 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
979 cp
->ReplyQueue
= smp_processor_id() % h
->nreply_queues
;
981 cp
->ReplyQueue
= reply_queue
% h
->nreply_queues
;
983 * Set the bits in the address sent down to include:
984 * - performant mode bit (bit 0)
985 * - pull count (bits 1-3)
986 * - command type (bits 4-6)
988 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
989 IOACCEL1_BUSADDR_CMDTYPE
;
992 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
993 struct CommandList
*c
,
996 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
997 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
999 /* Tell the controller to post the reply to the queue for this
1000 * processor. This seems to give the best I/O throughput.
1002 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1003 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1005 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1006 /* Set the bits in the address sent down to include:
1007 * - performant mode bit not used in ioaccel mode 2
1008 * - pull count (bits 0-3)
1009 * - command type isn't needed for ioaccel2
1011 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1014 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1015 struct CommandList
*c
,
1018 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1021 * Tell the controller to post the reply to the queue for this
1022 * processor. This seems to give the best I/O throughput.
1024 if (likely(reply_queue
== DEFAULT_REPLY_QUEUE
))
1025 cp
->reply_queue
= smp_processor_id() % h
->nreply_queues
;
1027 cp
->reply_queue
= reply_queue
% h
->nreply_queues
;
1029 * Set the bits in the address sent down to include:
1030 * - performant mode bit not used in ioaccel mode 2
1031 * - pull count (bits 0-3)
1032 * - command type isn't needed for ioaccel2
1034 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1037 static int is_firmware_flash_cmd(u8
*cdb
)
1039 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1043 * During firmware flash, the heartbeat register may not update as frequently
1044 * as it should. So we dial down lockup detection during firmware flash. and
1045 * dial it back up when firmware flash completes.
1047 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1048 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1049 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1050 struct CommandList
*c
)
1052 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1054 atomic_inc(&h
->firmware_flash_in_progress
);
1055 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1058 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1059 struct CommandList
*c
)
1061 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1062 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1063 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1066 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1067 struct CommandList
*c
, int reply_queue
)
1069 dial_down_lockup_detection_during_fw_flash(h
, c
);
1070 atomic_inc(&h
->commands_outstanding
);
1071 switch (c
->cmd_type
) {
1073 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1074 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1077 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1078 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1081 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1082 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1085 set_performant_mode(h
, c
, reply_queue
);
1086 h
->access
.submit_command(h
, c
);
1090 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1092 if (unlikely(hpsa_is_pending_event(c
)))
1093 return finish_cmd(c
);
1095 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1098 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1100 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1103 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1105 if (!h
->hba_inquiry_data
)
1107 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1112 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1113 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1115 /* finds an unused bus, target, lun for a new physical device
1116 * assumes h->devlock is held
1119 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1121 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1123 for (i
= 0; i
< h
->ndevices
; i
++) {
1124 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1125 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1128 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1129 if (i
< HPSA_MAX_DEVICES
) {
1138 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1139 struct hpsa_scsi_dev_t
*dev
, char *description
)
1141 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1144 dev_printk(level
, &h
->pdev
->dev
,
1145 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1146 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1148 scsi_device_type(dev
->devtype
),
1151 dev
->raid_level
> RAID_UNKNOWN
?
1152 "RAID-?" : raid_label
[dev
->raid_level
],
1153 dev
->offload_config
? '+' : '-',
1154 dev
->offload_enabled
? '+' : '-',
1158 /* Add an entry into h->dev[] array. */
1159 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1160 struct hpsa_scsi_dev_t
*device
,
1161 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1163 /* assumes h->devlock is held */
1164 int n
= h
->ndevices
;
1166 unsigned char addr1
[8], addr2
[8];
1167 struct hpsa_scsi_dev_t
*sd
;
1169 if (n
>= HPSA_MAX_DEVICES
) {
1170 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1175 /* physical devices do not have lun or target assigned until now. */
1176 if (device
->lun
!= -1)
1177 /* Logical device, lun is already assigned. */
1180 /* If this device a non-zero lun of a multi-lun device
1181 * byte 4 of the 8-byte LUN addr will contain the logical
1182 * unit no, zero otherwise.
1184 if (device
->scsi3addr
[4] == 0) {
1185 /* This is not a non-zero lun of a multi-lun device */
1186 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1187 device
->bus
, &device
->target
, &device
->lun
) != 0)
1192 /* This is a non-zero lun of a multi-lun device.
1193 * Search through our list and find the device which
1194 * has the same 8 byte LUN address, excepting byte 4 and 5.
1195 * Assign the same bus and target for this new LUN.
1196 * Use the logical unit number from the firmware.
1198 memcpy(addr1
, device
->scsi3addr
, 8);
1201 for (i
= 0; i
< n
; i
++) {
1203 memcpy(addr2
, sd
->scsi3addr
, 8);
1206 /* differ only in byte 4 and 5? */
1207 if (memcmp(addr1
, addr2
, 8) == 0) {
1208 device
->bus
= sd
->bus
;
1209 device
->target
= sd
->target
;
1210 device
->lun
= device
->scsi3addr
[4];
1214 if (device
->lun
== -1) {
1215 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1216 " suspect firmware bug or unsupported hardware "
1217 "configuration.\n");
1225 added
[*nadded
] = device
;
1227 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1228 device
->expose_state
& HPSA_SCSI_ADD
? "added" : "masked");
1229 device
->offload_to_be_enabled
= device
->offload_enabled
;
1230 device
->offload_enabled
= 0;
1234 /* Update an entry in h->dev[] array. */
1235 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1236 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1238 int offload_enabled
;
1239 /* assumes h->devlock is held */
1240 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1242 /* Raid level changed. */
1243 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1245 /* Raid offload parameters changed. Careful about the ordering. */
1246 if (new_entry
->offload_config
&& new_entry
->offload_enabled
) {
1248 * if drive is newly offload_enabled, we want to copy the
1249 * raid map data first. If previously offload_enabled and
1250 * offload_config were set, raid map data had better be
1251 * the same as it was before. if raid map data is changed
1252 * then it had better be the case that
1253 * h->dev[entry]->offload_enabled is currently 0.
1255 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1256 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1258 if (new_entry
->hba_ioaccel_enabled
) {
1259 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1260 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1262 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1263 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1264 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1265 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1268 * We can turn off ioaccel offload now, but need to delay turning
1269 * it on until we can update h->dev[entry]->phys_disk[], but we
1270 * can't do that until all the devices are updated.
1272 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_enabled
;
1273 if (!new_entry
->offload_enabled
)
1274 h
->dev
[entry
]->offload_enabled
= 0;
1276 offload_enabled
= h
->dev
[entry
]->offload_enabled
;
1277 h
->dev
[entry
]->offload_enabled
= h
->dev
[entry
]->offload_to_be_enabled
;
1278 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1279 h
->dev
[entry
]->offload_enabled
= offload_enabled
;
1282 /* Replace an entry from h->dev[] array. */
1283 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1284 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1285 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1286 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1288 /* assumes h->devlock is held */
1289 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1290 removed
[*nremoved
] = h
->dev
[entry
];
1294 * New physical devices won't have target/lun assigned yet
1295 * so we need to preserve the values in the slot we are replacing.
1297 if (new_entry
->target
== -1) {
1298 new_entry
->target
= h
->dev
[entry
]->target
;
1299 new_entry
->lun
= h
->dev
[entry
]->lun
;
1302 h
->dev
[entry
] = new_entry
;
1303 added
[*nadded
] = new_entry
;
1305 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1306 new_entry
->offload_to_be_enabled
= new_entry
->offload_enabled
;
1307 new_entry
->offload_enabled
= 0;
1310 /* Remove an entry from h->dev[] array. */
1311 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1312 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1314 /* assumes h->devlock is held */
1316 struct hpsa_scsi_dev_t
*sd
;
1318 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1321 removed
[*nremoved
] = h
->dev
[entry
];
1324 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1325 h
->dev
[i
] = h
->dev
[i
+1];
1327 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1330 #define SCSI3ADDR_EQ(a, b) ( \
1331 (a)[7] == (b)[7] && \
1332 (a)[6] == (b)[6] && \
1333 (a)[5] == (b)[5] && \
1334 (a)[4] == (b)[4] && \
1335 (a)[3] == (b)[3] && \
1336 (a)[2] == (b)[2] && \
1337 (a)[1] == (b)[1] && \
1340 static void fixup_botched_add(struct ctlr_info
*h
,
1341 struct hpsa_scsi_dev_t
*added
)
1343 /* called when scsi_add_device fails in order to re-adjust
1344 * h->dev[] to match the mid layer's view.
1346 unsigned long flags
;
1349 spin_lock_irqsave(&h
->lock
, flags
);
1350 for (i
= 0; i
< h
->ndevices
; i
++) {
1351 if (h
->dev
[i
] == added
) {
1352 for (j
= i
; j
< h
->ndevices
-1; j
++)
1353 h
->dev
[j
] = h
->dev
[j
+1];
1358 spin_unlock_irqrestore(&h
->lock
, flags
);
1362 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1363 struct hpsa_scsi_dev_t
*dev2
)
1365 /* we compare everything except lun and target as these
1366 * are not yet assigned. Compare parts likely
1369 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1370 sizeof(dev1
->scsi3addr
)) != 0)
1372 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1373 sizeof(dev1
->device_id
)) != 0)
1375 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1377 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1379 if (dev1
->devtype
!= dev2
->devtype
)
1381 if (dev1
->bus
!= dev2
->bus
)
1386 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1387 struct hpsa_scsi_dev_t
*dev2
)
1389 /* Device attributes that can change, but don't mean
1390 * that the device is a different device, nor that the OS
1391 * needs to be told anything about the change.
1393 if (dev1
->raid_level
!= dev2
->raid_level
)
1395 if (dev1
->offload_config
!= dev2
->offload_config
)
1397 if (dev1
->offload_enabled
!= dev2
->offload_enabled
)
1399 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1400 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1405 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1406 * and return needle location in *index. If scsi3addr matches, but not
1407 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1408 * location in *index.
1409 * In the case of a minor device attribute change, such as RAID level, just
1410 * return DEVICE_UPDATED, along with the updated device's location in index.
1411 * If needle not found, return DEVICE_NOT_FOUND.
1413 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1414 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1418 #define DEVICE_NOT_FOUND 0
1419 #define DEVICE_CHANGED 1
1420 #define DEVICE_SAME 2
1421 #define DEVICE_UPDATED 3
1423 return DEVICE_NOT_FOUND
;
1425 for (i
= 0; i
< haystack_size
; i
++) {
1426 if (haystack
[i
] == NULL
) /* previously removed. */
1428 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1430 if (device_is_the_same(needle
, haystack
[i
])) {
1431 if (device_updated(needle
, haystack
[i
]))
1432 return DEVICE_UPDATED
;
1435 /* Keep offline devices offline */
1436 if (needle
->volume_offline
)
1437 return DEVICE_NOT_FOUND
;
1438 return DEVICE_CHANGED
;
1443 return DEVICE_NOT_FOUND
;
1446 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1447 unsigned char scsi3addr
[])
1449 struct offline_device_entry
*device
;
1450 unsigned long flags
;
1452 /* Check to see if device is already on the list */
1453 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1454 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1455 if (memcmp(device
->scsi3addr
, scsi3addr
,
1456 sizeof(device
->scsi3addr
)) == 0) {
1457 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1461 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1463 /* Device is not on the list, add it. */
1464 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1466 dev_warn(&h
->pdev
->dev
, "out of memory in %s\n", __func__
);
1469 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1470 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1471 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1472 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1475 /* Print a message explaining various offline volume states */
1476 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1477 struct hpsa_scsi_dev_t
*sd
)
1479 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1480 dev_info(&h
->pdev
->dev
,
1481 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1482 h
->scsi_host
->host_no
,
1483 sd
->bus
, sd
->target
, sd
->lun
);
1484 switch (sd
->volume_offline
) {
1487 case HPSA_LV_UNDERGOING_ERASE
:
1488 dev_info(&h
->pdev
->dev
,
1489 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1490 h
->scsi_host
->host_no
,
1491 sd
->bus
, sd
->target
, sd
->lun
);
1493 case HPSA_LV_NOT_AVAILABLE
:
1494 dev_info(&h
->pdev
->dev
,
1495 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1496 h
->scsi_host
->host_no
,
1497 sd
->bus
, sd
->target
, sd
->lun
);
1499 case HPSA_LV_UNDERGOING_RPI
:
1500 dev_info(&h
->pdev
->dev
,
1501 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1502 h
->scsi_host
->host_no
,
1503 sd
->bus
, sd
->target
, sd
->lun
);
1505 case HPSA_LV_PENDING_RPI
:
1506 dev_info(&h
->pdev
->dev
,
1507 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1508 h
->scsi_host
->host_no
,
1509 sd
->bus
, sd
->target
, sd
->lun
);
1511 case HPSA_LV_ENCRYPTED_NO_KEY
:
1512 dev_info(&h
->pdev
->dev
,
1513 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1514 h
->scsi_host
->host_no
,
1515 sd
->bus
, sd
->target
, sd
->lun
);
1517 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1518 dev_info(&h
->pdev
->dev
,
1519 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1520 h
->scsi_host
->host_no
,
1521 sd
->bus
, sd
->target
, sd
->lun
);
1523 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1524 dev_info(&h
->pdev
->dev
,
1525 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1526 h
->scsi_host
->host_no
,
1527 sd
->bus
, sd
->target
, sd
->lun
);
1529 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1530 dev_info(&h
->pdev
->dev
,
1531 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1532 h
->scsi_host
->host_no
,
1533 sd
->bus
, sd
->target
, sd
->lun
);
1535 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1536 dev_info(&h
->pdev
->dev
,
1537 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1538 h
->scsi_host
->host_no
,
1539 sd
->bus
, sd
->target
, sd
->lun
);
1541 case HPSA_LV_PENDING_ENCRYPTION
:
1542 dev_info(&h
->pdev
->dev
,
1543 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1544 h
->scsi_host
->host_no
,
1545 sd
->bus
, sd
->target
, sd
->lun
);
1547 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1548 dev_info(&h
->pdev
->dev
,
1549 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1550 h
->scsi_host
->host_no
,
1551 sd
->bus
, sd
->target
, sd
->lun
);
1557 * Figure the list of physical drive pointers for a logical drive with
1558 * raid offload configured.
1560 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1561 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1562 struct hpsa_scsi_dev_t
*logical_drive
)
1564 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1565 struct raid_map_disk_data
*dd
= &map
->data
[0];
1567 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1568 le16_to_cpu(map
->metadata_disks_per_row
);
1569 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1570 le16_to_cpu(map
->layout_map_count
) *
1571 total_disks_per_row
;
1572 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1573 total_disks_per_row
;
1576 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1577 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1579 logical_drive
->nphysical_disks
= nraid_map_entries
;
1582 for (i
= 0; i
< nraid_map_entries
; i
++) {
1583 logical_drive
->phys_disk
[i
] = NULL
;
1584 if (!logical_drive
->offload_config
)
1586 for (j
= 0; j
< ndevices
; j
++) {
1589 if (dev
[j
]->devtype
!= TYPE_DISK
)
1591 if (is_logical_dev_addr_mode(dev
[j
]->scsi3addr
))
1593 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1596 logical_drive
->phys_disk
[i
] = dev
[j
];
1598 qdepth
= min(h
->nr_cmds
, qdepth
+
1599 logical_drive
->phys_disk
[i
]->queue_depth
);
1604 * This can happen if a physical drive is removed and
1605 * the logical drive is degraded. In that case, the RAID
1606 * map data will refer to a physical disk which isn't actually
1607 * present. And in that case offload_enabled should already
1608 * be 0, but we'll turn it off here just in case
1610 if (!logical_drive
->phys_disk
[i
]) {
1611 logical_drive
->offload_enabled
= 0;
1612 logical_drive
->offload_to_be_enabled
= 0;
1613 logical_drive
->queue_depth
= 8;
1616 if (nraid_map_entries
)
1618 * This is correct for reads, too high for full stripe writes,
1619 * way too high for partial stripe writes
1621 logical_drive
->queue_depth
= qdepth
;
1623 logical_drive
->queue_depth
= h
->nr_cmds
;
1626 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1627 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1631 for (i
= 0; i
< ndevices
; i
++) {
1634 if (dev
[i
]->devtype
!= TYPE_DISK
)
1636 if (!is_logical_dev_addr_mode(dev
[i
]->scsi3addr
))
1640 * If offload is currently enabled, the RAID map and
1641 * phys_disk[] assignment *better* not be changing
1642 * and since it isn't changing, we do not need to
1645 if (dev
[i
]->offload_enabled
)
1648 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1652 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1653 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1655 /* sd contains scsi3 addresses and devtypes, and inquiry
1656 * data. This function takes what's in sd to be the current
1657 * reality and updates h->dev[] to reflect that reality.
1659 int i
, entry
, device_change
, changes
= 0;
1660 struct hpsa_scsi_dev_t
*csd
;
1661 unsigned long flags
;
1662 struct hpsa_scsi_dev_t
**added
, **removed
;
1663 int nadded
, nremoved
;
1664 struct Scsi_Host
*sh
= NULL
;
1667 * A reset can cause a device status to change
1668 * re-schedule the scan to see what happened.
1670 if (h
->reset_in_progress
) {
1671 h
->drv_req_rescan
= 1;
1675 added
= kzalloc(sizeof(*added
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1676 removed
= kzalloc(sizeof(*removed
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
1678 if (!added
|| !removed
) {
1679 dev_warn(&h
->pdev
->dev
, "out of memory in "
1680 "adjust_hpsa_scsi_table\n");
1684 spin_lock_irqsave(&h
->devlock
, flags
);
1686 /* find any devices in h->dev[] that are not in
1687 * sd[] and remove them from h->dev[], and for any
1688 * devices which have changed, remove the old device
1689 * info and add the new device info.
1690 * If minor device attributes change, just update
1691 * the existing device structure.
1696 while (i
< h
->ndevices
) {
1698 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1699 if (device_change
== DEVICE_NOT_FOUND
) {
1701 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1702 continue; /* remove ^^^, hence i not incremented */
1703 } else if (device_change
== DEVICE_CHANGED
) {
1705 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1706 added
, &nadded
, removed
, &nremoved
);
1707 /* Set it to NULL to prevent it from being freed
1708 * at the bottom of hpsa_update_scsi_devices()
1711 } else if (device_change
== DEVICE_UPDATED
) {
1712 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1717 /* Now, make sure every device listed in sd[] is also
1718 * listed in h->dev[], adding them if they aren't found
1721 for (i
= 0; i
< nsds
; i
++) {
1722 if (!sd
[i
]) /* if already added above. */
1725 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1726 * as the SCSI mid-layer does not handle such devices well.
1727 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1728 * at 160Hz, and prevents the system from coming up.
1730 if (sd
[i
]->volume_offline
) {
1731 hpsa_show_volume_status(h
, sd
[i
]);
1732 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
1736 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
1737 h
->ndevices
, &entry
);
1738 if (device_change
== DEVICE_NOT_FOUND
) {
1740 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
1742 sd
[i
] = NULL
; /* prevent from being freed later. */
1743 } else if (device_change
== DEVICE_CHANGED
) {
1744 /* should never happen... */
1746 dev_warn(&h
->pdev
->dev
,
1747 "device unexpectedly changed.\n");
1748 /* but if it does happen, we just ignore that device */
1751 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
1753 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1754 * any logical drives that need it enabled.
1756 for (i
= 0; i
< h
->ndevices
; i
++) {
1757 if (h
->dev
[i
] == NULL
)
1759 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
1762 spin_unlock_irqrestore(&h
->devlock
, flags
);
1764 /* Monitor devices which are in one of several NOT READY states to be
1765 * brought online later. This must be done without holding h->devlock,
1766 * so don't touch h->dev[]
1768 for (i
= 0; i
< nsds
; i
++) {
1769 if (!sd
[i
]) /* if already added above. */
1771 if (sd
[i
]->volume_offline
)
1772 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
1775 /* Don't notify scsi mid layer of any changes the first time through
1776 * (or if there are no changes) scsi_scan_host will do it later the
1777 * first time through.
1784 dev_warn(&h
->pdev
->dev
, "%s: scsi_host is null\n", __func__
);
1787 /* Notify scsi mid layer of any removed devices */
1788 for (i
= 0; i
< nremoved
; i
++) {
1789 if (removed
[i
] == NULL
)
1791 if (removed
[i
]->expose_state
& HPSA_SCSI_ADD
) {
1792 struct scsi_device
*sdev
=
1793 scsi_device_lookup(sh
, removed
[i
]->bus
,
1794 removed
[i
]->target
, removed
[i
]->lun
);
1796 scsi_remove_device(sdev
);
1797 scsi_device_put(sdev
);
1800 * We don't expect to get here.
1801 * future cmds to this device will get selection
1802 * timeout as if the device was gone.
1804 hpsa_show_dev_msg(KERN_WARNING
, h
, removed
[i
],
1805 "didn't find device for removal.");
1812 /* Notify scsi mid layer of any added devices */
1813 for (i
= 0; i
< nadded
; i
++) {
1814 if (added
[i
] == NULL
)
1816 if (!(added
[i
]->expose_state
& HPSA_SCSI_ADD
))
1818 if (scsi_add_device(sh
, added
[i
]->bus
,
1819 added
[i
]->target
, added
[i
]->lun
) == 0)
1821 dev_warn(&h
->pdev
->dev
, "addition failed, device not added.");
1822 /* now we have to remove it from h->dev,
1823 * since it didn't get added to scsi mid layer
1825 fixup_botched_add(h
, added
[i
]);
1826 h
->drv_req_rescan
= 1;
1835 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1836 * Assume's h->devlock is held.
1838 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
1839 int bus
, int target
, int lun
)
1842 struct hpsa_scsi_dev_t
*sd
;
1844 for (i
= 0; i
< h
->ndevices
; i
++) {
1846 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
1852 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
1854 struct hpsa_scsi_dev_t
*sd
;
1855 unsigned long flags
;
1856 struct ctlr_info
*h
;
1858 h
= sdev_to_hba(sdev
);
1859 spin_lock_irqsave(&h
->devlock
, flags
);
1860 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
1861 sdev_id(sdev
), sdev
->lun
);
1863 atomic_set(&sd
->ioaccel_cmds_out
, 0);
1864 sdev
->hostdata
= (sd
->expose_state
& HPSA_SCSI_ADD
) ? sd
: NULL
;
1866 sdev
->hostdata
= NULL
;
1867 spin_unlock_irqrestore(&h
->devlock
, flags
);
1871 /* configure scsi device based on internal per-device structure */
1872 static int hpsa_slave_configure(struct scsi_device
*sdev
)
1874 struct hpsa_scsi_dev_t
*sd
;
1877 sd
= sdev
->hostdata
;
1878 sdev
->no_uld_attach
= !sd
|| !(sd
->expose_state
& HPSA_ULD_ATTACH
);
1881 queue_depth
= sd
->queue_depth
!= 0 ?
1882 sd
->queue_depth
: sdev
->host
->can_queue
;
1884 queue_depth
= sdev
->host
->can_queue
;
1886 scsi_change_queue_depth(sdev
, queue_depth
);
1891 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
1893 /* nothing to do. */
1896 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1900 if (!h
->ioaccel2_cmd_sg_list
)
1902 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1903 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
1904 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
1906 kfree(h
->ioaccel2_cmd_sg_list
);
1907 h
->ioaccel2_cmd_sg_list
= NULL
;
1910 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
1914 if (h
->chainsize
<= 0)
1917 h
->ioaccel2_cmd_sg_list
=
1918 kzalloc(sizeof(*h
->ioaccel2_cmd_sg_list
) * h
->nr_cmds
,
1920 if (!h
->ioaccel2_cmd_sg_list
)
1922 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1923 h
->ioaccel2_cmd_sg_list
[i
] =
1924 kmalloc(sizeof(*h
->ioaccel2_cmd_sg_list
[i
]) *
1925 h
->maxsgentries
, GFP_KERNEL
);
1926 if (!h
->ioaccel2_cmd_sg_list
[i
])
1932 hpsa_free_ioaccel2_sg_chain_blocks(h
);
1936 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
1940 if (!h
->cmd_sg_list
)
1942 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1943 kfree(h
->cmd_sg_list
[i
]);
1944 h
->cmd_sg_list
[i
] = NULL
;
1946 kfree(h
->cmd_sg_list
);
1947 h
->cmd_sg_list
= NULL
;
1950 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
1954 if (h
->chainsize
<= 0)
1957 h
->cmd_sg_list
= kzalloc(sizeof(*h
->cmd_sg_list
) * h
->nr_cmds
,
1959 if (!h
->cmd_sg_list
) {
1960 dev_err(&h
->pdev
->dev
, "Failed to allocate SG list\n");
1963 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1964 h
->cmd_sg_list
[i
] = kmalloc(sizeof(*h
->cmd_sg_list
[i
]) *
1965 h
->chainsize
, GFP_KERNEL
);
1966 if (!h
->cmd_sg_list
[i
]) {
1967 dev_err(&h
->pdev
->dev
, "Failed to allocate cmd SG\n");
1974 hpsa_free_sg_chain_blocks(h
);
1978 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
1979 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
1981 struct ioaccel2_sg_element
*chain_block
;
1985 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
1986 chain_size
= le32_to_cpu(cp
->data_len
);
1987 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_size
,
1989 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
1990 /* prevent subsequent unmapping */
1991 cp
->sg
->address
= 0;
1994 cp
->sg
->address
= cpu_to_le64(temp64
);
1998 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
1999 struct io_accel2_cmd
*cp
)
2001 struct ioaccel2_sg_element
*chain_sg
;
2006 temp64
= le64_to_cpu(chain_sg
->address
);
2007 chain_size
= le32_to_cpu(cp
->data_len
);
2008 pci_unmap_single(h
->pdev
, temp64
, chain_size
, PCI_DMA_TODEVICE
);
2011 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2012 struct CommandList
*c
)
2014 struct SGDescriptor
*chain_sg
, *chain_block
;
2018 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2019 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2020 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2021 chain_len
= sizeof(*chain_sg
) *
2022 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2023 chain_sg
->Len
= cpu_to_le32(chain_len
);
2024 temp64
= pci_map_single(h
->pdev
, chain_block
, chain_len
,
2026 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2027 /* prevent subsequent unmapping */
2028 chain_sg
->Addr
= cpu_to_le64(0);
2031 chain_sg
->Addr
= cpu_to_le64(temp64
);
2035 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2036 struct CommandList
*c
)
2038 struct SGDescriptor
*chain_sg
;
2040 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2043 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2044 pci_unmap_single(h
->pdev
, le64_to_cpu(chain_sg
->Addr
),
2045 le32_to_cpu(chain_sg
->Len
), PCI_DMA_TODEVICE
);
2049 /* Decode the various types of errors on ioaccel2 path.
