hpsa: fix hpsa_adjust_hpsa_scsi_table
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blob382cb5d428c7c454b328e3704aab18e41084d589
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75 HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83 "Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87 "Use 'simple mode' rather than 'performant mode'");
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
131 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
143 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144 {0,}
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
149 /* board_id = Subsystem Device ID & Vendor ID
150 * product = Marketing Name for the board
151 * access = Address of the struct of function pointers
153 static struct board_type products[] = {
154 {0x3241103C, "Smart Array P212", &SA5_access},
155 {0x3243103C, "Smart Array P410", &SA5_access},
156 {0x3245103C, "Smart Array P410i", &SA5_access},
157 {0x3247103C, "Smart Array P411", &SA5_access},
158 {0x3249103C, "Smart Array P812", &SA5_access},
159 {0x324A103C, "Smart Array P712m", &SA5_access},
160 {0x324B103C, "Smart Array P711m", &SA5_access},
161 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162 {0x3350103C, "Smart Array P222", &SA5_access},
163 {0x3351103C, "Smart Array P420", &SA5_access},
164 {0x3352103C, "Smart Array P421", &SA5_access},
165 {0x3353103C, "Smart Array P822", &SA5_access},
166 {0x3354103C, "Smart Array P420i", &SA5_access},
167 {0x3355103C, "Smart Array P220i", &SA5_access},
168 {0x3356103C, "Smart Array P721m", &SA5_access},
169 {0x1921103C, "Smart Array P830i", &SA5_access},
170 {0x1922103C, "Smart Array P430", &SA5_access},
171 {0x1923103C, "Smart Array P431", &SA5_access},
172 {0x1924103C, "Smart Array P830", &SA5_access},
173 {0x1926103C, "Smart Array P731m", &SA5_access},
174 {0x1928103C, "Smart Array P230i", &SA5_access},
175 {0x1929103C, "Smart Array P530", &SA5_access},
176 {0x21BD103C, "Smart Array P244br", &SA5_access},
177 {0x21BE103C, "Smart Array P741m", &SA5_access},
178 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
179 {0x21C0103C, "Smart Array P440ar", &SA5_access},
180 {0x21C1103C, "Smart Array P840ar", &SA5_access},
181 {0x21C2103C, "Smart Array P440", &SA5_access},
182 {0x21C3103C, "Smart Array P441", &SA5_access},
183 {0x21C4103C, "Smart Array", &SA5_access},
184 {0x21C5103C, "Smart Array P841", &SA5_access},
185 {0x21C6103C, "Smart HBA H244br", &SA5_access},
186 {0x21C7103C, "Smart HBA H240", &SA5_access},
187 {0x21C8103C, "Smart HBA H241", &SA5_access},
188 {0x21C9103C, "Smart Array", &SA5_access},
189 {0x21CA103C, "Smart Array P246br", &SA5_access},
190 {0x21CB103C, "Smart Array P840", &SA5_access},
191 {0x21CC103C, "Smart Array", &SA5_access},
192 {0x21CD103C, "Smart Array", &SA5_access},
193 {0x21CE103C, "Smart HBA", &SA5_access},
194 {0x05809005, "SmartHBA-SA", &SA5_access},
195 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
196 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
198 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
199 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220 void __user *arg);
221 #endif
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227 struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230 int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 #define HPSA_SIMPLE_ERROR_BITS 0x03
235 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
236 static void hpsa_scan_start(struct Scsi_Host *);
237 static int hpsa_scan_finished(struct Scsi_Host *sh,
238 unsigned long elapsed_time);
239 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
241 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
243 static int hpsa_slave_alloc(struct scsi_device *sdev);
244 static int hpsa_slave_configure(struct scsi_device *sdev);
245 static void hpsa_slave_destroy(struct scsi_device *sdev);
247 static void hpsa_update_scsi_devices(struct ctlr_info *h);
248 static int check_for_unit_attention(struct ctlr_info *h,
249 struct CommandList *c);
250 static void check_ioctl_unit_attention(struct ctlr_info *h,
251 struct CommandList *c);
252 /* performant mode helper functions */
253 static void calc_bucket_map(int *bucket, int num_buckets,
254 int nsgs, int min_blocks, u32 *bucket_map);
255 static void hpsa_free_performant_mode(struct ctlr_info *h);
256 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
257 static inline u32 next_command(struct ctlr_info *h, u8 q);
258 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
259 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
260 u64 *cfg_offset);
261 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
262 unsigned long *memory_bar);
263 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
264 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
265 int wait_for_ready);
266 static inline void finish_cmd(struct CommandList *c);
267 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
268 #define BOARD_NOT_READY 0
269 #define BOARD_READY 1
270 static void hpsa_drain_accel_commands(struct ctlr_info *h);
271 static void hpsa_flush_cache(struct ctlr_info *h);
272 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
273 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
274 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
275 static void hpsa_command_resubmit_worker(struct work_struct *work);
276 static u32 lockup_detected(struct ctlr_info *h);
277 static int detect_controller_lockup(struct ctlr_info *h);
278 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
280 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
282 unsigned long *priv = shost_priv(sdev->host);
283 return (struct ctlr_info *) *priv;
286 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
288 unsigned long *priv = shost_priv(sh);
289 return (struct ctlr_info *) *priv;
292 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
294 return c->scsi_cmd == SCSI_CMD_IDLE;
297 static inline bool hpsa_is_pending_event(struct CommandList *c)
299 return c->abort_pending || c->reset_pending;
302 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
303 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
304 u8 *sense_key, u8 *asc, u8 *ascq)
306 struct scsi_sense_hdr sshdr;
307 bool rc;
309 *sense_key = -1;
310 *asc = -1;
311 *ascq = -1;
313 if (sense_data_len < 1)
314 return;
316 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
317 if (rc) {
318 *sense_key = sshdr.sense_key;
319 *asc = sshdr.asc;
320 *ascq = sshdr.ascq;
324 static int check_for_unit_attention(struct ctlr_info *h,
325 struct CommandList *c)
327 u8 sense_key, asc, ascq;
328 int sense_len;
330 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
331 sense_len = sizeof(c->err_info->SenseInfo);
332 else
333 sense_len = c->err_info->SenseLen;
335 decode_sense_data(c->err_info->SenseInfo, sense_len,
336 &sense_key, &asc, &ascq);
337 if (sense_key != UNIT_ATTENTION || asc == 0xff)
338 return 0;
340 switch (asc) {
341 case STATE_CHANGED:
342 dev_warn(&h->pdev->dev,
343 "%s: a state change detected, command retried\n",
344 h->devname);
345 break;
346 case LUN_FAILED:
347 dev_warn(&h->pdev->dev,
348 "%s: LUN failure detected\n", h->devname);
349 break;
350 case REPORT_LUNS_CHANGED:
351 dev_warn(&h->pdev->dev,
352 "%s: report LUN data changed\n", h->devname);
354 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
355 * target (array) devices.
357 break;
358 case POWER_OR_RESET:
359 dev_warn(&h->pdev->dev,
360 "%s: a power on or device reset detected\n",
361 h->devname);
362 break;
363 case UNIT_ATTENTION_CLEARED:
364 dev_warn(&h->pdev->dev,
365 "%s: unit attention cleared by another initiator\n",
366 h->devname);
367 break;
368 default:
369 dev_warn(&h->pdev->dev,
370 "%s: unknown unit attention detected\n",
371 h->devname);
372 break;
374 return 1;
377 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
379 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
380 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
381 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
382 return 0;
383 dev_warn(&h->pdev->dev, HPSA "device busy");
384 return 1;
387 static u32 lockup_detected(struct ctlr_info *h);
388 static ssize_t host_show_lockup_detected(struct device *dev,
389 struct device_attribute *attr, char *buf)
391 int ld;
392 struct ctlr_info *h;
393 struct Scsi_Host *shost = class_to_shost(dev);
395 h = shost_to_hba(shost);
396 ld = lockup_detected(h);
398 return sprintf(buf, "ld=%d\n", ld);
401 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
402 struct device_attribute *attr,
403 const char *buf, size_t count)
405 int status, len;
406 struct ctlr_info *h;
407 struct Scsi_Host *shost = class_to_shost(dev);
408 char tmpbuf[10];
410 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
411 return -EACCES;
412 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
413 strncpy(tmpbuf, buf, len);
414 tmpbuf[len] = '\0';
415 if (sscanf(tmpbuf, "%d", &status) != 1)
416 return -EINVAL;
417 h = shost_to_hba(shost);
418 h->acciopath_status = !!status;
419 dev_warn(&h->pdev->dev,
420 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
421 h->acciopath_status ? "enabled" : "disabled");
422 return count;
425 static ssize_t host_store_raid_offload_debug(struct device *dev,
426 struct device_attribute *attr,
427 const char *buf, size_t count)
429 int debug_level, len;
430 struct ctlr_info *h;
431 struct Scsi_Host *shost = class_to_shost(dev);
432 char tmpbuf[10];
434 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
435 return -EACCES;
436 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
437 strncpy(tmpbuf, buf, len);
438 tmpbuf[len] = '\0';
439 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
440 return -EINVAL;
441 if (debug_level < 0)
442 debug_level = 0;
443 h = shost_to_hba(shost);
444 h->raid_offload_debug = debug_level;
445 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
446 h->raid_offload_debug);
447 return count;
450 static ssize_t host_store_rescan(struct device *dev,
451 struct device_attribute *attr,
452 const char *buf, size_t count)
454 struct ctlr_info *h;
455 struct Scsi_Host *shost = class_to_shost(dev);
456 h = shost_to_hba(shost);
457 hpsa_scan_start(h->scsi_host);
458 return count;
461 static ssize_t host_show_firmware_revision(struct device *dev,
462 struct device_attribute *attr, char *buf)
464 struct ctlr_info *h;
465 struct Scsi_Host *shost = class_to_shost(dev);
466 unsigned char *fwrev;
468 h = shost_to_hba(shost);
469 if (!h->hba_inquiry_data)
470 return 0;
471 fwrev = &h->hba_inquiry_data[32];
472 return snprintf(buf, 20, "%c%c%c%c\n",
473 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
476 static ssize_t host_show_commands_outstanding(struct device *dev,
477 struct device_attribute *attr, char *buf)
479 struct Scsi_Host *shost = class_to_shost(dev);
480 struct ctlr_info *h = shost_to_hba(shost);
482 return snprintf(buf, 20, "%d\n",
483 atomic_read(&h->commands_outstanding));
486 static ssize_t host_show_transport_mode(struct device *dev,
487 struct device_attribute *attr, char *buf)
489 struct ctlr_info *h;
490 struct Scsi_Host *shost = class_to_shost(dev);
492 h = shost_to_hba(shost);
493 return snprintf(buf, 20, "%s\n",
494 h->transMethod & CFGTBL_Trans_Performant ?
495 "performant" : "simple");
498 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
499 struct device_attribute *attr, char *buf)
501 struct ctlr_info *h;
502 struct Scsi_Host *shost = class_to_shost(dev);
504 h = shost_to_hba(shost);
505 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
506 (h->acciopath_status == 1) ? "enabled" : "disabled");
509 /* List of controllers which cannot be hard reset on kexec with reset_devices */
510 static u32 unresettable_controller[] = {
511 0x324a103C, /* Smart Array P712m */
512 0x324b103C, /* Smart Array P711m */
513 0x3223103C, /* Smart Array P800 */
514 0x3234103C, /* Smart Array P400 */
515 0x3235103C, /* Smart Array P400i */
516 0x3211103C, /* Smart Array E200i */
517 0x3212103C, /* Smart Array E200 */
518 0x3213103C, /* Smart Array E200i */
519 0x3214103C, /* Smart Array E200i */
520 0x3215103C, /* Smart Array E200i */
521 0x3237103C, /* Smart Array E500 */
522 0x323D103C, /* Smart Array P700m */
523 0x40800E11, /* Smart Array 5i */
524 0x409C0E11, /* Smart Array 6400 */
525 0x409D0E11, /* Smart Array 6400 EM */
526 0x40700E11, /* Smart Array 5300 */
527 0x40820E11, /* Smart Array 532 */
528 0x40830E11, /* Smart Array 5312 */
529 0x409A0E11, /* Smart Array 641 */
530 0x409B0E11, /* Smart Array 642 */
531 0x40910E11, /* Smart Array 6i */
534 /* List of controllers which cannot even be soft reset */
535 static u32 soft_unresettable_controller[] = {
536 0x40800E11, /* Smart Array 5i */
537 0x40700E11, /* Smart Array 5300 */
538 0x40820E11, /* Smart Array 532 */
539 0x40830E11, /* Smart Array 5312 */
540 0x409A0E11, /* Smart Array 641 */
541 0x409B0E11, /* Smart Array 642 */
542 0x40910E11, /* Smart Array 6i */
543 /* Exclude 640x boards. These are two pci devices in one slot
544 * which share a battery backed cache module. One controls the
545 * cache, the other accesses the cache through the one that controls
546 * it. If we reset the one controlling the cache, the other will
547 * likely not be happy. Just forbid resetting this conjoined mess.
548 * The 640x isn't really supported by hpsa anyway.
550 0x409C0E11, /* Smart Array 6400 */
551 0x409D0E11, /* Smart Array 6400 EM */
554 static u32 needs_abort_tags_swizzled[] = {
555 0x323D103C, /* Smart Array P700m */
556 0x324a103C, /* Smart Array P712m */
557 0x324b103C, /* SmartArray P711m */
560 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
562 int i;
564 for (i = 0; i < nelems; i++)
565 if (a[i] == board_id)
566 return 1;
567 return 0;
570 static int ctlr_is_hard_resettable(u32 board_id)
572 return !board_id_in_array(unresettable_controller,
573 ARRAY_SIZE(unresettable_controller), board_id);
576 static int ctlr_is_soft_resettable(u32 board_id)
578 return !board_id_in_array(soft_unresettable_controller,
579 ARRAY_SIZE(soft_unresettable_controller), board_id);
582 static int ctlr_is_resettable(u32 board_id)
584 return ctlr_is_hard_resettable(board_id) ||
585 ctlr_is_soft_resettable(board_id);
588 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
590 return board_id_in_array(needs_abort_tags_swizzled,
591 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
594 static ssize_t host_show_resettable(struct device *dev,
595 struct device_attribute *attr, char *buf)
597 struct ctlr_info *h;
598 struct Scsi_Host *shost = class_to_shost(dev);
600 h = shost_to_hba(shost);
601 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
604 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
606 return (scsi3addr[3] & 0xC0) == 0x40;
609 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
610 "1(+0)ADM", "UNKNOWN"
612 #define HPSA_RAID_0 0
613 #define HPSA_RAID_4 1
614 #define HPSA_RAID_1 2 /* also used for RAID 10 */
615 #define HPSA_RAID_5 3 /* also used for RAID 50 */
616 #define HPSA_RAID_51 4
617 #define HPSA_RAID_6 5 /* also used for RAID 60 */
618 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
619 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
621 static ssize_t raid_level_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
624 ssize_t l = 0;
625 unsigned char rlevel;
626 struct ctlr_info *h;
627 struct scsi_device *sdev;
628 struct hpsa_scsi_dev_t *hdev;
629 unsigned long flags;
631 sdev = to_scsi_device(dev);
632 h = sdev_to_hba(sdev);
633 spin_lock_irqsave(&h->lock, flags);
634 hdev = sdev->hostdata;
635 if (!hdev) {
636 spin_unlock_irqrestore(&h->lock, flags);
637 return -ENODEV;
640 /* Is this even a logical drive? */
641 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
642 spin_unlock_irqrestore(&h->lock, flags);
643 l = snprintf(buf, PAGE_SIZE, "N/A\n");
644 return l;
647 rlevel = hdev->raid_level;
648 spin_unlock_irqrestore(&h->lock, flags);
649 if (rlevel > RAID_UNKNOWN)
650 rlevel = RAID_UNKNOWN;
651 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
652 return l;
655 static ssize_t lunid_show(struct device *dev,
656 struct device_attribute *attr, char *buf)
658 struct ctlr_info *h;
659 struct scsi_device *sdev;
660 struct hpsa_scsi_dev_t *hdev;
661 unsigned long flags;
662 unsigned char lunid[8];
664 sdev = to_scsi_device(dev);
665 h = sdev_to_hba(sdev);
666 spin_lock_irqsave(&h->lock, flags);
667 hdev = sdev->hostdata;
668 if (!hdev) {
669 spin_unlock_irqrestore(&h->lock, flags);
670 return -ENODEV;
672 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
673 spin_unlock_irqrestore(&h->lock, flags);
674 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
675 lunid[0], lunid[1], lunid[2], lunid[3],
676 lunid[4], lunid[5], lunid[6], lunid[7]);
679 static ssize_t unique_id_show(struct device *dev,
680 struct device_attribute *attr, char *buf)
682 struct ctlr_info *h;
683 struct scsi_device *sdev;
684 struct hpsa_scsi_dev_t *hdev;
685 unsigned long flags;
686 unsigned char sn[16];
688 sdev = to_scsi_device(dev);
689 h = sdev_to_hba(sdev);
690 spin_lock_irqsave(&h->lock, flags);
691 hdev = sdev->hostdata;
692 if (!hdev) {
693 spin_unlock_irqrestore(&h->lock, flags);
694 return -ENODEV;
696 memcpy(sn, hdev->device_id, sizeof(sn));
697 spin_unlock_irqrestore(&h->lock, flags);
698 return snprintf(buf, 16 * 2 + 2,
699 "%02X%02X%02X%02X%02X%02X%02X%02X"
700 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
701 sn[0], sn[1], sn[2], sn[3],
702 sn[4], sn[5], sn[6], sn[7],
703 sn[8], sn[9], sn[10], sn[11],
704 sn[12], sn[13], sn[14], sn[15]);
707 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
708 struct device_attribute *attr, char *buf)
710 struct ctlr_info *h;
711 struct scsi_device *sdev;
712 struct hpsa_scsi_dev_t *hdev;
713 unsigned long flags;
714 int offload_enabled;
716 sdev = to_scsi_device(dev);
717 h = sdev_to_hba(sdev);
718 spin_lock_irqsave(&h->lock, flags);
719 hdev = sdev->hostdata;
720 if (!hdev) {
721 spin_unlock_irqrestore(&h->lock, flags);
722 return -ENODEV;
724 offload_enabled = hdev->offload_enabled;
725 spin_unlock_irqrestore(&h->lock, flags);
726 return snprintf(buf, 20, "%d\n", offload_enabled);
729 #define MAX_PATHS 8
730 #define PATH_STRING_LEN 50
732 static ssize_t path_info_show(struct device *dev,
733 struct device_attribute *attr, char *buf)
735 struct ctlr_info *h;
736 struct scsi_device *sdev;
737 struct hpsa_scsi_dev_t *hdev;
738 unsigned long flags;
739 int i;
740 int output_len = 0;
741 u8 box;
742 u8 bay;
743 u8 path_map_index = 0;
744 char *active;
745 unsigned char phys_connector[2];
746 unsigned char path[MAX_PATHS][PATH_STRING_LEN];
748 memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
749 sdev = to_scsi_device(dev);
750 h = sdev_to_hba(sdev);
751 spin_lock_irqsave(&h->devlock, flags);
752 hdev = sdev->hostdata;
753 if (!hdev) {
754 spin_unlock_irqrestore(&h->devlock, flags);
755 return -ENODEV;
758 bay = hdev->bay;
759 for (i = 0; i < MAX_PATHS; i++) {
760 path_map_index = 1<<i;
761 if (i == hdev->active_path_index)
762 active = "Active";
763 else if (hdev->path_map & path_map_index)
764 active = "Inactive";
765 else
766 continue;
768 output_len = snprintf(path[i],
769 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
770 h->scsi_host->host_no,
771 hdev->bus, hdev->target, hdev->lun,
772 scsi_device_type(hdev->devtype));
774 if (is_ext_target(h, hdev) ||
775 (hdev->devtype == TYPE_RAID) ||
776 is_logical_dev_addr_mode(hdev->scsi3addr)) {
777 output_len += snprintf(path[i] + output_len,
778 PATH_STRING_LEN, "%s\n",
779 active);
780 continue;
783 box = hdev->box[i];
784 memcpy(&phys_connector, &hdev->phys_connector[i],
785 sizeof(phys_connector));
786 if (phys_connector[0] < '0')
787 phys_connector[0] = '0';
788 if (phys_connector[1] < '0')
789 phys_connector[1] = '0';
790 if (hdev->phys_connector[i] > 0)
791 output_len += snprintf(path[i] + output_len,
792 PATH_STRING_LEN,
793 "PORT: %.2s ",
794 phys_connector);
795 if (hdev->devtype == TYPE_DISK &&
796 hdev->expose_state != HPSA_DO_NOT_EXPOSE) {
797 if (box == 0 || box == 0xFF) {
798 output_len += snprintf(path[i] + output_len,
799 PATH_STRING_LEN,
800 "BAY: %hhu %s\n",
801 bay, active);
802 } else {
803 output_len += snprintf(path[i] + output_len,
804 PATH_STRING_LEN,
805 "BOX: %hhu BAY: %hhu %s\n",
806 box, bay, active);
808 } else if (box != 0 && box != 0xFF) {
809 output_len += snprintf(path[i] + output_len,
810 PATH_STRING_LEN, "BOX: %hhu %s\n",
811 box, active);
812 } else
813 output_len += snprintf(path[i] + output_len,
814 PATH_STRING_LEN, "%s\n", active);
817 spin_unlock_irqrestore(&h->devlock, flags);
818 return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
819 path[0], path[1], path[2], path[3],
820 path[4], path[5], path[6], path[7]);
823 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
824 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
825 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
826 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
827 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
828 host_show_hp_ssd_smart_path_enabled, NULL);
829 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
830 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
831 host_show_hp_ssd_smart_path_status,
832 host_store_hp_ssd_smart_path_status);
833 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
834 host_store_raid_offload_debug);
835 static DEVICE_ATTR(firmware_revision, S_IRUGO,
836 host_show_firmware_revision, NULL);
837 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
838 host_show_commands_outstanding, NULL);
839 static DEVICE_ATTR(transport_mode, S_IRUGO,
840 host_show_transport_mode, NULL);
841 static DEVICE_ATTR(resettable, S_IRUGO,
842 host_show_resettable, NULL);
843 static DEVICE_ATTR(lockup_detected, S_IRUGO,
844 host_show_lockup_detected, NULL);
846 static struct device_attribute *hpsa_sdev_attrs[] = {
847 &dev_attr_raid_level,
848 &dev_attr_lunid,
849 &dev_attr_unique_id,
850 &dev_attr_hp_ssd_smart_path_enabled,
851 &dev_attr_path_info,
852 &dev_attr_lockup_detected,
853 NULL,
856 static struct device_attribute *hpsa_shost_attrs[] = {
857 &dev_attr_rescan,
858 &dev_attr_firmware_revision,
859 &dev_attr_commands_outstanding,
860 &dev_attr_transport_mode,
861 &dev_attr_resettable,
862 &dev_attr_hp_ssd_smart_path_status,
863 &dev_attr_raid_offload_debug,
864 NULL,
867 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
868 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
870 static struct scsi_host_template hpsa_driver_template = {
871 .module = THIS_MODULE,
872 .name = HPSA,
873 .proc_name = HPSA,
874 .queuecommand = hpsa_scsi_queue_command,
875 .scan_start = hpsa_scan_start,
876 .scan_finished = hpsa_scan_finished,
877 .change_queue_depth = hpsa_change_queue_depth,
878 .this_id = -1,
879 .use_clustering = ENABLE_CLUSTERING,
880 .eh_abort_handler = hpsa_eh_abort_handler,
881 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
882 .ioctl = hpsa_ioctl,
883 .slave_alloc = hpsa_slave_alloc,
884 .slave_configure = hpsa_slave_configure,
885 .slave_destroy = hpsa_slave_destroy,
886 #ifdef CONFIG_COMPAT
887 .compat_ioctl = hpsa_compat_ioctl,
888 #endif
889 .sdev_attrs = hpsa_sdev_attrs,
890 .shost_attrs = hpsa_shost_attrs,
891 .max_sectors = 8192,
892 .no_write_same = 1,
895 static inline u32 next_command(struct ctlr_info *h, u8 q)
897 u32 a;
898 struct reply_queue_buffer *rq = &h->reply_queue[q];
900 if (h->transMethod & CFGTBL_Trans_io_accel1)
901 return h->access.command_completed(h, q);
903 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
904 return h->access.command_completed(h, q);
906 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
907 a = rq->head[rq->current_entry];
908 rq->current_entry++;
909 atomic_dec(&h->commands_outstanding);
910 } else {
911 a = FIFO_EMPTY;
913 /* Check for wraparound */
914 if (rq->current_entry == h->max_commands) {
915 rq->current_entry = 0;
916 rq->wraparound ^= 1;
918 return a;
922 * There are some special bits in the bus address of the
923 * command that we have to set for the controller to know
924 * how to process the command:
926 * Normal performant mode:
927 * bit 0: 1 means performant mode, 0 means simple mode.
928 * bits 1-3 = block fetch table entry
929 * bits 4-6 = command type (== 0)
931 * ioaccel1 mode:
932 * bit 0 = "performant mode" bit.
933 * bits 1-3 = block fetch table entry
934 * bits 4-6 = command type (== 110)
935 * (command type is needed because ioaccel1 mode
936 * commands are submitted through the same register as normal
937 * mode commands, so this is how the controller knows whether
938 * the command is normal mode or ioaccel1 mode.)
940 * ioaccel2 mode:
941 * bit 0 = "performant mode" bit.
942 * bits 1-4 = block fetch table entry (note extra bit)
943 * bits 4-6 = not needed, because ioaccel2 mode has
944 * a separate special register for submitting commands.
948 * set_performant_mode: Modify the tag for cciss performant
949 * set bit 0 for pull model, bits 3-1 for block fetch
950 * register number
952 #define DEFAULT_REPLY_QUEUE (-1)
953 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
954 int reply_queue)
956 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
957 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
958 if (unlikely(!h->msix_vector))
959 return;
960 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
961 c->Header.ReplyQueue =
962 raw_smp_processor_id() % h->nreply_queues;
963 else
964 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
968 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
969 struct CommandList *c,
970 int reply_queue)
972 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
975 * Tell the controller to post the reply to the queue for this
976 * processor. This seems to give the best I/O throughput.