2050 * Return 1 for any error that should generate a RAID path retry.
2051 * Return 0 for errors that don't require a RAID path retry.
2053 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2054 struct CommandList
*c
,
2055 struct scsi_cmnd
*cmd
,
2056 struct io_accel2_cmd
*c2
)
2060 u32 ioaccel2_resid
= 0;
2062 switch (c2
->error_data
.serv_response
) {
2063 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2064 switch (c2
->error_data
.status
) {
2065 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2067 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2068 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2069 if (c2
->error_data
.data_present
!=
2070 IOACCEL2_SENSE_DATA_PRESENT
) {
2071 memset(cmd
->sense_buffer
, 0,
2072 SCSI_SENSE_BUFFERSIZE
);
2075 /* copy the sense data */
2076 data_len
= c2
->error_data
.sense_data_len
;
2077 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2078 data_len
= SCSI_SENSE_BUFFERSIZE
;
2079 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2081 sizeof(c2
->error_data
.sense_data_buff
);
2082 memcpy(cmd
->sense_buffer
,
2083 c2
->error_data
.sense_data_buff
, data_len
);
2086 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2089 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2092 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2095 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2103 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2104 switch (c2
->error_data
.status
) {
2105 case IOACCEL2_STATUS_SR_IO_ERROR
:
2106 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2107 case IOACCEL2_STATUS_SR_OVERRUN
:
2110 case IOACCEL2_STATUS_SR_UNDERRUN
:
2111 cmd
->result
= (DID_OK
<< 16); /* host byte */
2112 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2113 ioaccel2_resid
= get_unaligned_le32(
2114 &c2
->error_data
.resid_cnt
[0]);
2115 scsi_set_resid(cmd
, ioaccel2_resid
);
2117 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2118 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2119 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2120 /* We will get an event from ctlr to trigger rescan */
2127 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2129 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2131 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2134 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2141 return retry
; /* retry on raid path? */
2144 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2145 struct CommandList
*c
)
2147 bool do_wake
= false;
2150 * Prevent the following race in the abort handler:
2152 * 1. LLD is requested to abort a SCSI command
2153 * 2. The SCSI command completes
2154 * 3. The struct CommandList associated with step 2 is made available
2155 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2156 * 5. Abort handler follows scsi_cmnd->host_scribble and
2157 * finds struct CommandList and tries to aborts it
2158 * Now we have aborted the wrong command.
2160 * Reset c->scsi_cmd here so that the abort or reset handler will know
2161 * this command has completed. Then, check to see if the handler is
2162 * waiting for this command, and, if so, wake it.
2164 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2165 mb(); /* Declare command idle before checking for pending events. */
2166 if (c
->abort_pending
) {
2168 c
->abort_pending
= false;
2170 if (c
->reset_pending
) {
2171 unsigned long flags
;
2172 struct hpsa_scsi_dev_t
*dev
;
2175 * There appears to be a reset pending; lock the lock and
2176 * reconfirm. If so, then decrement the count of outstanding
2177 * commands and wake the reset command if this is the last one.
2179 spin_lock_irqsave(&h
->lock
, flags
);
2180 dev
= c
->reset_pending
; /* Re-fetch under the lock. */
2181 if (dev
&& atomic_dec_and_test(&dev
->reset_cmds_out
))
2183 c
->reset_pending
= NULL
;
2184 spin_unlock_irqrestore(&h
->lock
, flags
);
2188 wake_up_all(&h
->event_sync_wait_queue
);
2191 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2192 struct CommandList
*c
)
2194 hpsa_cmd_resolve_events(h
, c
);
2195 cmd_tagged_free(h
, c
);
2198 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2199 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2201 hpsa_cmd_resolve_and_free(h
, c
);
2202 cmd
->scsi_done(cmd
);
2205 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2207 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2208 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2211 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd
*cmd
)
2213 cmd
->result
= DID_ABORT
<< 16;
2216 static void hpsa_cmd_abort_and_free(struct ctlr_info
*h
, struct CommandList
*c
,
2217 struct scsi_cmnd
*cmd
)
2219 hpsa_set_scsi_cmd_aborted(cmd
);
2220 dev_warn(&h
->pdev
->dev
, "CDB %16phN was aborted with status 0x%x\n",
2221 c
->Request
.CDB
, c
->err_info
->ScsiStatus
);
2222 hpsa_cmd_resolve_and_free(h
, c
);
2225 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2226 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2227 struct hpsa_scsi_dev_t
*dev
)
2229 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2231 /* check for good status */
2232 if (likely(c2
->error_data
.serv_response
== 0 &&
2233 c2
->error_data
.status
== 0))
2234 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2237 * Any RAID offload error results in retry which will use
2238 * the normal I/O path so the controller can handle whatever's
2241 if (is_logical_dev_addr_mode(dev
->scsi3addr
) &&
2242 c2
->error_data
.serv_response
==
2243 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2244 if (c2
->error_data
.status
==
2245 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
)
2246 dev
->offload_enabled
= 0;
2248 return hpsa_retry_cmd(h
, c
);
2251 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
))
2252 return hpsa_retry_cmd(h
, c
);
2254 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2257 /* Returns 0 on success, < 0 otherwise. */
2258 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2259 struct CommandList
*cp
)
2261 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2263 switch (tmf_status
) {
2264 case CISS_TMF_COMPLETE
:
2266 * CISS_TMF_COMPLETE never happens, instead,
2267 * ei->CommandStatus == 0 for this case.
2269 case CISS_TMF_SUCCESS
:
2271 case CISS_TMF_INVALID_FRAME
:
2272 case CISS_TMF_NOT_SUPPORTED
:
2273 case CISS_TMF_FAILED
:
2274 case CISS_TMF_WRONG_LUN
:
2275 case CISS_TMF_OVERLAPPED_TAG
:
2278 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2285 static void complete_scsi_command(struct CommandList
*cp
)
2287 struct scsi_cmnd
*cmd
;
2288 struct ctlr_info
*h
;
2289 struct ErrorInfo
*ei
;
2290 struct hpsa_scsi_dev_t
*dev
;
2291 struct io_accel2_cmd
*c2
;
2294 u8 asc
; /* additional sense code */
2295 u8 ascq
; /* additional sense code qualifier */
2296 unsigned long sense_data_size
;
2301 dev
= cmd
->device
->hostdata
;
2302 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2304 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2305 if ((cp
->cmd_type
== CMD_SCSI
) &&
2306 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2307 hpsa_unmap_sg_chain_block(h
, cp
);
2309 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2310 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2311 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2313 cmd
->result
= (DID_OK
<< 16); /* host byte */
2314 cmd
->result
|= (COMMAND_COMPLETE
<< 8); /* msg byte */
2316 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
)
2317 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2320 * We check for lockup status here as it may be set for
2321 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2322 * fail_all_oustanding_cmds()
2324 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2325 /* DID_NO_CONNECT will prevent a retry */
2326 cmd
->result
= DID_NO_CONNECT
<< 16;
2327 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2330 if ((unlikely(hpsa_is_pending_event(cp
)))) {
2331 if (cp
->reset_pending
)
2332 return hpsa_cmd_resolve_and_free(h
, cp
);
2333 if (cp
->abort_pending
)
2334 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2337 if (cp
->cmd_type
== CMD_IOACCEL2
)
2338 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2340 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2341 if (ei
->CommandStatus
== 0)
2342 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2344 /* For I/O accelerator commands, copy over some fields to the normal
2345 * CISS header used below for error handling.
2347 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2348 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2349 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2350 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2351 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2352 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2353 cp
->Header
.tag
= c
->tag
;
2354 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2355 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2357 /* Any RAID offload error results in retry which will use
2358 * the normal I/O path so the controller can handle whatever's
2361 if (is_logical_dev_addr_mode(dev
->scsi3addr
)) {
2362 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2363 dev
->offload_enabled
= 0;
2364 return hpsa_retry_cmd(h
, cp
);
2368 /* an error has occurred */
2369 switch (ei
->CommandStatus
) {
2371 case CMD_TARGET_STATUS
:
2372 cmd
->result
|= ei
->ScsiStatus
;
2373 /* copy the sense data */
2374 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2375 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2377 sense_data_size
= sizeof(ei
->SenseInfo
);
2378 if (ei
->SenseLen
< sense_data_size
)
2379 sense_data_size
= ei
->SenseLen
;
2380 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2382 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2383 &sense_key
, &asc
, &ascq
);
2384 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2385 if (sense_key
== ABORTED_COMMAND
) {
2386 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2391 /* Problem was not a check condition
2392 * Pass it up to the upper layers...
2394 if (ei
->ScsiStatus
) {
2395 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2396 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2397 "Returning result: 0x%x\n",
2399 sense_key
, asc
, ascq
,
2401 } else { /* scsi status is zero??? How??? */
2402 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2403 "Returning no connection.\n", cp
),
2405 /* Ordinarily, this case should never happen,
2406 * but there is a bug in some released firmware
2407 * revisions that allows it to happen if, for
2408 * example, a 4100 backplane loses power and
2409 * the tape drive is in it. We assume that
2410 * it's a fatal error of some kind because we
2411 * can't show that it wasn't. We will make it
2412 * look like selection timeout since that is
2413 * the most common reason for this to occur,
2414 * and it's severe enough.
2417 cmd
->result
= DID_NO_CONNECT
<< 16;
2421 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2423 case CMD_DATA_OVERRUN
:
2424 dev_warn(&h
->pdev
->dev
,
2425 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2428 /* print_bytes(cp, sizeof(*cp), 1, 0);
2430 /* We get CMD_INVALID if you address a non-existent device
2431 * instead of a selection timeout (no response). You will
2432 * see this if you yank out a drive, then try to access it.
2433 * This is kind of a shame because it means that any other
2434 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2435 * missing target. */
2436 cmd
->result
= DID_NO_CONNECT
<< 16;
2439 case CMD_PROTOCOL_ERR
:
2440 cmd
->result
= DID_ERROR
<< 16;
2441 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2444 case CMD_HARDWARE_ERR
:
2445 cmd
->result
= DID_ERROR
<< 16;
2446 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2449 case CMD_CONNECTION_LOST
:
2450 cmd
->result
= DID_ERROR
<< 16;
2451 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2455 /* Return now to avoid calling scsi_done(). */
2456 return hpsa_cmd_abort_and_free(h
, cp
, cmd
);
2457 case CMD_ABORT_FAILED
:
2458 cmd
->result
= DID_ERROR
<< 16;
2459 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2462 case CMD_UNSOLICITED_ABORT
:
2463 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2464 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2468 cmd
->result
= DID_TIME_OUT
<< 16;
2469 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2472 case CMD_UNABORTABLE
:
2473 cmd
->result
= DID_ERROR
<< 16;
2474 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2476 case CMD_TMF_STATUS
:
2477 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2478 cmd
->result
= DID_ERROR
<< 16;
2480 case CMD_IOACCEL_DISABLED
:
2481 /* This only handles the direct pass-through case since RAID
2482 * offload is handled above. Just attempt a retry.
2484 cmd
->result
= DID_SOFT_ERROR
<< 16;
2485 dev_warn(&h
->pdev
->dev
,
2486 "cp %p had HP SSD Smart Path error\n", cp
);
2489 cmd
->result
= DID_ERROR
<< 16;
2490 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2491 cp
, ei
->CommandStatus
);
2494 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2497 static void hpsa_pci_unmap(struct pci_dev
*pdev
,
2498 struct CommandList
*c
, int sg_used
, int data_direction
)
2502 for (i
= 0; i
< sg_used
; i
++)
2503 pci_unmap_single(pdev
, (dma_addr_t
) le64_to_cpu(c
->SG
[i
].Addr
),
2504 le32_to_cpu(c
->SG
[i
].Len
),
2508 static int hpsa_map_one(struct pci_dev
*pdev
,
2509 struct CommandList
*cp
,
2516 if (buflen
== 0 || data_direction
== PCI_DMA_NONE
) {
2517 cp
->Header
.SGList
= 0;
2518 cp
->Header
.SGTotal
= cpu_to_le16(0);
2522 addr64
= pci_map_single(pdev
, buf
, buflen
, data_direction
);
2523 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2524 /* Prevent subsequent unmap of something never mapped */
2525 cp
->Header
.SGList
= 0;
2526 cp
->Header
.SGTotal
= cpu_to_le16(0);
2529 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2530 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2531 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2532 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2533 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2537 #define NO_TIMEOUT ((unsigned long) -1)
2538 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2539 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2540 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2542 DECLARE_COMPLETION_ONSTACK(wait
);
2545 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2546 if (timeout_msecs
== NO_TIMEOUT
) {
2547 /* TODO: get rid of this no-timeout thing */
2548 wait_for_completion_io(&wait
);
2551 if (!wait_for_completion_io_timeout(&wait
,
2552 msecs_to_jiffies(timeout_msecs
))) {
2553 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2559 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2560 int reply_queue
, unsigned long timeout_msecs
)
2562 if (unlikely(lockup_detected(h
))) {
2563 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2566 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2569 static u32
lockup_detected(struct ctlr_info
*h
)
2572 u32 rc
, *lockup_detected
;
2575 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2576 rc
= *lockup_detected
;
2581 #define MAX_DRIVER_CMD_RETRIES 25
2582 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2583 struct CommandList
*c
, int data_direction
, unsigned long timeout_msecs
)
2585 int backoff_time
= 10, retry_count
= 0;
2589 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2590 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2595 if (retry_count
> 3) {
2596 msleep(backoff_time
);
2597 if (backoff_time
< 1000)
2600 } while ((check_for_unit_attention(h
, c
) ||
2601 check_for_busy(h
, c
)) &&
2602 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2603 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2604 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2609 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2610 struct CommandList
*c
)
2612 const u8
*cdb
= c
->Request
.CDB
;
2613 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2615 dev_warn(&h
->pdev
->dev
, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2616 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2617 txt
, lun
[0], lun
[1], lun
[2], lun
[3],
2618 lun
[4], lun
[5], lun
[6], lun
[7],
2619 cdb
[0], cdb
[1], cdb
[2], cdb
[3],
2620 cdb
[4], cdb
[5], cdb
[6], cdb
[7],
2621 cdb
[8], cdb
[9], cdb
[10], cdb
[11],
2622 cdb
[12], cdb
[13], cdb
[14], cdb
[15]);
2625 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2626 struct CommandList
*cp
)
2628 const struct ErrorInfo
*ei
= cp
->err_info
;
2629 struct device
*d
= &cp
->h
->pdev
->dev
;
2630 u8 sense_key
, asc
, ascq
;
2633 switch (ei
->CommandStatus
) {
2634 case CMD_TARGET_STATUS
:
2635 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2636 sense_len
= sizeof(ei
->SenseInfo
);
2638 sense_len
= ei
->SenseLen
;
2639 decode_sense_data(ei
->SenseInfo
, sense_len
,
2640 &sense_key
, &asc
, &ascq
);
2641 hpsa_print_cmd(h
, "SCSI status", cp
);
2642 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2643 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2644 sense_key
, asc
, ascq
);
2646 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2647 if (ei
->ScsiStatus
== 0)
2648 dev_warn(d
, "SCSI status is abnormally zero. "
2649 "(probably indicates selection timeout "
2650 "reported incorrectly due to a known "
2651 "firmware bug, circa July, 2001.)\n");
2653 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2655 case CMD_DATA_OVERRUN
:
2656 hpsa_print_cmd(h
, "overrun condition", cp
);
2659 /* controller unfortunately reports SCSI passthru's
2660 * to non-existent targets as invalid commands.
2662 hpsa_print_cmd(h
, "invalid command", cp
);
2663 dev_warn(d
, "probably means device no longer present\n");
2666 case CMD_PROTOCOL_ERR
:
2667 hpsa_print_cmd(h
, "protocol error", cp
);
2669 case CMD_HARDWARE_ERR
:
2670 hpsa_print_cmd(h
, "hardware error", cp
);
2672 case CMD_CONNECTION_LOST
:
2673 hpsa_print_cmd(h
, "connection lost", cp
);
2676 hpsa_print_cmd(h
, "aborted", cp
);
2678 case CMD_ABORT_FAILED
:
2679 hpsa_print_cmd(h
, "abort failed", cp
);
2681 case CMD_UNSOLICITED_ABORT
:
2682 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2685 hpsa_print_cmd(h
, "timed out", cp
);
2687 case CMD_UNABORTABLE
:
2688 hpsa_print_cmd(h
, "unabortable", cp
);
2690 case CMD_CTLR_LOCKUP
:
2691 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2694 hpsa_print_cmd(h
, "unknown status", cp
);
2695 dev_warn(d
, "Unknown command status %x\n",
2700 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2701 u16 page
, unsigned char *buf
,
2702 unsigned char bufsize
)
2705 struct CommandList
*c
;
2706 struct ErrorInfo
*ei
;
2710 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
2711 page
, scsi3addr
, TYPE_CMD
)) {
2715 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2716 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2720 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2721 hpsa_scsi_interpret_error(h
, c
);
2729 static int hpsa_send_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
2730 u8 reset_type
, int reply_queue
)
2733 struct CommandList
*c
;
2734 struct ErrorInfo
*ei
;
2739 /* fill_cmd can't fail here, no data buffer to map. */
2740 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
2741 scsi3addr
, TYPE_MSG
);
2742 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to LUN reset */
2743 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
2745 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
2748 /* no unmap needed here because no data xfer. */
2751 if (ei
->CommandStatus
!= 0) {
2752 hpsa_scsi_interpret_error(h
, c
);
2760 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
2761 struct hpsa_scsi_dev_t
*dev
,
2762 unsigned char *scsi3addr
)
2766 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2767 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
2769 if (hpsa_is_cmd_idle(c
))
2772 switch (c
->cmd_type
) {
2774 case CMD_IOCTL_PEND
:
2775 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
2776 sizeof(c
->Header
.LUN
.LunAddrBytes
));
2781 if (c
->phys_disk
== dev
) {
2782 /* HBA mode match */
2785 /* Possible RAID mode -- check each phys dev. */
2786 /* FIXME: Do we need to take out a lock here? If
2787 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2789 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2790 /* FIXME: an alternate test might be
2792 * match = dev->phys_disk[i]->ioaccel_handle
2793 * == c2->scsi_nexus; */
2794 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
2800 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
2801 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
2802 le32_to_cpu(ac
->it_nexus
);
2806 case 0: /* The command is in the middle of being initialized. */
2811 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
2819 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
2820 unsigned char *scsi3addr
, u8 reset_type
, int reply_queue
)
2825 /* We can really only handle one reset at a time */
2826 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
2827 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
2831 BUG_ON(atomic_read(&dev
->reset_cmds_out
) != 0);
2833 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2834 struct CommandList
*c
= h
->cmd_pool
+ i
;
2835 int refcount
= atomic_inc_return(&c
->refcount
);
2837 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
, scsi3addr
)) {
2838 unsigned long flags
;
2841 * Mark the target command as having a reset pending,
2842 * then lock a lock so that the command cannot complete
2843 * while we're considering it. If the command is not
2844 * idle then count it; otherwise revoke the event.
2846 c
->reset_pending
= dev
;
2847 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
2848 if (!hpsa_is_cmd_idle(c
))
2849 atomic_inc(&dev
->reset_cmds_out
);
2851 c
->reset_pending
= NULL
;
2852 spin_unlock_irqrestore(&h
->lock
, flags
);
2858 rc
= hpsa_send_reset(h
, scsi3addr
, reset_type
, reply_queue
);
2860 wait_event(h
->event_sync_wait_queue
,
2861 atomic_read(&dev
->reset_cmds_out
) == 0 ||
2862 lockup_detected(h
));
2864 if (unlikely(lockup_detected(h
))) {
2865 dev_warn(&h
->pdev
->dev
,
2866 "Controller lockup detected during reset wait\n");
2871 atomic_set(&dev
->reset_cmds_out
, 0);
2873 mutex_unlock(&h
->reset_mutex
);
2877 static void hpsa_get_raid_level(struct ctlr_info
*h
,
2878 unsigned char *scsi3addr
, unsigned char *raid_level
)
2883 *raid_level
= RAID_UNKNOWN
;
2884 buf
= kzalloc(64, GFP_KERNEL
);
2887 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0xC1, buf
, 64);
2889 *raid_level
= buf
[8];
2890 if (*raid_level
> RAID_UNKNOWN
)
2891 *raid_level
= RAID_UNKNOWN
;
2896 #define HPSA_MAP_DEBUG
2897 #ifdef HPSA_MAP_DEBUG
2898 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
2899 struct raid_map_data
*map_buff
)
2901 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
2903 u16 map_cnt
, row_cnt
, disks_per_row
;
2908 /* Show details only if debugging has been activated. */
2909 if (h
->raid_offload_debug
< 2)
2912 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
2913 le32_to_cpu(map_buff
->structure_size
));
2914 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
2915 le32_to_cpu(map_buff
->volume_blk_size
));
2916 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
2917 le64_to_cpu(map_buff
->volume_blk_cnt
));
2918 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
2919 map_buff
->phys_blk_shift
);
2920 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
2921 map_buff
->parity_rotation_shift
);
2922 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
2923 le16_to_cpu(map_buff
->strip_size
));
2924 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
2925 le64_to_cpu(map_buff
->disk_starting_blk
));
2926 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
2927 le64_to_cpu(map_buff
->disk_blk_cnt
));
2928 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
2929 le16_to_cpu(map_buff
->data_disks_per_row
));
2930 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
2931 le16_to_cpu(map_buff
->metadata_disks_per_row
));
2932 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
2933 le16_to_cpu(map_buff
->row_cnt
));
2934 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
2935 le16_to_cpu(map_buff
->layout_map_count
));
2936 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
2937 le16_to_cpu(map_buff
->flags
));
2938 dev_info(&h
->pdev
->dev
, "encrypytion = %s\n",
2939 le16_to_cpu(map_buff
->flags
) &
2940 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
2941 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
2942 le16_to_cpu(map_buff
->dekindex
));
2943 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
2944 for (map
= 0; map
< map_cnt
; map
++) {
2945 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
2946 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
2947 for (row
= 0; row
< row_cnt
; row
++) {
2948 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
2950 le16_to_cpu(map_buff
->data_disks_per_row
);
2951 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2952 dev_info(&h
->pdev
->dev
,
2953 " D%02u: h=0x%04x xor=%u,%u\n",
2954 col
, dd
->ioaccel_handle
,
2955 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2957 le16_to_cpu(map_buff
->metadata_disks_per_row
);
2958 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
2959 dev_info(&h
->pdev
->dev
,
2960 " M%02u: h=0x%04x xor=%u,%u\n",
2961 col
, dd
->ioaccel_handle
,
2962 dd
->xor_mult
[0], dd
->xor_mult
[1]);
2967 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
2968 __attribute__((unused
)) int rc
,
2969 __attribute__((unused
)) struct raid_map_data
*map_buff
)
2974 static int hpsa_get_raid_map(struct ctlr_info
*h
,
2975 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
2978 struct CommandList
*c
;
2979 struct ErrorInfo
*ei
;
2983 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
2984 sizeof(this_device
->raid_map
), 0,
2985 scsi3addr
, TYPE_CMD
)) {
2986 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
2990 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
2991 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
2995 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
2996 hpsa_scsi_interpret_error(h
, c
);
3002 /* @todo in the future, dynamically allocate RAID map memory */
3003 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3004 sizeof(this_device
->raid_map
)) {
3005 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3008 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3015 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3016 unsigned char scsi3addr
[], u16 bmic_device_index
,
3017 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3020 struct CommandList
*c
;
3021 struct ErrorInfo
*ei
;
3024 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3025 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3029 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3030 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3032 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, PCI_DMA_FROMDEVICE
,
3035 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3036 hpsa_scsi_interpret_error(h
, c
);
3044 static int hpsa_vpd_page_supported(struct ctlr_info
*h
,
3045 unsigned char scsi3addr
[], u8 page
)
3050 unsigned char *buf
, bufsize
;
3052 buf
= kzalloc(256, GFP_KERNEL
);
3056 /* Get the size of the page list first */
3057 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3058 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3059 buf
, HPSA_VPD_HEADER_SZ
);
3061 goto exit_unsupported
;
3063 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3064 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3068 /* Get the whole VPD page list */
3069 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3070 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3073 goto exit_unsupported
;
3076 for (i
= 1; i
<= pages
; i
++)
3077 if (buf
[3 + i
] == page
)
3078 goto exit_supported
;
3087 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3088 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3094 this_device
->offload_config
= 0;
3095 this_device
->offload_enabled
= 0;
3096 this_device
->offload_to_be_enabled
= 0;
3098 buf
= kzalloc(64, GFP_KERNEL
);
3101 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3103 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3104 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3108 #define IOACCEL_STATUS_BYTE 4
3109 #define OFFLOAD_CONFIGURED_BIT 0x01
3110 #define OFFLOAD_ENABLED_BIT 0x02
3111 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3112 this_device
->offload_config
=
3113 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3114 if (this_device
->offload_config
) {
3115 this_device
->offload_enabled
=
3116 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3117 if (hpsa_get_raid_map(h
, scsi3addr
, this_device
))
3118 this_device
->offload_enabled
= 0;
3120 this_device
->offload_to_be_enabled
= this_device
->offload_enabled
;
3126 /* Get the device id from inquiry page 0x83 */
3127 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3128 unsigned char *device_id
, int buflen
)
3135 buf
= kzalloc(64, GFP_KERNEL
);
3138 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| 0x83, buf
, 64);
3140 memcpy(device_id
, &buf
[8], buflen
);
3145 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3146 void *buf
, int bufsize
,
3147 int extended_response
)
3150 struct CommandList
*c
;
3151 unsigned char scsi3addr
[8];
3152 struct ErrorInfo
*ei
;
3156 /* address the controller */
3157 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3158 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3159 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3163 if (extended_response
)
3164 c
->Request
.CDB
[1] = extended_response
;
3165 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
3166 PCI_DMA_FROMDEVICE
, NO_TIMEOUT
);
3170 if (ei
->CommandStatus
!= 0 &&
3171 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3172 hpsa_scsi_interpret_error(h
, c
);
3175 struct ReportLUNdata
*rld
= buf
;
3177 if (rld
->extended_response_flag
!= extended_response
) {
3178 dev_err(&h
->pdev
->dev
,
3179 "report luns requested format %u, got %u\n",
3181 rld
->extended_response_flag
);
3190 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3191 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3193 return hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3194 HPSA_REPORT_PHYS_EXTENDED
);
3197 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3198 struct ReportLUNdata
*buf
, int bufsize
)
3200 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3203 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3204 int bus
, int target
, int lun
)
3207 device
->target
= target
;
3211 /* Use VPD inquiry to get details of volume status */
3212 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3213 unsigned char scsi3addr
[])
3220 buf
= kzalloc(64, GFP_KERNEL
);
3222 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3224 /* Does controller have VPD for logical volume status? */
3225 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3228 /* Get the size of the VPD return buffer */
3229 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3230 buf
, HPSA_VPD_HEADER_SZ
);
3235 /* Now get the whole VPD buffer */
3236 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3237 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3240 status
= buf
[4]; /* status byte */
3246 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3249 /* Determine offline status of a volume.
3252 * 0xff (offline for unknown reasons)
3253 * # (integer code indicating one of several NOT READY states
3254 * describing why a volume is to be kept offline)
3256 static int hpsa_volume_offline(struct ctlr_info
*h
,
3257 unsigned char scsi3addr
[])
3259 struct CommandList
*c
;
3260 unsigned char *sense
;
3261 u8 sense_key
, asc
, ascq
;
3266 #define ASC_LUN_NOT_READY 0x04
3267 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3268 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3272 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3273 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3278 sense
= c
->err_info
->SenseInfo
;
3279 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3280 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3282 sense_len
= c
->err_info
->SenseLen
;
3283 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3284 cmd_status
= c
->err_info
->CommandStatus
;
3285 scsi_status
= c
->err_info
->ScsiStatus
;
3287 /* Is the volume 'not ready'? */
3288 if (cmd_status
!= CMD_TARGET_STATUS
||
3289 scsi_status
!= SAM_STAT_CHECK_CONDITION
||
3290 sense_key
!= NOT_READY
||
3291 asc
!= ASC_LUN_NOT_READY
) {
3295 /* Determine the reason for not ready state */
3296 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3298 /* Keep volume offline in certain cases: */
3300 case HPSA_LV_UNDERGOING_ERASE
:
3301 case HPSA_LV_NOT_AVAILABLE
:
3302 case HPSA_LV_UNDERGOING_RPI
:
3303 case HPSA_LV_PENDING_RPI
:
3304 case HPSA_LV_ENCRYPTED_NO_KEY
:
3305 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3306 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3307 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3308 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3310 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3311 /* If VPD status page isn't available,
3312 * use ASC/ASCQ to determine state
3314 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3315 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3325 * Find out if a logical device supports aborts by simply trying one.
3326 * Smart Array may claim not to support aborts on logical drives, but
3327 * if a MSA2000 * is connected, the drives on that will be presented
3328 * by the Smart Array as logical drives, and aborts may be sent to
3329 * those devices successfully. So the simplest way to find out is
3330 * to simply try an abort and see how the device responds.
3332 static int hpsa_device_supports_aborts(struct ctlr_info
*h
,
3333 unsigned char *scsi3addr
)
3335 struct CommandList
*c
;
3336 struct ErrorInfo
*ei
;
3339 u64 tag
= (u64
) -1; /* bogus tag */
3341 /* Assume that physical devices support aborts */
3342 if (!is_logical_dev_addr_mode(scsi3addr
))
3347 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &tag
, 0, 0, scsi3addr
, TYPE_MSG
);
3348 (void) hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
3349 /* no unmap needed here because no data xfer. */
3351 switch (ei
->CommandStatus
) {
3355 case CMD_UNABORTABLE
:
3356 case CMD_ABORT_FAILED
:
3359 case CMD_TMF_STATUS
:
3360 rc
= hpsa_evaluate_tmf_status(h
, c
);
3370 static int hpsa_update_device_info(struct ctlr_info
*h
,
3371 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3372 unsigned char *is_OBDR_device
)
3375 #define OBDR_SIG_OFFSET 43
3376 #define OBDR_TAPE_SIG "$DR-10"
3377 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3378 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3380 unsigned char *inq_buff
;
3381 unsigned char *obdr_sig
;
3384 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3390 /* Do an inquiry to the device to see what it is. */
3391 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3392 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3393 /* Inquiry failed (msg printed already) */
3394 dev_err(&h
->pdev
->dev
,
3395 "hpsa_update_device_info: inquiry failed\n");
3400 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3401 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3402 memcpy(this_device
->vendor
, &inq_buff
[8],
3403 sizeof(this_device
->vendor
));
3404 memcpy(this_device
->model
, &inq_buff
[16],
3405 sizeof(this_device
->model
));
3406 memset(this_device
->device_id
, 0,
3407 sizeof(this_device
->device_id
));
3408 hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
,
3409 sizeof(this_device
->device_id
));
3411 if (this_device
->devtype
== TYPE_DISK
&&
3412 is_logical_dev_addr_mode(scsi3addr
)) {
3415 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
3416 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
3417 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
3418 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
3419 if (volume_offline
< 0 || volume_offline
> 0xff)
3420 volume_offline
= HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3421 this_device
->volume_offline
= volume_offline
& 0xff;
3423 this_device
->raid_level
= RAID_UNKNOWN
;
3424 this_device
->offload_config
= 0;
3425 this_device
->offload_enabled
= 0;
3426 this_device
->offload_to_be_enabled
= 0;
3427 this_device
->hba_ioaccel_enabled
= 0;
3428 this_device
->volume_offline
= 0;
3429 this_device
->queue_depth
= h
->nr_cmds
;
3432 if (is_OBDR_device
) {
3433 /* See if this is a One-Button-Disaster-Recovery device
3434 * by looking for "$DR-10" at offset 43 in inquiry data.
3436 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
3437 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
3438 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
3439 OBDR_SIG_LEN
) == 0);
3449 static void hpsa_update_device_supports_aborts(struct ctlr_info
*h
,
3450 struct hpsa_scsi_dev_t
*dev
, u8
*scsi3addr
)
3452 unsigned long flags
;
3455 * See if this device supports aborts. If we already know
3456 * the device, we already know if it supports aborts, otherwise
3457 * we have to find out if it supports aborts by trying one.
3459 spin_lock_irqsave(&h
->devlock
, flags
);
3460 rc
= hpsa_scsi_find_entry(dev
, h
->dev
, h
->ndevices
, &entry
);
3461 if ((rc
== DEVICE_SAME
|| rc
== DEVICE_UPDATED
) &&
3462 entry
>= 0 && entry
< h
->ndevices
) {
3463 dev
->supports_aborts
= h
->dev
[entry
]->supports_aborts
;
3464 spin_unlock_irqrestore(&h
->devlock
, flags
);
3466 spin_unlock_irqrestore(&h
->devlock
, flags
);
3467 dev
->supports_aborts
=
3468 hpsa_device_supports_aborts(h
, scsi3addr
);
3469 if (dev
->supports_aborts
< 0)
3470 dev
->supports_aborts
= 0;
3474 static unsigned char *ext_target_model
[] = {
3484 static int is_ext_target(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
3488 for (i
= 0; ext_target_model
[i
]; i
++)
3489 if (strncmp(device
->model
, ext_target_model
[i
],
3490 strlen(ext_target_model
[i
])) == 0)
3495 /* Helper function to assign bus, target, lun mapping of devices.
3496 * Puts non-external target logical volumes on bus 0, external target logical
3497 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3498 * Logical drive target and lun are assigned at this time, but
3499 * physical device lun and target assignment are deferred (assigned
3500 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3502 static void figure_bus_target_lun(struct ctlr_info
*h
,
3503 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
3505 u32 lunid
= le32_to_cpu(*((__le32
*) lunaddrbytes
));
3507 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
3508 /* physical device, target and lun filled in later */
3509 if (is_hba_lunid(lunaddrbytes
))
3510 hpsa_set_bus_target_lun(device
, 3, 0, lunid
& 0x3fff);
3512 /* defer target, lun assignment for physical devices */
3513 hpsa_set_bus_target_lun(device
, 2, -1, -1);
3516 /* It's a logical device */
3517 if (is_ext_target(h
, device
)) {
3518 /* external target way, put logicals on bus 1
3519 * and match target/lun numbers box
3520 * reports, other smart array, bus 0, target 0, match lunid
3522 hpsa_set_bus_target_lun(device
,
3523 1, (lunid
>> 16) & 0x3fff, lunid
& 0x00ff);
3526 hpsa_set_bus_target_lun(device
, 0, 0, lunid
& 0x3fff);
3530 * If there is no lun 0 on a target, linux won't find any devices.
3531 * For the external targets (arrays), we have to manually detect the enclosure
3532 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3533 * it for some reason. *tmpdevice is the target we're adding,
3534 * this_device is a pointer into the current element of currentsd[]
3535 * that we're building up in update_scsi_devices(), below.
3536 * lunzerobits is a bitmap that tracks which targets already have a
3538 * Returns 1 if an enclosure was added, 0 if not.
3540 static int add_ext_target_dev(struct ctlr_info
*h
,
3541 struct hpsa_scsi_dev_t
*tmpdevice
,
3542 struct hpsa_scsi_dev_t
*this_device
, u8
*lunaddrbytes
,
3543 unsigned long lunzerobits
[], int *n_ext_target_devs
)
3545 unsigned char scsi3addr
[8];
3547 if (test_bit(tmpdevice
->target
, lunzerobits
))
3548 return 0; /* There is already a lun 0 on this target. */
3550 if (!is_logical_dev_addr_mode(lunaddrbytes
))
3551 return 0; /* It's the logical targets that may lack lun 0. */
3553 if (!is_ext_target(h
, tmpdevice
))
3554 return 0; /* Only external target devices have this problem. */
3556 if (tmpdevice
->lun
== 0) /* if lun is 0, then we have a lun 0. */
3559 memset(scsi3addr
, 0, 8);
3560 scsi3addr
[3] = tmpdevice
->target
;
3561 if (is_hba_lunid(scsi3addr
))
3562 return 0; /* Don't add the RAID controller here. */
3564 if (is_scsi_rev_5(h
))
3565 return 0; /* p1210m doesn't need to do this. */
3567 if (*n_ext_target_devs
>= MAX_EXT_TARGETS
) {
3568 dev_warn(&h
->pdev
->dev
, "Maximum number of external "
3569 "target devices exceeded. Check your hardware "
3574 if (hpsa_update_device_info(h
, scsi3addr
, this_device
, NULL
))
3576 (*n_ext_target_devs
)++;
3577 hpsa_set_bus_target_lun(this_device
,
3578 tmpdevice
->bus
, tmpdevice
->target
, 0);
3579 hpsa_update_device_supports_aborts(h
, this_device
, scsi3addr
);
3580 set_bit(tmpdevice
->target
, lunzerobits
);
3585 * Get address of physical disk used for an ioaccel2 mode command:
3586 * 1. Extract ioaccel2 handle from the command.
3587 * 2. Find a matching ioaccel2 handle from list of physical disks.
3589 * 1 and set scsi3addr to address of matching physical
3590 * 0 if no matching physical disk was found.
3592 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info
*h
,
3593 struct CommandList
*ioaccel2_cmd_to_abort
, unsigned char *scsi3addr
)
3595 struct io_accel2_cmd
*c2
=
3596 &h
->ioaccel2_cmd_pool
[ioaccel2_cmd_to_abort
->cmdindex
];
3597 unsigned long flags
;
3600 spin_lock_irqsave(&h
->devlock
, flags
);
3601 for (i
= 0; i
< h
->ndevices
; i
++)
3602 if (h
->dev
[i
]->ioaccel_handle
== le32_to_cpu(c2
->scsi_nexus
)) {
3603 memcpy(scsi3addr
, h
->dev
[i
]->scsi3addr
,
3604 sizeof(h
->dev
[i
]->scsi3addr
));
3605 spin_unlock_irqrestore(&h
->devlock
, flags
);
3608 spin_unlock_irqrestore(&h
->devlock
, flags
);
3613 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3614 * logdev. The number of luns in physdev and logdev are returned in
3615 * *nphysicals and *nlogicals, respectively.
3616 * Returns 0 on success, -1 otherwise.
3618 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
3619 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
3620 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
3622 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3623 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3626 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
3627 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
3628 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3629 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
3630 *nphysicals
= HPSA_MAX_PHYS_LUN
;
3632 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
3633 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
3636 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
3637 /* Reject Logicals in excess of our max capability. */
3638 if (*nlogicals
> HPSA_MAX_LUN
) {
3639 dev_warn(&h
->pdev
->dev
,
3640 "maximum logical LUNs (%d) exceeded. "
3641 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
3642 *nlogicals
- HPSA_MAX_LUN
);
3643 *nlogicals
= HPSA_MAX_LUN
;
3645 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
3646 dev_warn(&h
->pdev
->dev
,
3647 "maximum logical + physical LUNs (%d) exceeded. "
3648 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
3649 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
3650 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
3655 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
3656 int i
, int nphysicals
, int nlogicals
,
3657 struct ReportExtendedLUNdata
*physdev_list
,
3658 struct ReportLUNdata
*logdev_list
)
3660 /* Helper function, figure out where the LUN ID info is coming from
3661 * given index i, lists of physical and logical devices, where in
3662 * the list the raid controller is supposed to appear (first or last)
3665 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
3666 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
3668 if (i
== raid_ctlr_position
)
3669 return RAID_CTLR_LUNID
;
3671 if (i
< logicals_start
)
3672 return &physdev_list
->LUN
[i
-
3673 (raid_ctlr_position
== 0)].lunid
[0];
3675 if (i
< last_device
)
3676 return &logdev_list
->LUN
[i
- nphysicals
-
3677 (raid_ctlr_position
== 0)][0];
3682 /* get physical drive ioaccel handle and queue depth */
3683 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
3684 struct hpsa_scsi_dev_t
*dev
,
3686 struct bmic_identify_physical_device
*id_phys
)
3689 struct ext_report_lun_entry
*rle
=
3690 (struct ext_report_lun_entry
*) lunaddrbytes
;
3692 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
3693 if (PHYS_IOACCEL(lunaddrbytes
) && dev
->ioaccel_handle
)
3694 dev
->hba_ioaccel_enabled
= 1;
3695 memset(id_phys
, 0, sizeof(*id_phys
));
3696 rc
= hpsa_bmic_id_physical_device(h
, lunaddrbytes
,
3697 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
), id_phys
,
3700 /* Reserve space for FW operations */
3701 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3702 #define DRIVE_QUEUE_DEPTH 7
3704 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
3705 DRIVE_CMDS_RESERVED_FOR_FW
;
3707 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
3710 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
3712 struct bmic_identify_physical_device
*id_phys
)
3714 if (PHYS_IOACCEL(lunaddrbytes
)
3715 && this_device
->ioaccel_handle
)
3716 this_device
->hba_ioaccel_enabled
= 1;
3718 memcpy(&this_device
->active_path_index
,
3719 &id_phys
->active_path_number
,
3720 sizeof(this_device
->active_path_index
));
3721 memcpy(&this_device
->path_map
,
3722 &id_phys
->redundant_path_present_map
,
3723 sizeof(this_device
->path_map
));
3724 memcpy(&this_device
->box
,
3725 &id_phys
->alternate_paths_phys_box_on_port
,
3726 sizeof(this_device
->box
));
3727 memcpy(&this_device
->phys_connector
,
3728 &id_phys
->alternate_paths_phys_connector
,
3729 sizeof(this_device
->phys_connector
));
3730 memcpy(&this_device
->bay
,
3731 &id_phys
->phys_bay_in_box
,
3732 sizeof(this_device
->bay
));
3735 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
3737 /* the idea here is we could get notified
3738 * that some devices have changed, so we do a report
3739 * physical luns and report logical luns cmd, and adjust
3740 * our list of devices accordingly.
3742 * The scsi3addr's of devices won't change so long as the
3743 * adapter is not reset. That means we can rescan and
3744 * tell which devices we already know about, vs. new
3745 * devices, vs. disappearing devices.
3747 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
3748 struct ReportLUNdata
*logdev_list
= NULL
;
3749 struct bmic_identify_physical_device
*id_phys
= NULL
;
3752 u32 ndev_allocated
= 0;
3753 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
3755 int i
, n_ext_target_devs
, ndevs_to_allocate
;
3756 int raid_ctlr_position
;
3757 DECLARE_BITMAP(lunzerobits
, MAX_EXT_TARGETS
);
3759 currentsd
= kzalloc(sizeof(*currentsd
) * HPSA_MAX_DEVICES
, GFP_KERNEL
);
3760 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
3761 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
3762 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
3763 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3765 if (!currentsd
|| !physdev_list
|| !logdev_list
||
3766 !tmpdevice
|| !id_phys
) {
3767 dev_err(&h
->pdev
->dev
, "out of memory\n");
3770 memset(lunzerobits
, 0, sizeof(lunzerobits
));
3772 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
3774 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
3775 logdev_list
, &nlogicals
)) {
3776 h
->drv_req_rescan
= 1;
3780 /* We might see up to the maximum number of logical and physical disks
3781 * plus external target devices, and a device for the local RAID
3784 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
3786 /* Allocate the per device structures */
3787 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
3788 if (i
>= HPSA_MAX_DEVICES
) {
3789 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
3790 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
3791 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
3795 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
3796 if (!currentsd
[i
]) {
3797 dev_warn(&h
->pdev
->dev
, "out of memory at %s:%d\n",
3798 __FILE__
, __LINE__
);
3799 h
->drv_req_rescan
= 1;
3805 if (is_scsi_rev_5(h
))
3806 raid_ctlr_position
= 0;
3808 raid_ctlr_position
= nphysicals
+ nlogicals
;
3810 /* adjust our table of devices */
3811 n_ext_target_devs
= 0;
3812 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
3813 u8
*lunaddrbytes
, is_OBDR
= 0;
3816 /* Figure out where the LUN ID info is coming from */
3817 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
3818 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
3820 /* skip masked non-disk devices */
3821 if (MASKED_DEVICE(lunaddrbytes
))
3822 if (i
< nphysicals
+ (raid_ctlr_position
== 0) &&
3823 NON_DISK_PHYS_DEV(lunaddrbytes
))
3826 /* Get device type, vendor, model, device id */
3827 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
3829 if (rc
== -ENOMEM
) {
3830 dev_warn(&h
->pdev
->dev
,
3831 "Out of memory, rescan deferred.\n");
3832 h
->drv_req_rescan
= 1;
3836 dev_warn(&h
->pdev
->dev
,
3837 "Inquiry failed, skipping device.\n");
3841 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
3842 hpsa_update_device_supports_aborts(h
, tmpdevice
, lunaddrbytes
);
3843 this_device
= currentsd
[ncurrent
];
3846 * For external target devices, we have to insert a LUN 0 which
3847 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3848 * is nonetheless an enclosure device there. We have to
3849 * present that otherwise linux won't find anything if
3850 * there is no lun 0.
3852 if (add_ext_target_dev(h
, tmpdevice
, this_device
,
3853 lunaddrbytes
, lunzerobits
,
3854 &n_ext_target_devs
)) {
3856 this_device
= currentsd
[ncurrent
];
3859 *this_device
= *tmpdevice
;
3861 /* do not expose masked devices */
3862 if (MASKED_DEVICE(lunaddrbytes
) &&
3863 i
< nphysicals
+ (raid_ctlr_position
== 0)) {
3864 this_device
->expose_state
= HPSA_DO_NOT_EXPOSE
;
3866 this_device
->expose_state
=
3867 HPSA_SG_ATTACH
| HPSA_ULD_ATTACH
;
3870 switch (this_device
->devtype
) {
3872 /* We don't *really* support actual CD-ROM devices,
3873 * just "One Button Disaster Recovery" tape drive
3874 * which temporarily pretends to be a CD-ROM drive.
3875 * So we check that the device is really an OBDR tape
3876 * device by checking for "$DR-10" in bytes 43-48 of
3883 if (i
< nphysicals
+ (raid_ctlr_position
== 0)) {
3884 /* The disk is in HBA mode. */
3885 /* Never use RAID mapper in HBA mode. */
3886 this_device
->offload_enabled
= 0;
3887 hpsa_get_ioaccel_drive_info(h
, this_device
,
3888 lunaddrbytes
, id_phys
);
3889 hpsa_get_path_info(this_device
, lunaddrbytes
,
3895 case TYPE_MEDIUM_CHANGER
:
3896 case TYPE_ENCLOSURE
:
3900 /* Only present the Smartarray HBA as a RAID controller.
3901 * If it's a RAID controller other than the HBA itself
3902 * (an external RAID controller, MSA500 or similar)
3905 if (!is_hba_lunid(lunaddrbytes
))
3912 if (ncurrent
>= HPSA_MAX_DEVICES
)
3915 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
3918 for (i
= 0; i
< ndev_allocated
; i
++)
3919 kfree(currentsd
[i
]);
3921 kfree(physdev_list
);
3926 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
3927 struct scatterlist
*sg
)
3929 u64 addr64
= (u64
) sg_dma_address(sg
);
3930 unsigned int len
= sg_dma_len(sg
);
3932 desc
->Addr
= cpu_to_le64(addr64
);
3933 desc
->Len
= cpu_to_le32(len
);
3938 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3939 * dma mapping and fills in the scatter gather entries of the
3942 static int hpsa_scatter_gather(struct ctlr_info
*h
,
3943 struct CommandList
*cp
,
3944 struct scsi_cmnd
*cmd
)
3946 struct scatterlist
*sg
;
3947 int use_sg
, i
, sg_limit
, chained
, last_sg
;
3948 struct SGDescriptor
*curr_sg
;
3950 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
3952 use_sg
= scsi_dma_map(cmd
);
3957 goto sglist_finished
;
3960 * If the number of entries is greater than the max for a single list,
3961 * then we have a chained list; we will set up all but one entry in the
3962 * first list (the last entry is saved for link information);
3963 * otherwise, we don't have a chained list and we'll set up at each of
3964 * the entries in the one list.
3967 chained
= use_sg
> h
->max_cmd_sg_entries
;
3968 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
3969 last_sg
= scsi_sg_count(cmd
) - 1;
3970 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
3971 hpsa_set_sg_descriptor(curr_sg
, sg
);
3977 * Continue with the chained list. Set curr_sg to the chained
3978 * list. Modify the limit to the total count less the entries
3979 * we've already set up. Resume the scan at the list entry
3980 * where the previous loop left off.