978 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
980 else
981 cp->ReplyQueue = reply_queue % h->nreply_queues;
983 * Set the bits in the address sent down to include:
984 * - performant mode bit (bit 0)
985 * - pull count (bits 1-3)
986 * - command type (bits 4-6)
988 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
989 IOACCEL1_BUSADDR_CMDTYPE;
992 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
993 struct CommandList *c,
994 int reply_queue)
996 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
997 &h->ioaccel2_cmd_pool[c->cmdindex];
999 /* Tell the controller to post the reply to the queue for this
1000 * processor. This seems to give the best I/O throughput.
1002 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1003 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1004 else
1005 cp->reply_queue = reply_queue % h->nreply_queues;
1006 /* Set the bits in the address sent down to include:
1007 * - performant mode bit not used in ioaccel mode 2
1008 * - pull count (bits 0-3)
1009 * - command type isn't needed for ioaccel2
1011 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1014 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1015 struct CommandList *c,
1016 int reply_queue)
1018 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1021 * Tell the controller to post the reply to the queue for this
1022 * processor. This seems to give the best I/O throughput.
1024 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1026 else
1027 cp->reply_queue = reply_queue % h->nreply_queues;
1029 * Set the bits in the address sent down to include:
1030 * - performant mode bit not used in ioaccel mode 2
1031 * - pull count (bits 0-3)
1032 * - command type isn't needed for ioaccel2
1034 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1037 static int is_firmware_flash_cmd(u8 *cdb)
1039 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1043 * During firmware flash, the heartbeat register may not update as frequently
1044 * as it should. So we dial down lockup detection during firmware flash. and
1045 * dial it back up when firmware flash completes.
1047 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1048 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1049 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1050 struct CommandList *c)
1052 if (!is_firmware_flash_cmd(c->Request.CDB))
1053 return;
1054 atomic_inc(&h->firmware_flash_in_progress);
1055 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1058 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1059 struct CommandList *c)
1061 if (is_firmware_flash_cmd(c->Request.CDB) &&
1062 atomic_dec_and_test(&h->firmware_flash_in_progress))
1063 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1066 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1067 struct CommandList *c, int reply_queue)
1069 dial_down_lockup_detection_during_fw_flash(h, c);
1070 atomic_inc(&h->commands_outstanding);
1071 switch (c->cmd_type) {
1072 case CMD_IOACCEL1:
1073 set_ioaccel1_performant_mode(h, c, reply_queue);
1074 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1075 break;
1076 case CMD_IOACCEL2:
1077 set_ioaccel2_performant_mode(h, c, reply_queue);
1078 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1079 break;
1080 case IOACCEL2_TMF:
1081 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1082 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1083 break;
1084 default:
1085 set_performant_mode(h, c, reply_queue);
1086 h->access.submit_command(h, c);
1090 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1092 if (unlikely(hpsa_is_pending_event(c)))
1093 return finish_cmd(c);
1095 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1098 static inline int is_hba_lunid(unsigned char scsi3addr[])
1100 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1103 static inline int is_scsi_rev_5(struct ctlr_info *h)
1105 if (!h->hba_inquiry_data)
1106 return 0;
1107 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1108 return 1;
1109 return 0;
1112 static int hpsa_find_target_lun(struct ctlr_info *h,
1113 unsigned char scsi3addr[], int bus, int *target, int *lun)
1115 /* finds an unused bus, target, lun for a new physical device
1116 * assumes h->devlock is held
1118 int i, found = 0;
1119 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1121 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1123 for (i = 0; i < h->ndevices; i++) {
1124 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1125 __set_bit(h->dev[i]->target, lun_taken);
1128 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1129 if (i < HPSA_MAX_DEVICES) {
1130 /* *bus = 1; */
1131 *target = i;
1132 *lun = 0;
1133 found = 1;
1135 return !found;
1138 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1139 struct hpsa_scsi_dev_t *dev, char *description)
1141 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1142 return;
1144 dev_printk(level, &h->pdev->dev,
1145 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1146 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1147 description,
1148 scsi_device_type(dev->devtype),
1149 dev->vendor,
1150 dev->model,
1151 dev->raid_level > RAID_UNKNOWN ?
1152 "RAID-?" : raid_label[dev->raid_level],
1153 dev->offload_config ? '+' : '-',
1154 dev->offload_enabled ? '+' : '-',
1155 dev->expose_state);
1158 /* Add an entry into h->dev[] array. */
1159 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1160 struct hpsa_scsi_dev_t *device,
1161 struct hpsa_scsi_dev_t *added[], int *nadded)
1163 /* assumes h->devlock is held */
1164 int n = h->ndevices;
1165 int i;
1166 unsigned char addr1[8], addr2[8];
1167 struct hpsa_scsi_dev_t *sd;
1169 if (n >= HPSA_MAX_DEVICES) {
1170 dev_err(&h->pdev->dev, "too many devices, some will be "
1171 "inaccessible.\n");
1172 return -1;
1175 /* physical devices do not have lun or target assigned until now. */
1176 if (device->lun != -1)
1177 /* Logical device, lun is already assigned. */
1178 goto lun_assigned;
1180 /* If this device a non-zero lun of a multi-lun device
1181 * byte 4 of the 8-byte LUN addr will contain the logical
1182 * unit no, zero otherwise.
1184 if (device->scsi3addr[4] == 0) {
1185 /* This is not a non-zero lun of a multi-lun device */
1186 if (hpsa_find_target_lun(h, device->scsi3addr,
1187 device->bus, &device->target, &device->lun) != 0)
1188 return -1;
1189 goto lun_assigned;
1192 /* This is a non-zero lun of a multi-lun device.
1193 * Search through our list and find the device which
1194 * has the same 8 byte LUN address, excepting byte 4 and 5.
1195 * Assign the same bus and target for this new LUN.
1196 * Use the logical unit number from the firmware.
1198 memcpy(addr1, device->scsi3addr, 8);
1199 addr1[4] = 0;
1200 addr1[5] = 0;
1201 for (i = 0; i < n; i++) {
1202 sd = h->dev[i];
1203 memcpy(addr2, sd->scsi3addr, 8);
1204 addr2[4] = 0;
1205 addr2[5] = 0;
1206 /* differ only in byte 4 and 5? */
1207 if (memcmp(addr1, addr2, 8) == 0) {
1208 device->bus = sd->bus;
1209 device->target = sd->target;
1210 device->lun = device->scsi3addr[4];
1211 break;
1214 if (device->lun == -1) {
1215 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1216 " suspect firmware bug or unsupported hardware "
1217 "configuration.\n");
1218 return -1;
1221 lun_assigned:
1223 h->dev[n] = device;
1224 h->ndevices++;
1225 added[*nadded] = device;
1226 (*nadded)++;
1227 hpsa_show_dev_msg(KERN_INFO, h, device,
1228 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1229 device->offload_to_be_enabled = device->offload_enabled;
1230 device->offload_enabled = 0;
1231 return 0;
1234 /* Update an entry in h->dev[] array. */
1235 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1236 int entry, struct hpsa_scsi_dev_t *new_entry)
1238 int offload_enabled;
1239 /* assumes h->devlock is held */
1240 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1242 /* Raid level changed. */
1243 h->dev[entry]->raid_level = new_entry->raid_level;
1245 /* Raid offload parameters changed. Careful about the ordering. */
1246 if (new_entry->offload_config && new_entry->offload_enabled) {
1248 * if drive is newly offload_enabled, we want to copy the
1249 * raid map data first. If previously offload_enabled and
1250 * offload_config were set, raid map data had better be
1251 * the same as it was before. if raid map data is changed
1252 * then it had better be the case that
1253 * h->dev[entry]->offload_enabled is currently 0.
1255 h->dev[entry]->raid_map = new_entry->raid_map;
1256 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1258 if (new_entry->hba_ioaccel_enabled) {
1259 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1260 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1262 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1263 h->dev[entry]->offload_config = new_entry->offload_config;
1264 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1265 h->dev[entry]->queue_depth = new_entry->queue_depth;
1268 * We can turn off ioaccel offload now, but need to delay turning
1269 * it on until we can update h->dev[entry]->phys_disk[], but we
1270 * can't do that until all the devices are updated.
1272 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1273 if (!new_entry->offload_enabled)
1274 h->dev[entry]->offload_enabled = 0;
1276 offload_enabled = h->dev[entry]->offload_enabled;
1277 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1278 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1279 h->dev[entry]->offload_enabled = offload_enabled;
1282 /* Replace an entry from h->dev[] array. */
1283 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1284 int entry, struct hpsa_scsi_dev_t *new_entry,
1285 struct hpsa_scsi_dev_t *added[], int *nadded,
1286 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1288 /* assumes h->devlock is held */
1289 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1290 removed[*nremoved] = h->dev[entry];
1291 (*nremoved)++;
1294 * New physical devices won't have target/lun assigned yet
1295 * so we need to preserve the values in the slot we are replacing.
1297 if (new_entry->target == -1) {
1298 new_entry->target = h->dev[entry]->target;
1299 new_entry->lun = h->dev[entry]->lun;
1302 h->dev[entry] = new_entry;
1303 added[*nadded] = new_entry;
1304 (*nadded)++;
1305 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1306 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1307 new_entry->offload_enabled = 0;
1310 /* Remove an entry from h->dev[] array. */
1311 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1312 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1314 /* assumes h->devlock is held */
1315 int i;
1316 struct hpsa_scsi_dev_t *sd;
1318 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1320 sd = h->dev[entry];
1321 removed[*nremoved] = h->dev[entry];
1322 (*nremoved)++;
1324 for (i = entry; i < h->ndevices-1; i++)
1325 h->dev[i] = h->dev[i+1];
1326 h->ndevices--;
1327 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1330 #define SCSI3ADDR_EQ(a, b) ( \
1331 (a)[7] == (b)[7] && \
1332 (a)[6] == (b)[6] && \
1333 (a)[5] == (b)[5] && \
1334 (a)[4] == (b)[4] && \
1335 (a)[3] == (b)[3] && \
1336 (a)[2] == (b)[2] && \
1337 (a)[1] == (b)[1] && \
1338 (a)[0] == (b)[0])
1340 static void fixup_botched_add(struct ctlr_info *h,
1341 struct hpsa_scsi_dev_t *added)
1343 /* called when scsi_add_device fails in order to re-adjust
1344 * h->dev[] to match the mid layer's view.
1346 unsigned long flags;
1347 int i, j;
1349 spin_lock_irqsave(&h->lock, flags);
1350 for (i = 0; i < h->ndevices; i++) {
1351 if (h->dev[i] == added) {
1352 for (j = i; j < h->ndevices-1; j++)
1353 h->dev[j] = h->dev[j+1];
1354 h->ndevices--;
1355 break;
1358 spin_unlock_irqrestore(&h->lock, flags);
1359 kfree(added);
1362 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1363 struct hpsa_scsi_dev_t *dev2)
1365 /* we compare everything except lun and target as these
1366 * are not yet assigned. Compare parts likely
1367 * to differ first
1369 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1370 sizeof(dev1->scsi3addr)) != 0)
1371 return 0;
1372 if (memcmp(dev1->device_id, dev2->device_id,
1373 sizeof(dev1->device_id)) != 0)
1374 return 0;
1375 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1376 return 0;
1377 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1378 return 0;
1379 if (dev1->devtype != dev2->devtype)
1380 return 0;
1381 if (dev1->bus != dev2->bus)
1382 return 0;
1383 return 1;
1386 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1387 struct hpsa_scsi_dev_t *dev2)
1389 /* Device attributes that can change, but don't mean
1390 * that the device is a different device, nor that the OS
1391 * needs to be told anything about the change.
1393 if (dev1->raid_level != dev2->raid_level)
1394 return 1;
1395 if (dev1->offload_config != dev2->offload_config)
1396 return 1;
1397 if (dev1->offload_enabled != dev2->offload_enabled)
1398 return 1;
1399 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1400 if (dev1->queue_depth != dev2->queue_depth)
1401 return 1;
1402 return 0;
1405 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1406 * and return needle location in *index. If scsi3addr matches, but not
1407 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1408 * location in *index.
1409 * In the case of a minor device attribute change, such as RAID level, just
1410 * return DEVICE_UPDATED, along with the updated device's location in index.
1411 * If needle not found, return DEVICE_NOT_FOUND.
1413 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1414 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1415 int *index)
1417 int i;
1418 #define DEVICE_NOT_FOUND 0
1419 #define DEVICE_CHANGED 1
1420 #define DEVICE_SAME 2
1421 #define DEVICE_UPDATED 3
1422 if (needle == NULL)
1423 return DEVICE_NOT_FOUND;
1425 for (i = 0; i < haystack_size; i++) {
1426 if (haystack[i] == NULL) /* previously removed. */
1427 continue;
1428 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1429 *index = i;
1430 if (device_is_the_same(needle, haystack[i])) {
1431 if (device_updated(needle, haystack[i]))
1432 return DEVICE_UPDATED;
1433 return DEVICE_SAME;
1434 } else {
1435 /* Keep offline devices offline */
1436 if (needle->volume_offline)
1437 return DEVICE_NOT_FOUND;
1438 return DEVICE_CHANGED;
1442 *index = -1;
1443 return DEVICE_NOT_FOUND;
1446 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1447 unsigned char scsi3addr[])
1449 struct offline_device_entry *device;
1450 unsigned long flags;
1452 /* Check to see if device is already on the list */
1453 spin_lock_irqsave(&h->offline_device_lock, flags);
1454 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1455 if (memcmp(device->scsi3addr, scsi3addr,
1456 sizeof(device->scsi3addr)) == 0) {
1457 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1458 return;
1461 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1463 /* Device is not on the list, add it. */
1464 device = kmalloc(sizeof(*device), GFP_KERNEL);
1465 if (!device) {
1466 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1467 return;
1469 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1470 spin_lock_irqsave(&h->offline_device_lock, flags);
1471 list_add_tail(&device->offline_list, &h->offline_device_list);
1472 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1475 /* Print a message explaining various offline volume states */
1476 static void hpsa_show_volume_status(struct ctlr_info *h,
1477 struct hpsa_scsi_dev_t *sd)
1479 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1480 dev_info(&h->pdev->dev,
1481 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1482 h->scsi_host->host_no,
1483 sd->bus, sd->target, sd->lun);
1484 switch (sd->volume_offline) {
1485 case HPSA_LV_OK:
1486 break;
1487 case HPSA_LV_UNDERGOING_ERASE:
1488 dev_info(&h->pdev->dev,
1489 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1490 h->scsi_host->host_no,
1491 sd->bus, sd->target, sd->lun);
1492 break;
1493 case HPSA_LV_NOT_AVAILABLE:
1494 dev_info(&h->pdev->dev,
1495 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1496 h->scsi_host->host_no,
1497 sd->bus, sd->target, sd->lun);
1498 break;
1499 case HPSA_LV_UNDERGOING_RPI:
1500 dev_info(&h->pdev->dev,
1501 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1502 h->scsi_host->host_no,
1503 sd->bus, sd->target, sd->lun);
1504 break;
1505 case HPSA_LV_PENDING_RPI:
1506 dev_info(&h->pdev->dev,
1507 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1508 h->scsi_host->host_no,
1509 sd->bus, sd->target, sd->lun);
1510 break;
1511 case HPSA_LV_ENCRYPTED_NO_KEY:
1512 dev_info(&h->pdev->dev,
1513 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1514 h->scsi_host->host_no,
1515 sd->bus, sd->target, sd->lun);
1516 break;
1517 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1518 dev_info(&h->pdev->dev,
1519 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1520 h->scsi_host->host_no,
1521 sd->bus, sd->target, sd->lun);
1522 break;
1523 case HPSA_LV_UNDERGOING_ENCRYPTION:
1524 dev_info(&h->pdev->dev,
1525 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1526 h->scsi_host->host_no,
1527 sd->bus, sd->target, sd->lun);
1528 break;
1529 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1530 dev_info(&h->pdev->dev,
1531 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1532 h->scsi_host->host_no,
1533 sd->bus, sd->target, sd->lun);
1534 break;
1535 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1536 dev_info(&h->pdev->dev,
1537 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1538 h->scsi_host->host_no,
1539 sd->bus, sd->target, sd->lun);
1540 break;
1541 case HPSA_LV_PENDING_ENCRYPTION:
1542 dev_info(&h->pdev->dev,
1543 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1544 h->scsi_host->host_no,
1545 sd->bus, sd->target, sd->lun);
1546 break;
1547 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1548 dev_info(&h->pdev->dev,
1549 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1550 h->scsi_host->host_no,
1551 sd->bus, sd->target, sd->lun);
1552 break;
1557 * Figure the list of physical drive pointers for a logical drive with
1558 * raid offload configured.
1560 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1561 struct hpsa_scsi_dev_t *dev[], int ndevices,
1562 struct hpsa_scsi_dev_t *logical_drive)
1564 struct raid_map_data *map = &logical_drive->raid_map;
1565 struct raid_map_disk_data *dd = &map->data[0];
1566 int i, j;
1567 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1568 le16_to_cpu(map->metadata_disks_per_row);
1569 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1570 le16_to_cpu(map->layout_map_count) *
1571 total_disks_per_row;
1572 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1573 total_disks_per_row;
1574 int qdepth;
1576 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1577 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1579 logical_drive->nphysical_disks = nraid_map_entries;
1581 qdepth = 0;
1582 for (i = 0; i < nraid_map_entries; i++) {
1583 logical_drive->phys_disk[i] = NULL;
1584 if (!logical_drive->offload_config)
1585 continue;
1586 for (j = 0; j < ndevices; j++) {
1587 if (dev[j] == NULL)
1588 continue;
1589 if (dev[j]->devtype != TYPE_DISK)
1590 continue;
1591 if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1592 continue;
1593 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1594 continue;
1596 logical_drive->phys_disk[i] = dev[j];
1597 if (i < nphys_disk)
1598 qdepth = min(h->nr_cmds, qdepth +
1599 logical_drive->phys_disk[i]->queue_depth);
1600 break;
1604 * This can happen if a physical drive is removed and
1605 * the logical drive is degraded. In that case, the RAID
1606 * map data will refer to a physical disk which isn't actually
1607 * present. And in that case offload_enabled should already
1608 * be 0, but we'll turn it off here just in case
1610 if (!logical_drive->phys_disk[i]) {
1611 logical_drive->offload_enabled = 0;
1612 logical_drive->offload_to_be_enabled = 0;
1613 logical_drive->queue_depth = 8;
1616 if (nraid_map_entries)
1618 * This is correct for reads, too high for full stripe writes,
1619 * way too high for partial stripe writes
1621 logical_drive->queue_depth = qdepth;
1622 else
1623 logical_drive->queue_depth = h->nr_cmds;
1626 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1627 struct hpsa_scsi_dev_t *dev[], int ndevices)
1629 int i;
1631 for (i = 0; i < ndevices; i++) {
1632 if (dev[i] == NULL)
1633 continue;
1634 if (dev[i]->devtype != TYPE_DISK)
1635 continue;
1636 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1637 continue;
1640 * If offload is currently enabled, the RAID map and
1641 * phys_disk[] assignment *better* not be changing
1642 * and since it isn't changing, we do not need to
1643 * update it.
1645 if (dev[i]->offload_enabled)
1646 continue;
1648 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1652 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1653 struct hpsa_scsi_dev_t *sd[], int nsds)
1655 /* sd contains scsi3 addresses and devtypes, and inquiry
1656 * data. This function takes what's in sd to be the current
1657 * reality and updates h->dev[] to reflect that reality.
1659 int i, entry, device_change, changes = 0;
1660 struct hpsa_scsi_dev_t *csd;
1661 unsigned long flags;
1662 struct hpsa_scsi_dev_t **added, **removed;
1663 int nadded, nremoved;
1664 struct Scsi_Host *sh = NULL;
1667 * A reset can cause a device status to change
1668 * re-schedule the scan to see what happened.
1670 if (h->reset_in_progress) {
1671 h->drv_req_rescan = 1;
1672 return;
1675 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1676 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1678 if (!added || !removed) {
1679 dev_warn(&h->pdev->dev, "out of memory in "
1680 "adjust_hpsa_scsi_table\n");
1681 goto free_and_out;
1684 spin_lock_irqsave(&h->devlock, flags);
1686 /* find any devices in h->dev[] that are not in
1687 * sd[] and remove them from h->dev[], and for any
1688 * devices which have changed, remove the old device
1689 * info and add the new device info.
1690 * If minor device attributes change, just update
1691 * the existing device structure.
1693 i = 0;
1694 nremoved = 0;
1695 nadded = 0;
1696 while (i < h->ndevices) {
1697 csd = h->dev[i];
1698 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1699 if (device_change == DEVICE_NOT_FOUND) {
1700 changes++;
1701 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1702 continue; /* remove ^^^, hence i not incremented */
1703 } else if (device_change == DEVICE_CHANGED) {
1704 changes++;
1705 hpsa_scsi_replace_entry(h, i, sd[entry],
1706 added, &nadded, removed, &nremoved);
1707 /* Set it to NULL to prevent it from being freed
1708 * at the bottom of hpsa_update_scsi_devices()
1710 sd[entry] = NULL;
1711 } else if (device_change == DEVICE_UPDATED) {
1712 hpsa_scsi_update_entry(h, i, sd[entry]);
1714 i++;
1717 /* Now, make sure every device listed in sd[] is also
1718 * listed in h->dev[], adding them if they aren't found
1721 for (i = 0; i < nsds; i++) {
1722 if (!sd[i]) /* if already added above. */
1723 continue;
1725 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1726 * as the SCSI mid-layer does not handle such devices well.
1727 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1728 * at 160Hz, and prevents the system from coming up.
1730 if (sd[i]->volume_offline) {
1731 hpsa_show_volume_status(h, sd[i]);
1732 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1733 continue;
1736 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1737 h->ndevices, &entry);
1738 if (device_change == DEVICE_NOT_FOUND) {
1739 changes++;
1740 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1741 break;
1742 sd[i] = NULL; /* prevent from being freed later. */
1743 } else if (device_change == DEVICE_CHANGED) {
1744 /* should never happen... */
1745 changes++;
1746 dev_warn(&h->pdev->dev,
1747 "device unexpectedly changed.\n");
1748 /* but if it does happen, we just ignore that device */
1751 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1753 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1754 * any logical drives that need it enabled.
1756 for (i = 0; i < h->ndevices; i++) {
1757 if (h->dev[i] == NULL)
1758 continue;
1759 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1762 spin_unlock_irqrestore(&h->devlock, flags);
1764 /* Monitor devices which are in one of several NOT READY states to be
1765 * brought online later. This must be done without holding h->devlock,
1766 * so don't touch h->dev[]
1768 for (i = 0; i < nsds; i++) {
1769 if (!sd[i]) /* if already added above. */
1770 continue;
1771 if (sd[i]->volume_offline)
1772 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1775 /* Don't notify scsi mid layer of any changes the first time through
1776 * (or if there are no changes) scsi_scan_host will do it later the
1777 * first time through.
1779 if (!changes)
1780 goto free_and_out;
1782 sh = h->scsi_host;
1783 if (sh == NULL) {
1784 dev_warn(&h->pdev->dev, "%s: scsi_host is null\n", __func__);
1785 goto free_and_out;
1787 /* Notify scsi mid layer of any removed devices */
1788 for (i = 0; i < nremoved; i++) {
1789 if (removed[i] == NULL)
1790 continue;
1791 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1792 struct scsi_device *sdev =
1793 scsi_device_lookup(sh, removed[i]->bus,
1794 removed[i]->target, removed[i]->lun);
1795 if (sdev != NULL) {
1796 scsi_remove_device(sdev);
1797 scsi_device_put(sdev);
1798 } else {
1800 * We don't expect to get here.
1801 * future cmds to this device will get selection
1802 * timeout as if the device was gone.
1804 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1805 "didn't find device for removal.");
1808 kfree(removed[i]);
1809 removed[i] = NULL;
1812 /* Notify scsi mid layer of any added devices */
1813 for (i = 0; i < nadded; i++) {
1814 if (added[i] == NULL)
1815 continue;
1816 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1817 continue;
1818 if (scsi_add_device(sh, added[i]->bus,
1819 added[i]->target, added[i]->lun) == 0)
1820 continue;
1821 dev_warn(&h->pdev->dev, "addition failed, device not added.");
1822 /* now we have to remove it from h->dev,
1823 * since it didn't get added to scsi mid layer
1825 fixup_botched_add(h, added[i]);
1826 h->drv_req_rescan = 1;
1829 free_and_out:
1830 kfree(added);
1831 kfree(removed);
1835 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1836 * Assume's h->devlock is held.
1838 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1839 int bus, int target, int lun)
1841 int i;
1842 struct hpsa_scsi_dev_t *sd;
1844 for (i = 0; i < h->ndevices; i++) {
1845 sd = h->dev[i];
1846 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1847 return sd;
1849 return NULL;
1852 static int hpsa_slave_alloc(struct scsi_device *sdev)
1854 struct hpsa_scsi_dev_t *sd;
1855 unsigned long flags;
1856 struct ctlr_info *h;
1858 h = sdev_to_hba(sdev);
1859 spin_lock_irqsave(&h->devlock, flags);
1860 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1861 sdev_id(sdev), sdev->lun);
1862 if (likely(sd)) {
1863 atomic_set(&sd->ioaccel_cmds_out, 0);
1864 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1865 } else
1866 sdev->hostdata = NULL;
1867 spin_unlock_irqrestore(&h->devlock, flags);
1868 return 0;
1871 /* configure scsi device based on internal per-device structure */
1872 static int hpsa_slave_configure(struct scsi_device *sdev)
1874 struct hpsa_scsi_dev_t *sd;
1875 int queue_depth;
1877 sd = sdev->hostdata;
1878 sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1880 if (sd)
1881 queue_depth = sd->queue_depth != 0 ?