3982 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
3983 sg_limit
= use_sg
- sg_limit
;
3984 for_each_sg(sg
, sg
, sg_limit
, i
) {
3985 hpsa_set_sg_descriptor(curr_sg
, sg
);
3990 /* Back the pointer up to the last entry and mark it as "last". */
3991 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
3993 if (use_sg
+ chained
> h
->maxSG
)
3994 h
->maxSG
= use_sg
+ chained
;
3997 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
3998 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
3999 if (hpsa_map_sg_chain_block(h
, cp
)) {
4000 scsi_dma_unmap(cmd
);
4008 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4009 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4013 #define IO_ACCEL_INELIGIBLE (1)
4014 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4020 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4027 if (*cdb_len
== 6) {
4028 block
= get_unaligned_be16(&cdb
[2]);
4033 BUG_ON(*cdb_len
!= 12);
4034 block
= get_unaligned_be32(&cdb
[2]);
4035 block_cnt
= get_unaligned_be32(&cdb
[6]);
4037 if (block_cnt
> 0xffff)
4038 return IO_ACCEL_INELIGIBLE
;
4040 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4042 cdb
[2] = (u8
) (block
>> 24);
4043 cdb
[3] = (u8
) (block
>> 16);
4044 cdb
[4] = (u8
) (block
>> 8);
4045 cdb
[5] = (u8
) (block
);
4047 cdb
[7] = (u8
) (block_cnt
>> 8);
4048 cdb
[8] = (u8
) (block_cnt
);
4056 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4057 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4058 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4060 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4061 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4063 unsigned int total_len
= 0;
4064 struct scatterlist
*sg
;
4067 struct SGDescriptor
*curr_sg
;
4068 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4070 /* TODO: implement chaining support */
4071 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4072 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4073 return IO_ACCEL_INELIGIBLE
;
4076 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4078 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4079 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4080 return IO_ACCEL_INELIGIBLE
;
4083 c
->cmd_type
= CMD_IOACCEL1
;
4085 /* Adjust the DMA address to point to the accelerated command buffer */
4086 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4087 (c
->cmdindex
* sizeof(*cp
));
4088 BUG_ON(c
->busaddr
& 0x0000007F);
4090 use_sg
= scsi_dma_map(cmd
);
4092 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4098 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4099 addr64
= (u64
) sg_dma_address(sg
);
4100 len
= sg_dma_len(sg
);
4102 curr_sg
->Addr
= cpu_to_le64(addr64
);
4103 curr_sg
->Len
= cpu_to_le32(len
);
4104 curr_sg
->Ext
= cpu_to_le32(0);
4107 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4109 switch (cmd
->sc_data_direction
) {
4111 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4113 case DMA_FROM_DEVICE
:
4114 control
|= IOACCEL1_CONTROL_DATA_IN
;
4117 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4120 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4121 cmd
->sc_data_direction
);
4126 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4129 c
->Header
.SGList
= use_sg
;
4130 /* Fill out the command structure to submit */
4131 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4132 cp
->transfer_len
= cpu_to_le32(total_len
);
4133 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4134 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4135 cp
->control
= cpu_to_le32(control
);
4136 memcpy(cp
->CDB
, cdb
, cdb_len
);
4137 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4138 /* Tag was already set at init time. */
4139 enqueue_cmd_and_start_io(h
, c
);
4144 * Queue a command directly to a device behind the controller using the
4145 * I/O accelerator path.
4147 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4148 struct CommandList
*c
)
4150 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4151 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4155 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4156 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4160 * Set encryption parameters for the ioaccel2 request
4162 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4163 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4165 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4166 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4167 struct raid_map_data
*map
= &dev
->raid_map
;
4170 /* Are we doing encryption on this device */
4171 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4173 /* Set the data encryption key index. */
4174 cp
->dekindex
= map
->dekindex
;
4176 /* Set the encryption enable flag, encoded into direction field. */
4177 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4179 /* Set encryption tweak values based on logical block address
4180 * If block size is 512, tweak value is LBA.
4181 * For other block sizes, tweak is (LBA * block size)/ 512)
4183 switch (cmd
->cmnd
[0]) {
4184 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4187 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4191 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4194 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4198 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4201 dev_err(&h
->pdev
->dev
,
4202 "ERROR: %s: size (0x%x) not supported for encryption\n",
4203 __func__
, cmd
->cmnd
[0]);
4208 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4209 first_block
= first_block
*
4210 le32_to_cpu(map
->volume_blk_size
)/512;
4212 cp
->tweak_lower
= cpu_to_le32(first_block
);
4213 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4216 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4217 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4218 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4220 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4221 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4222 struct ioaccel2_sg_element
*curr_sg
;
4224 struct scatterlist
*sg
;
4229 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4231 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4232 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4233 return IO_ACCEL_INELIGIBLE
;
4236 c
->cmd_type
= CMD_IOACCEL2
;
4237 /* Adjust the DMA address to point to the accelerated command buffer */
4238 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4239 (c
->cmdindex
* sizeof(*cp
));
4240 BUG_ON(c
->busaddr
& 0x0000007F);
4242 memset(cp
, 0, sizeof(*cp
));
4243 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4245 use_sg
= scsi_dma_map(cmd
);
4247 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4253 if (use_sg
> h
->ioaccel_maxsg
) {
4254 addr64
= le64_to_cpu(
4255 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4256 curr_sg
->address
= cpu_to_le64(addr64
);
4257 curr_sg
->length
= 0;
4258 curr_sg
->reserved
[0] = 0;
4259 curr_sg
->reserved
[1] = 0;
4260 curr_sg
->reserved
[2] = 0;
4261 curr_sg
->chain_indicator
= 0x80;
4263 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4265 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4266 addr64
= (u64
) sg_dma_address(sg
);
4267 len
= sg_dma_len(sg
);
4269 curr_sg
->address
= cpu_to_le64(addr64
);
4270 curr_sg
->length
= cpu_to_le32(len
);
4271 curr_sg
->reserved
[0] = 0;
4272 curr_sg
->reserved
[1] = 0;
4273 curr_sg
->reserved
[2] = 0;
4274 curr_sg
->chain_indicator
= 0;
4278 switch (cmd
->sc_data_direction
) {
4280 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4281 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4283 case DMA_FROM_DEVICE
:
4284 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4285 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4288 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4289 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4292 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4293 cmd
->sc_data_direction
);
4298 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4299 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4302 /* Set encryption parameters, if necessary */
4303 set_encrypt_ioaccel2(h
, c
, cp
);
4305 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
4306 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
4307 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
4309 cp
->data_len
= cpu_to_le32(total_len
);
4310 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
4311 offsetof(struct io_accel2_cmd
, error_data
));
4312 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
4314 /* fill in sg elements */
4315 if (use_sg
> h
->ioaccel_maxsg
) {
4317 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
4318 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4319 scsi_dma_unmap(cmd
);
4323 cp
->sg_count
= (u8
) use_sg
;
4325 enqueue_cmd_and_start_io(h
, c
);
4330 * Queue a command to the correct I/O accelerator path.
4332 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
4333 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4334 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4336 /* Try to honor the device's queue depth */
4337 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
4338 phys_disk
->queue_depth
) {
4339 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4340 return IO_ACCEL_INELIGIBLE
;
4342 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
4343 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
4344 cdb
, cdb_len
, scsi3addr
,
4347 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
4348 cdb
, cdb_len
, scsi3addr
,
4352 static void raid_map_helper(struct raid_map_data
*map
,
4353 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
4355 if (offload_to_mirror
== 0) {
4356 /* use physical disk in the first mirrored group. */
4357 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4361 /* determine mirror group that *map_index indicates */
4362 *current_group
= *map_index
/
4363 le16_to_cpu(map
->data_disks_per_row
);
4364 if (offload_to_mirror
== *current_group
)
4366 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
4367 /* select map index from next group */
4368 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4371 /* select map index from first group */
4372 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
4375 } while (offload_to_mirror
!= *current_group
);
4379 * Attempt to perform offload RAID mapping for a logical volume I/O.
4381 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
4382 struct CommandList
*c
)
4384 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4385 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4386 struct raid_map_data
*map
= &dev
->raid_map
;
4387 struct raid_map_disk_data
*dd
= &map
->data
[0];
4390 u64 first_block
, last_block
;
4393 u64 first_row
, last_row
;
4394 u32 first_row_offset
, last_row_offset
;
4395 u32 first_column
, last_column
;
4396 u64 r0_first_row
, r0_last_row
;
4397 u32 r5or6_blocks_per_row
;
4398 u64 r5or6_first_row
, r5or6_last_row
;
4399 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
4400 u32 r5or6_first_column
, r5or6_last_column
;
4401 u32 total_disks_per_row
;
4403 u32 first_group
, last_group
, current_group
;
4411 #if BITS_PER_LONG == 32
4414 int offload_to_mirror
;
4416 /* check for valid opcode, get LBA and block count */
4417 switch (cmd
->cmnd
[0]) {
4421 first_block
= get_unaligned_be16(&cmd
->cmnd
[2]);
4422 block_cnt
= cmd
->cmnd
[4];
4430 (((u64
) cmd
->cmnd
[2]) << 24) |
4431 (((u64
) cmd
->cmnd
[3]) << 16) |
4432 (((u64
) cmd
->cmnd
[4]) << 8) |
4435 (((u32
) cmd
->cmnd
[7]) << 8) |
4442 (((u64
) cmd
->cmnd
[2]) << 24) |
4443 (((u64
) cmd
->cmnd
[3]) << 16) |
4444 (((u64
) cmd
->cmnd
[4]) << 8) |
4447 (((u32
) cmd
->cmnd
[6]) << 24) |
4448 (((u32
) cmd
->cmnd
[7]) << 16) |
4449 (((u32
) cmd
->cmnd
[8]) << 8) |
4456 (((u64
) cmd
->cmnd
[2]) << 56) |
4457 (((u64
) cmd
->cmnd
[3]) << 48) |
4458 (((u64
) cmd
->cmnd
[4]) << 40) |
4459 (((u64
) cmd
->cmnd
[5]) << 32) |
4460 (((u64
) cmd
->cmnd
[6]) << 24) |
4461 (((u64
) cmd
->cmnd
[7]) << 16) |
4462 (((u64
) cmd
->cmnd
[8]) << 8) |
4465 (((u32
) cmd
->cmnd
[10]) << 24) |
4466 (((u32
) cmd
->cmnd
[11]) << 16) |
4467 (((u32
) cmd
->cmnd
[12]) << 8) |
4471 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
4473 last_block
= first_block
+ block_cnt
- 1;
4475 /* check for write to non-RAID-0 */
4476 if (is_write
&& dev
->raid_level
!= 0)
4477 return IO_ACCEL_INELIGIBLE
;
4479 /* check for invalid block or wraparound */
4480 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
4481 last_block
< first_block
)
4482 return IO_ACCEL_INELIGIBLE
;
4484 /* calculate stripe information for the request */
4485 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
4486 le16_to_cpu(map
->strip_size
);
4487 strip_size
= le16_to_cpu(map
->strip_size
);
4488 #if BITS_PER_LONG == 32
4489 tmpdiv
= first_block
;
4490 (void) do_div(tmpdiv
, blocks_per_row
);
4492 tmpdiv
= last_block
;
4493 (void) do_div(tmpdiv
, blocks_per_row
);
4495 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4496 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4497 tmpdiv
= first_row_offset
;
4498 (void) do_div(tmpdiv
, strip_size
);
4499 first_column
= tmpdiv
;
4500 tmpdiv
= last_row_offset
;
4501 (void) do_div(tmpdiv
, strip_size
);
4502 last_column
= tmpdiv
;
4504 first_row
= first_block
/ blocks_per_row
;
4505 last_row
= last_block
/ blocks_per_row
;
4506 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
4507 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
4508 first_column
= first_row_offset
/ strip_size
;
4509 last_column
= last_row_offset
/ strip_size
;
4512 /* if this isn't a single row/column then give to the controller */
4513 if ((first_row
!= last_row
) || (first_column
!= last_column
))
4514 return IO_ACCEL_INELIGIBLE
;
4516 /* proceeding with driver mapping */
4517 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
4518 le16_to_cpu(map
->metadata_disks_per_row
);
4519 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4520 le16_to_cpu(map
->row_cnt
);
4521 map_index
= (map_row
* total_disks_per_row
) + first_column
;
4523 switch (dev
->raid_level
) {
4525 break; /* nothing special to do */
4527 /* Handles load balance across RAID 1 members.
4528 * (2-drive R1 and R10 with even # of drives.)
4529 * Appropriate for SSDs, not optimal for HDDs
4531 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 2);
4532 if (dev
->offload_to_mirror
)
4533 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
4534 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
4537 /* Handles N-way mirrors (R1-ADM)
4538 * and R10 with # of drives divisible by 3.)
4540 BUG_ON(le16_to_cpu(map
->layout_map_count
) != 3);
4542 offload_to_mirror
= dev
->offload_to_mirror
;
4543 raid_map_helper(map
, offload_to_mirror
,
4544 &map_index
, ¤t_group
);
4545 /* set mirror group to use next time */
4547 (offload_to_mirror
>=
4548 le16_to_cpu(map
->layout_map_count
) - 1)
4549 ? 0 : offload_to_mirror
+ 1;
4550 dev
->offload_to_mirror
= offload_to_mirror
;
4551 /* Avoid direct use of dev->offload_to_mirror within this
4552 * function since multiple threads might simultaneously
4553 * increment it beyond the range of dev->layout_map_count -1.
4558 if (le16_to_cpu(map
->layout_map_count
) <= 1)
4561 /* Verify first and last block are in same RAID group */
4562 r5or6_blocks_per_row
=
4563 le16_to_cpu(map
->strip_size
) *
4564 le16_to_cpu(map
->data_disks_per_row
);
4565 BUG_ON(r5or6_blocks_per_row
== 0);
4566 stripesize
= r5or6_blocks_per_row
*
4567 le16_to_cpu(map
->layout_map_count
);
4568 #if BITS_PER_LONG == 32
4569 tmpdiv
= first_block
;
4570 first_group
= do_div(tmpdiv
, stripesize
);
4571 tmpdiv
= first_group
;
4572 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4573 first_group
= tmpdiv
;
4574 tmpdiv
= last_block
;
4575 last_group
= do_div(tmpdiv
, stripesize
);
4576 tmpdiv
= last_group
;
4577 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
4578 last_group
= tmpdiv
;
4580 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
4581 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
4583 if (first_group
!= last_group
)
4584 return IO_ACCEL_INELIGIBLE
;
4586 /* Verify request is in a single row of RAID 5/6 */
4587 #if BITS_PER_LONG == 32
4588 tmpdiv
= first_block
;
4589 (void) do_div(tmpdiv
, stripesize
);
4590 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
4591 tmpdiv
= last_block
;
4592 (void) do_div(tmpdiv
, stripesize
);
4593 r5or6_last_row
= r0_last_row
= tmpdiv
;
4595 first_row
= r5or6_first_row
= r0_first_row
=
4596 first_block
/ stripesize
;
4597 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
4599 if (r5or6_first_row
!= r5or6_last_row
)
4600 return IO_ACCEL_INELIGIBLE
;
4603 /* Verify request is in a single column */
4604 #if BITS_PER_LONG == 32
4605 tmpdiv
= first_block
;
4606 first_row_offset
= do_div(tmpdiv
, stripesize
);
4607 tmpdiv
= first_row_offset
;
4608 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
4609 r5or6_first_row_offset
= first_row_offset
;
4610 tmpdiv
= last_block
;
4611 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
4612 tmpdiv
= r5or6_last_row_offset
;
4613 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
4614 tmpdiv
= r5or6_first_row_offset
;
4615 (void) do_div(tmpdiv
, map
->strip_size
);
4616 first_column
= r5or6_first_column
= tmpdiv
;
4617 tmpdiv
= r5or6_last_row_offset
;
4618 (void) do_div(tmpdiv
, map
->strip_size
);
4619 r5or6_last_column
= tmpdiv
;
4621 first_row_offset
= r5or6_first_row_offset
=
4622 (u32
)((first_block
% stripesize
) %
4623 r5or6_blocks_per_row
);
4625 r5or6_last_row_offset
=
4626 (u32
)((last_block
% stripesize
) %
4627 r5or6_blocks_per_row
);
4629 first_column
= r5or6_first_column
=
4630 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
4632 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
4634 if (r5or6_first_column
!= r5or6_last_column
)
4635 return IO_ACCEL_INELIGIBLE
;
4637 /* Request is eligible */
4638 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
4639 le16_to_cpu(map
->row_cnt
);
4641 map_index
= (first_group
*
4642 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
4643 (map_row
* total_disks_per_row
) + first_column
;
4646 return IO_ACCEL_INELIGIBLE
;
4649 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
4650 return IO_ACCEL_INELIGIBLE
;
4652 c
->phys_disk
= dev
->phys_disk
[map_index
];
4654 disk_handle
= dd
[map_index
].ioaccel_handle
;
4655 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
4656 first_row
* le16_to_cpu(map
->strip_size
) +
4657 (first_row_offset
- first_column
*
4658 le16_to_cpu(map
->strip_size
));
4659 disk_block_cnt
= block_cnt
;
4661 /* handle differing logical/physical block sizes */
4662 if (map
->phys_blk_shift
) {
4663 disk_block
<<= map
->phys_blk_shift
;
4664 disk_block_cnt
<<= map
->phys_blk_shift
;
4666 BUG_ON(disk_block_cnt
> 0xffff);
4668 /* build the new CDB for the physical disk I/O */
4669 if (disk_block
> 0xffffffff) {
4670 cdb
[0] = is_write
? WRITE_16
: READ_16
;
4672 cdb
[2] = (u8
) (disk_block
>> 56);
4673 cdb
[3] = (u8
) (disk_block
>> 48);
4674 cdb
[4] = (u8
) (disk_block
>> 40);
4675 cdb
[5] = (u8
) (disk_block
>> 32);
4676 cdb
[6] = (u8
) (disk_block
>> 24);
4677 cdb
[7] = (u8
) (disk_block
>> 16);
4678 cdb
[8] = (u8
) (disk_block
>> 8);
4679 cdb
[9] = (u8
) (disk_block
);
4680 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
4681 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
4682 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
4683 cdb
[13] = (u8
) (disk_block_cnt
);
4688 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4690 cdb
[2] = (u8
) (disk_block
>> 24);
4691 cdb
[3] = (u8
) (disk_block
>> 16);
4692 cdb
[4] = (u8
) (disk_block
>> 8);
4693 cdb
[5] = (u8
) (disk_block
);
4695 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
4696 cdb
[8] = (u8
) (disk_block_cnt
);
4700 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
4702 dev
->phys_disk
[map_index
]);
4706 * Submit commands down the "normal" RAID stack path
4707 * All callers to hpsa_ciss_submit must check lockup_detected
4708 * beforehand, before (opt.) and after calling cmd_alloc
4710 static int hpsa_ciss_submit(struct ctlr_info
*h
,
4711 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
4712 unsigned char scsi3addr
[])
4714 cmd
->host_scribble
= (unsigned char *) c
;
4715 c
->cmd_type
= CMD_SCSI
;
4717 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
4718 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &scsi3addr
[0], 8);
4719 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
4721 /* Fill in the request block... */
4723 c
->Request
.Timeout
= 0;
4724 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
4725 c
->Request
.CDBLen
= cmd
->cmd_len
;
4726 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
4727 switch (cmd
->sc_data_direction
) {
4729 c
->Request
.type_attr_dir
=
4730 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
4732 case DMA_FROM_DEVICE
:
4733 c
->Request
.type_attr_dir
=
4734 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
4737 c
->Request
.type_attr_dir
=
4738 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
4740 case DMA_BIDIRECTIONAL
:
4741 /* This can happen if a buggy application does a scsi passthru
4742 * and sets both inlen and outlen to non-zero. ( see
4743 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4746 c
->Request
.type_attr_dir
=
4747 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
4748 /* This is technically wrong, and hpsa controllers should
4749 * reject it with CMD_INVALID, which is the most correct
4750 * response, but non-fibre backends appear to let it
4751 * slide by, and give the same results as if this field
4752 * were set correctly. Either way is acceptable for
4753 * our purposes here.
4759 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4760 cmd
->sc_data_direction
);
4765 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
4766 hpsa_cmd_resolve_and_free(h
, c
);
4767 return SCSI_MLQUEUE_HOST_BUSY
;
4769 enqueue_cmd_and_start_io(h
, c
);
4770 /* the cmd'll come back via intr handler in complete_scsi_command() */
4774 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
4775 struct CommandList
*c
)
4777 dma_addr_t cmd_dma_handle
, err_dma_handle
;
4779 /* Zero out all of commandlist except the last field, refcount */
4780 memset(c
, 0, offsetof(struct CommandList
, refcount
));
4781 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
4782 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
4783 c
->err_info
= h
->errinfo_pool
+ index
;
4784 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4785 err_dma_handle
= h
->errinfo_pool_dhandle
4786 + index
* sizeof(*c
->err_info
);
4787 c
->cmdindex
= index
;
4788 c
->busaddr
= (u32
) cmd_dma_handle
;
4789 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
4790 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
4792 c
->scsi_cmd
= SCSI_CMD_IDLE
;
4795 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
4799 for (i
= 0; i
< h
->nr_cmds
; i
++) {
4800 struct CommandList
*c
= h
->cmd_pool
+ i
;
4802 hpsa_cmd_init(h
, i
, c
);
4803 atomic_set(&c
->refcount
, 0);
4807 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
4808 struct CommandList
*c
)
4810 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
4812 BUG_ON(c
->cmdindex
!= index
);
4814 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
4815 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
4816 c
->busaddr
= (u32
) cmd_dma_handle
;
4819 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
4820 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
4821 unsigned char *scsi3addr
)
4823 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4824 int rc
= IO_ACCEL_INELIGIBLE
;
4826 cmd
->host_scribble
= (unsigned char *) c
;
4828 if (dev
->offload_enabled
) {
4829 hpsa_cmd_init(h
, c
->cmdindex
, c
);
4830 c
->cmd_type
= CMD_SCSI
;
4832 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
4833 if (rc
< 0) /* scsi_dma_map failed. */
4834 rc
= SCSI_MLQUEUE_HOST_BUSY
;
4835 } else if (dev
->hba_ioaccel_enabled
) {
4836 hpsa_cmd_init(h
, c
->cmdindex
, c
);
4837 c
->cmd_type
= CMD_SCSI
;
4839 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
4840 if (rc
< 0) /* scsi_dma_map failed. */
4841 rc
= SCSI_MLQUEUE_HOST_BUSY
;
4846 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
4848 struct scsi_cmnd
*cmd
;
4849 struct hpsa_scsi_dev_t
*dev
;
4850 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
4853 dev
= cmd
->device
->hostdata
;
4855 cmd
->result
= DID_NO_CONNECT
<< 16;
4856 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
4858 if (c
->reset_pending
)
4859 return hpsa_cmd_resolve_and_free(c
->h
, c
);
4860 if (c
->abort_pending
)
4861 return hpsa_cmd_abort_and_free(c
->h
, c
, cmd
);
4862 if (c
->cmd_type
== CMD_IOACCEL2
) {
4863 struct ctlr_info
*h
= c
->h
;
4864 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4867 if (c2
->error_data
.serv_response
==
4868 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
4869 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, dev
->scsi3addr
);
4872 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
4874 * If we get here, it means dma mapping failed.
4875 * Try again via scsi mid layer, which will
4876 * then get SCSI_MLQUEUE_HOST_BUSY.
4878 cmd
->result
= DID_IMM_RETRY
<< 16;
4879 return hpsa_cmd_free_and_done(h
, c
, cmd
);
4881 /* else, fall thru and resubmit down CISS path */
4884 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
4885 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
->scsi3addr
)) {
4887 * If we get here, it means dma mapping failed. Try
4888 * again via scsi mid layer, which will then get
4889 * SCSI_MLQUEUE_HOST_BUSY.
4891 * hpsa_ciss_submit will have already freed c
4892 * if it encountered a dma mapping failure.
4894 cmd
->result
= DID_IMM_RETRY
<< 16;
4895 cmd
->scsi_done(cmd
);
4899 /* Running in struct Scsi_Host->host_lock less mode */
4900 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
4902 struct ctlr_info
*h
;
4903 struct hpsa_scsi_dev_t
*dev
;
4904 unsigned char scsi3addr
[8];
4905 struct CommandList
*c
;
4908 /* Get the ptr to our adapter structure out of cmd->host. */
4909 h
= sdev_to_hba(cmd
->device
);
4911 BUG_ON(cmd
->request
->tag
< 0);
4913 dev
= cmd
->device
->hostdata
;
4915 cmd
->result
= DID_NO_CONNECT
<< 16;
4916 cmd
->scsi_done(cmd
);
4920 memcpy(scsi3addr
, dev
->scsi3addr
, sizeof(scsi3addr
));
4922 if (unlikely(lockup_detected(h
))) {
4923 cmd
->result
= DID_NO_CONNECT
<< 16;
4924 cmd
->scsi_done(cmd
);
4927 c
= cmd_tagged_alloc(h
, cmd
);
4930 * Call alternate submit routine for I/O accelerated commands.
4931 * Retries always go down the normal I/O path.
4933 if (likely(cmd
->retries
== 0 &&
4934 cmd
->request
->cmd_type
== REQ_TYPE_FS
&&
4935 h
->acciopath_status
)) {
4936 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, scsi3addr
);
4939 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
4940 hpsa_cmd_resolve_and_free(h
, c
);
4941 return SCSI_MLQUEUE_HOST_BUSY
;
4944 return hpsa_ciss_submit(h
, c
, cmd
, scsi3addr
);
4947 static void hpsa_scan_complete(struct ctlr_info
*h
)
4949 unsigned long flags
;
4951 spin_lock_irqsave(&h
->scan_lock
, flags
);
4952 h
->scan_finished
= 1;
4953 wake_up_all(&h
->scan_wait_queue
);
4954 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4957 static void hpsa_scan_start(struct Scsi_Host
*sh
)
4959 struct ctlr_info
*h
= shost_to_hba(sh
);
4960 unsigned long flags
;
4963 * Don't let rescans be initiated on a controller known to be locked
4964 * up. If the controller locks up *during* a rescan, that thread is
4965 * probably hosed, but at least we can prevent new rescan threads from
4966 * piling up on a locked up controller.
4968 if (unlikely(lockup_detected(h
)))
4969 return hpsa_scan_complete(h
);
4971 /* wait until any scan already in progress is finished. */
4973 spin_lock_irqsave(&h
->scan_lock
, flags
);
4974 if (h
->scan_finished
)
4976 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4977 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
4978 /* Note: We don't need to worry about a race between this
4979 * thread and driver unload because the midlayer will
4980 * have incremented the reference count, so unload won't
4981 * happen if we're in here.