1882 sd->queue_depth : sdev->host->can_queue;
1883 else
1884 queue_depth = sdev->host->can_queue;
1886 scsi_change_queue_depth(sdev, queue_depth);
1888 return 0;
1891 static void hpsa_slave_destroy(struct scsi_device *sdev)
1893 /* nothing to do. */
1896 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1898 int i;
1900 if (!h->ioaccel2_cmd_sg_list)
1901 return;
1902 for (i = 0; i < h->nr_cmds; i++) {
1903 kfree(h->ioaccel2_cmd_sg_list[i]);
1904 h->ioaccel2_cmd_sg_list[i] = NULL;
1906 kfree(h->ioaccel2_cmd_sg_list);
1907 h->ioaccel2_cmd_sg_list = NULL;
1910 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1912 int i;
1914 if (h->chainsize <= 0)
1915 return 0;
1917 h->ioaccel2_cmd_sg_list =
1918 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1919 GFP_KERNEL);
1920 if (!h->ioaccel2_cmd_sg_list)
1921 return -ENOMEM;
1922 for (i = 0; i < h->nr_cmds; i++) {
1923 h->ioaccel2_cmd_sg_list[i] =
1924 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1925 h->maxsgentries, GFP_KERNEL);
1926 if (!h->ioaccel2_cmd_sg_list[i])
1927 goto clean;
1929 return 0;
1931 clean:
1932 hpsa_free_ioaccel2_sg_chain_blocks(h);
1933 return -ENOMEM;
1936 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1938 int i;
1940 if (!h->cmd_sg_list)
1941 return;
1942 for (i = 0; i < h->nr_cmds; i++) {
1943 kfree(h->cmd_sg_list[i]);
1944 h->cmd_sg_list[i] = NULL;
1946 kfree(h->cmd_sg_list);
1947 h->cmd_sg_list = NULL;
1950 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1952 int i;
1954 if (h->chainsize <= 0)
1955 return 0;
1957 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1958 GFP_KERNEL);
1959 if (!h->cmd_sg_list) {
1960 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1961 return -ENOMEM;
1963 for (i = 0; i < h->nr_cmds; i++) {
1964 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1965 h->chainsize, GFP_KERNEL);
1966 if (!h->cmd_sg_list[i]) {
1967 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1968 goto clean;
1971 return 0;
1973 clean:
1974 hpsa_free_sg_chain_blocks(h);
1975 return -ENOMEM;
1978 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1979 struct io_accel2_cmd *cp, struct CommandList *c)
1981 struct ioaccel2_sg_element *chain_block;
1982 u64 temp64;
1983 u32 chain_size;
1985 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1986 chain_size = le32_to_cpu(cp->data_len);
1987 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1988 PCI_DMA_TODEVICE);
1989 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1990 /* prevent subsequent unmapping */
1991 cp->sg->address = 0;
1992 return -1;
1994 cp->sg->address = cpu_to_le64(temp64);
1995 return 0;
1998 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1999 struct io_accel2_cmd *cp)
2001 struct ioaccel2_sg_element *chain_sg;
2002 u64 temp64;
2003 u32 chain_size;
2005 chain_sg = cp->sg;
2006 temp64 = le64_to_cpu(chain_sg->address);
2007 chain_size = le32_to_cpu(cp->data_len);
2008 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2011 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2012 struct CommandList *c)
2014 struct SGDescriptor *chain_sg, *chain_block;
2015 u64 temp64;
2016 u32 chain_len;
2018 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2019 chain_block = h->cmd_sg_list[c->cmdindex];
2020 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2021 chain_len = sizeof(*chain_sg) *
2022 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2023 chain_sg->Len = cpu_to_le32(chain_len);
2024 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2025 PCI_DMA_TODEVICE);
2026 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2027 /* prevent subsequent unmapping */
2028 chain_sg->Addr = cpu_to_le64(0);
2029 return -1;
2031 chain_sg->Addr = cpu_to_le64(temp64);
2032 return 0;
2035 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2036 struct CommandList *c)
2038 struct SGDescriptor *chain_sg;
2040 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2041 return;
2043 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2044 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2045 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2049 /* Decode the various types of errors on ioaccel2 path.
2050 * Return 1 for any error that should generate a RAID path retry.
2051 * Return 0 for errors that don't require a RAID path retry.
2053 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2054 struct CommandList *c,
2055 struct scsi_cmnd *cmd,
2056 struct io_accel2_cmd *c2)
2058 int data_len;
2059 int retry = 0;
2060 u32 ioaccel2_resid = 0;
2062 switch (c2->error_data.serv_response) {
2063 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2064 switch (c2->error_data.status) {
2065 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2066 break;
2067 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2068 cmd->result |= SAM_STAT_CHECK_CONDITION;
2069 if (c2->error_data.data_present !=
2070 IOACCEL2_SENSE_DATA_PRESENT) {
2071 memset(cmd->sense_buffer, 0,
2072 SCSI_SENSE_BUFFERSIZE);
2073 break;
2075 /* copy the sense data */
2076 data_len = c2->error_data.sense_data_len;
2077 if (data_len > SCSI_SENSE_BUFFERSIZE)
2078 data_len = SCSI_SENSE_BUFFERSIZE;
2079 if (data_len > sizeof(c2->error_data.sense_data_buff))
2080 data_len =
2081 sizeof(c2->error_data.sense_data_buff);
2082 memcpy(cmd->sense_buffer,
2083 c2->error_data.sense_data_buff, data_len);
2084 retry = 1;
2085 break;
2086 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2087 retry = 1;
2088 break;
2089 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2090 retry = 1;
2091 break;
2092 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2093 retry = 1;
2094 break;
2095 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2096 retry = 1;
2097 break;
2098 default:
2099 retry = 1;
2100 break;
2102 break;
2103 case IOACCEL2_SERV_RESPONSE_FAILURE:
2104 switch (c2->error_data.status) {
2105 case IOACCEL2_STATUS_SR_IO_ERROR:
2106 case IOACCEL2_STATUS_SR_IO_ABORTED:
2107 case IOACCEL2_STATUS_SR_OVERRUN:
2108 retry = 1;
2109 break;
2110 case IOACCEL2_STATUS_SR_UNDERRUN:
2111 cmd->result = (DID_OK << 16); /* host byte */
2112 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2113 ioaccel2_resid = get_unaligned_le32(
2114 &c2->error_data.resid_cnt[0]);
2115 scsi_set_resid(cmd, ioaccel2_resid);
2116 break;
2117 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2118 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2119 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2120 /* We will get an event from ctlr to trigger rescan */
2121 retry = 1;
2122 break;
2123 default:
2124 retry = 1;
2126 break;
2127 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2128 break;
2129 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2130 break;
2131 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2132 retry = 1;
2133 break;
2134 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2135 break;
2136 default:
2137 retry = 1;
2138 break;
2141 return retry; /* retry on raid path? */
2144 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2145 struct CommandList *c)
2147 bool do_wake = false;
2150 * Prevent the following race in the abort handler:
2152 * 1. LLD is requested to abort a SCSI command
2153 * 2. The SCSI command completes
2154 * 3. The struct CommandList associated with step 2 is made available
2155 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2156 * 5. Abort handler follows scsi_cmnd->host_scribble and
2157 * finds struct CommandList and tries to aborts it
2158 * Now we have aborted the wrong command.
2160 * Reset c->scsi_cmd here so that the abort or reset handler will know
2161 * this command has completed. Then, check to see if the handler is
2162 * waiting for this command, and, if so, wake it.
2164 c->scsi_cmd = SCSI_CMD_IDLE;
2165 mb(); /* Declare command idle before checking for pending events. */
2166 if (c->abort_pending) {
2167 do_wake = true;
2168 c->abort_pending = false;
2170 if (c->reset_pending) {
2171 unsigned long flags;
2172 struct hpsa_scsi_dev_t *dev;
2175 * There appears to be a reset pending; lock the lock and
2176 * reconfirm. If so, then decrement the count of outstanding
2177 * commands and wake the reset command if this is the last one.
2179 spin_lock_irqsave(&h->lock, flags);
2180 dev = c->reset_pending; /* Re-fetch under the lock. */
2181 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2182 do_wake = true;
2183 c->reset_pending = NULL;
2184 spin_unlock_irqrestore(&h->lock, flags);
2187 if (do_wake)
2188 wake_up_all(&h->event_sync_wait_queue);
2191 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2192 struct CommandList *c)
2194 hpsa_cmd_resolve_events(h, c);
2195 cmd_tagged_free(h, c);
2198 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2199 struct CommandList *c, struct scsi_cmnd *cmd)
2201 hpsa_cmd_resolve_and_free(h, c);
2202 cmd->scsi_done(cmd);
2205 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2207 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2208 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2211 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2213 cmd->result = DID_ABORT << 16;
2216 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2217 struct scsi_cmnd *cmd)
2219 hpsa_set_scsi_cmd_aborted(cmd);
2220 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2221 c->Request.CDB, c->err_info->ScsiStatus);
2222 hpsa_cmd_resolve_and_free(h, c);
2225 static void process_ioaccel2_completion(struct ctlr_info *h,
2226 struct CommandList *c, struct scsi_cmnd *cmd,
2227 struct hpsa_scsi_dev_t *dev)
2229 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2231 /* check for good status */
2232 if (likely(c2->error_data.serv_response == 0 &&
2233 c2->error_data.status == 0))
2234 return hpsa_cmd_free_and_done(h, c, cmd);
2237 * Any RAID offload error results in retry which will use
2238 * the normal I/O path so the controller can handle whatever's
2239 * wrong.
2241 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2242 c2->error_data.serv_response ==
2243 IOACCEL2_SERV_RESPONSE_FAILURE) {
2244 if (c2->error_data.status ==
2245 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2246 dev->offload_enabled = 0;
2248 return hpsa_retry_cmd(h, c);
2251 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2252 return hpsa_retry_cmd(h, c);
2254 return hpsa_cmd_free_and_done(h, c, cmd);
2257 /* Returns 0 on success, < 0 otherwise. */
2258 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2259 struct CommandList *cp)
2261 u8 tmf_status = cp->err_info->ScsiStatus;
2263 switch (tmf_status) {
2264 case CISS_TMF_COMPLETE:
2266 * CISS_TMF_COMPLETE never happens, instead,
2267 * ei->CommandStatus == 0 for this case.
2269 case CISS_TMF_SUCCESS:
2270 return 0;
2271 case CISS_TMF_INVALID_FRAME:
2272 case CISS_TMF_NOT_SUPPORTED:
2273 case CISS_TMF_FAILED:
2274 case CISS_TMF_WRONG_LUN:
2275 case CISS_TMF_OVERLAPPED_TAG:
2276 break;
2277 default:
2278 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2279 tmf_status);
2280 break;
2282 return -tmf_status;
2285 static void complete_scsi_command(struct CommandList *cp)
2287 struct scsi_cmnd *cmd;
2288 struct ctlr_info *h;
2289 struct ErrorInfo *ei;
2290 struct hpsa_scsi_dev_t *dev;
2291 struct io_accel2_cmd *c2;
2293 u8 sense_key;
2294 u8 asc; /* additional sense code */
2295 u8 ascq; /* additional sense code qualifier */
2296 unsigned long sense_data_size;
2298 ei = cp->err_info;
2299 cmd = cp->scsi_cmd;
2300 h = cp->h;
2301 dev = cmd->device->hostdata;
2302 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2304 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2305 if ((cp->cmd_type == CMD_SCSI) &&
2306 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2307 hpsa_unmap_sg_chain_block(h, cp);
2309 if ((cp->cmd_type == CMD_IOACCEL2) &&
2310 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2311 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2313 cmd->result = (DID_OK << 16); /* host byte */
2314 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2316 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2317 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2320 * We check for lockup status here as it may be set for
2321 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2322 * fail_all_oustanding_cmds()
2324 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2325 /* DID_NO_CONNECT will prevent a retry */
2326 cmd->result = DID_NO_CONNECT << 16;
2327 return hpsa_cmd_free_and_done(h, cp, cmd);
2330 if ((unlikely(hpsa_is_pending_event(cp)))) {
2331 if (cp->reset_pending)
2332 return hpsa_cmd_resolve_and_free(h, cp);
2333 if (cp->abort_pending)
2334 return hpsa_cmd_abort_and_free(h, cp, cmd);
2337 if (cp->cmd_type == CMD_IOACCEL2)
2338 return process_ioaccel2_completion(h, cp, cmd, dev);
2340 scsi_set_resid(cmd, ei->ResidualCnt);
2341 if (ei->CommandStatus == 0)
2342 return hpsa_cmd_free_and_done(h, cp, cmd);
2344 /* For I/O accelerator commands, copy over some fields to the normal
2345 * CISS header used below for error handling.
2347 if (cp->cmd_type == CMD_IOACCEL1) {
2348 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2349 cp->Header.SGList = scsi_sg_count(cmd);
2350 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2351 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2352 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2353 cp->Header.tag = c->tag;
2354 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2355 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2357 /* Any RAID offload error results in retry which will use
2358 * the normal I/O path so the controller can handle whatever's
2359 * wrong.
2361 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2362 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2363 dev->offload_enabled = 0;
2364 return hpsa_retry_cmd(h, cp);
2368 /* an error has occurred */
2369 switch (ei->CommandStatus) {
2371 case CMD_TARGET_STATUS:
2372 cmd->result |= ei->ScsiStatus;
2373 /* copy the sense data */
2374 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2375 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2376 else
2377 sense_data_size = sizeof(ei->SenseInfo);
2378 if (ei->SenseLen < sense_data_size)
2379 sense_data_size = ei->SenseLen;
2380 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2381 if (ei->ScsiStatus)
2382 decode_sense_data(ei->SenseInfo, sense_data_size,
2383 &sense_key, &asc, &ascq);
2384 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2385 if (sense_key == ABORTED_COMMAND) {
2386 cmd->result |= DID_SOFT_ERROR << 16;
2387 break;
2389 break;
2391 /* Problem was not a check condition
2392 * Pass it up to the upper layers...
2394 if (ei->ScsiStatus) {
2395 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2396 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2397 "Returning result: 0x%x\n",
2398 cp, ei->ScsiStatus,
2399 sense_key, asc, ascq,
2400 cmd->result);
2401 } else { /* scsi status is zero??? How??? */
2402 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2403 "Returning no connection.\n", cp),
2405 /* Ordinarily, this case should never happen,
2406 * but there is a bug in some released firmware
2407 * revisions that allows it to happen if, for
2408 * example, a 4100 backplane loses power and
2409 * the tape drive is in it. We assume that
2410 * it's a fatal error of some kind because we
2411 * can't show that it wasn't. We will make it
2412 * look like selection timeout since that is
2413 * the most common reason for this to occur,
2414 * and it's severe enough.
2417 cmd->result = DID_NO_CONNECT << 16;
2419 break;
2421 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2422 break;
2423 case CMD_DATA_OVERRUN:
2424 dev_warn(&h->pdev->dev,
2425 "CDB %16phN data overrun\n", cp->Request.CDB);
2426 break;
2427 case CMD_INVALID: {
2428 /* print_bytes(cp, sizeof(*cp), 1, 0);
2429 print_cmd(cp); */
2430 /* We get CMD_INVALID if you address a non-existent device
2431 * instead of a selection timeout (no response). You will
2432 * see this if you yank out a drive, then try to access it.
2433 * This is kind of a shame because it means that any other
2434 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2435 * missing target. */
2436 cmd->result = DID_NO_CONNECT << 16;
2438 break;
2439 case CMD_PROTOCOL_ERR:
2440 cmd->result = DID_ERROR << 16;
2441 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2442 cp->Request.CDB);
2443 break;
2444 case CMD_HARDWARE_ERR:
2445 cmd->result = DID_ERROR << 16;
2446 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2447 cp->Request.CDB);
2448 break;
2449 case CMD_CONNECTION_LOST:
2450 cmd->result = DID_ERROR << 16;
2451 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2452 cp->Request.CDB);
2453 break;
2454 case CMD_ABORTED:
2455 /* Return now to avoid calling scsi_done(). */
2456 return hpsa_cmd_abort_and_free(h, cp, cmd);
2457 case CMD_ABORT_FAILED:
2458 cmd->result = DID_ERROR << 16;
2459 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2460 cp->Request.CDB);
2461 break;
2462 case CMD_UNSOLICITED_ABORT:
2463 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2464 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2465 cp->Request.CDB);
2466 break;
2467 case CMD_TIMEOUT:
2468 cmd->result = DID_TIME_OUT << 16;
2469 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2470 cp->Request.CDB);
2471 break;
2472 case CMD_UNABORTABLE:
2473 cmd->result = DID_ERROR << 16;
2474 dev_warn(&h->pdev->dev, "Command unabortable\n");
2475 break;
2476 case CMD_TMF_STATUS:
2477 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2478 cmd->result = DID_ERROR << 16;
2479 break;
2480 case CMD_IOACCEL_DISABLED:
2481 /* This only handles the direct pass-through case since RAID
2482 * offload is handled above. Just attempt a retry.
2484 cmd->result = DID_SOFT_ERROR << 16;
2485 dev_warn(&h->pdev->dev,
2486 "cp %p had HP SSD Smart Path error\n", cp);
2487 break;
2488 default:
2489 cmd->result = DID_ERROR << 16;
2490 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2491 cp, ei->CommandStatus);
2494 return hpsa_cmd_free_and_done(h, cp, cmd);
2497 static void hpsa_pci_unmap(struct pci_dev *pdev,
2498 struct CommandList *c, int sg_used, int data_direction)
2500 int i;
2502 for (i = 0; i < sg_used; i++)
2503 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2504 le32_to_cpu(c->SG[i].Len),
2505 data_direction);
2508 static int hpsa_map_one(struct pci_dev *pdev,
2509 struct CommandList *cp,
2510 unsigned char *buf,
2511 size_t buflen,
2512 int data_direction)
2514 u64 addr64;
2516 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2517 cp->Header.SGList = 0;
2518 cp->Header.SGTotal = cpu_to_le16(0);
2519 return 0;
2522 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2523 if (dma_mapping_error(&pdev->dev, addr64)) {
2524 /* Prevent subsequent unmap of something never mapped */
2525 cp->Header.SGList = 0;
2526 cp->Header.SGTotal = cpu_to_le16(0);
2527 return -1;
2529 cp->SG[0].Addr = cpu_to_le64(addr64);
2530 cp->SG[0].Len = cpu_to_le32(buflen);
2531 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2532 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2533 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2534 return 0;
2537 #define NO_TIMEOUT ((unsigned long) -1)
2538 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2539 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2540 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2542 DECLARE_COMPLETION_ONSTACK(wait);
2544 c->waiting = &wait;
2545 __enqueue_cmd_and_start_io(h, c, reply_queue);
2546 if (timeout_msecs == NO_TIMEOUT) {
2547 /* TODO: get rid of this no-timeout thing */
2548 wait_for_completion_io(&wait);
2549 return IO_OK;
2551 if (!wait_for_completion_io_timeout(&wait,
2552 msecs_to_jiffies(timeout_msecs))) {
2553 dev_warn(&h->pdev->dev, "Command timed out.\n");
2554 return -ETIMEDOUT;
2556 return IO_OK;
2559 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2560 int reply_queue, unsigned long timeout_msecs)
2562 if (unlikely(lockup_detected(h))) {
2563 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2564 return IO_OK;
2566 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2569 static u32 lockup_detected(struct ctlr_info *h)
2571 int cpu;
2572 u32 rc, *lockup_detected;
2574 cpu = get_cpu();
2575 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2576 rc = *lockup_detected;
2577 put_cpu();
2578 return rc;
2581 #define MAX_DRIVER_CMD_RETRIES 25
2582 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2583 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2585 int backoff_time = 10, retry_count = 0;
2586 int rc;
2588 do {
2589 memset(c->err_info, 0, sizeof(*c->err_info));
2590 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2591 timeout_msecs);
2592 if (rc)
2593 break;
2594 retry_count++;
2595 if (retry_count > 3) {
2596 msleep(backoff_time);
2597 if (backoff_time < 1000)
2598 backoff_time *= 2;
2600 } while ((check_for_unit_attention(h, c) ||
2601 check_for_busy(h, c)) &&
2602 retry_count <= MAX_DRIVER_CMD_RETRIES);
2603 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2604 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2605 rc = -EIO;
2606 return rc;
2609 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2610 struct CommandList *c)
2612 const u8 *cdb = c->Request.CDB;
2613 const u8 *lun = c->Header.LUN.LunAddrBytes;
2615 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2616 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2617 txt, lun[0], lun[1], lun[2], lun[3],
2618 lun[4], lun[5], lun[6], lun[7],
2619 cdb[0], cdb[1], cdb[2], cdb[3],
2620 cdb[4], cdb[5], cdb[6], cdb[7],
2621 cdb[8], cdb[9], cdb[10], cdb[11],
2622 cdb[12], cdb[13], cdb[14], cdb[15]);
2625 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2626 struct CommandList *cp)
2628 const struct ErrorInfo *ei = cp->err_info;
2629 struct device *d = &cp->h->pdev->dev;
2630 u8 sense_key, asc, ascq;
2631 int sense_len;
2633 switch (ei->CommandStatus) {
2634 case CMD_TARGET_STATUS:
2635 if (ei->SenseLen > sizeof(ei->SenseInfo))
2636 sense_len = sizeof(ei->SenseInfo);
2637 else
2638 sense_len = ei->SenseLen;
2639 decode_sense_data(ei->SenseInfo, sense_len,
2640 &sense_key, &asc, &ascq);
2641 hpsa_print_cmd(h, "SCSI status", cp);
2642 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2643 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2644 sense_key, asc, ascq);
2645 else
2646 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2647 if (ei->ScsiStatus == 0)
2648 dev_warn(d, "SCSI status is abnormally zero. "
2649 "(probably indicates selection timeout "
2650 "reported incorrectly due to a known "
2651 "firmware bug, circa July, 2001.)\n");
2652 break;
2653 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2654 break;
2655 case CMD_DATA_OVERRUN:
2656 hpsa_print_cmd(h, "overrun condition", cp);
2657 break;
2658 case CMD_INVALID: {
2659 /* controller unfortunately reports SCSI passthru's
2660 * to non-existent targets as invalid commands.
2662 hpsa_print_cmd(h, "invalid command", cp);
2663 dev_warn(d, "probably means device no longer present\n");
2665 break;
2666 case CMD_PROTOCOL_ERR:
2667 hpsa_print_cmd(h, "protocol error", cp);
2668 break;
2669 case CMD_HARDWARE_ERR:
2670 hpsa_print_cmd(h, "hardware error", cp);
2671 break;
2672 case CMD_CONNECTION_LOST:
2673 hpsa_print_cmd(h, "connection lost", cp);
2674 break;
2675 case CMD_ABORTED:
2676 hpsa_print_cmd(h, "aborted", cp);
2677 break;
2678 case CMD_ABORT_FAILED:
2679 hpsa_print_cmd(h, "abort failed", cp);
2680 break;
2681 case CMD_UNSOLICITED_ABORT:
2682 hpsa_print_cmd(h, "unsolicited abort", cp);
2683 break;
2684 case CMD_TIMEOUT:
2685 hpsa_print_cmd(h, "timed out", cp);
2686 break;
2687 case CMD_UNABORTABLE:
2688 hpsa_print_cmd(h, "unabortable", cp);
2689 break;
2690 case CMD_CTLR_LOCKUP:
2691 hpsa_print_cmd(h, "controller lockup detected", cp);
2692 break;
2693 default:
2694 hpsa_print_cmd(h, "unknown status", cp);
2695 dev_warn(d, "Unknown command status %x\n",
2696 ei->CommandStatus);
2700 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2701 u16 page, unsigned char *buf,
2702 unsigned char bufsize)
2704 int rc = IO_OK;
2705 struct CommandList *c;
2706 struct ErrorInfo *ei;
2708 c = cmd_alloc(h);
2710 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2711 page, scsi3addr, TYPE_CMD)) {
2712 rc = -1;
2713 goto out;
2715 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2716 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2717 if (rc)
2718 goto out;
2719 ei = c->err_info;
2720 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2721 hpsa_scsi_interpret_error(h, c);
2722 rc = -1;
2724 out:
2725 cmd_free(h, c);
2726 return rc;
2729 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2730 u8 reset_type, int reply_queue)
2732 int rc = IO_OK;
2733 struct CommandList *c;
2734 struct ErrorInfo *ei;
2736 c = cmd_alloc(h);
2739 /* fill_cmd can't fail here, no data buffer to map. */
2740 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2741 scsi3addr, TYPE_MSG);
2742 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2743 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2744 if (rc) {
2745 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2746 goto out;
2748 /* no unmap needed here because no data xfer. */
2750 ei = c->err_info;
2751 if (ei->CommandStatus != 0) {
2752 hpsa_scsi_interpret_error(h, c);
2753 rc = -1;
2755 out:
2756 cmd_free(h, c);
2757 return rc;
2760 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2761 struct hpsa_scsi_dev_t *dev,
2762 unsigned char *scsi3addr)
2764 int i;
2765 bool match = false;
2766 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2767 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2769 if (hpsa_is_cmd_idle(c))
2770 return false;
2772 switch (c->cmd_type) {
2773 case CMD_SCSI:
2774 case CMD_IOCTL_PEND:
2775 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2776 sizeof(c->Header.LUN.LunAddrBytes));
2777 break;
2779 case CMD_IOACCEL1:
2780 case CMD_IOACCEL2:
2781 if (c->phys_disk == dev) {
2782 /* HBA mode match */
2783 match = true;
2784 } else {
2785 /* Possible RAID mode -- check each phys dev. */
2786 /* FIXME: Do we need to take out a lock here? If
2787 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2788 * instead. */
2789 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2790 /* FIXME: an alternate test might be
2792 * match = dev->phys_disk[i]->ioaccel_handle
2793 * == c2->scsi_nexus; */
2794 match = dev->phys_disk[i] == c->phys_disk;
2797 break;
2799 case IOACCEL2_TMF:
2800 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2801 match = dev->phys_disk[i]->ioaccel_handle ==
2802 le32_to_cpu(ac->it_nexus);
2804 break;
2806 case 0: /* The command is in the middle of being initialized. */
2807 match = false;
2808 break;
2810 default:
2811 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2812 c->cmd_type);
2813 BUG();
2816 return match;
2819 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2820 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2822 int i;
2823 int rc = 0;
2825 /* We can really only handle one reset at a time */
2826 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2827 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2828 return -EINTR;
2831 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2833 for (i = 0; i < h->nr_cmds; i++) {
2834 struct CommandList *c = h->cmd_pool + i;
2835 int refcount = atomic_inc_return(&c->refcount);
2837 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2838 unsigned long flags;
2841 * Mark the target command as having a reset pending,
2842 * then lock a lock so that the command cannot complete
2843 * while we're considering it. If the command is not
2844 * idle then count it; otherwise revoke the event.
2846 c->reset_pending = dev;
2847 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2848 if (!hpsa_is_cmd_idle(c))
2849 atomic_inc(&dev->reset_cmds_out);
2850 else
2851 c->reset_pending = NULL;
2852 spin_unlock_irqrestore(&h->lock, flags);
2855 cmd_free(h, c);
2858 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2859 if (!rc)
2860 wait_event(h->event_sync_wait_queue,
2861 atomic_read(&dev->reset_cmds_out) == 0 ||
2862 lockup_detected(h));
2864 if (unlikely(lockup_detected(h))) {
2865 dev_warn(&h->pdev->dev,
2866 "Controller lockup detected during reset wait\n");
2867 rc = -ENODEV;
2870 if (unlikely(rc))
2871 atomic_set(&dev->reset_cmds_out, 0);
2873 mutex_unlock(&h->reset_mutex);
2874 return rc;
2877 static void hpsa_get_raid_level(struct ctlr_info *h,
2878 unsigned char *scsi3addr, unsigned char *raid_level)
2880 int rc;
2881 unsigned char *buf;
2883 *raid_level = RAID_UNKNOWN;
2884 buf = kzalloc(64, GFP_KERNEL);
2885 if (!buf)
2886 return;
2887 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2888 if (rc == 0)
2889 *raid_level = buf[8];
2890 if (*raid_level > RAID_UNKNOWN)
2891 *raid_level = RAID_UNKNOWN;
2892 kfree(buf);
2893 return;
2896 #define HPSA_MAP_DEBUG
2897 #ifdef HPSA_MAP_DEBUG
2898 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2899 struct raid_map_data *map_buff)
2901 struct raid_map_disk_data *dd = &map_buff->data[0];
2902 int map, row, col;
2903 u16 map_cnt, row_cnt, disks_per_row;
2905 if (rc != 0)
2906 return;
2908 /* Show details only if debugging has been activated. */
2909 if (h->raid_offload_debug < 2)
2910 return;
2912 dev_info(&h->pdev->dev, "structure_size = %u\n",
2913 le32_to_cpu(map_buff->structure_size));
2914 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2915 le32_to_cpu(map_buff->volume_blk_size));
2916 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2917 le64_to_cpu(map_buff->volume_blk_cnt));
2918 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2919 map_buff->phys_blk_shift);
2920 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2921 map_buff->parity_rotation_shift);
2922 dev_info(&h->pdev->dev, "strip_size = %u\n",
2923 le16_to_cpu(map_buff->strip_size));
2924 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2925 le64_to_cpu(map_buff->disk_starting_blk));
2926 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2927 le64_to_cpu(map_buff->disk_blk_cnt));
2928 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2929 le16_to_cpu(map_buff->data_disks_per_row));
2930 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2931 le16_to_cpu(map_buff->metadata_disks_per_row));
2932 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2933 le16_to_cpu(map_buff->row_cnt));
2934 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2935 le16_to_cpu(map_buff->layout_map_count));
2936 dev_info(&h->pdev->dev, "flags = 0x%x\n",
2937 le16_to_cpu(map_buff->flags));
2938 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2939 le16_to_cpu(map_buff->flags) &
2940 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
2941 dev_info(&h->pdev->dev, "dekindex = %u\n",
2942 le16_to_cpu(map_buff->dekindex));
2943 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2944 for (map = 0; map < map_cnt; map++) {
2945 dev_info(&h->pdev->dev, "Map%u:\n", map);
2946 row_cnt = le16_to_cpu(map_buff->row_cnt);
2947 for (row = 0; row < row_cnt; row++) {
2948 dev_info(&h->pdev->dev, " Row%u:\n", row);
2949 disks_per_row =
2950 le16_to_cpu(map_buff->data_disks_per_row);
2951 for (col = 0; col < disks_per_row; col++, dd++)
2952 dev_info(&h->pdev->dev,
2953 " D%02u: h=0x%04x xor=%u,%u\n",
2954 col, dd->ioaccel_handle,
2955 dd->xor_mult[0], dd->xor_mult[1]);
2956 disks_per_row =
2957 le16_to_cpu(map_buff->metadata_disks_per_row);
2958 for (col = 0; col < disks_per_row; col++, dd++)
2959 dev_info(&h->pdev->dev,
2960 " M%02u: h=0x%04x xor=%u,%u\n",
2961 col, dd->ioaccel_handle,
2962 dd->xor_mult[0], dd->xor_mult[1]);
2966 #else
2967 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2968 __attribute__((unused)) int rc,
2969 __attribute__((unused)) struct raid_map_data *map_buff)
2972 #endif
2974 static int hpsa_get_raid_map(struct ctlr_info *h,
2975 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2977 int rc = 0;
2978 struct CommandList *c;
2979 struct ErrorInfo *ei;
2981 c = cmd_alloc(h);
2983 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2984 sizeof(this_device->raid_map), 0,
2985 scsi3addr, TYPE_CMD)) {
2986 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2987 cmd_free(h, c);
2988 return -1;
2990 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2991 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2992 if (rc)
2993 goto out;
2994 ei = c->err_info;
2995 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2996 hpsa_scsi_interpret_error(h, c);
2997 rc = -1;
2998 goto out;
3000 cmd_free(h, c);
3002 /* @todo in the future, dynamically allocate RAID map memory */
3003 if (le32_to_cpu(this_device->raid_map.structure_size) >
3004 sizeof(this_device->raid_map)) {
3005 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3006 rc = -1;
3008 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3009 return rc;
3010 out:
3011 cmd_free(h, c);
3012 return rc;
3015 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3016 unsigned char scsi3addr[], u16 bmic_device_index,
3017 struct bmic_identify_physical_device *buf, size_t bufsize)
3019 int rc = IO_OK;
3020 struct CommandList *c;
3021 struct ErrorInfo *ei;
3023 c = cmd_alloc(h);
3024 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3025 0, RAID_CTLR_LUNID, TYPE_CMD);
3026 if (rc)
3027 goto out;
3029 c->Request.CDB[2] = bmic_device_index & 0xff;
3030 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3032 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3033 NO_TIMEOUT);
3034 ei = c->err_info;
3035 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3036 hpsa_scsi_interpret_error(h, c);
3037 rc = -1;
3039 out:
3040 cmd_free(h, c);
3041 return rc;
3044 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3045 unsigned char scsi3addr[], u8 page)
3047 int rc;
3048 int i;
3049 int pages;
3050 unsigned char *buf, bufsize;
3052 buf = kzalloc(256, GFP_KERNEL);
3053 if (!buf)
3054 return 0;
3056 /* Get the size of the page list first */
3057 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3058 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3059 buf, HPSA_VPD_HEADER_SZ);
3060 if (rc != 0)
3061 goto exit_unsupported;
3062 pages = buf[3];
3063 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3064 bufsize = pages + HPSA_VPD_HEADER_SZ;
3065 else
3066 bufsize = 255;
3068 /* Get the whole VPD page list */
3069 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3070 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3071 buf, bufsize);
3072 if (rc != 0)
3073 goto exit_unsupported;
3075 pages = buf[3];
3076 for (i = 1; i <= pages; i++)
3077 if (buf[3 + i] == page)
3078 goto exit_supported;
3079 exit_unsupported:
3080 kfree(buf);
3081 return 0;
3082 exit_supported:
3083 kfree(buf);
3084 return 1;
3087 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3088 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3090 int rc;
3091 unsigned char *buf;
3092 u8 ioaccel_status;
3094 this_device->offload_config = 0;
3095 this_device->offload_enabled = 0;
3096 this_device->offload_to_be_enabled = 0;
3098 buf = kzalloc(64, GFP_KERNEL);
3099 if (!buf)
3100 return;
3101 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3102 goto out;
3103 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3104 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3105 if (rc != 0)
3106 goto out;
3108 #define IOACCEL_STATUS_BYTE 4
3109 #define OFFLOAD_CONFIGURED_BIT 0x01
3110 #define OFFLOAD_ENABLED_BIT 0x02
3111 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3112 this_device->offload_config =
3113 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3114 if (this_device->offload_config) {
3115 this_device->offload_enabled =
3116 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3117 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3118 this_device->offload_enabled = 0;
3120 this_device->offload_to_be_enabled = this_device->offload_enabled;
3121 out:
3122 kfree(buf);
3123 return;
3126 /* Get the device id from inquiry page 0x83 */
3127 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3128 unsigned char *device_id, int buflen)
3130 int rc;
3131 unsigned char *buf;
3133 if (buflen > 16)
3134 buflen = 16;
3135 buf = kzalloc(64, GFP_KERNEL);
3136 if (!buf)
3137 return -ENOMEM;
3138 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3139 if (rc == 0)
3140 memcpy(device_id, &buf[8], buflen);
3141 kfree(buf);
3142 return rc != 0;
3145 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3146 void *buf, int bufsize,
3147 int extended_response)
3149 int rc = IO_OK;
3150 struct CommandList *c;
3151 unsigned char scsi3addr[8];
3152 struct ErrorInfo *ei;
3154 c = cmd_alloc(h);
3156 /* address the controller */
3157 memset(scsi3addr, 0, sizeof(scsi3addr));
3158 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3159 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3160 rc = -1;
3161 goto out;
3163 if (extended_response)
3164 c->Request.CDB[1] = extended_response;
3165 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3166 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3167 if (rc)
3168 goto out;
3169 ei = c->err_info;
3170 if (ei->CommandStatus != 0 &&
3171 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3172 hpsa_scsi_interpret_error(h, c);
3173 rc = -1;
3174 } else {
3175 struct ReportLUNdata *rld = buf;
3177 if (rld->extended_response_flag != extended_response) {
3178 dev_err(&h->pdev->dev,
3179 "report luns requested format %u, got %u\n",
3180 extended_response,
3181 rld->extended_response_flag);
3182 rc = -1;
3185 out:
3186 cmd_free(h, c);
3187 return rc;
3190 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3191 struct ReportExtendedLUNdata *buf, int bufsize)
3193 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3194 HPSA_REPORT_PHYS_EXTENDED);
3197 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3198 struct ReportLUNdata *buf, int bufsize)
3200 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3203 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3204 int bus, int target, int lun)
3206 device->bus = bus;
3207 device->target = target;
3208 device->lun = lun;
3211 /* Use VPD inquiry to get details of volume status */
3212 static int hpsa_get_volume_status(struct ctlr_info *h,
3213 unsigned char scsi3addr[])
3215 int rc;
3216 int status;
3217 int size;
3218 unsigned char *buf;
3220 buf = kzalloc(64, GFP_KERNEL);
3221 if (!buf)
3222 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3224 /* Does controller have VPD for logical volume status? */
3225 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3226 goto exit_failed;
3228 /* Get the size of the VPD return buffer */
3229 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3230 buf, HPSA_VPD_HEADER_SZ);
3231 if (rc != 0)
3232 goto exit_failed;
3233 size = buf[3];
3235 /* Now get the whole VPD buffer */
3236 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3237 buf, size + HPSA_VPD_HEADER_SZ);
3238 if (rc != 0)
3239 goto exit_failed;
3240 status = buf[4]; /* status byte */
3242 kfree(buf);
3243 return status;
3244 exit_failed:
3245 kfree(buf);
3246 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3249 /* Determine offline status of a volume.
3250 * Return either:
3251 * 0 (not offline)
3252 * 0xff (offline for unknown reasons)
3253 * # (integer code indicating one of several NOT READY states
3254 * describing why a volume is to be kept offline)
3256 static int hpsa_volume_offline(struct ctlr_info *h,
3257 unsigned char scsi3addr[])
3259 struct CommandList *c;
3260 unsigned char *sense;
3261 u8 sense_key, asc, ascq;
3262 int sense_len;
3263 int rc, ldstat = 0;
3264 u16 cmd_status;
3265 u8 scsi_status;
3266 #define ASC_LUN_NOT_READY 0x04
3267 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3268 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3270 c = cmd_alloc(h);
3272 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3273 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3274 if (rc) {
3275 cmd_free(h, c);
3276 return 0;
3278 sense = c->err_info->SenseInfo;
3279 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3280 sense_len = sizeof(c->err_info->SenseInfo);
3281 else
3282 sense_len = c->err_info->SenseLen;
3283 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3284 cmd_status = c->err_info->CommandStatus;
3285 scsi_status = c->err_info->ScsiStatus;
3286 cmd_free(h, c);
3287 /* Is the volume 'not ready'? */
3288 if (cmd_status != CMD_TARGET_STATUS ||
3289 scsi_status != SAM_STAT_CHECK_CONDITION ||
3290 sense_key != NOT_READY ||
3291 asc != ASC_LUN_NOT_READY) {
3292 return 0;
3295 /* Determine the reason for not ready state */
3296 ldstat = hpsa_get_volume_status(h, scsi3addr);
3298 /* Keep volume offline in certain cases: */
3299 switch (ldstat) {
3300 case HPSA_LV_UNDERGOING_ERASE:
3301 case HPSA_LV_NOT_AVAILABLE:
3302 case HPSA_LV_UNDERGOING_RPI:
3303 case HPSA_LV_PENDING_RPI:
3304 case HPSA_LV_ENCRYPTED_NO_KEY:
3305 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3306 case HPSA_LV_UNDERGOING_ENCRYPTION:
3307 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3308 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3309 return ldstat;
3310 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3311 /* If VPD status page isn't available,
3312 * use ASC/ASCQ to determine state
3314 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3315 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3316 return ldstat;
3317 break;
3318 default:
3319 break;
3321 return 0;
3325 * Find out if a logical device supports aborts by simply trying one.
3326 * Smart Array may claim not to support aborts on logical drives, but
3327 * if a MSA2000 * is connected, the drives on that will be presented
3328 * by the Smart Array as logical drives, and aborts may be sent to
3329 * those devices successfully. So the simplest way to find out is
3330 * to simply try an abort and see how the device responds.
3332 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3333 unsigned char *scsi3addr)
3335 struct CommandList *c;
3336 struct ErrorInfo *ei;
3337 int rc = 0;
3339 u64 tag = (u64) -1; /* bogus tag */
3341 /* Assume that physical devices support aborts */
3342 if (!is_logical_dev_addr_mode(scsi3addr))
3343 return 1;
3345 c = cmd_alloc(h);
3347 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3348 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3349 /* no unmap needed here because no data xfer. */
3350 ei = c->err_info;
3351 switch (ei->CommandStatus) {
3352 case CMD_INVALID:
3353 rc = 0;
3354 break;
3355 case CMD_UNABORTABLE:
3356 case CMD_ABORT_FAILED:
3357 rc = 1;
3358 break;
3359 case CMD_TMF_STATUS:
3360 rc = hpsa_evaluate_tmf_status(h, c);
3361 break;
3362 default:
3363 rc = 0;
3364 break;
3366 cmd_free(h, c);
3367 return rc;
3370 static int hpsa_update_device_info(struct ctlr_info *h,
3371 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3372 unsigned char *is_OBDR_device)
3375 #define OBDR_SIG_OFFSET 43
3376 #define OBDR_TAPE_SIG "$DR-10"
3377 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3378 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3380 unsigned char *inq_buff;
3381 unsigned char *obdr_sig;
3382 int rc = 0;
3384 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3385 if (!inq_buff) {
3386 rc = -ENOMEM;
3387 goto bail_out;
3390 /* Do an inquiry to the device to see what it is. */
3391 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3392 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3393 /* Inquiry failed (msg printed already) */
3394 dev_err(&h->pdev->dev,
3395 "hpsa_update_device_info: inquiry failed\n");
3396 rc = -EIO;
3397 goto bail_out;
3400 this_device->devtype = (inq_buff[0] & 0x1f);
3401 memcpy(this_device->scsi3addr, scsi3addr, 8);
3402 memcpy(this_device->vendor, &inq_buff[8],
3403 sizeof(this_device->vendor));
3404 memcpy(this_device->model, &inq_buff[16],
3405 sizeof(this_device->model));
3406 memset(this_device->device_id, 0,
3407 sizeof(this_device->device_id));
3408 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3409 sizeof(this_device->device_id));
3411 if (this_device->devtype == TYPE_DISK &&
3412 is_logical_dev_addr_mode(scsi3addr)) {
3413 int volume_offline;
3415 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3416 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3417 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3418 volume_offline = hpsa_volume_offline(h, scsi3addr);
3419 if (volume_offline < 0 || volume_offline > 0xff)
3420 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3421 this_device->volume_offline = volume_offline & 0xff;
3422 } else {
3423 this_device->raid_level = RAID_UNKNOWN;
3424 this_device->offload_config = 0;
3425 this_device->offload_enabled = 0;
3426 this_device->offload_to_be_enabled = 0;
3427 this_device->hba_ioaccel_enabled = 0;
3428 this_device->volume_offline = 0;
3429 this_device->queue_depth = h->nr_cmds;
3432 if (is_OBDR_device) {
3433 /* See if this is a One-Button-Disaster-Recovery device
3434 * by looking for "$DR-10" at offset 43 in inquiry data.
3436 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3437 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3438 strncmp(obdr_sig, OBDR_TAPE_SIG,
3439 OBDR_SIG_LEN) == 0);
3441 kfree(inq_buff);
3442 return 0;
3444 bail_out:
3445 kfree(inq_buff);
3446 return rc;
3449 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3450 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3452 unsigned long flags;
3453 int rc, entry;
3455 * See if this device supports aborts. If we already know
3456 * the device, we already know if it supports aborts, otherwise
3457 * we have to find out if it supports aborts by trying one.
3459 spin_lock_irqsave(&h->devlock, flags);
3460 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3461 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3462 entry >= 0 && entry < h->ndevices) {
3463 dev->supports_aborts = h->dev[entry]->supports_aborts;
3464 spin_unlock_irqrestore(&h->devlock, flags);
3465 } else {
3466 spin_unlock_irqrestore(&h->devlock, flags);
3467 dev->supports_aborts =
3468 hpsa_device_supports_aborts(h, scsi3addr);
3469 if (dev->supports_aborts < 0)
3470 dev->supports_aborts = 0;
3474 static unsigned char *ext_target_model[] = {
3475 "MSA2012",
3476 "MSA2024",
3477 "MSA2312",
3478 "MSA2324",
3479 "P2000 G3 SAS",
3480 "MSA 2040 SAS",
3481 NULL,
3484 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3486 int i;
3488 for (i = 0; ext_target_model[i]; i++)
3489 if (strncmp(device->model, ext_target_model[i],
3490 strlen(ext_target_model[i])) == 0)
3491 return 1;
3492 return 0;
3495 /* Helper function to assign bus, target, lun mapping of devices.
3496 * Puts non-external target logical volumes on bus 0, external target logical
3497 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3498 * Logical drive target and lun are assigned at this time, but
3499 * physical device lun and target assignment are deferred (assigned
3500 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3502 static void figure_bus_target_lun(struct ctlr_info *h,
3503 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3505 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3507 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3508 /* physical device, target and lun filled in later */
3509 if (is_hba_lunid(lunaddrbytes))
3510 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3511 else
3512 /* defer target, lun assignment for physical devices */
3513 hpsa_set_bus_target_lun(device, 2, -1, -1);
3514 return;
3516 /* It's a logical device */
3517 if (is_ext_target(h, device)) {
3518 /* external target way, put logicals on bus 1
3519 * and match target/lun numbers box
3520 * reports, other smart array, bus 0, target 0, match lunid
3522 hpsa_set_bus_target_lun(device,
3523 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3524 return;
3526 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3530 * If there is no lun 0 on a target, linux won't find any devices.
3531 * For the external targets (arrays), we have to manually detect the enclosure
3532 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3533 * it for some reason. *tmpdevice is the target we're adding,
3534 * this_device is a pointer into the current element of currentsd[]
3535 * that we're building up in update_scsi_devices(), below.
3536 * lunzerobits is a bitmap that tracks which targets already have a
3537 * lun 0 assigned.
3538 * Returns 1 if an enclosure was added, 0 if not.
3540 static int add_ext_target_dev(struct ctlr_info *h,
3541 struct hpsa_scsi_dev_t *tmpdevice,
3542 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3543 unsigned long lunzerobits[], int *n_ext_target_devs)
3545 unsigned char scsi3addr[8];
3547 if (test_bit(tmpdevice->target, lunzerobits))
3548 return 0; /* There is already a lun 0 on this target. */
3550 if (!is_logical_dev_addr_mode(lunaddrbytes))
3551 return 0; /* It's the logical targets that may lack lun 0. */
3553 if (!is_ext_target(h, tmpdevice))
3554 return 0; /* Only external target devices have this problem. */
3556 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3557 return 0;
3559 memset(scsi3addr, 0, 8);
3560 scsi3addr[3] = tmpdevice->target;
3561 if (is_hba_lunid(scsi3addr))
3562 return 0; /* Don't add the RAID controller here. */
3564 if (is_scsi_rev_5(h))
3565 return 0; /* p1210m doesn't need to do this. */
3567 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3568 dev_warn(&h->pdev->dev, "Maximum number of external "
3569 "target devices exceeded. Check your hardware "
3570 "configuration.");
3571 return 0;
3574 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3575 return 0;
3576 (*n_ext_target_devs)++;
3577 hpsa_set_bus_target_lun(this_device,
3578 tmpdevice->bus, tmpdevice->target, 0);
3579 hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3580 set_bit(tmpdevice->target, lunzerobits);
3581 return 1;
3585 * Get address of physical disk used for an ioaccel2 mode command:
3586 * 1. Extract ioaccel2 handle from the command.
3587 * 2. Find a matching ioaccel2 handle from list of physical disks.
3588 * 3. Return:
3589 * 1 and set scsi3addr to address of matching physical
3590 * 0 if no matching physical disk was found.
3592 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3593 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3595 struct io_accel2_cmd *c2 =
3596 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3597 unsigned long flags;
3598 int i;
3600 spin_lock_irqsave(&h->devlock, flags);
3601 for (i = 0; i < h->ndevices; i++)
3602 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3603 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3604 sizeof(h->dev[i]->scsi3addr));
3605 spin_unlock_irqrestore(&h->devlock, flags);
3606 return 1;
3608 spin_unlock_irqrestore(&h->devlock, flags);
3609 return 0;
3613 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3614 * logdev. The number of luns in physdev and logdev are returned in
3615 * *nphysicals and *nlogicals, respectively.
3616 * Returns 0 on success, -1 otherwise.
3618 static int hpsa_gather_lun_info(struct ctlr_info *h,
3619 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3620 struct ReportLUNdata *logdev, u32 *nlogicals)
3622 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3623 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3624 return -1;
3626 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3627 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3628 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3629 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3630 *nphysicals = HPSA_MAX_PHYS_LUN;
3632 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3633 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3634 return -1;
3636 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3637 /* Reject Logicals in excess of our max capability. */
3638 if (*nlogicals > HPSA_MAX_LUN) {
3639 dev_warn(&h->pdev->dev,
3640 "maximum logical LUNs (%d) exceeded. "
3641 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3642 *nlogicals - HPSA_MAX_LUN);
3643 *nlogicals = HPSA_MAX_LUN;
3645 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3646 dev_warn(&h->pdev->dev,
3647 "maximum logical + physical LUNs (%d) exceeded. "
3648 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3649 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3650 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3652 return 0;
3655 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3656 int i, int nphysicals, int nlogicals,
3657 struct ReportExtendedLUNdata *physdev_list,
3658 struct ReportLUNdata *logdev_list)
3660 /* Helper function, figure out where the LUN ID info is coming from
3661 * given index i, lists of physical and logical devices, where in
3662 * the list the raid controller is supposed to appear (first or last)
3665 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3666 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3668 if (i == raid_ctlr_position)
3669 return RAID_CTLR_LUNID;
3671 if (i < logicals_start)
3672 return &physdev_list->LUN[i -
3673 (raid_ctlr_position == 0)].lunid[0];
3675 if (i < last_device)
3676 return &logdev_list->LUN[i - nphysicals -
3677 (raid_ctlr_position == 0)][0];
3678 BUG();
3679 return NULL;
3682 /* get physical drive ioaccel handle and queue depth */
3683 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3684 struct hpsa_scsi_dev_t *dev,
3685 u8 *lunaddrbytes,
3686 struct bmic_identify_physical_device *id_phys)
3688 int rc;
3689 struct ext_report_lun_entry *rle =
3690 (struct ext_report_lun_entry *) lunaddrbytes;
3692 dev->ioaccel_handle = rle->ioaccel_handle;
3693 if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3694 dev->hba_ioaccel_enabled = 1;
3695 memset(id_phys, 0, sizeof(*id_phys));
3696 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3697 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3698 sizeof(*id_phys));
3699 if (!rc)
3700 /* Reserve space for FW operations */
3701 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3702 #define DRIVE_QUEUE_DEPTH 7
3703 dev->queue_depth =
3704 le16_to_cpu(id_phys->current_queue_depth_limit) -
3705 DRIVE_CMDS_RESERVED_FOR_FW;
3706 else
3707 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3710 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3711 u8 *lunaddrbytes,
3712 struct bmic_identify_physical_device *id_phys)
3714 if (PHYS_IOACCEL(lunaddrbytes)
3715 && this_device->ioaccel_handle)
3716 this_device->hba_ioaccel_enabled = 1;
3718 memcpy(&this_device->active_path_index,
3719 &id_phys->active_path_number,
3720 sizeof(this_device->active_path_index));
3721 memcpy(&this_device->path_map,
3722 &id_phys->redundant_path_present_map,
3723 sizeof(this_device->path_map));
3724 memcpy(&this_device->box,
3725 &id_phys->alternate_paths_phys_box_on_port,
3726 sizeof(this_device->box));
3727 memcpy(&this_device->phys_connector,
3728 &id_phys->alternate_paths_phys_connector,
3729 sizeof(this_device->phys_connector));
3730 memcpy(&this_device->bay,
3731 &id_phys->phys_bay_in_box,
3732 sizeof(this_device->bay));
3735 static void hpsa_update_scsi_devices(struct ctlr_info *h)
3737 /* the idea here is we could get notified
3738 * that some devices have changed, so we do a report
3739 * physical luns and report logical luns cmd, and adjust
3740 * our list of devices accordingly.
3742 * The scsi3addr's of devices won't change so long as the
3743 * adapter is not reset. That means we can rescan and
3744 * tell which devices we already know about, vs. new
3745 * devices, vs. disappearing devices.
3747 struct ReportExtendedLUNdata *physdev_list = NULL;
3748 struct ReportLUNdata *logdev_list = NULL;
3749 struct bmic_identify_physical_device *id_phys = NULL;
3750 u32 nphysicals = 0;
3751 u32 nlogicals = 0;
3752 u32 ndev_allocated = 0;
3753 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3754 int ncurrent = 0;
3755 int i, n_ext_target_devs, ndevs_to_allocate;
3756 int raid_ctlr_position;
3757 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3759 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3760 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3761 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3762 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3763 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3765 if (!currentsd || !physdev_list || !logdev_list ||
3766 !tmpdevice || !id_phys) {
3767 dev_err(&h->pdev->dev, "out of memory\n");
3768 goto out;
3770 memset(lunzerobits, 0, sizeof(lunzerobits));
3772 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
3774 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3775 logdev_list, &nlogicals)) {
3776 h->drv_req_rescan = 1;
3777 goto out;
3780 /* We might see up to the maximum number of logical and physical disks
3781 * plus external target devices, and a device for the local RAID
3782 * controller.