4984 h
->scan_finished
= 0; /* mark scan as in progress */
4985 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
4987 if (unlikely(lockup_detected(h
)))
4988 return hpsa_scan_complete(h
);
4990 hpsa_update_scsi_devices(h
);
4992 hpsa_scan_complete(h
);
4995 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
4997 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5004 else if (qdepth
> logical_drive
->queue_depth
)
5005 qdepth
= logical_drive
->queue_depth
;
5007 return scsi_change_queue_depth(sdev
, qdepth
);
5010 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5011 unsigned long elapsed_time
)
5013 struct ctlr_info
*h
= shost_to_hba(sh
);
5014 unsigned long flags
;
5017 spin_lock_irqsave(&h
->scan_lock
, flags
);
5018 finished
= h
->scan_finished
;
5019 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5023 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5025 struct Scsi_Host
*sh
;
5028 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(h
));
5030 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5037 sh
->max_channel
= 3;
5038 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5039 sh
->max_lun
= HPSA_MAX_LUN
;
5040 sh
->max_id
= HPSA_MAX_LUN
;
5041 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5042 sh
->cmd_per_lun
= sh
->can_queue
;
5043 sh
->sg_tablesize
= h
->maxsgentries
;
5044 sh
->hostdata
[0] = (unsigned long) h
;
5045 sh
->irq
= h
->intr
[h
->intr_mode
];
5046 sh
->unique_id
= sh
->irq
;
5047 error
= scsi_init_shared_tag_map(sh
, sh
->can_queue
);
5049 dev_err(&h
->pdev
->dev
,
5050 "%s: scsi_init_shared_tag_map failed for controller %d\n",
5059 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5063 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5065 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5068 scsi_scan_host(h
->scsi_host
);
5073 * The block layer has already gone to the trouble of picking out a unique,
5074 * small-integer tag for this request. We use an offset from that value as
5075 * an index to select our command block. (The offset allows us to reserve the
5076 * low-numbered entries for our own uses.)
5078 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5080 int idx
= scmd
->request
->tag
;
5085 /* Offset to leave space for internal cmds. */
5086 return idx
+= HPSA_NRESERVED_CMDS
;
5090 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5091 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5093 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5094 struct CommandList
*c
, unsigned char lunaddr
[],
5099 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5100 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5101 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5102 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5105 /* no unmap needed here because no data xfer. */
5107 /* Check if the unit is already ready. */
5108 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5112 * The first command sent after reset will receive "unit attention" to
5113 * indicate that the LUN has been reset...this is actually what we're
5114 * looking for (but, success is good too).
5116 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5117 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5118 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5119 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5126 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5127 * returns zero when the unit is ready, and non-zero when giving up.
5129 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5130 struct CommandList
*c
,
5131 unsigned char lunaddr
[], int reply_queue
)
5135 int waittime
= 1; /* seconds */
5137 /* Send test unit ready until device ready, or give up. */
5138 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5141 * Wait for a bit. do this first, because if we send
5142 * the TUR right away, the reset will just abort it.
5144 msleep(1000 * waittime
);
5146 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5150 /* Increase wait time with each try, up to a point. */
5151 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5154 dev_warn(&h
->pdev
->dev
,
5155 "waiting %d secs for device to become ready.\n",
5162 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5163 unsigned char lunaddr
[],
5170 struct CommandList
*c
;
5175 * If no specific reply queue was requested, then send the TUR
5176 * repeatedly, requesting a reply on each reply queue; otherwise execute
5177 * the loop exactly once using only the specified queue.
5179 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
5181 last_queue
= h
->nreply_queues
- 1;
5183 first_queue
= reply_queue
;
5184 last_queue
= reply_queue
;
5187 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
5188 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
5194 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
5196 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
5202 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5203 * complaining. Doing a host- or bus-reset can't do anything good here.
5205 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
5208 struct ctlr_info
*h
;
5209 struct hpsa_scsi_dev_t
*dev
;
5212 /* find the controller to which the command to be aborted was sent */
5213 h
= sdev_to_hba(scsicmd
->device
);
5214 if (h
== NULL
) /* paranoia */
5217 if (lockup_detected(h
))
5220 dev
= scsicmd
->device
->hostdata
;
5222 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
5226 /* if controller locked up, we can guarantee command won't complete */
5227 if (lockup_detected(h
)) {
5228 snprintf(msg
, sizeof(msg
),
5229 "cmd %d RESET FAILED, lockup detected",
5230 hpsa_get_cmd_index(scsicmd
));
5231 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5235 /* this reset request might be the result of a lockup; check */
5236 if (detect_controller_lockup(h
)) {
5237 snprintf(msg
, sizeof(msg
),
5238 "cmd %d RESET FAILED, new lockup detected",
5239 hpsa_get_cmd_index(scsicmd
));
5240 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5244 /* Do not attempt on controller */
5245 if (is_hba_lunid(dev
->scsi3addr
))
5248 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "resetting");
5250 h
->reset_in_progress
= 1;
5252 /* send a reset to the SCSI LUN which the command was sent to */
5253 rc
= hpsa_do_reset(h
, dev
, dev
->scsi3addr
, HPSA_RESET_TYPE_LUN
,
5254 DEFAULT_REPLY_QUEUE
);
5255 snprintf(msg
, sizeof(msg
), "reset %s",
5256 rc
== 0 ? "completed successfully" : "failed");
5257 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
5258 h
->reset_in_progress
= 0;
5259 return rc
== 0 ? SUCCESS
: FAILED
;
5262 static void swizzle_abort_tag(u8
*tag
)
5266 memcpy(original_tag
, tag
, 8);
5267 tag
[0] = original_tag
[3];
5268 tag
[1] = original_tag
[2];
5269 tag
[2] = original_tag
[1];
5270 tag
[3] = original_tag
[0];
5271 tag
[4] = original_tag
[7];
5272 tag
[5] = original_tag
[6];
5273 tag
[6] = original_tag
[5];
5274 tag
[7] = original_tag
[4];
5277 static void hpsa_get_tag(struct ctlr_info
*h
,
5278 struct CommandList
*c
, __le32
*taglower
, __le32
*tagupper
)
5281 if (c
->cmd_type
== CMD_IOACCEL1
) {
5282 struct io_accel1_cmd
*cm1
= (struct io_accel1_cmd
*)
5283 &h
->ioaccel_cmd_pool
[c
->cmdindex
];
5284 tag
= le64_to_cpu(cm1
->tag
);
5285 *tagupper
= cpu_to_le32(tag
>> 32);
5286 *taglower
= cpu_to_le32(tag
);
5289 if (c
->cmd_type
== CMD_IOACCEL2
) {
5290 struct io_accel2_cmd
*cm2
= (struct io_accel2_cmd
*)
5291 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5292 /* upper tag not used in ioaccel2 mode */
5293 memset(tagupper
, 0, sizeof(*tagupper
));
5294 *taglower
= cm2
->Tag
;
5297 tag
= le64_to_cpu(c
->Header
.tag
);
5298 *tagupper
= cpu_to_le32(tag
>> 32);
5299 *taglower
= cpu_to_le32(tag
);
5302 static int hpsa_send_abort(struct ctlr_info
*h
, unsigned char *scsi3addr
,
5303 struct CommandList
*abort
, int reply_queue
)
5306 struct CommandList
*c
;
5307 struct ErrorInfo
*ei
;
5308 __le32 tagupper
, taglower
;
5312 /* fill_cmd can't fail here, no buffer to map */
5313 (void) fill_cmd(c
, HPSA_ABORT_MSG
, h
, &abort
->Header
.tag
,
5314 0, 0, scsi3addr
, TYPE_MSG
);
5315 if (h
->needs_abort_tags_swizzled
)
5316 swizzle_abort_tag(&c
->Request
.CDB
[4]);
5317 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5318 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5319 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5320 __func__
, tagupper
, taglower
);
5321 /* no unmap needed here because no data xfer. */
5324 switch (ei
->CommandStatus
) {
5327 case CMD_TMF_STATUS
:
5328 rc
= hpsa_evaluate_tmf_status(h
, c
);
5330 case CMD_UNABORTABLE
: /* Very common, don't make noise. */
5334 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5335 __func__
, tagupper
, taglower
);
5336 hpsa_scsi_interpret_error(h
, c
);
5341 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n",
5342 __func__
, tagupper
, taglower
);
5346 static void setup_ioaccel2_abort_cmd(struct CommandList
*c
, struct ctlr_info
*h
,
5347 struct CommandList
*command_to_abort
, int reply_queue
)
5349 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5350 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
5351 struct io_accel2_cmd
*c2a
=
5352 &h
->ioaccel2_cmd_pool
[command_to_abort
->cmdindex
];
5353 struct scsi_cmnd
*scmd
= command_to_abort
->scsi_cmd
;
5354 struct hpsa_scsi_dev_t
*dev
= scmd
->device
->hostdata
;
5357 * We're overlaying struct hpsa_tmf_struct on top of something which
5358 * was allocated as a struct io_accel2_cmd, so we better be sure it
5359 * actually fits, and doesn't overrun the error info space.
5361 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct
) >
5362 sizeof(struct io_accel2_cmd
));
5363 BUG_ON(offsetof(struct io_accel2_cmd
, error_data
) <
5364 offsetof(struct hpsa_tmf_struct
, error_len
) +
5365 sizeof(ac
->error_len
));
5367 c
->cmd_type
= IOACCEL2_TMF
;
5368 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5370 /* Adjust the DMA address to point to the accelerated command buffer */
5371 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
5372 (c
->cmdindex
* sizeof(struct io_accel2_cmd
));
5373 BUG_ON(c
->busaddr
& 0x0000007F);
5375 memset(ac
, 0, sizeof(*c2
)); /* yes this is correct */
5376 ac
->iu_type
= IOACCEL2_IU_TMF_TYPE
;
5377 ac
->reply_queue
= reply_queue
;
5378 ac
->tmf
= IOACCEL2_TMF_ABORT
;
5379 ac
->it_nexus
= cpu_to_le32(dev
->ioaccel_handle
);
5380 memset(ac
->lun_id
, 0, sizeof(ac
->lun_id
));
5381 ac
->tag
= cpu_to_le64(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5382 ac
->abort_tag
= cpu_to_le64(le32_to_cpu(c2a
->Tag
));
5383 ac
->error_ptr
= cpu_to_le64(c
->busaddr
+
5384 offsetof(struct io_accel2_cmd
, error_data
));
5385 ac
->error_len
= cpu_to_le32(sizeof(c2
->error_data
));
5388 /* ioaccel2 path firmware cannot handle abort task requests.
5389 * Change abort requests to physical target reset, and send to the
5390 * address of the physical disk used for the ioaccel 2 command.
5391 * Return 0 on success (IO_OK)
5395 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info
*h
,
5396 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5399 struct scsi_cmnd
*scmd
; /* scsi command within request being aborted */
5400 struct hpsa_scsi_dev_t
*dev
; /* device to which scsi cmd was sent */
5401 unsigned char phys_scsi3addr
[8]; /* addr of phys disk with volume */
5402 unsigned char *psa
= &phys_scsi3addr
[0];
5404 /* Get a pointer to the hpsa logical device. */
5405 scmd
= abort
->scsi_cmd
;
5406 dev
= (struct hpsa_scsi_dev_t
*)(scmd
->device
->hostdata
);
5408 dev_warn(&h
->pdev
->dev
,
5409 "Cannot abort: no device pointer for command.\n");
5410 return -1; /* not abortable */
5413 if (h
->raid_offload_debug
> 0)
5414 dev_info(&h
->pdev
->dev
,
5415 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5416 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
5418 scsi3addr
[0], scsi3addr
[1], scsi3addr
[2], scsi3addr
[3],
5419 scsi3addr
[4], scsi3addr
[5], scsi3addr
[6], scsi3addr
[7]);
5421 if (!dev
->offload_enabled
) {
5422 dev_warn(&h
->pdev
->dev
,
5423 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5424 return -1; /* not abortable */
5427 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5428 if (!hpsa_get_pdisk_of_ioaccel2(h
, abort
, psa
)) {
5429 dev_warn(&h
->pdev
->dev
, "Can't abort: Failed lookup of physical address.\n");
5430 return -1; /* not abortable */
5433 /* send the reset */
5434 if (h
->raid_offload_debug
> 0)
5435 dev_info(&h
->pdev
->dev
,
5436 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5437 psa
[0], psa
[1], psa
[2], psa
[3],
5438 psa
[4], psa
[5], psa
[6], psa
[7]);
5439 rc
= hpsa_do_reset(h
, dev
, psa
, HPSA_RESET_TYPE_TARGET
, reply_queue
);
5441 dev_warn(&h
->pdev
->dev
,
5442 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5443 psa
[0], psa
[1], psa
[2], psa
[3],
5444 psa
[4], psa
[5], psa
[6], psa
[7]);
5445 return rc
; /* failed to reset */
5448 /* wait for device to recover */
5449 if (wait_for_device_to_become_ready(h
, psa
, reply_queue
) != 0) {
5450 dev_warn(&h
->pdev
->dev
,
5451 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5452 psa
[0], psa
[1], psa
[2], psa
[3],
5453 psa
[4], psa
[5], psa
[6], psa
[7]);
5454 return -1; /* failed to recover */
5457 /* device recovered */
5458 dev_info(&h
->pdev
->dev
,
5459 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5460 psa
[0], psa
[1], psa
[2], psa
[3],
5461 psa
[4], psa
[5], psa
[6], psa
[7]);
5463 return rc
; /* success */
5466 static int hpsa_send_abort_ioaccel2(struct ctlr_info
*h
,
5467 struct CommandList
*abort
, int reply_queue
)
5470 struct CommandList
*c
;
5471 __le32 taglower
, tagupper
;
5472 struct hpsa_scsi_dev_t
*dev
;
5473 struct io_accel2_cmd
*c2
;
5475 dev
= abort
->scsi_cmd
->device
->hostdata
;
5476 if (!dev
->offload_enabled
&& !dev
->hba_ioaccel_enabled
)
5480 setup_ioaccel2_abort_cmd(c
, h
, abort
, reply_queue
);
5481 c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5482 (void) hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5483 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5484 dev_dbg(&h
->pdev
->dev
,
5485 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5486 __func__
, tagupper
, taglower
);
5487 /* no unmap needed here because no data xfer. */
5489 dev_dbg(&h
->pdev
->dev
,
5490 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5491 __func__
, tagupper
, taglower
, c2
->error_data
.serv_response
);
5492 switch (c2
->error_data
.serv_response
) {
5493 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
5494 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
5497 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
5498 case IOACCEL2_SERV_RESPONSE_FAILURE
:
5499 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
5503 dev_warn(&h
->pdev
->dev
,
5504 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5505 __func__
, tagupper
, taglower
,
5506 c2
->error_data
.serv_response
);
5510 dev_dbg(&h
->pdev
->dev
, "%s: Tag:0x%08x:%08x: Finished.\n", __func__
,
5511 tagupper
, taglower
);
5515 static int hpsa_send_abort_both_ways(struct ctlr_info
*h
,
5516 unsigned char *scsi3addr
, struct CommandList
*abort
, int reply_queue
)
5519 * ioccelerator mode 2 commands should be aborted via the
5520 * accelerated path, since RAID path is unaware of these commands,
5521 * but not all underlying firmware can handle abort TMF.
5522 * Change abort to physical device reset when abort TMF is unsupported.
5524 if (abort
->cmd_type
== CMD_IOACCEL2
) {
5525 if (HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
)
5526 return hpsa_send_abort_ioaccel2(h
, abort
,
5529 return hpsa_send_reset_as_abort_ioaccel2(h
, scsi3addr
,
5530 abort
, reply_queue
);
5532 return hpsa_send_abort(h
, scsi3addr
, abort
, reply_queue
);
5535 /* Find out which reply queue a command was meant to return on */
5536 static int hpsa_extract_reply_queue(struct ctlr_info
*h
,
5537 struct CommandList
*c
)
5539 if (c
->cmd_type
== CMD_IOACCEL2
)
5540 return h
->ioaccel2_cmd_pool
[c
->cmdindex
].reply_queue
;
5541 return c
->Header
.ReplyQueue
;
5545 * Limit concurrency of abort commands to prevent
5546 * over-subscription of commands
5548 static inline int wait_for_available_abort_cmd(struct ctlr_info
*h
)
5550 #define ABORT_CMD_WAIT_MSECS 5000
5551 return !wait_event_timeout(h
->abort_cmd_wait_queue
,
5552 atomic_dec_if_positive(&h
->abort_cmds_available
) >= 0,
5553 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS
));
5556 /* Send an abort for the specified command.
5557 * If the device and controller support it,
5558 * send a task abort request.
5560 static int hpsa_eh_abort_handler(struct scsi_cmnd
*sc
)
5564 struct ctlr_info
*h
;
5565 struct hpsa_scsi_dev_t
*dev
;
5566 struct CommandList
*abort
; /* pointer to command to be aborted */
5567 struct scsi_cmnd
*as
; /* ptr to scsi cmd inside aborted command. */
5568 char msg
[256]; /* For debug messaging. */
5570 __le32 tagupper
, taglower
;
5571 int refcount
, reply_queue
;
5576 if (sc
->device
== NULL
)
5579 /* Find the controller of the command to be aborted */
5580 h
= sdev_to_hba(sc
->device
);
5584 /* Find the device of the command to be aborted */
5585 dev
= sc
->device
->hostdata
;
5587 dev_err(&h
->pdev
->dev
, "%s FAILED, Device lookup failed.\n",
5592 /* If controller locked up, we can guarantee command won't complete */
5593 if (lockup_detected(h
)) {
5594 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5595 "ABORT FAILED, lockup detected");
5599 /* This is a good time to check if controller lockup has occurred */
5600 if (detect_controller_lockup(h
)) {
5601 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5602 "ABORT FAILED, new lockup detected");
5606 /* Check that controller supports some kind of task abort */
5607 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
) &&
5608 !(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
5611 memset(msg
, 0, sizeof(msg
));
5612 ml
+= sprintf(msg
+ml
, "scsi %d:%d:%d:%llu %s %p",
5613 h
->scsi_host
->host_no
, sc
->device
->channel
,
5614 sc
->device
->id
, sc
->device
->lun
,
5615 "Aborting command", sc
);
5617 /* Get SCSI command to be aborted */
5618 abort
= (struct CommandList
*) sc
->host_scribble
;
5619 if (abort
== NULL
) {
5620 /* This can happen if the command already completed. */
5623 refcount
= atomic_inc_return(&abort
->refcount
);
5624 if (refcount
== 1) { /* Command is done already. */
5629 /* Don't bother trying the abort if we know it won't work. */
5630 if (abort
->cmd_type
!= CMD_IOACCEL2
&&
5631 abort
->cmd_type
!= CMD_IOACCEL1
&& !dev
->supports_aborts
) {
5637 * Check that we're aborting the right command.
5638 * It's possible the CommandList already completed and got re-used.
5640 if (abort
->scsi_cmd
!= sc
) {
5645 abort
->abort_pending
= true;
5646 hpsa_get_tag(h
, abort
, &taglower
, &tagupper
);
5647 reply_queue
= hpsa_extract_reply_queue(h
, abort
);
5648 ml
+= sprintf(msg
+ml
, "Tag:0x%08x:%08x ", tagupper
, taglower
);
5649 as
= abort
->scsi_cmd
;
5651 ml
+= sprintf(msg
+ml
,
5652 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5653 as
->cmd_len
, as
->cmnd
[0], as
->cmnd
[1],
5655 dev_warn(&h
->pdev
->dev
, "%s BEING SENT\n", msg
);
5656 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, "Aborting command");
5659 * Command is in flight, or possibly already completed
5660 * by the firmware (but not to the scsi mid layer) but we can't
5661 * distinguish which. Send the abort down.
5663 if (wait_for_available_abort_cmd(h
)) {
5664 dev_warn(&h
->pdev
->dev
,
5665 "%s FAILED, timeout waiting for an abort command to become available.\n",
5670 rc
= hpsa_send_abort_both_ways(h
, dev
->scsi3addr
, abort
, reply_queue
);
5671 atomic_inc(&h
->abort_cmds_available
);
5672 wake_up_all(&h
->abort_cmd_wait_queue
);
5674 dev_warn(&h
->pdev
->dev
, "%s SENT, FAILED\n", msg
);
5675 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
,
5676 "FAILED to abort command");
5680 dev_info(&h
->pdev
->dev
, "%s SENT, SUCCESS\n", msg
);
5681 wait_event(h
->event_sync_wait_queue
,
5682 abort
->scsi_cmd
!= sc
|| lockup_detected(h
));
5684 return !lockup_detected(h
) ? SUCCESS
: FAILED
;
5688 * For operations with an associated SCSI command, a command block is allocated
5689 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5690 * block request tag as an index into a table of entries. cmd_tagged_free() is
5691 * the complement, although cmd_free() may be called instead.
5693 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
5694 struct scsi_cmnd
*scmd
)
5696 int idx
= hpsa_get_cmd_index(scmd
);
5697 struct CommandList
*c
= h
->cmd_pool
+ idx
;
5699 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
5700 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
5701 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
5702 /* The index value comes from the block layer, so if it's out of
5703 * bounds, it's probably not our bug.
5708 atomic_inc(&c
->refcount
);
5709 if (unlikely(!hpsa_is_cmd_idle(c
))) {
5711 * We expect that the SCSI layer will hand us a unique tag
5712 * value. Thus, there should never be a collision here between
5713 * two requests...because if the selected command isn't idle
5714 * then someone is going to be very disappointed.
5716 dev_err(&h
->pdev
->dev
,
5717 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5719 if (c
->scsi_cmd
!= NULL
)
5720 scsi_print_command(c
->scsi_cmd
);
5721 scsi_print_command(scmd
);
5724 hpsa_cmd_partial_init(h
, idx
, c
);
5728 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
5731 * Release our reference to the block. We don't need to do anything
5732 * else to free it, because it is accessed by index. (There's no point
5733 * in checking the result of the decrement, since we cannot guarantee
5734 * that there isn't a concurrent abort which is also accessing it.)
5736 (void)atomic_dec(&c
->refcount
);
5740 * For operations that cannot sleep, a command block is allocated at init,
5741 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5742 * which ones are free or in use. Lock must be held when calling this.
5743 * cmd_free() is the complement.
5744 * This function never gives up and returns NULL. If it hangs,
5745 * another thread must call cmd_free() to free some tags.
5748 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
5750 struct CommandList
*c
;
5755 * There is some *extremely* small but non-zero chance that that
5756 * multiple threads could get in here, and one thread could
5757 * be scanning through the list of bits looking for a free
5758 * one, but the free ones are always behind him, and other
5759 * threads sneak in behind him and eat them before he can
5760 * get to them, so that while there is always a free one, a
5761 * very unlucky thread might be starved anyway, never able to
5762 * beat the other threads. In reality, this happens so
5763 * infrequently as to be indistinguishable from never.
5765 * Note that we start allocating commands before the SCSI host structure
5766 * is initialized. Since the search starts at bit zero, this
5767 * all works, since we have at least one command structure available;
5768 * however, it means that the structures with the low indexes have to be
5769 * reserved for driver-initiated requests, while requests from the block
5770 * layer will use the higher indexes.
5774 i
= find_next_zero_bit(h
->cmd_pool_bits
,
5775 HPSA_NRESERVED_CMDS
,
5777 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
5781 c
= h
->cmd_pool
+ i
;
5782 refcount
= atomic_inc_return(&c
->refcount
);
5783 if (unlikely(refcount
> 1)) {
5784 cmd_free(h
, c
); /* already in use */
5785 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
5788 set_bit(i
& (BITS_PER_LONG
- 1),
5789 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5790 break; /* it's ours now. */
5792 hpsa_cmd_partial_init(h
, i
, c
);
5797 * This is the complementary operation to cmd_alloc(). Note, however, in some
5798 * corner cases it may also be used to free blocks allocated by
5799 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5800 * the clear-bit is harmless.