3784 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3786 /* Allocate the per device structures */
3787 for (i = 0; i < ndevs_to_allocate; i++) {
3788 if (i >= HPSA_MAX_DEVICES) {
3789 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3790 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3791 ndevs_to_allocate - HPSA_MAX_DEVICES);
3792 break;
3795 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3796 if (!currentsd[i]) {
3797 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3798 __FILE__, __LINE__);
3799 h->drv_req_rescan = 1;
3800 goto out;
3802 ndev_allocated++;
3805 if (is_scsi_rev_5(h))
3806 raid_ctlr_position = 0;
3807 else
3808 raid_ctlr_position = nphysicals + nlogicals;
3810 /* adjust our table of devices */
3811 n_ext_target_devs = 0;
3812 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3813 u8 *lunaddrbytes, is_OBDR = 0;
3814 int rc = 0;
3816 /* Figure out where the LUN ID info is coming from */
3817 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3818 i, nphysicals, nlogicals, physdev_list, logdev_list);
3820 /* skip masked non-disk devices */
3821 if (MASKED_DEVICE(lunaddrbytes))
3822 if (i < nphysicals + (raid_ctlr_position == 0) &&
3823 NON_DISK_PHYS_DEV(lunaddrbytes))
3824 continue;
3826 /* Get device type, vendor, model, device id */
3827 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3828 &is_OBDR);
3829 if (rc == -ENOMEM) {
3830 dev_warn(&h->pdev->dev,
3831 "Out of memory, rescan deferred.\n");
3832 h->drv_req_rescan = 1;
3833 goto out;
3835 if (rc) {
3836 dev_warn(&h->pdev->dev,
3837 "Inquiry failed, skipping device.\n");
3838 continue;
3841 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3842 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3843 this_device = currentsd[ncurrent];
3846 * For external target devices, we have to insert a LUN 0 which
3847 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3848 * is nonetheless an enclosure device there. We have to
3849 * present that otherwise linux won't find anything if
3850 * there is no lun 0.
3852 if (add_ext_target_dev(h, tmpdevice, this_device,
3853 lunaddrbytes, lunzerobits,
3854 &n_ext_target_devs)) {
3855 ncurrent++;
3856 this_device = currentsd[ncurrent];
3859 *this_device = *tmpdevice;
3861 /* do not expose masked devices */
3862 if (MASKED_DEVICE(lunaddrbytes) &&
3863 i < nphysicals + (raid_ctlr_position == 0)) {
3864 this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3865 } else {
3866 this_device->expose_state =
3867 HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3870 switch (this_device->devtype) {
3871 case TYPE_ROM:
3872 /* We don't *really* support actual CD-ROM devices,
3873 * just "One Button Disaster Recovery" tape drive
3874 * which temporarily pretends to be a CD-ROM drive.
3875 * So we check that the device is really an OBDR tape
3876 * device by checking for "$DR-10" in bytes 43-48 of
3877 * the inquiry data.
3879 if (is_OBDR)
3880 ncurrent++;
3881 break;
3882 case TYPE_DISK:
3883 if (i < nphysicals + (raid_ctlr_position == 0)) {
3884 /* The disk is in HBA mode. */
3885 /* Never use RAID mapper in HBA mode. */
3886 this_device->offload_enabled = 0;
3887 hpsa_get_ioaccel_drive_info(h, this_device,
3888 lunaddrbytes, id_phys);
3889 hpsa_get_path_info(this_device, lunaddrbytes,
3890 id_phys);
3892 ncurrent++;
3893 break;
3894 case TYPE_TAPE:
3895 case TYPE_MEDIUM_CHANGER:
3896 case TYPE_ENCLOSURE:
3897 ncurrent++;
3898 break;
3899 case TYPE_RAID:
3900 /* Only present the Smartarray HBA as a RAID controller.
3901 * If it's a RAID controller other than the HBA itself
3902 * (an external RAID controller, MSA500 or similar)
3903 * don't present it.
3905 if (!is_hba_lunid(lunaddrbytes))
3906 break;
3907 ncurrent++;
3908 break;
3909 default:
3910 break;
3912 if (ncurrent >= HPSA_MAX_DEVICES)
3913 break;
3915 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
3916 out:
3917 kfree(tmpdevice);
3918 for (i = 0; i < ndev_allocated; i++)
3919 kfree(currentsd[i]);
3920 kfree(currentsd);
3921 kfree(physdev_list);
3922 kfree(logdev_list);
3923 kfree(id_phys);
3926 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3927 struct scatterlist *sg)
3929 u64 addr64 = (u64) sg_dma_address(sg);
3930 unsigned int len = sg_dma_len(sg);
3932 desc->Addr = cpu_to_le64(addr64);
3933 desc->Len = cpu_to_le32(len);
3934 desc->Ext = 0;
3938 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3939 * dma mapping and fills in the scatter gather entries of the
3940 * hpsa command, cp.
3942 static int hpsa_scatter_gather(struct ctlr_info *h,
3943 struct CommandList *cp,
3944 struct scsi_cmnd *cmd)
3946 struct scatterlist *sg;
3947 int use_sg, i, sg_limit, chained, last_sg;
3948 struct SGDescriptor *curr_sg;
3950 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3952 use_sg = scsi_dma_map(cmd);
3953 if (use_sg < 0)
3954 return use_sg;
3956 if (!use_sg)
3957 goto sglist_finished;
3960 * If the number of entries is greater than the max for a single list,
3961 * then we have a chained list; we will set up all but one entry in the
3962 * first list (the last entry is saved for link information);
3963 * otherwise, we don't have a chained list and we'll set up at each of
3964 * the entries in the one list.
3966 curr_sg = cp->SG;
3967 chained = use_sg > h->max_cmd_sg_entries;
3968 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3969 last_sg = scsi_sg_count(cmd) - 1;
3970 scsi_for_each_sg(cmd, sg, sg_limit, i) {
3971 hpsa_set_sg_descriptor(curr_sg, sg);
3972 curr_sg++;
3975 if (chained) {
3977 * Continue with the chained list. Set curr_sg to the chained
3978 * list. Modify the limit to the total count less the entries
3979 * we've already set up. Resume the scan at the list entry
3980 * where the previous loop left off.
3982 curr_sg = h->cmd_sg_list[cp->cmdindex];
3983 sg_limit = use_sg - sg_limit;
3984 for_each_sg(sg, sg, sg_limit, i) {
3985 hpsa_set_sg_descriptor(curr_sg, sg);
3986 curr_sg++;
3990 /* Back the pointer up to the last entry and mark it as "last". */
3991 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3993 if (use_sg + chained > h->maxSG)
3994 h->maxSG = use_sg + chained;
3996 if (chained) {
3997 cp->Header.SGList = h->max_cmd_sg_entries;
3998 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3999 if (hpsa_map_sg_chain_block(h, cp)) {
4000 scsi_dma_unmap(cmd);
4001 return -1;
4003 return 0;
4006 sglist_finished:
4008 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4009 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4010 return 0;
4013 #define IO_ACCEL_INELIGIBLE (1)
4014 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4016 int is_write = 0;
4017 u32 block;
4018 u32 block_cnt;
4020 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4021 switch (cdb[0]) {
4022 case WRITE_6:
4023 case WRITE_12:
4024 is_write = 1;
4025 case READ_6:
4026 case READ_12:
4027 if (*cdb_len == 6) {
4028 block = get_unaligned_be16(&cdb[2]);
4029 block_cnt = cdb[4];
4030 if (block_cnt == 0)
4031 block_cnt = 256;
4032 } else {
4033 BUG_ON(*cdb_len != 12);
4034 block = get_unaligned_be32(&cdb[2]);
4035 block_cnt = get_unaligned_be32(&cdb[6]);
4037 if (block_cnt > 0xffff)
4038 return IO_ACCEL_INELIGIBLE;
4040 cdb[0] = is_write ? WRITE_10 : READ_10;
4041 cdb[1] = 0;
4042 cdb[2] = (u8) (block >> 24);
4043 cdb[3] = (u8) (block >> 16);
4044 cdb[4] = (u8) (block >> 8);
4045 cdb[5] = (u8) (block);
4046 cdb[6] = 0;
4047 cdb[7] = (u8) (block_cnt >> 8);
4048 cdb[8] = (u8) (block_cnt);
4049 cdb[9] = 0;
4050 *cdb_len = 10;
4051 break;
4053 return 0;
4056 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4057 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4058 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4060 struct scsi_cmnd *cmd = c->scsi_cmd;
4061 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4062 unsigned int len;
4063 unsigned int total_len = 0;
4064 struct scatterlist *sg;
4065 u64 addr64;
4066 int use_sg, i;
4067 struct SGDescriptor *curr_sg;
4068 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4070 /* TODO: implement chaining support */
4071 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4072 atomic_dec(&phys_disk->ioaccel_cmds_out);
4073 return IO_ACCEL_INELIGIBLE;
4076 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4078 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4079 atomic_dec(&phys_disk->ioaccel_cmds_out);
4080 return IO_ACCEL_INELIGIBLE;
4083 c->cmd_type = CMD_IOACCEL1;
4085 /* Adjust the DMA address to point to the accelerated command buffer */
4086 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4087 (c->cmdindex * sizeof(*cp));
4088 BUG_ON(c->busaddr & 0x0000007F);
4090 use_sg = scsi_dma_map(cmd);
4091 if (use_sg < 0) {
4092 atomic_dec(&phys_disk->ioaccel_cmds_out);
4093 return use_sg;
4096 if (use_sg) {
4097 curr_sg = cp->SG;
4098 scsi_for_each_sg(cmd, sg, use_sg, i) {
4099 addr64 = (u64) sg_dma_address(sg);
4100 len = sg_dma_len(sg);
4101 total_len += len;
4102 curr_sg->Addr = cpu_to_le64(addr64);
4103 curr_sg->Len = cpu_to_le32(len);
4104 curr_sg->Ext = cpu_to_le32(0);
4105 curr_sg++;
4107 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4109 switch (cmd->sc_data_direction) {
4110 case DMA_TO_DEVICE:
4111 control |= IOACCEL1_CONTROL_DATA_OUT;
4112 break;
4113 case DMA_FROM_DEVICE:
4114 control |= IOACCEL1_CONTROL_DATA_IN;
4115 break;
4116 case DMA_NONE:
4117 control |= IOACCEL1_CONTROL_NODATAXFER;
4118 break;
4119 default:
4120 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4121 cmd->sc_data_direction);
4122 BUG();
4123 break;
4125 } else {
4126 control |= IOACCEL1_CONTROL_NODATAXFER;
4129 c->Header.SGList = use_sg;
4130 /* Fill out the command structure to submit */
4131 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4132 cp->transfer_len = cpu_to_le32(total_len);
4133 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4134 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4135 cp->control = cpu_to_le32(control);
4136 memcpy(cp->CDB, cdb, cdb_len);
4137 memcpy(cp->CISS_LUN, scsi3addr, 8);
4138 /* Tag was already set at init time. */
4139 enqueue_cmd_and_start_io(h, c);
4140 return 0;
4144 * Queue a command directly to a device behind the controller using the
4145 * I/O accelerator path.
4147 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4148 struct CommandList *c)
4150 struct scsi_cmnd *cmd = c->scsi_cmd;
4151 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4153 c->phys_disk = dev;
4155 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4156 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4160 * Set encryption parameters for the ioaccel2 request
4162 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4163 struct CommandList *c, struct io_accel2_cmd *cp)
4165 struct scsi_cmnd *cmd = c->scsi_cmd;
4166 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4167 struct raid_map_data *map = &dev->raid_map;
4168 u64 first_block;
4170 /* Are we doing encryption on this device */
4171 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4172 return;
4173 /* Set the data encryption key index. */
4174 cp->dekindex = map->dekindex;
4176 /* Set the encryption enable flag, encoded into direction field. */
4177 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4179 /* Set encryption tweak values based on logical block address
4180 * If block size is 512, tweak value is LBA.
4181 * For other block sizes, tweak is (LBA * block size)/ 512)
4183 switch (cmd->cmnd[0]) {
4184 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4185 case WRITE_6:
4186 case READ_6:
4187 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4188 break;
4189 case WRITE_10:
4190 case READ_10:
4191 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4192 case WRITE_12:
4193 case READ_12:
4194 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4195 break;
4196 case WRITE_16:
4197 case READ_16:
4198 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4199 break;
4200 default:
4201 dev_err(&h->pdev->dev,
4202 "ERROR: %s: size (0x%x) not supported for encryption\n",
4203 __func__, cmd->cmnd[0]);
4204 BUG();
4205 break;
4208 if (le32_to_cpu(map->volume_blk_size) != 512)
4209 first_block = first_block *
4210 le32_to_cpu(map->volume_blk_size)/512;
4212 cp->tweak_lower = cpu_to_le32(first_block);
4213 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4216 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4217 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4218 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4220 struct scsi_cmnd *cmd = c->scsi_cmd;
4221 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4222 struct ioaccel2_sg_element *curr_sg;
4223 int use_sg, i;
4224 struct scatterlist *sg;
4225 u64 addr64;
4226 u32 len;
4227 u32 total_len = 0;
4229 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4231 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4232 atomic_dec(&phys_disk->ioaccel_cmds_out);
4233 return IO_ACCEL_INELIGIBLE;
4236 c->cmd_type = CMD_IOACCEL2;
4237 /* Adjust the DMA address to point to the accelerated command buffer */
4238 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4239 (c->cmdindex * sizeof(*cp));
4240 BUG_ON(c->busaddr & 0x0000007F);
4242 memset(cp, 0, sizeof(*cp));
4243 cp->IU_type = IOACCEL2_IU_TYPE;
4245 use_sg = scsi_dma_map(cmd);
4246 if (use_sg < 0) {
4247 atomic_dec(&phys_disk->ioaccel_cmds_out);
4248 return use_sg;
4251 if (use_sg) {
4252 curr_sg = cp->sg;
4253 if (use_sg > h->ioaccel_maxsg) {
4254 addr64 = le64_to_cpu(
4255 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4256 curr_sg->address = cpu_to_le64(addr64);
4257 curr_sg->length = 0;
4258 curr_sg->reserved[0] = 0;
4259 curr_sg->reserved[1] = 0;
4260 curr_sg->reserved[2] = 0;
4261 curr_sg->chain_indicator = 0x80;
4263 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4265 scsi_for_each_sg(cmd, sg, use_sg, i) {
4266 addr64 = (u64) sg_dma_address(sg);
4267 len = sg_dma_len(sg);
4268 total_len += len;
4269 curr_sg->address = cpu_to_le64(addr64);
4270 curr_sg->length = cpu_to_le32(len);
4271 curr_sg->reserved[0] = 0;
4272 curr_sg->reserved[1] = 0;
4273 curr_sg->reserved[2] = 0;
4274 curr_sg->chain_indicator = 0;
4275 curr_sg++;
4278 switch (cmd->sc_data_direction) {
4279 case DMA_TO_DEVICE:
4280 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4281 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4282 break;
4283 case DMA_FROM_DEVICE:
4284 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4285 cp->direction |= IOACCEL2_DIR_DATA_IN;
4286 break;
4287 case DMA_NONE:
4288 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4289 cp->direction |= IOACCEL2_DIR_NO_DATA;
4290 break;
4291 default:
4292 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4293 cmd->sc_data_direction);
4294 BUG();
4295 break;
4297 } else {
4298 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4299 cp->direction |= IOACCEL2_DIR_NO_DATA;
4302 /* Set encryption parameters, if necessary */
4303 set_encrypt_ioaccel2(h, c, cp);
4305 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4306 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4307 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4309 cp->data_len = cpu_to_le32(total_len);
4310 cp->err_ptr = cpu_to_le64(c->busaddr +
4311 offsetof(struct io_accel2_cmd, error_data));
4312 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4314 /* fill in sg elements */
4315 if (use_sg > h->ioaccel_maxsg) {
4316 cp->sg_count = 1;
4317 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4318 atomic_dec(&phys_disk->ioaccel_cmds_out);
4319 scsi_dma_unmap(cmd);
4320 return -1;
4322 } else
4323 cp->sg_count = (u8) use_sg;
4325 enqueue_cmd_and_start_io(h, c);
4326 return 0;
4330 * Queue a command to the correct I/O accelerator path.
4332 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4333 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4334 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4336 /* Try to honor the device's queue depth */
4337 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4338 phys_disk->queue_depth) {
4339 atomic_dec(&phys_disk->ioaccel_cmds_out);
4340 return IO_ACCEL_INELIGIBLE;
4342 if (h->transMethod & CFGTBL_Trans_io_accel1)
4343 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4344 cdb, cdb_len, scsi3addr,
4345 phys_disk);
4346 else
4347 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4348 cdb, cdb_len, scsi3addr,
4349 phys_disk);
4352 static void raid_map_helper(struct raid_map_data *map,
4353 int offload_to_mirror, u32 *map_index, u32 *current_group)
4355 if (offload_to_mirror == 0) {
4356 /* use physical disk in the first mirrored group. */
4357 *map_index %= le16_to_cpu(map->data_disks_per_row);
4358 return;
4360 do {
4361 /* determine mirror group that *map_index indicates */
4362 *current_group = *map_index /
4363 le16_to_cpu(map->data_disks_per_row);
4364 if (offload_to_mirror == *current_group)
4365 continue;
4366 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4367 /* select map index from next group */
4368 *map_index += le16_to_cpu(map->data_disks_per_row);
4369 (*current_group)++;
4370 } else {
4371 /* select map index from first group */
4372 *map_index %= le16_to_cpu(map->data_disks_per_row);
4373 *current_group = 0;
4375 } while (offload_to_mirror != *current_group);
4379 * Attempt to perform offload RAID mapping for a logical volume I/O.
4381 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4382 struct CommandList *c)
4384 struct scsi_cmnd *cmd = c->scsi_cmd;
4385 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4386 struct raid_map_data *map = &dev->raid_map;
4387 struct raid_map_disk_data *dd = &map->data[0];
4388 int is_write = 0;
4389 u32 map_index;
4390 u64 first_block, last_block;
4391 u32 block_cnt;
4392 u32 blocks_per_row;
4393 u64 first_row, last_row;
4394 u32 first_row_offset, last_row_offset;
4395 u32 first_column, last_column;
4396 u64 r0_first_row, r0_last_row;
4397 u32 r5or6_blocks_per_row;
4398 u64 r5or6_first_row, r5or6_last_row;
4399 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4400 u32 r5or6_first_column, r5or6_last_column;
4401 u32 total_disks_per_row;
4402 u32 stripesize;
4403 u32 first_group, last_group, current_group;
4404 u32 map_row;
4405 u32 disk_handle;
4406 u64 disk_block;
4407 u32 disk_block_cnt;
4408 u8 cdb[16];
4409 u8 cdb_len;
4410 u16 strip_size;
4411 #if BITS_PER_LONG == 32
4412 u64 tmpdiv;
4413 #endif
4414 int offload_to_mirror;
4416 /* check for valid opcode, get LBA and block count */
4417 switch (cmd->cmnd[0]) {
4418 case WRITE_6:
4419 is_write = 1;
4420 case READ_6:
4421 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4422 block_cnt = cmd->cmnd[4];
4423 if (block_cnt == 0)
4424 block_cnt = 256;
4425 break;
4426 case WRITE_10:
4427 is_write = 1;
4428 case READ_10:
4429 first_block =
4430 (((u64) cmd->cmnd[2]) << 24) |
4431 (((u64) cmd->cmnd[3]) << 16) |
4432 (((u64) cmd->cmnd[4]) << 8) |
4433 cmd->cmnd[5];
4434 block_cnt =
4435 (((u32) cmd->cmnd[7]) << 8) |
4436 cmd->cmnd[8];
4437 break;
4438 case WRITE_12:
4439 is_write = 1;
4440 case READ_12:
4441 first_block =
4442 (((u64) cmd->cmnd[2]) << 24) |
4443 (((u64) cmd->cmnd[3]) << 16) |
4444 (((u64) cmd->cmnd[4]) << 8) |
4445 cmd->cmnd[5];
4446 block_cnt =
4447 (((u32) cmd->cmnd[6]) << 24) |
4448 (((u32) cmd->cmnd[7]) << 16) |
4449 (((u32) cmd->cmnd[8]) << 8) |
4450 cmd->cmnd[9];
4451 break;
4452 case WRITE_16:
4453 is_write = 1;
4454 case READ_16:
4455 first_block =
4456 (((u64) cmd->cmnd[2]) << 56) |
4457 (((u64) cmd->cmnd[3]) << 48) |
4458 (((u64) cmd->cmnd[4]) << 40) |
4459 (((u64) cmd->cmnd[5]) << 32) |
4460 (((u64) cmd->cmnd[6]) << 24) |
4461 (((u64) cmd->cmnd[7]) << 16) |
4462 (((u64) cmd->cmnd[8]) << 8) |
4463 cmd->cmnd[9];
4464 block_cnt =
4465 (((u32) cmd->cmnd[10]) << 24) |
4466 (((u32) cmd->cmnd[11]) << 16) |
4467 (((u32) cmd->cmnd[12]) << 8) |
4468 cmd->cmnd[13];
4469 break;
4470 default:
4471 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4473 last_block = first_block + block_cnt - 1;
4475 /* check for write to non-RAID-0 */
4476 if (is_write && dev->raid_level != 0)
4477 return IO_ACCEL_INELIGIBLE;
4479 /* check for invalid block or wraparound */
4480 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4481 last_block < first_block)
4482 return IO_ACCEL_INELIGIBLE;
4484 /* calculate stripe information for the request */
4485 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4486 le16_to_cpu(map->strip_size);
4487 strip_size = le16_to_cpu(map->strip_size);
4488 #if BITS_PER_LONG == 32
4489 tmpdiv = first_block;
4490 (void) do_div(tmpdiv, blocks_per_row);
4491 first_row = tmpdiv;
4492 tmpdiv = last_block;
4493 (void) do_div(tmpdiv, blocks_per_row);
4494 last_row = tmpdiv;
4495 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4496 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4497 tmpdiv = first_row_offset;
4498 (void) do_div(tmpdiv, strip_size);
4499 first_column = tmpdiv;
4500 tmpdiv = last_row_offset;
4501 (void) do_div(tmpdiv, strip_size);
4502 last_column = tmpdiv;
4503 #else
4504 first_row = first_block / blocks_per_row;
4505 last_row = last_block / blocks_per_row;
4506 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4507 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4508 first_column = first_row_offset / strip_size;
4509 last_column = last_row_offset / strip_size;
4510 #endif
4512 /* if this isn't a single row/column then give to the controller */
4513 if ((first_row != last_row) || (first_column != last_column))
4514 return IO_ACCEL_INELIGIBLE;
4516 /* proceeding with driver mapping */
4517 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4518 le16_to_cpu(map->metadata_disks_per_row);
4519 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4520 le16_to_cpu(map->row_cnt);
4521 map_index = (map_row * total_disks_per_row) + first_column;
4523 switch (dev->raid_level) {
4524 case HPSA_RAID_0:
4525 break; /* nothing special to do */
4526 case HPSA_RAID_1:
4527 /* Handles load balance across RAID 1 members.
4528 * (2-drive R1 and R10 with even # of drives.)
4529 * Appropriate for SSDs, not optimal for HDDs
4531 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4532 if (dev->offload_to_mirror)
4533 map_index += le16_to_cpu(map->data_disks_per_row);
4534 dev->offload_to_mirror = !dev->offload_to_mirror;
4535 break;
4536 case HPSA_RAID_ADM:
4537 /* Handles N-way mirrors (R1-ADM)
4538 * and R10 with # of drives divisible by 3.)
4540 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4542 offload_to_mirror = dev->offload_to_mirror;
4543 raid_map_helper(map, offload_to_mirror,
4544 &map_index, &current_group);
4545 /* set mirror group to use next time */
4546 offload_to_mirror =
4547 (offload_to_mirror >=
4548 le16_to_cpu(map->layout_map_count) - 1)
4549 ? 0 : offload_to_mirror + 1;
4550 dev->offload_to_mirror = offload_to_mirror;
4551 /* Avoid direct use of dev->offload_to_mirror within this
4552 * function since multiple threads might simultaneously
4553 * increment it beyond the range of dev->layout_map_count -1.