5802 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
5804 if (atomic_dec_and_test(&c
->refcount
)) {
5807 i
= c
- h
->cmd_pool
;
5808 clear_bit(i
& (BITS_PER_LONG
- 1),
5809 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
5813 #ifdef CONFIG_COMPAT
5815 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, int cmd
,
5818 IOCTL32_Command_struct __user
*arg32
=
5819 (IOCTL32_Command_struct __user
*) arg
;
5820 IOCTL_Command_struct arg64
;
5821 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
5825 memset(&arg64
, 0, sizeof(arg64
));
5827 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
5828 sizeof(arg64
.LUN_info
));
5829 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
5830 sizeof(arg64
.Request
));
5831 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
5832 sizeof(arg64
.error_info
));
5833 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
5834 err
|= get_user(cp
, &arg32
->buf
);
5835 arg64
.buf
= compat_ptr(cp
);
5836 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
5841 err
= hpsa_ioctl(dev
, CCISS_PASSTHRU
, p
);
5844 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
5845 sizeof(arg32
->error_info
));
5851 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
5852 int cmd
, void __user
*arg
)
5854 BIG_IOCTL32_Command_struct __user
*arg32
=
5855 (BIG_IOCTL32_Command_struct __user
*) arg
;
5856 BIG_IOCTL_Command_struct arg64
;
5857 BIG_IOCTL_Command_struct __user
*p
=
5858 compat_alloc_user_space(sizeof(arg64
));
5862 memset(&arg64
, 0, sizeof(arg64
));
5864 err
|= copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
5865 sizeof(arg64
.LUN_info
));
5866 err
|= copy_from_user(&arg64
.Request
, &arg32
->Request
,
5867 sizeof(arg64
.Request
));
5868 err
|= copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
5869 sizeof(arg64
.error_info
));
5870 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
5871 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
5872 err
|= get_user(cp
, &arg32
->buf
);
5873 arg64
.buf
= compat_ptr(cp
);
5874 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
5879 err
= hpsa_ioctl(dev
, CCISS_BIG_PASSTHRU
, p
);
5882 err
|= copy_in_user(&arg32
->error_info
, &p
->error_info
,
5883 sizeof(arg32
->error_info
));
5889 static int hpsa_compat_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
5892 case CCISS_GETPCIINFO
:
5893 case CCISS_GETINTINFO
:
5894 case CCISS_SETINTINFO
:
5895 case CCISS_GETNODENAME
:
5896 case CCISS_SETNODENAME
:
5897 case CCISS_GETHEARTBEAT
:
5898 case CCISS_GETBUSTYPES
:
5899 case CCISS_GETFIRMVER
:
5900 case CCISS_GETDRIVVER
:
5901 case CCISS_REVALIDVOLS
:
5902 case CCISS_DEREGDISK
:
5903 case CCISS_REGNEWDISK
:
5905 case CCISS_RESCANDISK
:
5906 case CCISS_GETLUNINFO
:
5907 return hpsa_ioctl(dev
, cmd
, arg
);
5909 case CCISS_PASSTHRU32
:
5910 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
5911 case CCISS_BIG_PASSTHRU32
:
5912 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
5915 return -ENOIOCTLCMD
;
5920 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5922 struct hpsa_pci_info pciinfo
;
5926 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
5927 pciinfo
.bus
= h
->pdev
->bus
->number
;
5928 pciinfo
.dev_fn
= h
->pdev
->devfn
;
5929 pciinfo
.board_id
= h
->board_id
;
5930 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
5935 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5937 DriverVer_type DriverVer
;
5938 unsigned char vmaj
, vmin
, vsubmin
;
5941 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
5942 &vmaj
, &vmin
, &vsubmin
);
5944 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
5945 "unrecognized.", HPSA_DRIVER_VERSION
);
5950 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
5953 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
5958 static int hpsa_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
5960 IOCTL_Command_struct iocommand
;
5961 struct CommandList
*c
;
5968 if (!capable(CAP_SYS_RAWIO
))
5970 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
5972 if ((iocommand
.buf_size
< 1) &&
5973 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
5976 if (iocommand
.buf_size
> 0) {
5977 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
5980 if (iocommand
.Request
.Type
.Direction
& XFER_WRITE
) {
5981 /* Copy the data into the buffer we created */
5982 if (copy_from_user(buff
, iocommand
.buf
,
5983 iocommand
.buf_size
)) {
5988 memset(buff
, 0, iocommand
.buf_size
);
5993 /* Fill in the command type */
5994 c
->cmd_type
= CMD_IOCTL_PEND
;
5995 c
->scsi_cmd
= SCSI_CMD_BUSY
;
5996 /* Fill in Command Header */
5997 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5998 if (iocommand
.buf_size
> 0) { /* buffer to fill */
5999 c
->Header
.SGList
= 1;
6000 c
->Header
.SGTotal
= cpu_to_le16(1);
6001 } else { /* no buffers to fill */
6002 c
->Header
.SGList
= 0;
6003 c
->Header
.SGTotal
= cpu_to_le16(0);
6005 memcpy(&c
->Header
.LUN
, &iocommand
.LUN_info
, sizeof(c
->Header
.LUN
));
6007 /* Fill in Request block */
6008 memcpy(&c
->Request
, &iocommand
.Request
,
6009 sizeof(c
->Request
));
6011 /* Fill in the scatter gather information */
6012 if (iocommand
.buf_size
> 0) {
6013 temp64
= pci_map_single(h
->pdev
, buff
,
6014 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
6015 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6016 c
->SG
[0].Addr
= cpu_to_le64(0);
6017 c
->SG
[0].Len
= cpu_to_le32(0);
6021 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6022 c
->SG
[0].Len
= cpu_to_le32(iocommand
.buf_size
);
6023 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6025 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6026 if (iocommand
.buf_size
> 0)
6027 hpsa_pci_unmap(h
->pdev
, c
, 1, PCI_DMA_BIDIRECTIONAL
);
6028 check_ioctl_unit_attention(h
, c
);
6034 /* Copy the error information out */
6035 memcpy(&iocommand
.error_info
, c
->err_info
,
6036 sizeof(iocommand
.error_info
));
6037 if (copy_to_user(argp
, &iocommand
, sizeof(iocommand
))) {
6041 if ((iocommand
.Request
.Type
.Direction
& XFER_READ
) &&
6042 iocommand
.buf_size
> 0) {
6043 /* Copy the data out of the buffer we created */
6044 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
6056 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6058 BIG_IOCTL_Command_struct
*ioc
;
6059 struct CommandList
*c
;
6060 unsigned char **buff
= NULL
;
6061 int *buff_size
= NULL
;
6067 BYTE __user
*data_ptr
;
6071 if (!capable(CAP_SYS_RAWIO
))
6073 ioc
= (BIG_IOCTL_Command_struct
*)
6074 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
6079 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
6083 if ((ioc
->buf_size
< 1) &&
6084 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
6088 /* Check kmalloc limits using all SGs */
6089 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
6093 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
) {
6097 buff
= kzalloc(SG_ENTRIES_IN_CMD
* sizeof(char *), GFP_KERNEL
);
6102 buff_size
= kmalloc(SG_ENTRIES_IN_CMD
* sizeof(int), GFP_KERNEL
);
6107 left
= ioc
->buf_size
;
6108 data_ptr
= ioc
->buf
;
6110 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6111 buff_size
[sg_used
] = sz
;
6112 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6113 if (buff
[sg_used
] == NULL
) {
6117 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6118 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6123 memset(buff
[sg_used
], 0, sz
);
6130 c
->cmd_type
= CMD_IOCTL_PEND
;
6131 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6132 c
->Header
.ReplyQueue
= 0;
6133 c
->Header
.SGList
= (u8
) sg_used
;
6134 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6135 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6136 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6137 if (ioc
->buf_size
> 0) {
6139 for (i
= 0; i
< sg_used
; i
++) {
6140 temp64
= pci_map_single(h
->pdev
, buff
[i
],
6141 buff_size
[i
], PCI_DMA_BIDIRECTIONAL
);
6142 if (dma_mapping_error(&h
->pdev
->dev
,
6143 (dma_addr_t
) temp64
)) {
6144 c
->SG
[i
].Addr
= cpu_to_le64(0);
6145 c
->SG
[i
].Len
= cpu_to_le32(0);
6146 hpsa_pci_unmap(h
->pdev
, c
, i
,
6147 PCI_DMA_BIDIRECTIONAL
);
6151 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6152 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6153 c
->SG
[i
].Ext
= cpu_to_le32(0);
6155 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6157 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
, NO_TIMEOUT
);
6159 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, PCI_DMA_BIDIRECTIONAL
);
6160 check_ioctl_unit_attention(h
, c
);
6166 /* Copy the error information out */
6167 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6168 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
6172 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6175 /* Copy the data out of the buffer we created */
6176 BYTE __user
*ptr
= ioc
->buf
;
6177 for (i
= 0; i
< sg_used
; i
++) {
6178 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6182 ptr
+= buff_size
[i
];
6192 for (i
= 0; i
< sg_used
; i
++)
6201 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6202 struct CommandList
*c
)
6204 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6205 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6206 (void) check_for_unit_attention(h
, c
);
6212 static int hpsa_ioctl(struct scsi_device
*dev
, int cmd
, void __user
*arg
)
6214 struct ctlr_info
*h
;
6215 void __user
*argp
= (void __user
*)arg
;
6218 h
= sdev_to_hba(dev
);
6221 case CCISS_DEREGDISK
:
6222 case CCISS_REGNEWDISK
:
6224 hpsa_scan_start(h
->scsi_host
);
6226 case CCISS_GETPCIINFO
:
6227 return hpsa_getpciinfo_ioctl(h
, argp
);
6228 case CCISS_GETDRIVVER
:
6229 return hpsa_getdrivver_ioctl(h
, argp
);
6230 case CCISS_PASSTHRU
:
6231 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6233 rc
= hpsa_passthru_ioctl(h
, argp
);
6234 atomic_inc(&h
->passthru_cmds_avail
);
6236 case CCISS_BIG_PASSTHRU
:
6237 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6239 rc
= hpsa_big_passthru_ioctl(h
, argp
);
6240 atomic_inc(&h
->passthru_cmds_avail
);
6247 static void hpsa_send_host_reset(struct ctlr_info
*h
, unsigned char *scsi3addr
,
6250 struct CommandList
*c
;
6254 /* fill_cmd can't fail here, no data buffer to map */
6255 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6256 RAID_CTLR_LUNID
, TYPE_MSG
);
6257 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6259 enqueue_cmd_and_start_io(h
, c
);
6260 /* Don't wait for completion, the reset won't complete. Don't free
6261 * the command either. This is the last command we will send before
6262 * re-initializing everything, so it doesn't matter and won't leak.
6267 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6268 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6271 int pci_dir
= XFER_NONE
;
6272 u64 tag
; /* for commands to be aborted */
6274 c
->cmd_type
= CMD_IOCTL_PEND
;
6275 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6276 c
->Header
.ReplyQueue
= 0;
6277 if (buff
!= NULL
&& size
> 0) {
6278 c
->Header
.SGList
= 1;
6279 c
->Header
.SGTotal
= cpu_to_le16(1);
6281 c
->Header
.SGList
= 0;
6282 c
->Header
.SGTotal
= cpu_to_le16(0);
6284 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6286 if (cmd_type
== TYPE_CMD
) {
6289 /* are we trying to read a vital product page */
6290 if (page_code
& VPD_PAGE
) {
6291 c
->Request
.CDB
[1] = 0x01;
6292 c
->Request
.CDB
[2] = (page_code
& 0xff);
6294 c
->Request
.CDBLen
= 6;
6295 c
->Request
.type_attr_dir
=
6296 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6297 c
->Request
.Timeout
= 0;
6298 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6299 c
->Request
.CDB
[4] = size
& 0xFF;
6301 case HPSA_REPORT_LOG
:
6302 case HPSA_REPORT_PHYS
:
6303 /* Talking to controller so It's a physical command
6304 mode = 00 target = 0. Nothing to write.
6306 c
->Request
.CDBLen
= 12;
6307 c
->Request
.type_attr_dir
=
6308 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6309 c
->Request
.Timeout
= 0;
6310 c
->Request
.CDB
[0] = cmd
;
6311 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6312 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6313 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6314 c
->Request
.CDB
[9] = size
& 0xFF;
6316 case HPSA_CACHE_FLUSH
:
6317 c
->Request
.CDBLen
= 12;
6318 c
->Request
.type_attr_dir
=
6319 TYPE_ATTR_DIR(cmd_type
,
6320 ATTR_SIMPLE
, XFER_WRITE
);
6321 c
->Request
.Timeout
= 0;
6322 c
->Request
.CDB
[0] = BMIC_WRITE
;
6323 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6324 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6325 c
->Request
.CDB
[8] = size
& 0xFF;
6327 case TEST_UNIT_READY
:
6328 c
->Request
.CDBLen
= 6;
6329 c
->Request
.type_attr_dir
=
6330 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6331 c
->Request
.Timeout
= 0;
6333 case HPSA_GET_RAID_MAP
:
6334 c
->Request
.CDBLen
= 12;
6335 c
->Request
.type_attr_dir
=
6336 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6337 c
->Request
.Timeout
= 0;
6338 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6339 c
->Request
.CDB
[1] = cmd
;
6340 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6341 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6342 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6343 c
->Request
.CDB
[9] = size
& 0xFF;
6345 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6346 c
->Request
.CDBLen
= 10;
6347 c
->Request
.type_attr_dir
=
6348 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6349 c
->Request
.Timeout
= 0;
6350 c
->Request
.CDB
[0] = BMIC_READ
;
6351 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6352 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6353 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6355 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6356 c
->Request
.CDBLen
= 10;
6357 c
->Request
.type_attr_dir
=
6358 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6359 c
->Request
.Timeout
= 0;
6360 c
->Request
.CDB
[0] = BMIC_READ
;
6361 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6362 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6363 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6366 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6370 } else if (cmd_type
== TYPE_MSG
) {
6373 case HPSA_DEVICE_RESET_MSG
:
6374 c
->Request
.CDBLen
= 16;
6375 c
->Request
.type_attr_dir
=
6376 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6377 c
->Request
.Timeout
= 0; /* Don't time out */
6378 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6379 c
->Request
.CDB
[0] = cmd
;
6380 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6381 /* If bytes 4-7 are zero, it means reset the */
6383 c
->Request
.CDB
[4] = 0x00;
6384 c
->Request
.CDB
[5] = 0x00;
6385 c
->Request
.CDB
[6] = 0x00;
6386 c
->Request
.CDB
[7] = 0x00;
6388 case HPSA_ABORT_MSG
:
6389 memcpy(&tag
, buff
, sizeof(tag
));
6390 dev_dbg(&h
->pdev
->dev
,
6391 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6392 tag
, c
->Header
.tag
);
6393 c
->Request
.CDBLen
= 16;
6394 c
->Request
.type_attr_dir
=
6395 TYPE_ATTR_DIR(cmd_type
,
6396 ATTR_SIMPLE
, XFER_WRITE
);
6397 c
->Request
.Timeout
= 0; /* Don't time out */
6398 c
->Request
.CDB
[0] = HPSA_TASK_MANAGEMENT
;
6399 c
->Request
.CDB
[1] = HPSA_TMF_ABORT_TASK
;
6400 c
->Request
.CDB
[2] = 0x00; /* reserved */
6401 c
->Request
.CDB
[3] = 0x00; /* reserved */
6402 /* Tag to abort goes in CDB[4]-CDB[11] */
6403 memcpy(&c
->Request
.CDB
[4], &tag
, sizeof(tag
));
6404 c
->Request
.CDB
[12] = 0x00; /* reserved */
6405 c
->Request
.CDB
[13] = 0x00; /* reserved */
6406 c
->Request
.CDB
[14] = 0x00; /* reserved */
6407 c
->Request
.CDB
[15] = 0x00; /* reserved */
6410 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6415 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6419 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6421 pci_dir
= PCI_DMA_FROMDEVICE
;
6424 pci_dir
= PCI_DMA_TODEVICE
;
6427 pci_dir
= PCI_DMA_NONE
;
6430 pci_dir
= PCI_DMA_BIDIRECTIONAL
;
6432 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, pci_dir
))
6438 * Map (physical) PCI mem into (virtual) kernel space
6440 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6442 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6443 ulong page_offs
= ((ulong
) base
) - page_base
;
6444 void __iomem
*page_remapped
= ioremap_nocache(page_base
,
6447 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6450 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6452 return h
->access
.command_completed(h
, q
);
6455 static inline bool interrupt_pending(struct ctlr_info
*h
)
6457 return h
->access
.intr_pending(h
);
6460 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6462 return (h
->access
.intr_pending(h
) == 0) ||
6463 (h
->interrupts_enabled
== 0);
6466 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6469 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6470 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6476 static inline void finish_cmd(struct CommandList
*c
)
6478 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6479 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6480 || c
->cmd_type
== CMD_IOACCEL2
))
6481 complete_scsi_command(c
);
6482 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6483 complete(c
->waiting
);
6486 /* process completion of an indexed ("direct lookup") command */
6487 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6491 struct CommandList
*c
;
6493 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6494 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6495 c
= h
->cmd_pool
+ tag_index
;
6500 /* Some controllers, like p400, will give us one interrupt
6501 * after a soft reset, even if we turned interrupts off.
6502 * Only need to check for this in the hpsa_xxx_discard_completions
6505 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6507 if (likely(!reset_devices
))
6510 if (likely(h
->interrupts_enabled
))
6513 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6514 "(known firmware bug.) Ignoring.\n");
6520 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6521 * Relies on (h-q[x] == x) being true for x such that
6522 * 0 <= x < MAX_REPLY_QUEUES.
6524 static struct ctlr_info
*queue_to_hba(u8
*queue
)
6526 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
6529 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
6531 struct ctlr_info
*h
= queue_to_hba(queue
);
6532 u8 q
= *(u8
*) queue
;
6535 if (ignore_bogus_interrupt(h
))
6538 if (interrupt_not_for_us(h
))
6540 h
->last_intr_timestamp
= get_jiffies_64();
6541 while (interrupt_pending(h
)) {
6542 raw_tag
= get_next_completion(h
, q
);
6543 while (raw_tag
!= FIFO_EMPTY
)
6544 raw_tag
= next_command(h
, q
);
6549 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
6551 struct ctlr_info
*h
= queue_to_hba(queue
);
6553 u8 q
= *(u8
*) queue
;
6555 if (ignore_bogus_interrupt(h
))
6558 h
->last_intr_timestamp
= get_jiffies_64();
6559 raw_tag
= get_next_completion(h
, q
);
6560 while (raw_tag
!= FIFO_EMPTY
)
6561 raw_tag
= next_command(h
, q
);
6565 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
6567 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
6569 u8 q
= *(u8
*) queue
;
6571 if (interrupt_not_for_us(h
))
6573 h
->last_intr_timestamp
= get_jiffies_64();
6574 while (interrupt_pending(h
)) {
6575 raw_tag
= get_next_completion(h
, q
);
6576 while (raw_tag
!= FIFO_EMPTY
) {
6577 process_indexed_cmd(h
, raw_tag
);
6578 raw_tag
= next_command(h
, q
);
6584 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
6586 struct ctlr_info
*h
= queue_to_hba(queue
);
6588 u8 q
= *(u8
*) queue
;
6590 h
->last_intr_timestamp
= get_jiffies_64();
6591 raw_tag
= get_next_completion(h
, q
);
6592 while (raw_tag
!= FIFO_EMPTY
) {
6593 process_indexed_cmd(h
, raw_tag
);
6594 raw_tag
= next_command(h
, q
);
6599 /* Send a message CDB to the firmware. Careful, this only works
6600 * in simple mode, not performant mode due to the tag lookup.
6601 * We only ever use this immediately after a controller reset.
6603 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
6607 struct CommandListHeader CommandHeader
;
6608 struct RequestBlock Request
;
6609 struct ErrDescriptor ErrorDescriptor
;
6611 struct Command
*cmd
;
6612 static const size_t cmd_sz
= sizeof(*cmd
) +
6613 sizeof(cmd
->ErrorDescriptor
);
6617 void __iomem
*vaddr
;
6620 vaddr
= pci_ioremap_bar(pdev
, 0);
6624 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6625 * CCISS commands, so they must be allocated from the lower 4GiB of
6628 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
6634 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
6640 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6641 * although there's no guarantee, we assume that the address is at
6642 * least 4-byte aligned (most likely, it's page-aligned).
6644 paddr32
= cpu_to_le32(paddr64
);
6646 cmd
->CommandHeader
.ReplyQueue
= 0;
6647 cmd
->CommandHeader
.SGList
= 0;
6648 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
6649 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
6650 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
6652 cmd
->Request
.CDBLen
= 16;
6653 cmd
->Request
.type_attr_dir
=
6654 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
6655 cmd
->Request
.Timeout
= 0; /* Don't time out */
6656 cmd
->Request
.CDB
[0] = opcode
;
6657 cmd
->Request
.CDB
[1] = type
;
6658 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
6659 cmd
->ErrorDescriptor
.Addr
=
6660 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
6661 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
6663 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
6665 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
6666 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
6667 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
6669 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
6674 /* we leak the DMA buffer here ... no choice since the controller could
6675 * still complete the command.
6677 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
6678 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
6683 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
6685 if (tag
& HPSA_ERROR_BIT
) {
6686 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
6691 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
6696 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6698 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
6699 void __iomem
*vaddr
, u32 use_doorbell
)
6703 /* For everything after the P600, the PCI power state method
6704 * of resetting the controller doesn't work, so we have this
6705 * other way using the doorbell register.
6707 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
6708 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
6710 /* PMC hardware guys tell us we need a 10 second delay after
6711 * doorbell reset and before any attempt to talk to the board
6712 * at all to ensure that this actually works and doesn't fall
6713 * over in some weird corner cases.
6716 } else { /* Try to do it the PCI power state way */
6718 /* Quoting from the Open CISS Specification: "The Power
6719 * Management Control/Status Register (CSR) controls the power
6720 * state of the device. The normal operating state is D0,
6721 * CSR=00h. The software off state is D3, CSR=03h. To reset
6722 * the controller, place the interface device in D3 then to D0,
6723 * this causes a secondary PCI reset which will reset the
6728 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
6730 /* enter the D3hot power management state */
6731 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
6737 /* enter the D0 power management state */
6738 rc
= pci_set_power_state(pdev
, PCI_D0
);
6743 * The P600 requires a small delay when changing states.
6744 * Otherwise we may think the board did not reset and we bail.
6745 * This for kdump only and is particular to the P600.
6752 static void init_driver_version(char *driver_version
, int len
)
6754 memset(driver_version
, 0, len
);
6755 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
6758 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
6760 char *driver_version
;
6761 int i
, size
= sizeof(cfgtable
->driver_version
);
6763 driver_version
= kmalloc(size
, GFP_KERNEL
);
6764 if (!driver_version
)
6767 init_driver_version(driver_version
, size
);
6768 for (i
= 0; i
< size
; i
++)
6769 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
6770 kfree(driver_version
);
6774 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
6775 unsigned char *driver_ver
)
6779 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
6780 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
6783 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
6786 char *driver_ver
, *old_driver_ver
;
6787 int rc
, size
= sizeof(cfgtable
->driver_version
);
6789 old_driver_ver
= kmalloc(2 * size
, GFP_KERNEL
);
6790 if (!old_driver_ver
)
6792 driver_ver
= old_driver_ver
+ size
;
6794 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6795 * should have been changed, otherwise we know the reset failed.
6797 init_driver_version(old_driver_ver
, size
);
6798 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
6799 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
6800 kfree(old_driver_ver
);
6803 /* This does a hard reset of the controller using PCI power management
6804 * states or the using the doorbell register.
6806 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
6810 u64 cfg_base_addr_index
;
6811 void __iomem
*vaddr
;
6812 unsigned long paddr
;
6813 u32 misc_fw_support
;
6815 struct CfgTable __iomem
*cfgtable
;
6817 u16 command_register
;
6819 /* For controllers as old as the P600, this is very nearly
6822 * pci_save_state(pci_dev);
6823 * pci_set_power_state(pci_dev, PCI_D3hot);
6824 * pci_set_power_state(pci_dev, PCI_D0);
6825 * pci_restore_state(pci_dev);
6827 * For controllers newer than the P600, the pci power state
6828 * method of resetting doesn't work so we have another way
6829 * using the doorbell register.
6832 if (!ctlr_is_resettable(board_id
)) {
6833 dev_warn(&pdev
->dev
, "Controller not resettable\n");
6837 /* if controller is soft- but not hard resettable... */
6838 if (!ctlr_is_hard_resettable(board_id
))
6839 return -ENOTSUPP
; /* try soft reset later. */
6841 /* Save the PCI command register */
6842 pci_read_config_word(pdev
, 4, &command_register
);
6843 pci_save_state(pdev
);
6845 /* find the first memory BAR, so we can find the cfg table */
6846 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
6849 vaddr
= remap_pci_mem(paddr
, 0x250);
6853 /* find cfgtable in order to check if reset via doorbell is supported */
6854 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
6855 &cfg_base_addr_index
, &cfg_offset
);
6858 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
6859 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
6864 rc
= write_driver_ver_to_cfgtable(cfgtable
);
6866 goto unmap_cfgtable
;
6868 /* If reset via doorbell register is supported, use that.
6869 * There are two such methods. Favor the newest method.
6871 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
6872 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
6874 use_doorbell
= DOORBELL_CTLR_RESET2
;
6876 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
6878 dev_warn(&pdev
->dev
,
6879 "Soft reset not supported. Firmware update is required.\n");
6880 rc
= -ENOTSUPP
; /* try soft reset */
6881 goto unmap_cfgtable
;
6885 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
6887 goto unmap_cfgtable
;
6889 pci_restore_state(pdev
);
6890 pci_write_config_word(pdev
, 4, command_register
);
6892 /* Some devices (notably the HP Smart Array 5i Controller)
6893 need a little pause here */
6894 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
6896 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
6898 dev_warn(&pdev
->dev
,
6899 "Failed waiting for board to become ready after hard reset\n");
6900 goto unmap_cfgtable
;
6903 rc
= controller_reset_failed(vaddr
);
6905 goto unmap_cfgtable
;
6907 dev_warn(&pdev
->dev
, "Unable to successfully reset "
6908 "controller. Will try soft reset.\n");
6911 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
6923 * We cannot read the structure directly, for portability we must use
6925 * This is for debug only.
6927 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
6933 dev_info(dev
, "Controller Configuration information\n");
6934 dev_info(dev
, "------------------------------------\n");
6935 for (i
= 0; i
< 4; i
++)
6936 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
6937 temp_name
[4] = '\0';
6938 dev_info(dev
, " Signature = %s\n", temp_name
);
6939 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
6940 dev_info(dev
, " Transport methods supported = 0x%x\n",
6941 readl(&(tb
->TransportSupport
)));
6942 dev_info(dev
, " Transport methods active = 0x%x\n",
6943 readl(&(tb
->TransportActive
)));
6944 dev_info(dev
, " Requested transport Method = 0x%x\n",
6945 readl(&(tb
->HostWrite
.TransportRequest
)));
6946 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
6947 readl(&(tb
->HostWrite
.CoalIntDelay
)));
6948 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
6949 readl(&(tb
->HostWrite
.CoalIntCount
)));
6950 dev_info(dev
, " Max outstanding commands = %d\n",
6951 readl(&(tb
->CmdsOutMax
)));
6952 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
6953 for (i
= 0; i
< 16; i
++)
6954 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
6955 temp_name
[16] = '\0';
6956 dev_info(dev
, " Server Name = %s\n", temp_name
);
6957 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
6958 readl(&(tb
->HeartBeat
)));
6959 #endif /* HPSA_DEBUG */
6962 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
6964 int i
, offset
, mem_type
, bar_type
;
6966 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
6969 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
6970 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
6971 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
6974 mem_type
= pci_resource_flags(pdev
, i
) &
6975 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
6977 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
6978 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
6979 offset
+= 4; /* 32 bit */
6981 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
6984 default: /* reserved in PCI 2.2 */
6985 dev_warn(&pdev
->dev
,
6986 "base address is invalid\n");
6991 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
6997 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
6999 if (h
->msix_vector
) {
7000 if (h
->pdev
->msix_enabled
)
7001 pci_disable_msix(h
->pdev
);
7003 } else if (h
->msi_vector
) {
7004 if (h
->pdev
->msi_enabled
)
7005 pci_disable_msi(h
->pdev
);
7010 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7011 * controllers that are capable. If not, we use legacy INTx mode.