4555 break;
4556 case HPSA_RAID_5:
4557 case HPSA_RAID_6:
4558 if (le16_to_cpu(map->layout_map_count) <= 1)
4559 break;
4561 /* Verify first and last block are in same RAID group */
4562 r5or6_blocks_per_row =
4563 le16_to_cpu(map->strip_size) *
4564 le16_to_cpu(map->data_disks_per_row);
4565 BUG_ON(r5or6_blocks_per_row == 0);
4566 stripesize = r5or6_blocks_per_row *
4567 le16_to_cpu(map->layout_map_count);
4568 #if BITS_PER_LONG == 32
4569 tmpdiv = first_block;
4570 first_group = do_div(tmpdiv, stripesize);
4571 tmpdiv = first_group;
4572 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4573 first_group = tmpdiv;
4574 tmpdiv = last_block;
4575 last_group = do_div(tmpdiv, stripesize);
4576 tmpdiv = last_group;
4577 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4578 last_group = tmpdiv;
4579 #else
4580 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4581 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4582 #endif
4583 if (first_group != last_group)
4584 return IO_ACCEL_INELIGIBLE;
4586 /* Verify request is in a single row of RAID 5/6 */
4587 #if BITS_PER_LONG == 32
4588 tmpdiv = first_block;
4589 (void) do_div(tmpdiv, stripesize);
4590 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4591 tmpdiv = last_block;
4592 (void) do_div(tmpdiv, stripesize);
4593 r5or6_last_row = r0_last_row = tmpdiv;
4594 #else
4595 first_row = r5or6_first_row = r0_first_row =
4596 first_block / stripesize;
4597 r5or6_last_row = r0_last_row = last_block / stripesize;
4598 #endif
4599 if (r5or6_first_row != r5or6_last_row)
4600 return IO_ACCEL_INELIGIBLE;
4603 /* Verify request is in a single column */
4604 #if BITS_PER_LONG == 32
4605 tmpdiv = first_block;
4606 first_row_offset = do_div(tmpdiv, stripesize);
4607 tmpdiv = first_row_offset;
4608 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4609 r5or6_first_row_offset = first_row_offset;
4610 tmpdiv = last_block;
4611 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4612 tmpdiv = r5or6_last_row_offset;
4613 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4614 tmpdiv = r5or6_first_row_offset;
4615 (void) do_div(tmpdiv, map->strip_size);
4616 first_column = r5or6_first_column = tmpdiv;
4617 tmpdiv = r5or6_last_row_offset;
4618 (void) do_div(tmpdiv, map->strip_size);
4619 r5or6_last_column = tmpdiv;
4620 #else
4621 first_row_offset = r5or6_first_row_offset =
4622 (u32)((first_block % stripesize) %
4623 r5or6_blocks_per_row);
4625 r5or6_last_row_offset =
4626 (u32)((last_block % stripesize) %
4627 r5or6_blocks_per_row);
4629 first_column = r5or6_first_column =
4630 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4631 r5or6_last_column =
4632 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4633 #endif
4634 if (r5or6_first_column != r5or6_last_column)
4635 return IO_ACCEL_INELIGIBLE;
4637 /* Request is eligible */
4638 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4639 le16_to_cpu(map->row_cnt);
4641 map_index = (first_group *
4642 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4643 (map_row * total_disks_per_row) + first_column;
4644 break;
4645 default:
4646 return IO_ACCEL_INELIGIBLE;
4649 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4650 return IO_ACCEL_INELIGIBLE;
4652 c->phys_disk = dev->phys_disk[map_index];
4654 disk_handle = dd[map_index].ioaccel_handle;
4655 disk_block = le64_to_cpu(map->disk_starting_blk) +
4656 first_row * le16_to_cpu(map->strip_size) +
4657 (first_row_offset - first_column *
4658 le16_to_cpu(map->strip_size));
4659 disk_block_cnt = block_cnt;
4661 /* handle differing logical/physical block sizes */
4662 if (map->phys_blk_shift) {
4663 disk_block <<= map->phys_blk_shift;
4664 disk_block_cnt <<= map->phys_blk_shift;
4666 BUG_ON(disk_block_cnt > 0xffff);
4668 /* build the new CDB for the physical disk I/O */
4669 if (disk_block > 0xffffffff) {
4670 cdb[0] = is_write ? WRITE_16 : READ_16;
4671 cdb[1] = 0;
4672 cdb[2] = (u8) (disk_block >> 56);
4673 cdb[3] = (u8) (disk_block >> 48);
4674 cdb[4] = (u8) (disk_block >> 40);
4675 cdb[5] = (u8) (disk_block >> 32);
4676 cdb[6] = (u8) (disk_block >> 24);
4677 cdb[7] = (u8) (disk_block >> 16);
4678 cdb[8] = (u8) (disk_block >> 8);
4679 cdb[9] = (u8) (disk_block);
4680 cdb[10] = (u8) (disk_block_cnt >> 24);
4681 cdb[11] = (u8) (disk_block_cnt >> 16);
4682 cdb[12] = (u8) (disk_block_cnt >> 8);
4683 cdb[13] = (u8) (disk_block_cnt);
4684 cdb[14] = 0;
4685 cdb[15] = 0;
4686 cdb_len = 16;
4687 } else {
4688 cdb[0] = is_write ? WRITE_10 : READ_10;
4689 cdb[1] = 0;
4690 cdb[2] = (u8) (disk_block >> 24);
4691 cdb[3] = (u8) (disk_block >> 16);
4692 cdb[4] = (u8) (disk_block >> 8);
4693 cdb[5] = (u8) (disk_block);
4694 cdb[6] = 0;
4695 cdb[7] = (u8) (disk_block_cnt >> 8);
4696 cdb[8] = (u8) (disk_block_cnt);
4697 cdb[9] = 0;
4698 cdb_len = 10;
4700 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4701 dev->scsi3addr,
4702 dev->phys_disk[map_index]);
4706 * Submit commands down the "normal" RAID stack path
4707 * All callers to hpsa_ciss_submit must check lockup_detected
4708 * beforehand, before (opt.) and after calling cmd_alloc
4710 static int hpsa_ciss_submit(struct ctlr_info *h,
4711 struct CommandList *c, struct scsi_cmnd *cmd,
4712 unsigned char scsi3addr[])
4714 cmd->host_scribble = (unsigned char *) c;
4715 c->cmd_type = CMD_SCSI;
4716 c->scsi_cmd = cmd;
4717 c->Header.ReplyQueue = 0; /* unused in simple mode */
4718 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4719 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4721 /* Fill in the request block... */
4723 c->Request.Timeout = 0;
4724 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4725 c->Request.CDBLen = cmd->cmd_len;
4726 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4727 switch (cmd->sc_data_direction) {
4728 case DMA_TO_DEVICE:
4729 c->Request.type_attr_dir =
4730 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4731 break;
4732 case DMA_FROM_DEVICE:
4733 c->Request.type_attr_dir =
4734 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4735 break;
4736 case DMA_NONE:
4737 c->Request.type_attr_dir =
4738 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4739 break;
4740 case DMA_BIDIRECTIONAL:
4741 /* This can happen if a buggy application does a scsi passthru
4742 * and sets both inlen and outlen to non-zero. ( see
4743 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4746 c->Request.type_attr_dir =
4747 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4748 /* This is technically wrong, and hpsa controllers should
4749 * reject it with CMD_INVALID, which is the most correct
4750 * response, but non-fibre backends appear to let it
4751 * slide by, and give the same results as if this field
4752 * were set correctly. Either way is acceptable for
4753 * our purposes here.
4756 break;
4758 default:
4759 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4760 cmd->sc_data_direction);
4761 BUG();
4762 break;
4765 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4766 hpsa_cmd_resolve_and_free(h, c);
4767 return SCSI_MLQUEUE_HOST_BUSY;
4769 enqueue_cmd_and_start_io(h, c);
4770 /* the cmd'll come back via intr handler in complete_scsi_command() */
4771 return 0;
4774 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4775 struct CommandList *c)
4777 dma_addr_t cmd_dma_handle, err_dma_handle;
4779 /* Zero out all of commandlist except the last field, refcount */
4780 memset(c, 0, offsetof(struct CommandList, refcount));
4781 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4782 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4783 c->err_info = h->errinfo_pool + index;
4784 memset(c->err_info, 0, sizeof(*c->err_info));
4785 err_dma_handle = h->errinfo_pool_dhandle
4786 + index * sizeof(*c->err_info);
4787 c->cmdindex = index;
4788 c->busaddr = (u32) cmd_dma_handle;
4789 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4790 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4791 c->h = h;
4792 c->scsi_cmd = SCSI_CMD_IDLE;
4795 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4797 int i;
4799 for (i = 0; i < h->nr_cmds; i++) {
4800 struct CommandList *c = h->cmd_pool + i;
4802 hpsa_cmd_init(h, i, c);
4803 atomic_set(&c->refcount, 0);
4807 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4808 struct CommandList *c)
4810 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4812 BUG_ON(c->cmdindex != index);
4814 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4815 memset(c->err_info, 0, sizeof(*c->err_info));
4816 c->busaddr = (u32) cmd_dma_handle;
4819 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4820 struct CommandList *c, struct scsi_cmnd *cmd,
4821 unsigned char *scsi3addr)
4823 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4824 int rc = IO_ACCEL_INELIGIBLE;
4826 cmd->host_scribble = (unsigned char *) c;
4828 if (dev->offload_enabled) {
4829 hpsa_cmd_init(h, c->cmdindex, c);
4830 c->cmd_type = CMD_SCSI;
4831 c->scsi_cmd = cmd;
4832 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4833 if (rc < 0) /* scsi_dma_map failed. */
4834 rc = SCSI_MLQUEUE_HOST_BUSY;
4835 } else if (dev->hba_ioaccel_enabled) {
4836 hpsa_cmd_init(h, c->cmdindex, c);
4837 c->cmd_type = CMD_SCSI;
4838 c->scsi_cmd = cmd;
4839 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4840 if (rc < 0) /* scsi_dma_map failed. */
4841 rc = SCSI_MLQUEUE_HOST_BUSY;
4843 return rc;
4846 static void hpsa_command_resubmit_worker(struct work_struct *work)
4848 struct scsi_cmnd *cmd;
4849 struct hpsa_scsi_dev_t *dev;
4850 struct CommandList *c = container_of(work, struct CommandList, work);
4852 cmd = c->scsi_cmd;
4853 dev = cmd->device->hostdata;
4854 if (!dev) {
4855 cmd->result = DID_NO_CONNECT << 16;
4856 return hpsa_cmd_free_and_done(c->h, c, cmd);
4858 if (c->reset_pending)
4859 return hpsa_cmd_resolve_and_free(c->h, c);
4860 if (c->abort_pending)
4861 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4862 if (c->cmd_type == CMD_IOACCEL2) {
4863 struct ctlr_info *h = c->h;
4864 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4865 int rc;
4867 if (c2->error_data.serv_response ==
4868 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4869 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4870 if (rc == 0)
4871 return;
4872 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4874 * If we get here, it means dma mapping failed.
4875 * Try again via scsi mid layer, which will
4876 * then get SCSI_MLQUEUE_HOST_BUSY.
4878 cmd->result = DID_IMM_RETRY << 16;
4879 return hpsa_cmd_free_and_done(h, c, cmd);
4881 /* else, fall thru and resubmit down CISS path */
4884 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4885 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4887 * If we get here, it means dma mapping failed. Try
4888 * again via scsi mid layer, which will then get
4889 * SCSI_MLQUEUE_HOST_BUSY.
4891 * hpsa_ciss_submit will have already freed c
4892 * if it encountered a dma mapping failure.
4894 cmd->result = DID_IMM_RETRY << 16;
4895 cmd->scsi_done(cmd);
4899 /* Running in struct Scsi_Host->host_lock less mode */
4900 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4902 struct ctlr_info *h;
4903 struct hpsa_scsi_dev_t *dev;
4904 unsigned char scsi3addr[8];
4905 struct CommandList *c;
4906 int rc = 0;
4908 /* Get the ptr to our adapter structure out of cmd->host. */
4909 h = sdev_to_hba(cmd->device);
4911 BUG_ON(cmd->request->tag < 0);
4913 dev = cmd->device->hostdata;
4914 if (!dev) {
4915 cmd->result = DID_NO_CONNECT << 16;
4916 cmd->scsi_done(cmd);
4917 return 0;
4920 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4922 if (unlikely(lockup_detected(h))) {
4923 cmd->result = DID_NO_CONNECT << 16;
4924 cmd->scsi_done(cmd);
4925 return 0;
4927 c = cmd_tagged_alloc(h, cmd);
4930 * Call alternate submit routine for I/O accelerated commands.
4931 * Retries always go down the normal I/O path.
4933 if (likely(cmd->retries == 0 &&
4934 cmd->request->cmd_type == REQ_TYPE_FS &&
4935 h->acciopath_status)) {
4936 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4937 if (rc == 0)
4938 return 0;
4939 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4940 hpsa_cmd_resolve_and_free(h, c);
4941 return SCSI_MLQUEUE_HOST_BUSY;
4944 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4947 static void hpsa_scan_complete(struct ctlr_info *h)
4949 unsigned long flags;
4951 spin_lock_irqsave(&h->scan_lock, flags);
4952 h->scan_finished = 1;
4953 wake_up_all(&h->scan_wait_queue);
4954 spin_unlock_irqrestore(&h->scan_lock, flags);
4957 static void hpsa_scan_start(struct Scsi_Host *sh)
4959 struct ctlr_info *h = shost_to_hba(sh);
4960 unsigned long flags;
4963 * Don't let rescans be initiated on a controller known to be locked
4964 * up. If the controller locks up *during* a rescan, that thread is
4965 * probably hosed, but at least we can prevent new rescan threads from
4966 * piling up on a locked up controller.
4968 if (unlikely(lockup_detected(h)))
4969 return hpsa_scan_complete(h);
4971 /* wait until any scan already in progress is finished. */
4972 while (1) {
4973 spin_lock_irqsave(&h->scan_lock, flags);
4974 if (h->scan_finished)
4975 break;
4976 spin_unlock_irqrestore(&h->scan_lock, flags);
4977 wait_event(h->scan_wait_queue, h->scan_finished);
4978 /* Note: We don't need to worry about a race between this
4979 * thread and driver unload because the midlayer will
4980 * have incremented the reference count, so unload won't
4981 * happen if we're in here.
4984 h->scan_finished = 0; /* mark scan as in progress */
4985 spin_unlock_irqrestore(&h->scan_lock, flags);
4987 if (unlikely(lockup_detected(h)))
4988 return hpsa_scan_complete(h);
4990 hpsa_update_scsi_devices(h);
4992 hpsa_scan_complete(h);
4995 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4997 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4999 if (!logical_drive)
5000 return -ENODEV;
5002 if (qdepth < 1)
5003 qdepth = 1;
5004 else if (qdepth > logical_drive->queue_depth)
5005 qdepth = logical_drive->queue_depth;
5007 return scsi_change_queue_depth(sdev, qdepth);
5010 static int hpsa_scan_finished(struct Scsi_Host *sh,
5011 unsigned long elapsed_time)
5013 struct ctlr_info *h = shost_to_hba(sh);
5014 unsigned long flags;
5015 int finished;
5017 spin_lock_irqsave(&h->scan_lock, flags);
5018 finished = h->scan_finished;
5019 spin_unlock_irqrestore(&h->scan_lock, flags);
5020 return finished;
5023 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5025 struct Scsi_Host *sh;
5026 int error;
5028 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5029 if (sh == NULL) {
5030 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5031 return -ENOMEM;
5034 sh->io_port = 0;
5035 sh->n_io_port = 0;
5036 sh->this_id = -1;
5037 sh->max_channel = 3;
5038 sh->max_cmd_len = MAX_COMMAND_SIZE;
5039 sh->max_lun = HPSA_MAX_LUN;
5040 sh->max_id = HPSA_MAX_LUN;
5041 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5042 sh->cmd_per_lun = sh->can_queue;
5043 sh->sg_tablesize = h->maxsgentries;
5044 sh->hostdata[0] = (unsigned long) h;
5045 sh->irq = h->intr[h->intr_mode];
5046 sh->unique_id = sh->irq;
5047 error = scsi_init_shared_tag_map(sh, sh->can_queue);
5048 if (error) {
5049 dev_err(&h->pdev->dev,
5050 "%s: scsi_init_shared_tag_map failed for controller %d\n",
5051 __func__, h->ctlr);
5052 scsi_host_put(sh);
5053 return error;
5055 h->scsi_host = sh;
5056 return 0;
5059 static int hpsa_scsi_add_host(struct ctlr_info *h)
5061 int rv;
5063 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5064 if (rv) {
5065 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5066 return rv;
5068 scsi_scan_host(h->scsi_host);
5069 return 0;
5073 * The block layer has already gone to the trouble of picking out a unique,
5074 * small-integer tag for this request. We use an offset from that value as
5075 * an index to select our command block. (The offset allows us to reserve the
5076 * low-numbered entries for our own uses.)
5078 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5080 int idx = scmd->request->tag;
5082 if (idx < 0)
5083 return idx;
5085 /* Offset to leave space for internal cmds. */
5086 return idx += HPSA_NRESERVED_CMDS;
5090 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5091 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5093 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5094 struct CommandList *c, unsigned char lunaddr[],
5095 int reply_queue)
5097 int rc;
5099 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5100 (void) fill_cmd(c, TEST_UNIT_READY, h,
5101 NULL, 0, 0, lunaddr, TYPE_CMD);
5102 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5103 if (rc)
5104 return rc;
5105 /* no unmap needed here because no data xfer. */
5107 /* Check if the unit is already ready. */
5108 if (c->err_info->CommandStatus == CMD_SUCCESS)
5109 return 0;
5112 * The first command sent after reset will receive "unit attention" to
5113 * indicate that the LUN has been reset...this is actually what we're
5114 * looking for (but, success is good too).
5116 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5117 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5118 (c->err_info->SenseInfo[2] == NO_SENSE ||
5119 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5120 return 0;
5122 return 1;
5126 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5127 * returns zero when the unit is ready, and non-zero when giving up.
5129 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5130 struct CommandList *c,
5131 unsigned char lunaddr[], int reply_queue)
5133 int rc;
5134 int count = 0;
5135 int waittime = 1; /* seconds */
5137 /* Send test unit ready until device ready, or give up. */
5138 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5141 * Wait for a bit. do this first, because if we send
5142 * the TUR right away, the reset will just abort it.
5144 msleep(1000 * waittime);
5146 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5147 if (!rc)
5148 break;
5150 /* Increase wait time with each try, up to a point. */
5151 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5152 waittime *= 2;
5154 dev_warn(&h->pdev->dev,
5155 "waiting %d secs for device to become ready.\n",
5156 waittime);
5159 return rc;
5162 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5163 unsigned char lunaddr[],
5164 int reply_queue)
5166 int first_queue;
5167 int last_queue;
5168 int rq;
5169 int rc = 0;
5170 struct CommandList *c;
5172 c = cmd_alloc(h);
5175 * If no specific reply queue was requested, then send the TUR
5176 * repeatedly, requesting a reply on each reply queue; otherwise execute
5177 * the loop exactly once using only the specified queue.
5179 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5180 first_queue = 0;
5181 last_queue = h->nreply_queues - 1;
5182 } else {
5183 first_queue = reply_queue;
5184 last_queue = reply_queue;
5187 for (rq = first_queue; rq <= last_queue; rq++) {
5188 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5189 if (rc)
5190 break;
5193 if (rc)
5194 dev_warn(&h->pdev->dev, "giving up on device.\n");
5195 else
5196 dev_warn(&h->pdev->dev, "device is ready.\n");
5198 cmd_free(h, c);
5199 return rc;
5202 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5203 * complaining. Doing a host- or bus-reset can't do anything good here.
5205 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5207 int rc;
5208 struct ctlr_info *h;
5209 struct hpsa_scsi_dev_t *dev;
5210 char msg[48];
5212 /* find the controller to which the command to be aborted was sent */
5213 h = sdev_to_hba(scsicmd->device);
5214 if (h == NULL) /* paranoia */
5215 return FAILED;
5217 if (lockup_detected(h))
5218 return FAILED;
5220 dev = scsicmd->device->hostdata;
5221 if (!dev) {
5222 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5223 return FAILED;
5226 /* if controller locked up, we can guarantee command won't complete */
5227 if (lockup_detected(h)) {
5228 snprintf(msg, sizeof(msg),
5229 "cmd %d RESET FAILED, lockup detected",
5230 hpsa_get_cmd_index(scsicmd));
5231 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5232 return FAILED;
5235 /* this reset request might be the result of a lockup; check */
5236 if (detect_controller_lockup(h)) {
5237 snprintf(msg, sizeof(msg),
5238 "cmd %d RESET FAILED, new lockup detected",
5239 hpsa_get_cmd_index(scsicmd));
5240 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5241 return FAILED;
5244 /* Do not attempt on controller */
5245 if (is_hba_lunid(dev->scsi3addr))
5246 return SUCCESS;
5248 hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5250 h->reset_in_progress = 1;
5252 /* send a reset to the SCSI LUN which the command was sent to */
5253 rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5254 DEFAULT_REPLY_QUEUE);
5255 snprintf(msg, sizeof(msg), "reset %s",
5256 rc == 0 ? "completed successfully" : "failed");
5257 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5258 h->reset_in_progress = 0;
5259 return rc == 0 ? SUCCESS : FAILED;
5262 static void swizzle_abort_tag(u8 *tag)
5264 u8 original_tag[8];
5266 memcpy(original_tag, tag, 8);
5267 tag[0] = original_tag[3];
5268 tag[1] = original_tag[2];
5269 tag[2] = original_tag[1];
5270 tag[3] = original_tag[0];
5271 tag[4] = original_tag[7];
5272 tag[5] = original_tag[6];
5273 tag[6] = original_tag[5];
5274 tag[7] = original_tag[4];
5277 static void hpsa_get_tag(struct ctlr_info *h,
5278 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5280 u64 tag;
5281 if (c->cmd_type == CMD_IOACCEL1) {
5282 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5283 &h->ioaccel_cmd_pool[c->cmdindex];
5284 tag = le64_to_cpu(cm1->tag);
5285 *tagupper = cpu_to_le32(tag >> 32);
5286 *taglower = cpu_to_le32(tag);
5287 return;
5289 if (c->cmd_type == CMD_IOACCEL2) {
5290 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5291 &h->ioaccel2_cmd_pool[c->cmdindex];
5292 /* upper tag not used in ioaccel2 mode */
5293 memset(tagupper, 0, sizeof(*tagupper));
5294 *taglower = cm2->Tag;
5295 return;
5297 tag = le64_to_cpu(c->Header.tag);
5298 *tagupper = cpu_to_le32(tag >> 32);
5299 *taglower = cpu_to_le32(tag);
5302 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5303 struct CommandList *abort, int reply_queue)
5305 int rc = IO_OK;
5306 struct CommandList *c;
5307 struct ErrorInfo *ei;
5308 __le32 tagupper, taglower;
5310 c = cmd_alloc(h);
5312 /* fill_cmd can't fail here, no buffer to map */
5313 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5314 0, 0, scsi3addr, TYPE_MSG);
5315 if (h->needs_abort_tags_swizzled)
5316 swizzle_abort_tag(&c->Request.CDB[4]);
5317 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5318 hpsa_get_tag(h, abort, &taglower, &tagupper);
5319 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5320 __func__, tagupper, taglower);
5321 /* no unmap needed here because no data xfer. */
5323 ei = c->err_info;
5324 switch (ei->CommandStatus) {
5325 case CMD_SUCCESS:
5326 break;
5327 case CMD_TMF_STATUS:
5328 rc = hpsa_evaluate_tmf_status(h, c);
5329 break;
5330 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5331 rc = -1;
5332 break;
5333 default:
5334 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5335 __func__, tagupper, taglower);
5336 hpsa_scsi_interpret_error(h, c);
5337 rc = -1;
5338 break;
5340 cmd_free(h, c);
5341 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5342 __func__, tagupper, taglower);
5343 return rc;
5346 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5347 struct CommandList *command_to_abort, int reply_queue)
5349 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5350 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5351 struct io_accel2_cmd *c2a =
5352 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5353 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5354 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5357 * We're overlaying struct hpsa_tmf_struct on top of something which
5358 * was allocated as a struct io_accel2_cmd, so we better be sure it
5359 * actually fits, and doesn't overrun the error info space.
5361 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5362 sizeof(struct io_accel2_cmd));
5363 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5364 offsetof(struct hpsa_tmf_struct, error_len) +
5365 sizeof(ac->error_len));
5367 c->cmd_type = IOACCEL2_TMF;
5368 c->scsi_cmd = SCSI_CMD_BUSY;
5370 /* Adjust the DMA address to point to the accelerated command buffer */
5371 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5372 (c->cmdindex * sizeof(struct io_accel2_cmd));
5373 BUG_ON(c->busaddr & 0x0000007F);
5375 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5376 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5377 ac->reply_queue = reply_queue;
5378 ac->tmf = IOACCEL2_TMF_ABORT;
5379 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5380 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5381 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5382 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5383 ac->error_ptr = cpu_to_le64(c->busaddr +
5384 offsetof(struct io_accel2_cmd, error_data));
5385 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5388 /* ioaccel2 path firmware cannot handle abort task requests.
5389 * Change abort requests to physical target reset, and send to the
5390 * address of the physical disk used for the ioaccel 2 command.
5391 * Return 0 on success (IO_OK)
5392 * -1 on failure
5395 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5396 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5398 int rc = IO_OK;
5399 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5400 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5401 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5402 unsigned char *psa = &phys_scsi3addr[0];
5404 /* Get a pointer to the hpsa logical device. */
5405 scmd = abort->scsi_cmd;
5406 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5407 if (dev == NULL) {
5408 dev_warn(&h->pdev->dev,
5409 "Cannot abort: no device pointer for command.\n");
5410 return -1; /* not abortable */
5413 if (h->raid_offload_debug > 0)
5414 dev_info(&h->pdev->dev,
5415 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5416 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5417 "Reset as abort",
5418 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5419 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5421 if (!dev->offload_enabled) {
5422 dev_warn(&h->pdev->dev,
5423 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5424 return -1; /* not abortable */
5427 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5428 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5429 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5430 return -1; /* not abortable */
5433 /* send the reset */
5434 if (h->raid_offload_debug > 0)
5435 dev_info(&h->pdev->dev,
5436 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5437 psa[0], psa[1], psa[2], psa[3],
5438 psa[4], psa[5], psa[6], psa[7]);
5439 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5440 if (rc != 0) {
5441 dev_warn(&h->pdev->dev,
5442 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5443 psa[0], psa[1], psa[2], psa[3],
5444 psa[4], psa[5], psa[6], psa[7]);
5445 return rc; /* failed to reset */
5448 /* wait for device to recover */
5449 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5450 dev_warn(&h->pdev->dev,
5451 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5452 psa[0], psa[1], psa[2], psa[3],
5453 psa[4], psa[5], psa[6], psa[7]);
5454 return -1; /* failed to recover */
5457 /* device recovered */
5458 dev_info(&h->pdev->dev,
5459 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5460 psa[0], psa[1], psa[2], psa[3],
5461 psa[4], psa[5], psa[6], psa[7]);
5463 return rc; /* success */
5466 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5467 struct CommandList *abort, int reply_queue)
5469 int rc = IO_OK;
5470 struct CommandList *c;
5471 __le32 taglower, tagupper;
5472 struct hpsa_scsi_dev_t *dev;
5473 struct io_accel2_cmd *c2;
5475 dev = abort->scsi_cmd->device->hostdata;
5476 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5477 return -1;
5479 c = cmd_alloc(h);
5480 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5481 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5482 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5483 hpsa_get_tag(h, abort, &taglower, &tagupper);
5484 dev_dbg(&h->pdev->dev,
5485 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5486 __func__, tagupper, taglower);
5487 /* no unmap needed here because no data xfer. */
5489 dev_dbg(&h->pdev->dev,
5490 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5491 __func__, tagupper, taglower, c2->error_data.serv_response);
5492 switch (c2->error_data.serv_response) {
5493 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5494 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5495 rc = 0;
5496 break;
5497 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5498 case IOACCEL2_SERV_RESPONSE_FAILURE:
5499 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5500 rc = -1;
5501 break;
5502 default:
5503 dev_warn(&h->pdev->dev,
5504 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5505 __func__, tagupper, taglower,
5506 c2->error_data.serv_response);
5507 rc = -1;
5509 cmd_free(h, c);
5510 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5511 tagupper, taglower);
5512 return rc;
5515 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5516 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5519 * ioccelerator mode 2 commands should be aborted via the
5520 * accelerated path, since RAID path is unaware of these commands,
5521 * but not all underlying firmware can handle abort TMF.
5522 * Change abort to physical device reset when abort TMF is unsupported.
5524 if (abort->cmd_type == CMD_IOACCEL2) {
5525 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5526 return hpsa_send_abort_ioaccel2(h, abort,
5527 reply_queue);
5528 else
5529 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5530 abort, reply_queue);
5532 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5535 /* Find out which reply queue a command was meant to return on */
5536 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5537 struct CommandList *c)
5539 if (c->cmd_type == CMD_IOACCEL2)
5540 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5541 return c->Header.ReplyQueue;
5545 * Limit concurrency of abort commands to prevent
5546 * over-subscription of commands
5548 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5550 #define ABORT_CMD_WAIT_MSECS 5000
5551 return !wait_event_timeout(h->abort_cmd_wait_queue,
5552 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5553 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5556 /* Send an abort for the specified command.
5557 * If the device and controller support it,
5558 * send a task abort request.
5560 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5563 int rc;
5564 struct ctlr_info *h;
5565 struct hpsa_scsi_dev_t *dev;
5566 struct CommandList *abort; /* pointer to command to be aborted */
5567 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5568 char msg[256]; /* For debug messaging. */
5569 int ml = 0;
5570 __le32 tagupper, taglower;
5571 int refcount, reply_queue;
5573 if (sc == NULL)
5574 return FAILED;
5576 if (sc->device == NULL)
5577 return FAILED;
5579 /* Find the controller of the command to be aborted */
5580 h = sdev_to_hba(sc->device);
5581 if (h == NULL)
5582 return FAILED;
5584 /* Find the device of the command to be aborted */
5585 dev = sc->device->hostdata;
5586 if (!dev) {
5587 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5588 msg);
5589 return FAILED;
5592 /* If controller locked up, we can guarantee command won't complete */
5593 if (lockup_detected(h)) {
5594 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5595 "ABORT FAILED, lockup detected");
5596 return FAILED;
5599 /* This is a good time to check if controller lockup has occurred */
5600 if (detect_controller_lockup(h)) {
5601 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5602 "ABORT FAILED, new lockup detected");
5603 return FAILED;
5606 /* Check that controller supports some kind of task abort */
5607 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5608 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5609 return FAILED;
5611 memset(msg, 0, sizeof(msg));
5612 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5613 h->scsi_host->host_no, sc->device->channel,
5614 sc->device->id, sc->device->lun,
5615 "Aborting command", sc);
5617 /* Get SCSI command to be aborted */
5618 abort = (struct CommandList *) sc->host_scribble;
5619 if (abort == NULL) {
5620 /* This can happen if the command already completed. */
5621 return SUCCESS;
5623 refcount = atomic_inc_return(&abort->refcount);
5624 if (refcount == 1) { /* Command is done already. */
5625 cmd_free(h, abort);
5626 return SUCCESS;
5629 /* Don't bother trying the abort if we know it won't work. */
5630 if (abort->cmd_type != CMD_IOACCEL2 &&
5631 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5632 cmd_free(h, abort);
5633 return FAILED;
5637 * Check that we're aborting the right command.
5638 * It's possible the CommandList already completed and got re-used.
5640 if (abort->scsi_cmd != sc) {
5641 cmd_free(h, abort);
5642 return SUCCESS;
5645 abort->abort_pending = true;
5646 hpsa_get_tag(h, abort, &taglower, &tagupper);
5647 reply_queue = hpsa_extract_reply_queue(h, abort);
5648 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5649 as = abort->scsi_cmd;
5650 if (as != NULL)
5651 ml += sprintf(msg+ml,
5652 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5653 as->cmd_len, as->cmnd[0], as->cmnd[1],
5654 as->serial_number);
5655 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5656 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5659 * Command is in flight, or possibly already completed
5660 * by the firmware (but not to the scsi mid layer) but we can't
5661 * distinguish which. Send the abort down.
5663 if (wait_for_available_abort_cmd(h)) {
5664 dev_warn(&h->pdev->dev,
5665 "%s FAILED, timeout waiting for an abort command to become available.\n",
5666 msg);
5667 cmd_free(h, abort);
5668 return FAILED;
5670 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5671 atomic_inc(&h->abort_cmds_available);
5672 wake_up_all(&h->abort_cmd_wait_queue);
5673 if (rc != 0) {
5674 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5675 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5676 "FAILED to abort command");
5677 cmd_free(h, abort);
5678 return FAILED;
5680 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5681 wait_event(h->event_sync_wait_queue,
5682 abort->scsi_cmd != sc || lockup_detected(h));
5683 cmd_free(h, abort);
5684 return !lockup_detected(h) ? SUCCESS : FAILED;
5688 * For operations with an associated SCSI command, a command block is allocated
5689 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5690 * block request tag as an index into a table of entries. cmd_tagged_free() is
5691 * the complement, although cmd_free() may be called instead.
5693 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5694 struct scsi_cmnd *scmd)
5696 int idx = hpsa_get_cmd_index(scmd);
5697 struct CommandList *c = h->cmd_pool + idx;
5699 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5700 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5701 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5702 /* The index value comes from the block layer, so if it's out of
5703 * bounds, it's probably not our bug.
5705 BUG();
5708 atomic_inc(&c->refcount);
5709 if (unlikely(!hpsa_is_cmd_idle(c))) {
5711 * We expect that the SCSI layer will hand us a unique tag
5712 * value. Thus, there should never be a collision here between
5713 * two requests...because if the selected command isn't idle
5714 * then someone is going to be very disappointed.
5716 dev_err(&h->pdev->dev,
5717 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5718 idx);
5719 if (c->scsi_cmd != NULL)
5720 scsi_print_command(c->scsi_cmd);
5721 scsi_print_command(scmd);
5724 hpsa_cmd_partial_init(h, idx, c);
5725 return c;
5728 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5731 * Release our reference to the block. We don't need to do anything
5732 * else to free it, because it is accessed by index. (There's no point
5733 * in checking the result of the decrement, since we cannot guarantee
5734 * that there isn't a concurrent abort which is also accessing it.)
5736 (void)atomic_dec(&c->refcount);
5740 * For operations that cannot sleep, a command block is allocated at init,
5741 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5742 * which ones are free or in use. Lock must be held when calling this.
5743 * cmd_free() is the complement.
5744 * This function never gives up and returns NULL. If it hangs,
5745 * another thread must call cmd_free() to free some tags.
5748 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5750 struct CommandList *c;
5751 int refcount, i;
5752 int offset = 0;
5755 * There is some *extremely* small but non-zero chance that that
5756 * multiple threads could get in here, and one thread could
5757 * be scanning through the list of bits looking for a free
5758 * one, but the free ones are always behind him, and other
5759 * threads sneak in behind him and eat them before he can
5760 * get to them, so that while there is always a free one, a
5761 * very unlucky thread might be starved anyway, never able to
5762 * beat the other threads. In reality, this happens so
5763 * infrequently as to be indistinguishable from never.
5765 * Note that we start allocating commands before the SCSI host structure
5766 * is initialized. Since the search starts at bit zero, this
5767 * all works, since we have at least one command structure available;
5768 * however, it means that the structures with the low indexes have to be
5769 * reserved for driver-initiated requests, while requests from the block
5770 * layer will use the higher indexes.
5773 for (;;) {
5774 i = find_next_zero_bit(h->cmd_pool_bits,
5775 HPSA_NRESERVED_CMDS,
5776 offset);
5777 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5778 offset = 0;
5779 continue;
5781 c = h->cmd_pool + i;
5782 refcount = atomic_inc_return(&c->refcount);
5783 if (unlikely(refcount > 1)) {
5784 cmd_free(h, c); /* already in use */
5785 offset = (i + 1) % HPSA_NRESERVED_CMDS;
5786 continue;
5788 set_bit(i & (BITS_PER_LONG - 1),
5789 h->cmd_pool_bits + (i / BITS_PER_LONG));
5790 break; /* it's ours now. */
5792 hpsa_cmd_partial_init(h, i, c);
5793 return c;
5797 * This is the complementary operation to cmd_alloc(). Note, however, in some
5798 * corner cases it may also be used to free blocks allocated by
5799 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5800 * the clear-bit is harmless.
5802 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5804 if (atomic_dec_and_test(&c->refcount)) {
5805 int i;
5807 i = c - h->cmd_pool;
5808 clear_bit(i & (BITS_PER_LONG - 1),
5809 h->cmd_pool_bits + (i / BITS_PER_LONG));
5813 #ifdef CONFIG_COMPAT
5815 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5816 void __user *arg)
5818 IOCTL32_Command_struct __user *arg32 =
5819 (IOCTL32_Command_struct __user *) arg;
5820 IOCTL_Command_struct arg64;
5821 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5822 int err;
5823 u32 cp;
5825 memset(&arg64, 0, sizeof(arg64));
5826 err = 0;
5827 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5828 sizeof(arg64.LUN_info));
5829 err |= copy_from_user(&arg64.Request, &arg32->Request,
5830 sizeof(arg64.Request));
5831 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5832 sizeof(arg64.error_info));
5833 err |= get_user(arg64.buf_size, &arg32->buf_size);
5834 err |= get_user(cp, &arg32->buf);
5835 arg64.buf = compat_ptr(cp);
5836 err |= copy_to_user(p, &arg64, sizeof(arg64));
5838 if (err)
5839 return -EFAULT;
5841 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5842 if (err)
5843 return err;
5844 err |= copy_in_user(&arg32->error_info, &p->error_info,
5845 sizeof(arg32->error_info));
5846 if (err)
5847 return -EFAULT;
5848 return err;
5851 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5852 int cmd, void __user *arg)
5854 BIG_IOCTL32_Command_struct __user *arg32 =
5855 (BIG_IOCTL32_Command_struct __user *) arg;
5856 BIG_IOCTL_Command_struct arg64;
5857 BIG_IOCTL_Command_struct __user *p =
5858 compat_alloc_user_space(sizeof(arg64));
5859 int err;
5860 u32 cp;
5862 memset(&arg64, 0, sizeof(arg64));
5863 err = 0;
5864 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5865 sizeof(arg64.LUN_info));
5866 err |= copy_from_user(&arg64.Request, &arg32->Request,
5867 sizeof(arg64.Request));
5868 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5869 sizeof(arg64.error_info));
5870 err |= get_user(arg64.buf_size, &arg32->buf_size);
5871 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5872 err |= get_user(cp, &arg32->buf);
5873 arg64.buf = compat_ptr(cp);
5874 err |= copy_to_user(p, &arg64, sizeof(arg64));
5876 if (err)
5877 return -EFAULT;
5879 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5880 if (err)
5881 return err;
5882 err |= copy_in_user(&arg32->error_info, &p->error_info,
5883 sizeof(arg32->error_info));
5884 if (err)
5885 return -EFAULT;
5886 return err;
5889 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5891 switch (cmd) {
5892 case CCISS_GETPCIINFO:
5893 case CCISS_GETINTINFO:
5894 case CCISS_SETINTINFO:
5895 case CCISS_GETNODENAME:
5896 case CCISS_SETNODENAME:
5897 case CCISS_GETHEARTBEAT:
5898 case CCISS_GETBUSTYPES:
5899 case CCISS_GETFIRMVER:
5900 case CCISS_GETDRIVVER:
5901 case CCISS_REVALIDVOLS:
5902 case CCISS_DEREGDISK:
5903 case CCISS_REGNEWDISK:
5904 case CCISS_REGNEWD:
5905 case CCISS_RESCANDISK:
5906 case CCISS_GETLUNINFO:
5907 return hpsa_ioctl(dev, cmd, arg);
5909 case CCISS_PASSTHRU32:
5910 return hpsa_ioctl32_passthru(dev, cmd, arg);
5911 case CCISS_BIG_PASSTHRU32:
5912 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5914 default:
5915 return -ENOIOCTLCMD;
5918 #endif
5920 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5922 struct hpsa_pci_info pciinfo;
5924 if (!argp)
5925 return -EINVAL;
5926 pciinfo.domain = pci_domain_nr(h->pdev->bus);
5927 pciinfo.bus = h->pdev->bus->number;
5928 pciinfo.dev_fn = h->pdev->devfn;
5929 pciinfo.board_id = h->board_id;
5930 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5931 return -EFAULT;
5932 return 0;
5935 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5937 DriverVer_type DriverVer;
5938 unsigned char vmaj, vmin, vsubmin;
5939 int rc;
5941 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5942 &vmaj, &vmin, &vsubmin);
5943 if (rc != 3) {
5944 dev_info(&h->pdev->dev, "driver version string '%s' "
5945 "unrecognized.", HPSA_DRIVER_VERSION);
5946 vmaj = 0;
5947 vmin = 0;
5948 vsubmin = 0;
5950 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5951 if (!argp)
5952 return -EINVAL;
5953 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5954 return -EFAULT;
5955 return 0;
5958 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5960 IOCTL_Command_struct iocommand;
5961 struct CommandList *c;
5962 char *buff = NULL;
5963 u64 temp64;
5964 int rc = 0;
5966 if (!argp)
5967 return -EINVAL;
5968 if (!capable(CAP_SYS_RAWIO))
5969 return -EPERM;
5970 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5971 return -EFAULT;
5972 if ((iocommand.buf_size < 1) &&
5973 (iocommand.Request.Type.Direction != XFER_NONE)) {
5974 return -EINVAL;
5976 if (iocommand.buf_size > 0) {
5977 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5978 if (buff == NULL)
5979 return -ENOMEM;
5980 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5981 /* Copy the data into the buffer we created */
5982 if (copy_from_user(buff, iocommand.buf,
5983 iocommand.buf_size)) {
5984 rc = -EFAULT;
5985 goto out_kfree;
5987 } else {
5988 memset(buff, 0, iocommand.buf_size);
5991 c = cmd_alloc(h);
5993 /* Fill in the command type */
5994 c->cmd_type = CMD_IOCTL_PEND;
5995 c->scsi_cmd = SCSI_CMD_BUSY;
5996 /* Fill in Command Header */
5997 c->Header.ReplyQueue = 0; /* unused in simple mode */
5998 if (iocommand.buf_size > 0) { /* buffer to fill */
5999 c->Header.SGList = 1;
6000 c->Header.SGTotal = cpu_to_le16(1);
6001 } else { /* no buffers to fill */
6002 c->Header.SGList = 0;
6003 c->Header.SGTotal = cpu_to_le16(0);
6005 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6007 /* Fill in Request block */
6008 memcpy(&c->Request, &iocommand.Request,
6009 sizeof(c->Request));
6011 /* Fill in the scatter gather information */
6012 if (iocommand.buf_size > 0) {
6013 temp64 = pci_map_single(h->pdev, buff,
6014 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6015 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6016 c->SG[0].Addr = cpu_to_le64(0);
6017 c->SG[0].Len = cpu_to_le32(0);
6018 rc = -ENOMEM;
6019 goto out;
6021 c->SG[0].Addr = cpu_to_le64(temp64);
6022 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6023 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6025 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6026 if (iocommand.buf_size > 0)
6027 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6028 check_ioctl_unit_attention(h, c);
6029 if (rc) {
6030 rc = -EIO;
6031 goto out;
6034 /* Copy the error information out */
6035 memcpy(&iocommand.error_info, c->err_info,
6036 sizeof(iocommand.error_info));
6037 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6038 rc = -EFAULT;
6039 goto out;
6041 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6042 iocommand.buf_size > 0) {
6043 /* Copy the data out of the buffer we created */
6044 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6045 rc = -EFAULT;
6046 goto out;
6049 out:
6050 cmd_free(h, c);
6051 out_kfree:
6052 kfree(buff);
6053 return rc;
6056 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6058 BIG_IOCTL_Command_struct *ioc;
6059 struct CommandList *c;
6060 unsigned char **buff = NULL;
6061 int *buff_size = NULL;
6062 u64 temp64;
6063 BYTE sg_used = 0;
6064 int status = 0;
6065 u32 left;
6066 u32 sz;
6067 BYTE __user *data_ptr;
6069 if (!argp)
6070 return -EINVAL;
6071 if (!capable(CAP_SYS_RAWIO))
6072 return -EPERM;
6073 ioc = (BIG_IOCTL_Command_struct *)
6074 kmalloc(sizeof(*ioc), GFP_KERNEL);
6075 if (!ioc) {
6076 status = -ENOMEM;
6077 goto cleanup1;
6079 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6080 status = -EFAULT;
6081 goto cleanup1;
6083 if ((ioc->buf_size < 1) &&
6084 (ioc->Request.Type.Direction != XFER_NONE)) {
6085 status = -EINVAL;
6086 goto cleanup1;
6088 /* Check kmalloc limits using all SGs */
6089 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6090 status = -EINVAL;
6091 goto cleanup1;
6093 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6094 status = -EINVAL;
6095 goto cleanup1;
6097 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6098 if (!buff) {
6099 status = -ENOMEM;
6100 goto cleanup1;
6102 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6103 if (!buff_size) {
6104 status = -ENOMEM;
6105 goto cleanup1;
6107 left = ioc->buf_size;
6108 data_ptr = ioc->buf;
6109 while (left) {
6110 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6111 buff_size[sg_used] = sz;
6112 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6113 if (buff[sg_used] == NULL) {
6114 status = -ENOMEM;
6115 goto cleanup1;
6117 if (ioc->Request.Type.Direction & XFER_WRITE) {
6118 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6119 status = -EFAULT;
6120 goto cleanup1;
6122 } else
6123 memset(buff[sg_used], 0, sz);
6124 left -= sz;
6125 data_ptr += sz;
6126 sg_used++;
6128 c = cmd_alloc(h);
6130 c->cmd_type = CMD_IOCTL_PEND;
6131 c->scsi_cmd = SCSI_CMD_BUSY;
6132 c->Header.ReplyQueue = 0;
6133 c->Header.SGList = (u8) sg_used;
6134 c->Header.SGTotal = cpu_to_le16(sg_used);
6135 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6136 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6137 if (ioc->buf_size > 0) {
6138 int i;
6139 for (i = 0; i < sg_used; i++) {
6140 temp64 = pci_map_single(h->pdev, buff[i],
6141 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6142 if (dma_mapping_error(&h->pdev->dev,
6143 (dma_addr_t) temp64)) {
6144 c->SG[i].Addr = cpu_to_le64(0);
6145 c->SG[i].Len = cpu_to_le32(0);
6146 hpsa_pci_unmap(h->pdev, c, i,
6147 PCI_DMA_BIDIRECTIONAL);
6148 status = -ENOMEM;
6149 goto cleanup0;
6151 c->SG[i].Addr = cpu_to_le64(temp64);
6152 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6153 c->SG[i].Ext = cpu_to_le32(0);
6155 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6157 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6158 if (sg_used)
6159 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6160 check_ioctl_unit_attention(h, c);
6161 if (status) {
6162 status = -EIO;
6163 goto cleanup0;
6166 /* Copy the error information out */
6167 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6168 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6169 status = -EFAULT;
6170 goto cleanup0;
6172 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6173 int i;
6175 /* Copy the data out of the buffer we created */
6176 BYTE __user *ptr = ioc->buf;
6177 for (i = 0; i < sg_used; i++) {
6178 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6179 status = -EFAULT;
6180 goto cleanup0;
6182 ptr += buff_size[i];
6185 status = 0;
6186 cleanup0:
6187 cmd_free(h, c);
6188 cleanup1:
6189 if (buff) {
6190 int i;
6192 for (i = 0; i < sg_used; i++)
6193 kfree(buff[i]);
6194 kfree(buff);
6196 kfree(buff_size);
6197 kfree(ioc);
6198 return status;
6201 static void check_ioctl_unit_attention(struct ctlr_info *h,
6202 struct CommandList *c)
6204 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6205 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6206 (void) check_for_unit_attention(h, c);
6210 * ioctl
6212 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6214 struct ctlr_info *h;
6215 void __user *argp = (void __user *)arg;
6216 int rc;
6218 h = sdev_to_hba(dev);
6220 switch (cmd) {
6221 case CCISS_DEREGDISK:
6222 case CCISS_REGNEWDISK:
6223 case CCISS_REGNEWD:
6224 hpsa_scan_start(h->scsi_host);
6225 return 0;
6226 case CCISS_GETPCIINFO:
6227 return hpsa_getpciinfo_ioctl(h, argp);
6228 case CCISS_GETDRIVVER:
6229 return hpsa_getdrivver_ioctl(h, argp);
6230 case CCISS_PASSTHRU:
6231 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6232 return -EAGAIN;
6233 rc = hpsa_passthru_ioctl(h, argp);
6234 atomic_inc(&h->passthru_cmds_avail);
6235 return rc;
6236 case CCISS_BIG_PASSTHRU:
6237 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6238 return -EAGAIN;
6239 rc = hpsa_big_passthru_ioctl(h, argp);
6240 atomic_inc(&h->passthru_cmds_avail);
6241 return rc;
6242 default:
6243 return -ENOTTY;
6247 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6248 u8 reset_type)
6250 struct CommandList *c;
6252 c = cmd_alloc(h);
6254 /* fill_cmd can't fail here, no data buffer to map */
6255 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6256 RAID_CTLR_LUNID, TYPE_MSG);
6257 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6258 c->waiting = NULL;
6259 enqueue_cmd_and_start_io(h, c);
6260 /* Don't wait for completion, the reset won't complete. Don't free
6261 * the command either. This is the last command we will send before
6262 * re-initializing everything, so it doesn't matter and won't leak.
6264 return;
6267 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6268 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6269 int cmd_type)
6271 int pci_dir = XFER_NONE;
6272 u64 tag; /* for commands to be aborted */
6274 c->cmd_type = CMD_IOCTL_PEND;
6275 c->scsi_cmd = SCSI_CMD_BUSY;
6276 c->Header.ReplyQueue = 0;
6277 if (buff != NULL && size > 0) {
6278 c->Header.SGList = 1;
6279 c->Header.SGTotal = cpu_to_le16(1);
6280 } else {
6281 c->Header.SGList = 0;
6282 c->Header.SGTotal = cpu_to_le16(0);
6284 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6286 if (cmd_type == TYPE_CMD) {
6287 switch (cmd) {
6288 case HPSA_INQUIRY:
6289 /* are we trying to read a vital product page */
6290 if (page_code & VPD_PAGE) {
6291 c->Request.CDB[1] = 0x01;
6292 c->Request.CDB[2] = (page_code & 0xff);
6294 c->Request.CDBLen = 6;
6295 c->Request.type_attr_dir =
6296 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6297 c->Request.Timeout = 0;
6298 c->Request.CDB[0] = HPSA_INQUIRY;
6299 c->Request.CDB[4] = size & 0xFF;
6300 break;
6301 case HPSA_REPORT_LOG:
6302 case HPSA_REPORT_PHYS:
6303 /* Talking to controller so It's a physical command
6304 mode = 00 target = 0. Nothing to write.
6306 c->Request.CDBLen = 12;
6307 c->Request.type_attr_dir =
6308 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6309 c->Request.Timeout = 0;
6310 c->Request.CDB[0] = cmd;
6311 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6312 c->Request.CDB[7] = (size >> 16) & 0xFF;
6313 c->Request.CDB[8] = (size >> 8) & 0xFF;
6314 c->Request.CDB[9] = size & 0xFF;
6315 break;
6316 case HPSA_CACHE_FLUSH:
6317 c->Request.CDBLen = 12;
6318 c->Request.type_attr_dir =
6319 TYPE_ATTR_DIR(cmd_type,
6320 ATTR_SIMPLE, XFER_WRITE);
6321 c->Request.Timeout = 0;
6322 c->Request.CDB[0] = BMIC_WRITE;
6323 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6324 c->Request.CDB[7] = (size >> 8) & 0xFF;
6325 c->Request.CDB[8] = size & 0xFF;
6326 break;
6327 case TEST_UNIT_READY:
6328 c->Request.CDBLen = 6;
6329 c->Request.type_attr_dir =
6330 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6331 c->Request.Timeout = 0;
6332 break;
6333 case HPSA_GET_RAID_MAP:
6334 c->Request.CDBLen = 12;
6335 c->Request.type_attr_dir =
6336 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6337 c->Request.Timeout = 0;
6338 c->Request.CDB[0] = HPSA_CISS_READ;
6339 c->Request.CDB[1] = cmd;
6340 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6341 c->Request.CDB[7] = (size >> 16) & 0xFF;
6342 c->Request.CDB[8] = (size >> 8) & 0xFF;
6343 c->Request.CDB[9] = size & 0xFF;
6344 break;
6345 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6346 c->Request.CDBLen = 10;
6347 c->Request.type_attr_dir =
6348 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6349 c->Request.Timeout = 0;
6350 c->Request.CDB[0] = BMIC_READ;
6351 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6352 c->Request.CDB[7] = (size >> 16) & 0xFF;
6353 c->Request.CDB[8] = (size >> 8) & 0xFF;
6354 break;
6355 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6356 c->Request.CDBLen = 10;
6357 c->Request.type_attr_dir =
6358 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6359 c->Request.Timeout = 0;
6360 c->Request.CDB[0] = BMIC_READ;
6361 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6362 c->Request.CDB[7] = (size >> 16) & 0xFF;
6363 c->Request.CDB[8] = (size >> 8) & 0XFF;
6364 break;
6365 default:
6366 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6367 BUG();
6368 return -1;
6370 } else if (cmd_type == TYPE_MSG) {
6371 switch (cmd) {
6373 case HPSA_DEVICE_RESET_MSG:
6374 c->Request.CDBLen = 16;
6375 c->Request.type_attr_dir =
6376 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6377 c->Request.Timeout = 0; /* Don't time out */
6378 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6379 c->Request.CDB[0] = cmd;
6380 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6381 /* If bytes 4-7 are zero, it means reset the */
6382 /* LunID device */
6383 c->Request.CDB[4] = 0x00;
6384 c->Request.CDB[5] = 0x00;
6385 c->Request.CDB[6] = 0x00;
6386 c->Request.CDB[7] = 0x00;
6387 break;
6388 case HPSA_ABORT_MSG:
6389 memcpy(&tag, buff, sizeof(tag));
6390 dev_dbg(&h->pdev->dev,
6391 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6392 tag, c->Header.tag);
6393 c->Request.CDBLen = 16;
6394 c->Request.type_attr_dir =
6395 TYPE_ATTR_DIR(cmd_type,
6396 ATTR_SIMPLE, XFER_WRITE);
6397 c->Request.Timeout = 0; /* Don't time out */
6398 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6399 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6400 c->Request.CDB[2] = 0x00; /* reserved */
6401 c->Request.CDB[3] = 0x00; /* reserved */
6402 /* Tag to abort goes in CDB[4]-CDB[11] */
6403 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6404 c->Request.CDB[12] = 0x00; /* reserved */
6405 c->Request.CDB[13] = 0x00; /* reserved */
6406 c->Request.CDB[14] = 0x00; /* reserved */
6407 c->Request.CDB[15] = 0x00; /* reserved */
6408 break;
6409 default:
6410 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6411 cmd);
6412 BUG();
6414 } else {
6415 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6416 BUG();
6419 switch (GET_DIR(c->Request.type_attr_dir)) {
6420 case XFER_READ:
6421 pci_dir = PCI_DMA_FROMDEVICE;
6422 break;
6423 case XFER_WRITE:
6424 pci_dir = PCI_DMA_TODEVICE;
6425 break;
6426 case XFER_NONE:
6427 pci_dir = PCI_DMA_NONE;
6428 break;
6429 default:
6430 pci_dir = PCI_DMA_BIDIRECTIONAL;
6432 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6433 return -1;
6434 return 0;
6438 * Map (physical) PCI mem into (virtual) kernel space
6440 static void __iomem *remap_pci_mem(ulong base, ulong size)
6442 ulong page_base = ((ulong) base) & PAGE_MASK;
6443 ulong page_offs = ((ulong) base) - page_base;
6444 void __iomem *page_remapped = ioremap_nocache(page_base,
6445 page_offs + size);
6447 return page_remapped ? (page_remapped + page_offs) : NULL;
6450 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6452 return h->access.command_completed(h, q);
6455 static inline bool interrupt_pending(struct ctlr_info *h)
6457 return h->access.intr_pending(h);
6460 static inline long interrupt_not_for_us(struct ctlr_info *h)
6462 return (h->access.intr_pending(h) == 0) ||
6463 (h->interrupts_enabled == 0);
6466 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6467 u32 raw_tag)
6469 if (unlikely(tag_index >= h->nr_cmds)) {
6470 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6471 return 1;
6473 return 0;
6476 static inline void finish_cmd(struct CommandList *c)
6478 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6479 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6480 || c->cmd_type == CMD_IOACCEL2))
6481 complete_scsi_command(c);
6482 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6483 complete(c->waiting);
6486 /* process completion of an indexed ("direct lookup") command */
6487 static inline void process_indexed_cmd(struct ctlr_info *h,
6488 u32 raw_tag)
6490 u32 tag_index;
6491 struct CommandList *c;
6493 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6494 if (!bad_tag(h, tag_index, raw_tag)) {
6495 c = h->cmd_pool + tag_index;
6496 finish_cmd(c);
6500 /* Some controllers, like p400, will give us one interrupt
6501 * after a soft reset, even if we turned interrupts off.