7013 static void hpsa_interrupt_mode(struct ctlr_info
*h
)
7015 #ifdef CONFIG_PCI_MSI
7017 struct msix_entry hpsa_msix_entries
[MAX_REPLY_QUEUES
];
7019 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++) {
7020 hpsa_msix_entries
[i
].vector
= 0;
7021 hpsa_msix_entries
[i
].entry
= i
;
7024 /* Some boards advertise MSI but don't really support it */
7025 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
7026 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
7027 goto default_int_mode
;
7028 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
7029 dev_info(&h
->pdev
->dev
, "MSI-X capable controller\n");
7030 h
->msix_vector
= MAX_REPLY_QUEUES
;
7031 if (h
->msix_vector
> num_online_cpus())
7032 h
->msix_vector
= num_online_cpus();
7033 err
= pci_enable_msix_range(h
->pdev
, hpsa_msix_entries
,
7036 dev_warn(&h
->pdev
->dev
, "MSI-X init failed %d\n", err
);
7038 goto single_msi_mode
;
7039 } else if (err
< h
->msix_vector
) {
7040 dev_warn(&h
->pdev
->dev
, "only %d MSI-X vectors "
7041 "available\n", err
);
7043 h
->msix_vector
= err
;
7044 for (i
= 0; i
< h
->msix_vector
; i
++)
7045 h
->intr
[i
] = hpsa_msix_entries
[i
].vector
;
7049 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
7050 dev_info(&h
->pdev
->dev
, "MSI capable controller\n");
7051 if (!pci_enable_msi(h
->pdev
))
7054 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
7057 #endif /* CONFIG_PCI_MSI */
7058 /* if we get here we're going to use the default interrupt mode */
7059 h
->intr
[h
->intr_mode
] = h
->pdev
->irq
;
7062 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
7065 u32 subsystem_vendor_id
, subsystem_device_id
;
7067 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7068 subsystem_device_id
= pdev
->subsystem_device
;
7069 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7070 subsystem_vendor_id
;
7072 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7073 if (*board_id
== products
[i
].board_id
)
7076 if ((subsystem_vendor_id
!= PCI_VENDOR_ID_HP
&&
7077 subsystem_vendor_id
!= PCI_VENDOR_ID_COMPAQ
) ||
7079 dev_warn(&pdev
->dev
, "unrecognized board ID: "
7080 "0x%08x, ignoring.\n", *board_id
);
7083 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7086 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7087 unsigned long *memory_bar
)
7091 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7092 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7093 /* addressing mode bits already removed */
7094 *memory_bar
= pci_resource_start(pdev
, i
);
7095 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7099 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7103 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7109 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7111 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7113 for (i
= 0; i
< iterations
; i
++) {
7114 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7115 if (wait_for_ready
) {
7116 if (scratchpad
== HPSA_FIRMWARE_READY
)
7119 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7122 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7124 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7128 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7129 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7132 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7133 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7134 *cfg_base_addr
&= (u32
) 0x0000ffff;
7135 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7136 if (*cfg_base_addr_index
== -1) {
7137 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7143 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7145 if (h
->transtable
) {
7146 iounmap(h
->transtable
);
7147 h
->transtable
= NULL
;
7150 iounmap(h
->cfgtable
);
7155 /* Find and map CISS config table and transfer table
7156 + * several items must be unmapped (freed) later
7158 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7162 u64 cfg_base_addr_index
;
7166 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7167 &cfg_base_addr_index
, &cfg_offset
);
7170 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7171 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7173 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7176 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7179 /* Find performant mode table. */
7180 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7181 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7182 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7183 sizeof(*h
->transtable
));
7184 if (!h
->transtable
) {
7185 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7186 hpsa_free_cfgtables(h
);
7192 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7194 #define MIN_MAX_COMMANDS 16
7195 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7197 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7199 /* Limit commands in memory limited kdump scenario. */
7200 if (reset_devices
&& h
->max_commands
> 32)
7201 h
->max_commands
= 32;
7203 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7204 dev_warn(&h
->pdev
->dev
,
7205 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7208 h
->max_commands
= MIN_MAX_COMMANDS
;
7212 /* If the controller reports that the total max sg entries is greater than 512,
7213 * then we know that chained SG blocks work. (Original smart arrays did not
7214 * support chained SG blocks and would return zero for max sg entries.)
7216 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7218 return h
->maxsgentries
> 512;
7221 /* Interrogate the hardware for some limits:
7222 * max commands, max SG elements without chaining, and with chaining,
7223 * SG chain block size, etc.
7225 static void hpsa_find_board_params(struct ctlr_info
*h
)
7227 hpsa_get_max_perf_mode_cmds(h
);
7228 h
->nr_cmds
= h
->max_commands
;
7229 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7230 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7231 if (hpsa_supports_chained_sg_blocks(h
)) {
7232 /* Limit in-command s/g elements to 32 save dma'able memory. */
7233 h
->max_cmd_sg_entries
= 32;
7234 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7235 h
->maxsgentries
--; /* save one for chain pointer */
7238 * Original smart arrays supported at most 31 s/g entries
7239 * embedded inline in the command (trying to use more
7240 * would lock up the controller)
7242 h
->max_cmd_sg_entries
= 31;
7243 h
->maxsgentries
= 31; /* default to traditional values */
7247 /* Find out what task management functions are supported and cache */
7248 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7249 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7250 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7251 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7252 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7253 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7254 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7257 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7259 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7260 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7266 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7270 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7271 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7273 driver_support
|= ENABLE_SCSI_PREFETCH
;
7275 driver_support
|= ENABLE_UNIT_ATTN
;
7276 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7279 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7280 * in a prefetch beyond physical memory.
7282 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7286 if (h
->board_id
!= 0x3225103C)
7288 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7289 dma_prefetch
|= 0x8000;
7290 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7293 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7297 unsigned long flags
;
7298 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7299 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7300 spin_lock_irqsave(&h
->lock
, flags
);
7301 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7302 spin_unlock_irqrestore(&h
->lock
, flags
);
7303 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7305 /* delay and try again */
7306 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7313 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7317 unsigned long flags
;
7319 /* under certain very rare conditions, this can take awhile.
7320 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7321 * as we enter this code.)
7323 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7324 if (h
->remove_in_progress
)
7326 spin_lock_irqsave(&h
->lock
, flags
);
7327 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7328 spin_unlock_irqrestore(&h
->lock
, flags
);
7329 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7331 /* delay and try again */
7332 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7339 /* return -ENODEV or other reason on error, 0 on success */
7340 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7344 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7345 if (!(trans_support
& SIMPLE_MODE
))
7348 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7350 /* Update the field, and then ring the doorbell */
7351 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7352 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7353 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7354 if (hpsa_wait_for_mode_change_ack(h
))
7356 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7357 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7359 h
->transMethod
= CFGTBL_Trans_Simple
;
7362 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7366 /* free items allocated or mapped by hpsa_pci_init */
7367 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7369 hpsa_free_cfgtables(h
); /* pci_init 4 */
7370 iounmap(h
->vaddr
); /* pci_init 3 */
7372 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7374 * call pci_disable_device before pci_release_regions per
7375 * Documentation/PCI/pci.txt
7377 pci_disable_device(h
->pdev
); /* pci_init 1 */
7378 pci_release_regions(h
->pdev
); /* pci_init 2 */
7381 /* several items must be freed later */
7382 static int hpsa_pci_init(struct ctlr_info
*h
)
7384 int prod_index
, err
;
7386 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
);
7389 h
->product_name
= products
[prod_index
].product_name
;
7390 h
->access
= *(products
[prod_index
].access
);
7392 h
->needs_abort_tags_swizzled
=
7393 ctlr_needs_abort_tags_swizzled(h
->board_id
);
7395 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7396 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7398 err
= pci_enable_device(h
->pdev
);
7400 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7401 pci_disable_device(h
->pdev
);
7405 err
= pci_request_regions(h
->pdev
, HPSA
);
7407 dev_err(&h
->pdev
->dev
,
7408 "failed to obtain PCI resources\n");
7409 pci_disable_device(h
->pdev
);
7413 pci_set_master(h
->pdev
);
7415 hpsa_interrupt_mode(h
);
7416 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7418 goto clean2
; /* intmode+region, pci */
7419 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7421 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7423 goto clean2
; /* intmode+region, pci */
7425 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7427 goto clean3
; /* vaddr, intmode+region, pci */
7428 err
= hpsa_find_cfgtables(h
);
7430 goto clean3
; /* vaddr, intmode+region, pci */
7431 hpsa_find_board_params(h
);
7433 if (!hpsa_CISS_signature_present(h
)) {
7435 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7437 hpsa_set_driver_support_bits(h
);
7438 hpsa_p600_dma_prefetch_quirk(h
);
7439 err
= hpsa_enter_simple_mode(h
);
7441 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7444 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7445 hpsa_free_cfgtables(h
);
7446 clean3
: /* vaddr, intmode+region, pci */
7449 clean2
: /* intmode+region, pci */
7450 hpsa_disable_interrupt_mode(h
);
7452 * call pci_disable_device before pci_release_regions per
7453 * Documentation/PCI/pci.txt
7455 pci_disable_device(h
->pdev
);
7456 pci_release_regions(h
->pdev
);
7460 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7464 #define HBA_INQUIRY_BYTE_COUNT 64
7465 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7466 if (!h
->hba_inquiry_data
)
7468 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7469 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7471 kfree(h
->hba_inquiry_data
);
7472 h
->hba_inquiry_data
= NULL
;
7476 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7479 void __iomem
*vaddr
;
7484 /* kdump kernel is loading, we don't know in which state is
7485 * the pci interface. The dev->enable_cnt is equal zero
7486 * so we call enable+disable, wait a while and switch it on.
7488 rc
= pci_enable_device(pdev
);
7490 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7493 pci_disable_device(pdev
);
7494 msleep(260); /* a randomly chosen number */
7495 rc
= pci_enable_device(pdev
);
7497 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7501 pci_set_master(pdev
);
7503 vaddr
= pci_ioremap_bar(pdev
, 0);
7504 if (vaddr
== NULL
) {
7508 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
7511 /* Reset the controller with a PCI power-cycle or via doorbell */
7512 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
7514 /* -ENOTSUPP here means we cannot reset the controller
7515 * but it's already (and still) up and running in
7516 * "performant mode". Or, it might be 640x, which can't reset
7517 * due to concerns about shared bbwc between 6402/6404 pair.
7522 /* Now try to get the controller to respond to a no-op */
7523 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
7524 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
7525 if (hpsa_noop(pdev
) == 0)
7528 dev_warn(&pdev
->dev
, "no-op failed%s\n",
7529 (i
< 11 ? "; re-trying" : ""));
7534 pci_disable_device(pdev
);
7538 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
7540 kfree(h
->cmd_pool_bits
);
7541 h
->cmd_pool_bits
= NULL
;
7543 pci_free_consistent(h
->pdev
,
7544 h
->nr_cmds
* sizeof(struct CommandList
),
7546 h
->cmd_pool_dhandle
);
7548 h
->cmd_pool_dhandle
= 0;
7550 if (h
->errinfo_pool
) {
7551 pci_free_consistent(h
->pdev
,
7552 h
->nr_cmds
* sizeof(struct ErrorInfo
),
7554 h
->errinfo_pool_dhandle
);
7555 h
->errinfo_pool
= NULL
;
7556 h
->errinfo_pool_dhandle
= 0;
7560 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
7562 h
->cmd_pool_bits
= kzalloc(
7563 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
) *
7564 sizeof(unsigned long), GFP_KERNEL
);
7565 h
->cmd_pool
= pci_alloc_consistent(h
->pdev
,
7566 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
7567 &(h
->cmd_pool_dhandle
));
7568 h
->errinfo_pool
= pci_alloc_consistent(h
->pdev
,
7569 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
7570 &(h
->errinfo_pool_dhandle
));
7571 if ((h
->cmd_pool_bits
== NULL
)
7572 || (h
->cmd_pool
== NULL
)
7573 || (h
->errinfo_pool
== NULL
)) {
7574 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
7577 hpsa_preinitialize_commands(h
);
7580 hpsa_free_cmd_pool(h
);
7584 static void hpsa_irq_affinity_hints(struct ctlr_info
*h
)
7588 cpu
= cpumask_first(cpu_online_mask
);
7589 for (i
= 0; i
< h
->msix_vector
; i
++) {
7590 irq_set_affinity_hint(h
->intr
[i
], get_cpu_mask(cpu
));
7591 cpu
= cpumask_next(cpu
, cpu_online_mask
);
7595 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7596 static void hpsa_free_irqs(struct ctlr_info
*h
)
7600 if (!h
->msix_vector
|| h
->intr_mode
!= PERF_MODE_INT
) {
7601 /* Single reply queue, only one irq to free */
7603 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7604 free_irq(h
->intr
[i
], &h
->q
[i
]);
7609 for (i
= 0; i
< h
->msix_vector
; i
++) {
7610 irq_set_affinity_hint(h
->intr
[i
], NULL
);
7611 free_irq(h
->intr
[i
], &h
->q
[i
]);
7614 for (; i
< MAX_REPLY_QUEUES
; i
++)
7618 /* returns 0 on success; cleans up and returns -Enn on error */
7619 static int hpsa_request_irqs(struct ctlr_info
*h
,
7620 irqreturn_t (*msixhandler
)(int, void *),
7621 irqreturn_t (*intxhandler
)(int, void *))
7626 * initialize h->q[x] = x so that interrupt handlers know which
7629 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
7632 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vector
> 0) {
7633 /* If performant mode and MSI-X, use multiple reply queues */
7634 for (i
= 0; i
< h
->msix_vector
; i
++) {
7635 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
7636 rc
= request_irq(h
->intr
[i
], msixhandler
,
7642 dev_err(&h
->pdev
->dev
,
7643 "failed to get irq %d for %s\n",
7644 h
->intr
[i
], h
->devname
);
7645 for (j
= 0; j
< i
; j
++) {
7646 free_irq(h
->intr
[j
], &h
->q
[j
]);
7649 for (; j
< MAX_REPLY_QUEUES
; j
++)
7654 hpsa_irq_affinity_hints(h
);
7656 /* Use single reply pool */
7657 if (h
->msix_vector
> 0 || h
->msi_vector
) {
7659 sprintf(h
->intrname
[h
->intr_mode
],
7660 "%s-msix", h
->devname
);
7662 sprintf(h
->intrname
[h
->intr_mode
],
7663 "%s-msi", h
->devname
);
7664 rc
= request_irq(h
->intr
[h
->intr_mode
],
7666 h
->intrname
[h
->intr_mode
],
7667 &h
->q
[h
->intr_mode
]);
7669 sprintf(h
->intrname
[h
->intr_mode
],
7670 "%s-intx", h
->devname
);
7671 rc
= request_irq(h
->intr
[h
->intr_mode
],
7672 intxhandler
, IRQF_SHARED
,
7673 h
->intrname
[h
->intr_mode
],
7674 &h
->q
[h
->intr_mode
]);
7676 irq_set_affinity_hint(h
->intr
[h
->intr_mode
], NULL
);
7679 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
7680 h
->intr
[h
->intr_mode
], h
->devname
);
7687 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
7690 hpsa_send_host_reset(h
, RAID_CTLR_LUNID
, HPSA_RESET_TYPE_CONTROLLER
);
7692 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
7693 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
7695 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
7699 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
7700 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7702 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
7703 "after soft reset.\n");
7710 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
7714 for (i
= 0; i
< h
->nreply_queues
; i
++) {
7715 if (!h
->reply_queue
[i
].head
)
7717 pci_free_consistent(h
->pdev
,
7718 h
->reply_queue_size
,
7719 h
->reply_queue
[i
].head
,
7720 h
->reply_queue
[i
].busaddr
);
7721 h
->reply_queue
[i
].head
= NULL
;
7722 h
->reply_queue
[i
].busaddr
= 0;
7724 h
->reply_queue_size
= 0;
7727 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
7729 hpsa_free_performant_mode(h
); /* init_one 7 */
7730 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
7731 hpsa_free_cmd_pool(h
); /* init_one 5 */
7732 hpsa_free_irqs(h
); /* init_one 4 */
7733 scsi_host_put(h
->scsi_host
); /* init_one 3 */
7734 h
->scsi_host
= NULL
; /* init_one 3 */
7735 hpsa_free_pci_init(h
); /* init_one 2_5 */
7736 free_percpu(h
->lockup_detected
); /* init_one 2 */
7737 h
->lockup_detected
= NULL
; /* init_one 2 */
7738 if (h
->resubmit_wq
) {
7739 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
7740 h
->resubmit_wq
= NULL
;
7742 if (h
->rescan_ctlr_wq
) {
7743 destroy_workqueue(h
->rescan_ctlr_wq
);
7744 h
->rescan_ctlr_wq
= NULL
;
7746 kfree(h
); /* init_one 1 */
7749 /* Called when controller lockup detected. */
7750 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
7753 struct CommandList
*c
;
7756 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
7757 for (i
= 0; i
< h
->nr_cmds
; i
++) {
7758 c
= h
->cmd_pool
+ i
;
7759 refcount
= atomic_inc_return(&c
->refcount
);
7761 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
7763 atomic_dec(&h
->commands_outstanding
);
7768 dev_warn(&h
->pdev
->dev
,
7769 "failed %d commands in fail_all\n", failcount
);
7772 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
7776 for_each_online_cpu(cpu
) {
7777 u32
*lockup_detected
;
7778 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
7779 *lockup_detected
= value
;
7781 wmb(); /* be sure the per-cpu variables are out to memory */
7784 static void controller_lockup_detected(struct ctlr_info
*h
)
7786 unsigned long flags
;
7787 u32 lockup_detected
;
7789 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
7790 spin_lock_irqsave(&h
->lock
, flags
);
7791 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7792 if (!lockup_detected
) {
7793 /* no heartbeat, but controller gave us a zero. */
7794 dev_warn(&h
->pdev
->dev
,
7795 "lockup detected after %d but scratchpad register is zero\n",
7796 h
->heartbeat_sample_interval
/ HZ
);
7797 lockup_detected
= 0xffffffff;
7799 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
7800 spin_unlock_irqrestore(&h
->lock
, flags
);
7801 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
7802 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
7803 pci_disable_device(h
->pdev
);
7804 fail_all_outstanding_cmds(h
);
7807 static int detect_controller_lockup(struct ctlr_info
*h
)
7811 unsigned long flags
;
7813 now
= get_jiffies_64();
7814 /* If we've received an interrupt recently, we're ok. */
7815 if (time_after64(h
->last_intr_timestamp
+
7816 (h
->heartbeat_sample_interval
), now
))
7820 * If we've already checked the heartbeat recently, we're ok.
7821 * This could happen if someone sends us a signal. We
7822 * otherwise don't care about signals in this thread.
7824 if (time_after64(h
->last_heartbeat_timestamp
+
7825 (h
->heartbeat_sample_interval
), now
))
7828 /* If heartbeat has not changed since we last looked, we're not ok. */
7829 spin_lock_irqsave(&h
->lock
, flags
);
7830 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
7831 spin_unlock_irqrestore(&h
->lock
, flags
);
7832 if (h
->last_heartbeat
== heartbeat
) {
7833 controller_lockup_detected(h
);
7838 h
->last_heartbeat
= heartbeat
;
7839 h
->last_heartbeat_timestamp
= now
;
7843 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
7848 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
7851 /* Ask the controller to clear the events we're handling. */
7852 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
7853 | CFGTBL_Trans_io_accel2
)) &&
7854 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
7855 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
7857 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
7858 event_type
= "state change";
7859 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
7860 event_type
= "configuration change";
7861 /* Stop sending new RAID offload reqs via the IO accelerator */
7862 scsi_block_requests(h
->scsi_host
);
7863 for (i
= 0; i
< h
->ndevices
; i
++)
7864 h
->dev
[i
]->offload_enabled
= 0;
7865 hpsa_drain_accel_commands(h
);
7866 /* Set 'accelerator path config change' bit */
7867 dev_warn(&h
->pdev
->dev
,
7868 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7869 h
->events
, event_type
);
7870 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
7871 /* Set the "clear event notify field update" bit 6 */
7872 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
7873 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7874 hpsa_wait_for_clear_event_notify_ack(h
);
7875 scsi_unblock_requests(h
->scsi_host
);
7877 /* Acknowledge controller notification events. */
7878 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
7879 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
7880 hpsa_wait_for_clear_event_notify_ack(h
);
7882 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7883 hpsa_wait_for_mode_change_ack(h
);
7889 /* Check a register on the controller to see if there are configuration
7890 * changes (added/changed/removed logical drives, etc.) which mean that
7891 * we should rescan the controller for devices.
7892 * Also check flag for driver-initiated rescan.
7894 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
7896 if (h
->drv_req_rescan
) {
7897 h
->drv_req_rescan
= 0;
7901 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
7904 h
->events
= readl(&(h
->cfgtable
->event_notify
));
7905 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
7909 * Check if any of the offline devices have become ready
7911 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
7913 unsigned long flags
;
7914 struct offline_device_entry
*d
;
7915 struct list_head
*this, *tmp
;
7917 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7918 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
7919 d
= list_entry(this, struct offline_device_entry
,
7921 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7922 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
7923 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7924 list_del(&d
->offline_list
);
7925 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7928 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
7930 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
7934 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
7936 unsigned long flags
;
7937 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
7938 struct ctlr_info
, rescan_ctlr_work
);
7941 if (h
->remove_in_progress
)
7944 if (hpsa_ctlr_needs_rescan(h
) || hpsa_offline_devices_ready(h
)) {
7945 scsi_host_get(h
->scsi_host
);
7946 hpsa_ack_ctlr_events(h
);
7947 hpsa_scan_start(h
->scsi_host
);
7948 scsi_host_put(h
->scsi_host
);
7950 spin_lock_irqsave(&h
->lock
, flags
);
7951 if (!h
->remove_in_progress
)
7952 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
7953 h
->heartbeat_sample_interval
);
7954 spin_unlock_irqrestore(&h
->lock
, flags
);
7957 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
7959 unsigned long flags
;
7960 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
7961 struct ctlr_info
, monitor_ctlr_work
);
7963 detect_controller_lockup(h
);
7964 if (lockup_detected(h
))
7967 spin_lock_irqsave(&h
->lock
, flags
);
7968 if (!h
->remove_in_progress
)
7969 schedule_delayed_work(&h
->monitor_ctlr_work
,
7970 h
->heartbeat_sample_interval
);
7971 spin_unlock_irqrestore(&h
->lock
, flags
);
7974 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
7977 struct workqueue_struct
*wq
= NULL
;
7979 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
7981 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
7986 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
7989 struct ctlr_info
*h
;
7990 int try_soft_reset
= 0;
7991 unsigned long flags
;
7994 if (number_of_controllers
== 0)
7995 printk(KERN_INFO DRIVER_NAME
"\n");
7997 rc
= hpsa_lookup_board_id(pdev
, &board_id
);
7999 dev_warn(&pdev
->dev
, "Board ID not found\n");
8003 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8005 if (rc
!= -ENOTSUPP
)
8007 /* If the reset fails in a particular way (it has no way to do
8008 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8009 * a soft reset once we get the controller configured up to the
8010 * point that it can accept a command.
8016 reinit_after_soft_reset
:
8018 /* Command structures must be aligned on a 32-byte boundary because
8019 * the 5 lower bits of the address are used by the hardware. and by
8020 * the driver. See comments in hpsa.h for more info.
8022 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8023 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8025 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8031 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8032 INIT_LIST_HEAD(&h
->offline_device_list
);
8033 spin_lock_init(&h
->lock
);
8034 spin_lock_init(&h
->offline_device_lock
);
8035 spin_lock_init(&h
->scan_lock
);
8036 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8037 atomic_set(&h
->abort_cmds_available
, HPSA_CMDS_RESERVED_FOR_ABORTS
);
8039 /* Allocate and clear per-cpu variable lockup_detected */
8040 h
->lockup_detected
= alloc_percpu(u32
);
8041 if (!h
->lockup_detected
) {
8042 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8044 goto clean1
; /* aer/h */
8046 set_lockup_detected_for_all_cpus(h
, 0);
8048 rc
= hpsa_pci_init(h
);
8050 goto clean2
; /* lu, aer/h */
8052 /* relies on h-> settings made by hpsa_pci_init, including
8053 * interrupt_mode h->intr */
8054 rc
= hpsa_scsi_host_alloc(h
);
8056 goto clean2_5
; /* pci, lu, aer/h */
8058 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8059 h
->ctlr
= number_of_controllers
;
8060 number_of_controllers
++;
8062 /* configure PCI DMA stuff */
8063 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
8067 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
8071 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8072 goto clean3
; /* shost, pci, lu, aer/h */
8076 /* make sure the board interrupts are off */
8077 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8079 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8081 goto clean3
; /* shost, pci, lu, aer/h */
8082 rc
= hpsa_alloc_cmd_pool(h
);
8084 goto clean4
; /* irq, shost, pci, lu, aer/h */
8085 rc
= hpsa_alloc_sg_chain_blocks(h
);
8087 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8088 init_waitqueue_head(&h
->scan_wait_queue
);
8089 init_waitqueue_head(&h
->abort_cmd_wait_queue
);
8090 init_waitqueue_head(&h
->event_sync_wait_queue
);
8091 mutex_init(&h
->reset_mutex
);
8092 h
->scan_finished
= 1; /* no scan currently in progress */
8094 pci_set_drvdata(pdev
, h
);
8097 spin_lock_init(&h
->devlock
);
8098 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8100 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8102 /* hook into SCSI subsystem */
8103 rc
= hpsa_scsi_add_host(h
);
8105 goto clean7
; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8107 /* create the resubmit workqueue */
8108 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8109 if (!h
->rescan_ctlr_wq
) {
8114 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8115 if (!h
->resubmit_wq
) {
8117 goto clean7
; /* aer/h */
8121 * At this point, the controller is ready to take commands.
8122 * Now, if reset_devices and the hard reset didn't work, try
8123 * the soft reset and see if that works.
8125 if (try_soft_reset
) {
8127 /* This is kind of gross. We may or may not get a completion
8128 * from the soft reset command, and if we do, then the value
8129 * from the fifo may or may not be valid. So, we wait 10 secs
8130 * after the reset throwing away any completions we get during
8131 * that time. Unregister the interrupt handler and register
8132 * fake ones to scoop up any residual completions.
8134 spin_lock_irqsave(&h
->lock
, flags
);
8135 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8136 spin_unlock_irqrestore(&h
->lock
, flags
);
8138 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8139 hpsa_intx_discard_completions
);
8141 dev_warn(&h
->pdev
->dev
,
8142 "Failed to request_irq after soft reset.\n");
8144 * cannot goto clean7 or free_irqs will be called
8145 * again. Instead, do its work
8147 hpsa_free_performant_mode(h
); /* clean7 */
8148 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8149 hpsa_free_cmd_pool(h
); /* clean5 */
8151 * skip hpsa_free_irqs(h) clean4 since that
8152 * was just called before request_irqs failed
8157 rc
= hpsa_kdump_soft_reset(h
);
8159 /* Neither hard nor soft reset worked, we're hosed. */
8162 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8163 dev_info(&h
->pdev
->dev
,
8164 "Waiting for stale completions to drain.\n");
8165 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8167 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8169 rc
= controller_reset_failed(h
->cfgtable
);
8171 dev_info(&h
->pdev
->dev
,
8172 "Soft reset appears to have failed.\n");
8174 /* since the controller's reset, we have to go back and re-init
8175 * everything. Easiest to just forget what we've done and do it
8178 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8181 /* don't goto clean, we already unallocated */
8184 goto reinit_after_soft_reset
;
8187 /* Enable Accelerated IO path at driver layer */
8188 h
->acciopath_status
= 1;
8191 /* Turn the interrupts on so we can service requests */
8192 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8194 hpsa_hba_inquiry(h
);
8196 /* Monitor the controller for firmware lockups */
8197 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8198 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8199 schedule_delayed_work(&h
->monitor_ctlr_work
,
8200 h
->heartbeat_sample_interval
);
8201 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8202 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8203 h
->heartbeat_sample_interval
);
8206 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8207 hpsa_free_performant_mode(h
);
8208 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8209 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8210 hpsa_free_sg_chain_blocks(h
);
8211 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8212 hpsa_free_cmd_pool(h
);
8213 clean4
: /* irq, shost, pci, lu, aer/h */
8215 clean3
: /* shost, pci, lu, aer/h */
8216 scsi_host_put(h
->scsi_host
);
8217 h
->scsi_host
= NULL
;
8218 clean2_5
: /* pci, lu, aer/h */
8219 hpsa_free_pci_init(h
);
8220 clean2
: /* lu, aer/h */
8221 if (h
->lockup_detected
) {
8222 free_percpu(h
->lockup_detected
);
8223 h
->lockup_detected
= NULL
;
8225 clean1
: /* wq/aer/h */
8226 if (h
->resubmit_wq
) {
8227 destroy_workqueue(h
->resubmit_wq
);
8228 h
->resubmit_wq
= NULL
;
8230 if (h
->rescan_ctlr_wq
) {
8231 destroy_workqueue(h
->rescan_ctlr_wq
);
8232 h
->rescan_ctlr_wq
= NULL
;
8238 static void hpsa_flush_cache(struct ctlr_info
*h
)
8241 struct CommandList
*c
;
8244 if (unlikely(lockup_detected(h
)))
8246 flush_buf
= kzalloc(4, GFP_KERNEL
);
8252 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8253 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8256 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
,
8257 PCI_DMA_TODEVICE
, NO_TIMEOUT
);
8260 if (c
->err_info
->CommandStatus
!= 0)
8262 dev_warn(&h
->pdev
->dev
,
8263 "error flushing cache on controller\n");
8268 static void hpsa_shutdown(struct pci_dev
*pdev
)
8270 struct ctlr_info
*h
;
8272 h
= pci_get_drvdata(pdev
);
8273 /* Turn board interrupts off and send the flush cache command
8274 * sendcmd will turn off interrupt, and send the flush...
8275 * To write all data in the battery backed cache to disks
8277 hpsa_flush_cache(h
);
8278 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8279 hpsa_free_irqs(h
); /* init_one 4 */
8280 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
8283 static void hpsa_free_device_info(struct ctlr_info
*h
)
8287 for (i
= 0; i
< h
->ndevices
; i
++) {
8293 static void hpsa_remove_one(struct pci_dev
*pdev
)
8295 struct ctlr_info
*h
;
8296 unsigned long flags
;
8298 if (pci_get_drvdata(pdev
) == NULL
) {
8299 dev_err(&pdev
->dev
, "unable to remove device\n");
8302 h
= pci_get_drvdata(pdev
);
8304 /* Get rid of any controller monitoring work items */
8305 spin_lock_irqsave(&h
->lock
, flags
);
8306 h
->remove_in_progress
= 1;
8307 spin_unlock_irqrestore(&h
->lock
, flags
);
8308 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
8309 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
8310 destroy_workqueue(h
->rescan_ctlr_wq
);
8311 destroy_workqueue(h
->resubmit_wq
);
8314 * Call before disabling interrupts.
8315 * scsi_remove_host can trigger I/O operations especially
8316 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8317 * operations which cannot complete and will hang the system.
8320 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
8321 /* includes hpsa_free_irqs - init_one 4 */
8322 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8323 hpsa_shutdown(pdev
);
8325 hpsa_free_device_info(h
); /* scan */
8327 kfree(h
->hba_inquiry_data
); /* init_one 10 */
8328 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
8329 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8330 hpsa_free_performant_mode(h
); /* init_one 7 */
8331 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8332 hpsa_free_cmd_pool(h
); /* init_one 5 */
8334 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8336 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8337 h
->scsi_host
= NULL
; /* init_one 3 */
8339 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8340 hpsa_free_pci_init(h
); /* init_one 2.5 */
8342 free_percpu(h
->lockup_detected
); /* init_one 2 */
8343 h
->lockup_detected
= NULL
; /* init_one 2 */
8344 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8345 kfree(h
); /* init_one 1 */
8348 static int hpsa_suspend(__attribute__((unused
)) struct pci_dev
*pdev
,
8349 __attribute__((unused
)) pm_message_t state
)
8354 static int hpsa_resume(__attribute__((unused
)) struct pci_dev
*pdev
)
8359 static struct pci_driver hpsa_pci_driver
= {
8361 .probe
= hpsa_init_one
,
8362 .remove
= hpsa_remove_one
,
8363 .id_table
= hpsa_pci_device_id
, /* id_table */
8364 .shutdown
= hpsa_shutdown
,
8365 .suspend
= hpsa_suspend
,
8366 .resume
= hpsa_resume
,
8369 /* Fill in bucket_map[], given nsgs (the max number of
8370 * scatter gather elements supported) and bucket[],
8371 * which is an array of 8 integers. The bucket[] array
8372 * contains 8 different DMA transfer sizes (in 16
8373 * byte increments) which the controller uses to fetch
8374 * commands. This function fills in bucket_map[], which
8375 * maps a given number of scatter gather elements to one of
8376 * the 8 DMA transfer sizes. The point of it is to allow the
8377 * controller to only do as much DMA as needed to fetch the
8378 * command, with the DMA transfer size encoded in the lower
8379 * bits of the command address.
8381 static void calc_bucket_map(int bucket
[], int num_buckets
,
8382 int nsgs
, int min_blocks
, u32
*bucket_map
)
8386 /* Note, bucket_map must have nsgs+1 entries. */
8387 for (i
= 0; i
<= nsgs
; i
++) {
8388 /* Compute size of a command with i SG entries */
8389 size
= i
+ min_blocks
;
8390 b
= num_buckets
; /* Assume the biggest bucket */
8391 /* Find the bucket that is just big enough */
8392 for (j
= 0; j
< num_buckets
; j
++) {
8393 if (bucket
[j
] >= size
) {
8398 /* for a command with i SG entries, use bucket b. */
8404 * return -ENODEV on err, 0 on success (or no action)
8405 * allocates numerous items that must be freed later
8407 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
8410 unsigned long register_value
;
8411 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8412 (trans_support
& CFGTBL_Trans_use_short_tags
) |
8413 CFGTBL_Trans_enable_directed_msix
|
8414 (trans_support
& (CFGTBL_Trans_io_accel1
|
8415 CFGTBL_Trans_io_accel2
));
8416 struct access_method access
= SA5_performant_access
;
8418 /* This is a bit complicated. There are 8 registers on
8419 * the controller which we write to to tell it 8 different
8420 * sizes of commands which there may be. It's a way of
8421 * reducing the DMA done to fetch each command. Encoded into
8422 * each command's tag are 3 bits which communicate to the controller
8423 * which of the eight sizes that command fits within. The size of
8424 * each command depends on how many scatter gather entries there are.
8425 * Each SG entry requires 16 bytes. The eight registers are programmed
8426 * with the number of 16-byte blocks a command of that size requires.
8427 * The smallest command possible requires 5 such 16 byte blocks.
8428 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8429 * blocks. Note, this only extends to the SG entries contained
8430 * within the command block, and does not extend to chained blocks
8431 * of SG elements. bft[] contains the eight values we write to
8432 * the registers. They are not evenly distributed, but have more
8433 * sizes for small commands, and fewer sizes for larger commands.
8435 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
8436 #define MIN_IOACCEL2_BFT_ENTRY 5
8437 #define HPSA_IOACCEL2_HEADER_SZ 4
8438 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
8439 13, 14, 15, 16, 17, 18, 19,
8440 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
8441 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
8442 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
8443 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
8444 16 * MIN_IOACCEL2_BFT_ENTRY
);
8445 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
8446 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
8447 /* 5 = 1 s/g entry or 4k
8448 * 6 = 2 s/g entry or 8k
8449 * 8 = 4 s/g entry or 16k
8450 * 10 = 6 s/g entry or 24k
8453 /* If the controller supports either ioaccel method then
8454 * we can also use the RAID stack submit path that does not
8455 * perform the superfluous readl() after each command submission.
8457 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
8458 access
= SA5_performant_access_no_read
;
8460 /* Controller spec: zero out this buffer. */
8461 for (i
= 0; i
< h
->nreply_queues
; i
++)
8462 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
8464 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
8465 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
8466 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
8467 for (i
= 0; i
< 8; i
++)
8468 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
8470 /* size of controller ring buffer */
8471 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
8472 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
8473 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
8474 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
8476 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8477 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
8478 writel(h
->reply_queue
[i
].busaddr
,
8479 &h
->transtable
->RepQAddr
[i
].lower
);
8482 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
8483 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
8485 * enable outbound interrupt coalescing in accelerator mode;
8487 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8488 access
= SA5_ioaccel_mode1_access
;
8489 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8490 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8492 if (trans_support
& CFGTBL_Trans_io_accel2
) {
8493 access
= SA5_ioaccel_mode2_access
;
8494 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
8495 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
8498 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8499 if (hpsa_wait_for_mode_change_ack(h
)) {
8500 dev_err(&h
->pdev
->dev
,
8501 "performant mode problem - doorbell timeout\n");
8504 register_value
= readl(&(h
->cfgtable
->TransportActive
));
8505 if (!(register_value
& CFGTBL_Trans_Performant
)) {
8506 dev_err(&h
->pdev
->dev
,
8507 "performant mode problem - transport not active\n");
8510 /* Change the access methods to the performant access methods */
8512 h
->transMethod
= transMethod
;
8514 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
8515 (trans_support
& CFGTBL_Trans_io_accel2
)))
8518 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8519 /* Set up I/O accelerator mode */
8520 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8521 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
8522 h
->reply_queue
[i
].current_entry
=
8523 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
8525 bft
[7] = h
->ioaccel_maxsg
+ 8;
8526 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
8527 h
->ioaccel1_blockFetchTable
);
8529 /* initialize all reply queue entries to unused */
8530 for (i
= 0; i
< h
->nreply_queues
; i
++)
8531 memset(h
->reply_queue
[i
].head
,
8532 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
8533 h
->reply_queue_size
);
8535 /* set all the constant fields in the accelerator command
8536 * frames once at init time to save CPU cycles later.
8538 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8539 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
8541 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
8542 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
8543 (i
* sizeof(struct ErrorInfo
)));
8544 cp
->err_info_len
= sizeof(struct ErrorInfo
);
8545 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
8546 cp
->host_context_flags
=
8547 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
8548 cp
->timeout_sec
= 0;
8551 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
8553 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
8554 (i
* sizeof(struct io_accel1_cmd
)));
8556 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8557 u64 cfg_offset
, cfg_base_addr_index
;
8558 u32 bft2_offset
, cfg_base_addr
;
8561 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
8562 &cfg_base_addr_index
, &cfg_offset
);
8563 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
8564 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
8565 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
8566 4, h
->ioaccel2_blockFetchTable
);
8567 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
8568 BUILD_BUG_ON(offsetof(struct CfgTable
,
8569 io_accel_request_size_offset
) != 0xb8);
8570 h
->ioaccel2_bft2_regs
=
8571 remap_pci_mem(pci_resource_start(h
->pdev
,
8572 cfg_base_addr_index
) +
8573 cfg_offset
+ bft2_offset
,
8575 sizeof(*h
->ioaccel2_bft2_regs
));
8576 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
8577 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
8579 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
8580 if (hpsa_wait_for_mode_change_ack(h
)) {
8581 dev_err(&h
->pdev
->dev
,
8582 "performant mode problem - enabling ioaccel mode\n");
8588 /* Free ioaccel1 mode command blocks and block fetch table */
8589 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8591 if (h
->ioaccel_cmd_pool
) {
8592 pci_free_consistent(h
->pdev
,
8593 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8594 h
->ioaccel_cmd_pool
,
8595 h
->ioaccel_cmd_pool_dhandle
);
8596 h
->ioaccel_cmd_pool
= NULL
;
8597 h
->ioaccel_cmd_pool_dhandle
= 0;
8599 kfree(h
->ioaccel1_blockFetchTable
);
8600 h
->ioaccel1_blockFetchTable
= NULL
;
8603 /* Allocate ioaccel1 mode command blocks and block fetch table */
8604 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
8607 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8608 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
8609 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
8611 /* Command structures must be aligned on a 128-byte boundary
8612 * because the 7 lower bits of the address are used by the
8615 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
8616 IOACCEL1_COMMANDLIST_ALIGNMENT
);
8617 h
->ioaccel_cmd_pool
=
8618 pci_alloc_consistent(h
->pdev
,
8619 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
8620 &(h
->ioaccel_cmd_pool_dhandle
));
8622 h
->ioaccel1_blockFetchTable
=
8623 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8624 sizeof(u32
)), GFP_KERNEL
);
8626 if ((h
->ioaccel_cmd_pool
== NULL
) ||
8627 (h
->ioaccel1_blockFetchTable
== NULL
))
8630 memset(h
->ioaccel_cmd_pool
, 0,
8631 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
8635 hpsa_free_ioaccel1_cmd_and_bft(h
);
8639 /* Free ioaccel2 mode command blocks and block fetch table */
8640 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8642 hpsa_free_ioaccel2_sg_chain_blocks(h
);
8644 if (h
->ioaccel2_cmd_pool
) {
8645 pci_free_consistent(h
->pdev
,
8646 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8647 h
->ioaccel2_cmd_pool
,
8648 h
->ioaccel2_cmd_pool_dhandle
);
8649 h
->ioaccel2_cmd_pool
= NULL
;
8650 h
->ioaccel2_cmd_pool_dhandle
= 0;
8652 kfree(h
->ioaccel2_blockFetchTable
);
8653 h
->ioaccel2_blockFetchTable
= NULL
;
8656 /* Allocate ioaccel2 mode command blocks and block fetch table */
8657 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
8661 /* Allocate ioaccel2 mode command blocks and block fetch table */
8664 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
8665 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
8666 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
8668 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
8669 IOACCEL2_COMMANDLIST_ALIGNMENT
);
8670 h
->ioaccel2_cmd_pool
=
8671 pci_alloc_consistent(h
->pdev
,
8672 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
8673 &(h
->ioaccel2_cmd_pool_dhandle
));
8675 h
->ioaccel2_blockFetchTable
=
8676 kmalloc(((h
->ioaccel_maxsg
+ 1) *
8677 sizeof(u32
)), GFP_KERNEL
);
8679 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
8680 (h
->ioaccel2_blockFetchTable
== NULL
)) {
8685 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
8689 memset(h
->ioaccel2_cmd_pool
, 0,
8690 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
8694 hpsa_free_ioaccel2_cmd_and_bft(h
);
8698 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8699 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
8701 kfree(h
->blockFetchTable
);
8702 h
->blockFetchTable
= NULL
;
8703 hpsa_free_reply_queues(h
);
8704 hpsa_free_ioaccel1_cmd_and_bft(h
);
8705 hpsa_free_ioaccel2_cmd_and_bft(h
);
8708 /* return -ENODEV on error, 0 on success (or no action)
8709 * allocates numerous items that must be freed later
8711 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
8714 unsigned long transMethod
= CFGTBL_Trans_Performant
|
8715 CFGTBL_Trans_use_short_tags
;
8718 if (hpsa_simple_mode
)
8721 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
8722 if (!(trans_support
& PERFORMANT_MODE
))
8725 /* Check for I/O accelerator mode support */
8726 if (trans_support
& CFGTBL_Trans_io_accel1
) {
8727 transMethod
|= CFGTBL_Trans_io_accel1
|
8728 CFGTBL_Trans_enable_directed_msix
;
8729 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
8732 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
8733 transMethod
|= CFGTBL_Trans_io_accel2
|
8734 CFGTBL_Trans_enable_directed_msix
;
8735 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
8740 h
->nreply_queues
= h
->msix_vector
> 0 ? h
->msix_vector
: 1;
8741 hpsa_get_max_perf_mode_cmds(h
);
8742 /* Performant mode ring buffer and supporting data structures */
8743 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
8745 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8746 h
->reply_queue
[i
].head
= pci_alloc_consistent(h
->pdev
,
8747 h
->reply_queue_size
,
8748 &(h
->reply_queue
[i
].busaddr
));
8749 if (!h
->reply_queue
[i
].head
) {
8751 goto clean1
; /* rq, ioaccel */
8753 h
->reply_queue
[i
].size
= h
->max_commands
;
8754 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
8755 h
->reply_queue
[i
].current_entry
= 0;
8758 /* Need a block fetch table for performant mode */
8759 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
8760 sizeof(u32
)), GFP_KERNEL
);
8761 if (!h
->blockFetchTable
) {
8763 goto clean1
; /* rq, ioaccel */
8766 rc
= hpsa_enter_performant_mode(h
, trans_support
);
8768 goto clean2
; /* bft, rq, ioaccel */
8771 clean2
: /* bft, rq, ioaccel */
8772 kfree(h
->blockFetchTable
);
8773 h
->blockFetchTable
= NULL
;
8774 clean1
: /* rq, ioaccel */
8775 hpsa_free_reply_queues(h
);
8776 hpsa_free_ioaccel1_cmd_and_bft(h
);
8777 hpsa_free_ioaccel2_cmd_and_bft(h
);
8781 static int is_accelerated_cmd(struct CommandList
*c
)
8783 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
8786 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
8788 struct CommandList
*c
= NULL
;
8789 int i
, accel_cmds_out
;
8792 do { /* wait for all outstanding ioaccel commands to drain out */
8794 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8795 c
= h
->cmd_pool
+ i
;
8796 refcount
= atomic_inc_return(&c
->refcount
);
8797 if (refcount
> 1) /* Command is allocated */
8798 accel_cmds_out
+= is_accelerated_cmd(c
);
8801 if (accel_cmds_out
<= 0)
8808 * This is it. Register the PCI driver information for the cards we control
8809 * the OS will call our registered routines when it finds one of our cards.
8811 static int __init
hpsa_init(void)
8813 return pci_register_driver(&hpsa_pci_driver
);
8816 static void __exit
hpsa_cleanup(void)
8818 pci_unregister_driver(&hpsa_pci_driver
);
8821 static void __attribute__((unused
)) verify_offsets(void)
8823 #define VERIFY_OFFSET(member, offset) \
8824 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8826 VERIFY_OFFSET(structure_size
, 0);
8827 VERIFY_OFFSET(volume_blk_size
, 4);
8828 VERIFY_OFFSET(volume_blk_cnt
, 8);
8829 VERIFY_OFFSET(phys_blk_shift
, 16);
8830 VERIFY_OFFSET(parity_rotation_shift
, 17);
8831 VERIFY_OFFSET(strip_size
, 18);
8832 VERIFY_OFFSET(disk_starting_blk
, 20);
8833 VERIFY_OFFSET(disk_blk_cnt
, 28);
8834 VERIFY_OFFSET(data_disks_per_row
, 36);
8835 VERIFY_OFFSET(metadata_disks_per_row
, 38);
8836 VERIFY_OFFSET(row_cnt
, 40);
8837 VERIFY_OFFSET(layout_map_count
, 42);
8838 VERIFY_OFFSET(flags
, 44);
8839 VERIFY_OFFSET(dekindex
, 46);
8840 /* VERIFY_OFFSET(reserved, 48 */
8841 VERIFY_OFFSET(data
, 64);
8843 #undef VERIFY_OFFSET
8845 #define VERIFY_OFFSET(member, offset) \
8846 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8848 VERIFY_OFFSET(IU_type
, 0);
8849 VERIFY_OFFSET(direction
, 1);
8850 VERIFY_OFFSET(reply_queue
, 2);
8851 /* VERIFY_OFFSET(reserved1, 3); */
8852 VERIFY_OFFSET(scsi_nexus
, 4);
8853 VERIFY_OFFSET(Tag
, 8);
8854 VERIFY_OFFSET(cdb
, 16);
8855 VERIFY_OFFSET(cciss_lun
, 32);
8856 VERIFY_OFFSET(data_len
, 40);
8857 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
8858 VERIFY_OFFSET(sg_count
, 45);
8859 /* VERIFY_OFFSET(reserved3 */
8860 VERIFY_OFFSET(err_ptr
, 48);
8861 VERIFY_OFFSET(err_len
, 56);
8862 /* VERIFY_OFFSET(reserved4 */
8863 VERIFY_OFFSET(sg
, 64);
8865 #undef VERIFY_OFFSET
8867 #define VERIFY_OFFSET(member, offset) \
8868 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8870 VERIFY_OFFSET(dev_handle
, 0x00);
8871 VERIFY_OFFSET(reserved1
, 0x02);
8872 VERIFY_OFFSET(function
, 0x03);
8873 VERIFY_OFFSET(reserved2
, 0x04);
8874 VERIFY_OFFSET(err_info
, 0x0C);
8875 VERIFY_OFFSET(reserved3
, 0x10);
8876 VERIFY_OFFSET(err_info_len
, 0x12);
8877 VERIFY_OFFSET(reserved4
, 0x13);
8878 VERIFY_OFFSET(sgl_offset
, 0x14);
8879 VERIFY_OFFSET(reserved5
, 0x15);
8880 VERIFY_OFFSET(transfer_len
, 0x1C);
8881 VERIFY_OFFSET(reserved6
, 0x20);
8882 VERIFY_OFFSET(io_flags
, 0x24);
8883 VERIFY_OFFSET(reserved7
, 0x26);
8884 VERIFY_OFFSET(LUN
, 0x34);
8885 VERIFY_OFFSET(control
, 0x3C);
8886 VERIFY_OFFSET(CDB
, 0x40);
8887 VERIFY_OFFSET(reserved8
, 0x50);
8888 VERIFY_OFFSET(host_context_flags
, 0x60);
8889 VERIFY_OFFSET(timeout_sec
, 0x62);
8890 VERIFY_OFFSET(ReplyQueue
, 0x64);
8891 VERIFY_OFFSET(reserved9
, 0x65);
8892 VERIFY_OFFSET(tag
, 0x68);
8893 VERIFY_OFFSET(host_addr
, 0x70);
8894 VERIFY_OFFSET(CISS_LUN
, 0x78);
8895 VERIFY_OFFSET(SG
, 0x78 + 8);
8896 #undef VERIFY_OFFSET
8899 module_init(hpsa_init
);
8900 module_exit(hpsa_cleanup
);