6502 * Only need to check for this in the hpsa_xxx_discard_completions
6503 * functions.
6505 static int ignore_bogus_interrupt(struct ctlr_info *h)
6507 if (likely(!reset_devices))
6508 return 0;
6510 if (likely(h->interrupts_enabled))
6511 return 0;
6513 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6514 "(known firmware bug.) Ignoring.\n");
6516 return 1;
6520 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6521 * Relies on (h-q[x] == x) being true for x such that
6522 * 0 <= x < MAX_REPLY_QUEUES.
6524 static struct ctlr_info *queue_to_hba(u8 *queue)
6526 return container_of((queue - *queue), struct ctlr_info, q[0]);
6529 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6531 struct ctlr_info *h = queue_to_hba(queue);
6532 u8 q = *(u8 *) queue;
6533 u32 raw_tag;
6535 if (ignore_bogus_interrupt(h))
6536 return IRQ_NONE;
6538 if (interrupt_not_for_us(h))
6539 return IRQ_NONE;
6540 h->last_intr_timestamp = get_jiffies_64();
6541 while (interrupt_pending(h)) {
6542 raw_tag = get_next_completion(h, q);
6543 while (raw_tag != FIFO_EMPTY)
6544 raw_tag = next_command(h, q);
6546 return IRQ_HANDLED;
6549 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6551 struct ctlr_info *h = queue_to_hba(queue);
6552 u32 raw_tag;
6553 u8 q = *(u8 *) queue;
6555 if (ignore_bogus_interrupt(h))
6556 return IRQ_NONE;
6558 h->last_intr_timestamp = get_jiffies_64();
6559 raw_tag = get_next_completion(h, q);
6560 while (raw_tag != FIFO_EMPTY)
6561 raw_tag = next_command(h, q);
6562 return IRQ_HANDLED;
6565 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6567 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6568 u32 raw_tag;
6569 u8 q = *(u8 *) queue;
6571 if (interrupt_not_for_us(h))
6572 return IRQ_NONE;
6573 h->last_intr_timestamp = get_jiffies_64();
6574 while (interrupt_pending(h)) {
6575 raw_tag = get_next_completion(h, q);
6576 while (raw_tag != FIFO_EMPTY) {
6577 process_indexed_cmd(h, raw_tag);
6578 raw_tag = next_command(h, q);
6581 return IRQ_HANDLED;
6584 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6586 struct ctlr_info *h = queue_to_hba(queue);
6587 u32 raw_tag;
6588 u8 q = *(u8 *) queue;
6590 h->last_intr_timestamp = get_jiffies_64();
6591 raw_tag = get_next_completion(h, q);
6592 while (raw_tag != FIFO_EMPTY) {
6593 process_indexed_cmd(h, raw_tag);
6594 raw_tag = next_command(h, q);
6596 return IRQ_HANDLED;
6599 /* Send a message CDB to the firmware. Careful, this only works
6600 * in simple mode, not performant mode due to the tag lookup.
6601 * We only ever use this immediately after a controller reset.
6603 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6604 unsigned char type)
6606 struct Command {
6607 struct CommandListHeader CommandHeader;
6608 struct RequestBlock Request;
6609 struct ErrDescriptor ErrorDescriptor;
6611 struct Command *cmd;
6612 static const size_t cmd_sz = sizeof(*cmd) +
6613 sizeof(cmd->ErrorDescriptor);
6614 dma_addr_t paddr64;
6615 __le32 paddr32;
6616 u32 tag;
6617 void __iomem *vaddr;
6618 int i, err;
6620 vaddr = pci_ioremap_bar(pdev, 0);
6621 if (vaddr == NULL)
6622 return -ENOMEM;
6624 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6625 * CCISS commands, so they must be allocated from the lower 4GiB of
6626 * memory.
6628 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6629 if (err) {
6630 iounmap(vaddr);
6631 return err;
6634 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6635 if (cmd == NULL) {
6636 iounmap(vaddr);
6637 return -ENOMEM;
6640 /* This must fit, because of the 32-bit consistent DMA mask. Also,
6641 * although there's no guarantee, we assume that the address is at
6642 * least 4-byte aligned (most likely, it's page-aligned).
6644 paddr32 = cpu_to_le32(paddr64);
6646 cmd->CommandHeader.ReplyQueue = 0;
6647 cmd->CommandHeader.SGList = 0;
6648 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6649 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6650 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6652 cmd->Request.CDBLen = 16;
6653 cmd->Request.type_attr_dir =
6654 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6655 cmd->Request.Timeout = 0; /* Don't time out */
6656 cmd->Request.CDB[0] = opcode;
6657 cmd->Request.CDB[1] = type;
6658 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6659 cmd->ErrorDescriptor.Addr =
6660 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6661 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6663 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6665 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6666 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6667 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6668 break;
6669 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6672 iounmap(vaddr);
6674 /* we leak the DMA buffer here ... no choice since the controller could
6675 * still complete the command.
6677 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6678 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6679 opcode, type);
6680 return -ETIMEDOUT;
6683 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6685 if (tag & HPSA_ERROR_BIT) {
6686 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6687 opcode, type);
6688 return -EIO;
6691 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6692 opcode, type);
6693 return 0;
6696 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6698 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6699 void __iomem *vaddr, u32 use_doorbell)
6702 if (use_doorbell) {
6703 /* For everything after the P600, the PCI power state method
6704 * of resetting the controller doesn't work, so we have this
6705 * other way using the doorbell register.
6707 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6708 writel(use_doorbell, vaddr + SA5_DOORBELL);
6710 /* PMC hardware guys tell us we need a 10 second delay after
6711 * doorbell reset and before any attempt to talk to the board
6712 * at all to ensure that this actually works and doesn't fall
6713 * over in some weird corner cases.
6715 msleep(10000);
6716 } else { /* Try to do it the PCI power state way */
6718 /* Quoting from the Open CISS Specification: "The Power
6719 * Management Control/Status Register (CSR) controls the power
6720 * state of the device. The normal operating state is D0,
6721 * CSR=00h. The software off state is D3, CSR=03h. To reset
6722 * the controller, place the interface device in D3 then to D0,
6723 * this causes a secondary PCI reset which will reset the
6724 * controller." */
6726 int rc = 0;
6728 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6730 /* enter the D3hot power management state */
6731 rc = pci_set_power_state(pdev, PCI_D3hot);
6732 if (rc)
6733 return rc;
6735 msleep(500);
6737 /* enter the D0 power management state */
6738 rc = pci_set_power_state(pdev, PCI_D0);
6739 if (rc)
6740 return rc;
6743 * The P600 requires a small delay when changing states.
6744 * Otherwise we may think the board did not reset and we bail.
6745 * This for kdump only and is particular to the P600.
6747 msleep(500);
6749 return 0;
6752 static void init_driver_version(char *driver_version, int len)
6754 memset(driver_version, 0, len);
6755 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6758 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6760 char *driver_version;
6761 int i, size = sizeof(cfgtable->driver_version);
6763 driver_version = kmalloc(size, GFP_KERNEL);
6764 if (!driver_version)
6765 return -ENOMEM;
6767 init_driver_version(driver_version, size);
6768 for (i = 0; i < size; i++)
6769 writeb(driver_version[i], &cfgtable->driver_version[i]);
6770 kfree(driver_version);
6771 return 0;
6774 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6775 unsigned char *driver_ver)
6777 int i;
6779 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6780 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6783 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6786 char *driver_ver, *old_driver_ver;
6787 int rc, size = sizeof(cfgtable->driver_version);
6789 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6790 if (!old_driver_ver)
6791 return -ENOMEM;
6792 driver_ver = old_driver_ver + size;
6794 /* After a reset, the 32 bytes of "driver version" in the cfgtable
6795 * should have been changed, otherwise we know the reset failed.
6797 init_driver_version(old_driver_ver, size);
6798 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6799 rc = !memcmp(driver_ver, old_driver_ver, size);
6800 kfree(old_driver_ver);
6801 return rc;
6803 /* This does a hard reset of the controller using PCI power management
6804 * states or the using the doorbell register.
6806 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6808 u64 cfg_offset;
6809 u32 cfg_base_addr;
6810 u64 cfg_base_addr_index;
6811 void __iomem *vaddr;
6812 unsigned long paddr;
6813 u32 misc_fw_support;
6814 int rc;
6815 struct CfgTable __iomem *cfgtable;
6816 u32 use_doorbell;
6817 u16 command_register;
6819 /* For controllers as old as the P600, this is very nearly
6820 * the same thing as
6822 * pci_save_state(pci_dev);
6823 * pci_set_power_state(pci_dev, PCI_D3hot);
6824 * pci_set_power_state(pci_dev, PCI_D0);
6825 * pci_restore_state(pci_dev);
6827 * For controllers newer than the P600, the pci power state
6828 * method of resetting doesn't work so we have another way
6829 * using the doorbell register.
6832 if (!ctlr_is_resettable(board_id)) {
6833 dev_warn(&pdev->dev, "Controller not resettable\n");
6834 return -ENODEV;
6837 /* if controller is soft- but not hard resettable... */
6838 if (!ctlr_is_hard_resettable(board_id))
6839 return -ENOTSUPP; /* try soft reset later. */
6841 /* Save the PCI command register */
6842 pci_read_config_word(pdev, 4, &command_register);
6843 pci_save_state(pdev);
6845 /* find the first memory BAR, so we can find the cfg table */
6846 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6847 if (rc)
6848 return rc;
6849 vaddr = remap_pci_mem(paddr, 0x250);
6850 if (!vaddr)
6851 return -ENOMEM;
6853 /* find cfgtable in order to check if reset via doorbell is supported */
6854 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6855 &cfg_base_addr_index, &cfg_offset);
6856 if (rc)
6857 goto unmap_vaddr;
6858 cfgtable = remap_pci_mem(pci_resource_start(pdev,
6859 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6860 if (!cfgtable) {
6861 rc = -ENOMEM;
6862 goto unmap_vaddr;
6864 rc = write_driver_ver_to_cfgtable(cfgtable);
6865 if (rc)
6866 goto unmap_cfgtable;
6868 /* If reset via doorbell register is supported, use that.
6869 * There are two such methods. Favor the newest method.
6871 misc_fw_support = readl(&cfgtable->misc_fw_support);
6872 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6873 if (use_doorbell) {
6874 use_doorbell = DOORBELL_CTLR_RESET2;
6875 } else {
6876 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6877 if (use_doorbell) {
6878 dev_warn(&pdev->dev,
6879 "Soft reset not supported. Firmware update is required.\n");
6880 rc = -ENOTSUPP; /* try soft reset */
6881 goto unmap_cfgtable;
6885 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6886 if (rc)
6887 goto unmap_cfgtable;
6889 pci_restore_state(pdev);
6890 pci_write_config_word(pdev, 4, command_register);
6892 /* Some devices (notably the HP Smart Array 5i Controller)
6893 need a little pause here */
6894 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6896 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6897 if (rc) {
6898 dev_warn(&pdev->dev,
6899 "Failed waiting for board to become ready after hard reset\n");
6900 goto unmap_cfgtable;
6903 rc = controller_reset_failed(vaddr);
6904 if (rc < 0)
6905 goto unmap_cfgtable;
6906 if (rc) {
6907 dev_warn(&pdev->dev, "Unable to successfully reset "
6908 "controller. Will try soft reset.\n");
6909 rc = -ENOTSUPP;
6910 } else {
6911 dev_info(&pdev->dev, "board ready after hard reset.\n");
6914 unmap_cfgtable:
6915 iounmap(cfgtable);
6917 unmap_vaddr:
6918 iounmap(vaddr);
6919 return rc;
6923 * We cannot read the structure directly, for portability we must use
6924 * the io functions.
6925 * This is for debug only.
6927 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6929 #ifdef HPSA_DEBUG
6930 int i;
6931 char temp_name[17];
6933 dev_info(dev, "Controller Configuration information\n");
6934 dev_info(dev, "------------------------------------\n");
6935 for (i = 0; i < 4; i++)
6936 temp_name[i] = readb(&(tb->Signature[i]));
6937 temp_name[4] = '\0';
6938 dev_info(dev, " Signature = %s\n", temp_name);
6939 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6940 dev_info(dev, " Transport methods supported = 0x%x\n",
6941 readl(&(tb->TransportSupport)));
6942 dev_info(dev, " Transport methods active = 0x%x\n",
6943 readl(&(tb->TransportActive)));
6944 dev_info(dev, " Requested transport Method = 0x%x\n",
6945 readl(&(tb->HostWrite.TransportRequest)));
6946 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6947 readl(&(tb->HostWrite.CoalIntDelay)));
6948 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6949 readl(&(tb->HostWrite.CoalIntCount)));
6950 dev_info(dev, " Max outstanding commands = %d\n",
6951 readl(&(tb->CmdsOutMax)));
6952 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6953 for (i = 0; i < 16; i++)
6954 temp_name[i] = readb(&(tb->ServerName[i]));
6955 temp_name[16] = '\0';
6956 dev_info(dev, " Server Name = %s\n", temp_name);
6957 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
6958 readl(&(tb->HeartBeat)));
6959 #endif /* HPSA_DEBUG */
6962 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6964 int i, offset, mem_type, bar_type;
6966 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6967 return 0;
6968 offset = 0;
6969 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6970 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6971 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6972 offset += 4;
6973 else {
6974 mem_type = pci_resource_flags(pdev, i) &
6975 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6976 switch (mem_type) {
6977 case PCI_BASE_ADDRESS_MEM_TYPE_32:
6978 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6979 offset += 4; /* 32 bit */
6980 break;
6981 case PCI_BASE_ADDRESS_MEM_TYPE_64:
6982 offset += 8;
6983 break;
6984 default: /* reserved in PCI 2.2 */
6985 dev_warn(&pdev->dev,
6986 "base address is invalid\n");
6987 return -1;
6988 break;
6991 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6992 return i + 1;
6994 return -1;
6997 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6999 if (h->msix_vector) {
7000 if (h->pdev->msix_enabled)
7001 pci_disable_msix(h->pdev);
7002 h->msix_vector = 0;
7003 } else if (h->msi_vector) {
7004 if (h->pdev->msi_enabled)
7005 pci_disable_msi(h->pdev);
7006 h->msi_vector = 0;
7010 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7011 * controllers that are capable. If not, we use legacy INTx mode.
7013 static void hpsa_interrupt_mode(struct ctlr_info *h)
7015 #ifdef CONFIG_PCI_MSI
7016 int err, i;
7017 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7019 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7020 hpsa_msix_entries[i].vector = 0;
7021 hpsa_msix_entries[i].entry = i;
7024 /* Some boards advertise MSI but don't really support it */
7025 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7026 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7027 goto default_int_mode;
7028 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7029 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7030 h->msix_vector = MAX_REPLY_QUEUES;
7031 if (h->msix_vector > num_online_cpus())
7032 h->msix_vector = num_online_cpus();
7033 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7034 1, h->msix_vector);
7035 if (err < 0) {
7036 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7037 h->msix_vector = 0;
7038 goto single_msi_mode;
7039 } else if (err < h->msix_vector) {
7040 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7041 "available\n", err);
7043 h->msix_vector = err;
7044 for (i = 0; i < h->msix_vector; i++)
7045 h->intr[i] = hpsa_msix_entries[i].vector;
7046 return;
7048 single_msi_mode:
7049 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7050 dev_info(&h->pdev->dev, "MSI capable controller\n");
7051 if (!pci_enable_msi(h->pdev))
7052 h->msi_vector = 1;
7053 else
7054 dev_warn(&h->pdev->dev, "MSI init failed\n");
7056 default_int_mode:
7057 #endif /* CONFIG_PCI_MSI */
7058 /* if we get here we're going to use the default interrupt mode */
7059 h->intr[h->intr_mode] = h->pdev->irq;
7062 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7064 int i;
7065 u32 subsystem_vendor_id, subsystem_device_id;
7067 subsystem_vendor_id = pdev->subsystem_vendor;
7068 subsystem_device_id = pdev->subsystem_device;
7069 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7070 subsystem_vendor_id;
7072 for (i = 0; i < ARRAY_SIZE(products); i++)
7073 if (*board_id == products[i].board_id)
7074 return i;
7076 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7077 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7078 !hpsa_allow_any) {
7079 dev_warn(&pdev->dev, "unrecognized board ID: "
7080 "0x%08x, ignoring.\n", *board_id);
7081 return -ENODEV;
7083 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7086 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7087 unsigned long *memory_bar)
7089 int i;
7091 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7092 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7093 /* addressing mode bits already removed */
7094 *memory_bar = pci_resource_start(pdev, i);
7095 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7096 *memory_bar);
7097 return 0;
7099 dev_warn(&pdev->dev, "no memory BAR found\n");
7100 return -ENODEV;
7103 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7104 int wait_for_ready)
7106 int i, iterations;
7107 u32 scratchpad;
7108 if (wait_for_ready)
7109 iterations = HPSA_BOARD_READY_ITERATIONS;
7110 else
7111 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7113 for (i = 0; i < iterations; i++) {
7114 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7115 if (wait_for_ready) {
7116 if (scratchpad == HPSA_FIRMWARE_READY)
7117 return 0;
7118 } else {
7119 if (scratchpad != HPSA_FIRMWARE_READY)
7120 return 0;
7122 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7124 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7125 return -ENODEV;
7128 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7129 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7130 u64 *cfg_offset)
7132 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7133 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7134 *cfg_base_addr &= (u32) 0x0000ffff;
7135 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7136 if (*cfg_base_addr_index == -1) {
7137 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7138 return -ENODEV;
7140 return 0;
7143 static void hpsa_free_cfgtables(struct ctlr_info *h)
7145 if (h->transtable) {
7146 iounmap(h->transtable);
7147 h->transtable = NULL;
7149 if (h->cfgtable) {
7150 iounmap(h->cfgtable);
7151 h->cfgtable = NULL;
7155 /* Find and map CISS config table and transfer table
7156 + * several items must be unmapped (freed) later
7157 + * */
7158 static int hpsa_find_cfgtables(struct ctlr_info *h)
7160 u64 cfg_offset;
7161 u32 cfg_base_addr;
7162 u64 cfg_base_addr_index;
7163 u32 trans_offset;
7164 int rc;
7166 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7167 &cfg_base_addr_index, &cfg_offset);
7168 if (rc)
7169 return rc;
7170 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7171 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7172 if (!h->cfgtable) {
7173 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7174 return -ENOMEM;
7176 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7177 if (rc)
7178 return rc;
7179 /* Find performant mode table. */
7180 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7181 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7182 cfg_base_addr_index)+cfg_offset+trans_offset,
7183 sizeof(*h->transtable));
7184 if (!h->transtable) {
7185 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7186 hpsa_free_cfgtables(h);
7187 return -ENOMEM;
7189 return 0;
7192 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7194 #define MIN_MAX_COMMANDS 16
7195 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7197 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7199 /* Limit commands in memory limited kdump scenario. */
7200 if (reset_devices && h->max_commands > 32)
7201 h->max_commands = 32;
7203 if (h->max_commands < MIN_MAX_COMMANDS) {
7204 dev_warn(&h->pdev->dev,
7205 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7206 h->max_commands,
7207 MIN_MAX_COMMANDS);
7208 h->max_commands = MIN_MAX_COMMANDS;
7212 /* If the controller reports that the total max sg entries is greater than 512,
7213 * then we know that chained SG blocks work. (Original smart arrays did not
7214 * support chained SG blocks and would return zero for max sg entries.)
7216 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7218 return h->maxsgentries > 512;
7221 /* Interrogate the hardware for some limits:
7222 * max commands, max SG elements without chaining, and with chaining,
7223 * SG chain block size, etc.
7225 static void hpsa_find_board_params(struct ctlr_info *h)
7227 hpsa_get_max_perf_mode_cmds(h);
7228 h->nr_cmds = h->max_commands;
7229 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7230 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7231 if (hpsa_supports_chained_sg_blocks(h)) {
7232 /* Limit in-command s/g elements to 32 save dma'able memory. */
7233 h->max_cmd_sg_entries = 32;
7234 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7235 h->maxsgentries--; /* save one for chain pointer */
7236 } else {
7238 * Original smart arrays supported at most 31 s/g entries
7239 * embedded inline in the command (trying to use more
7240 * would lock up the controller)
7242 h->max_cmd_sg_entries = 31;
7243 h->maxsgentries = 31; /* default to traditional values */
7244 h->chainsize = 0;
7247 /* Find out what task management functions are supported and cache */
7248 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7249 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7250 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7251 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7252 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7253 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7254 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7257 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7259 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7260 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7261 return false;
7263 return true;
7266 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7268 u32 driver_support;
7270 driver_support = readl(&(h->cfgtable->driver_support));
7271 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7272 #ifdef CONFIG_X86
7273 driver_support |= ENABLE_SCSI_PREFETCH;
7274 #endif
7275 driver_support |= ENABLE_UNIT_ATTN;
7276 writel(driver_support, &(h->cfgtable->driver_support));
7279 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7280 * in a prefetch beyond physical memory.
7282 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7284 u32 dma_prefetch;
7286 if (h->board_id != 0x3225103C)
7287 return;
7288 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7289 dma_prefetch |= 0x8000;
7290 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7293 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7295 int i;
7296 u32 doorbell_value;
7297 unsigned long flags;
7298 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7299 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7300 spin_lock_irqsave(&h->lock, flags);
7301 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7302 spin_unlock_irqrestore(&h->lock, flags);
7303 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7304 goto done;
7305 /* delay and try again */
7306 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7308 return -ENODEV;
7309 done:
7310 return 0;
7313 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7315 int i;
7316 u32 doorbell_value;
7317 unsigned long flags;
7319 /* under certain very rare conditions, this can take awhile.
7320 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7321 * as we enter this code.)
7323 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7324 if (h->remove_in_progress)
7325 goto done;
7326 spin_lock_irqsave(&h->lock, flags);
7327 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7328 spin_unlock_irqrestore(&h->lock, flags);
7329 if (!(doorbell_value & CFGTBL_ChangeReq))
7330 goto done;
7331 /* delay and try again */
7332 msleep(MODE_CHANGE_WAIT_INTERVAL);
7334 return -ENODEV;
7335 done:
7336 return 0;
7339 /* return -ENODEV or other reason on error, 0 on success */
7340 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7342 u32 trans_support;
7344 trans_support = readl(&(h->cfgtable->TransportSupport));
7345 if (!(trans_support & SIMPLE_MODE))
7346 return -ENOTSUPP;
7348 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7350 /* Update the field, and then ring the doorbell */
7351 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7352 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7353 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7354 if (hpsa_wait_for_mode_change_ack(h))
7355 goto error;
7356 print_cfg_table(&h->pdev->dev, h->cfgtable);
7357 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7358 goto error;
7359 h->transMethod = CFGTBL_Trans_Simple;
7360 return 0;
7361 error:
7362 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7363 return -ENODEV;
7366 /* free items allocated or mapped by hpsa_pci_init */
7367 static void hpsa_free_pci_init(struct ctlr_info *h)
7369 hpsa_free_cfgtables(h); /* pci_init 4 */
7370 iounmap(h->vaddr); /* pci_init 3 */
7371 h->vaddr = NULL;
7372 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7374 * call pci_disable_device before pci_release_regions per
7375 * Documentation/PCI/pci.txt
7377 pci_disable_device(h->pdev); /* pci_init 1 */
7378 pci_release_regions(h->pdev); /* pci_init 2 */
7381 /* several items must be freed later */
7382 static int hpsa_pci_init(struct ctlr_info *h)
7384 int prod_index, err;
7386 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7387 if (prod_index < 0)
7388 return prod_index;
7389 h->product_name = products[prod_index].product_name;
7390 h->access = *(products[prod_index].access);
7392 h->needs_abort_tags_swizzled =
7393 ctlr_needs_abort_tags_swizzled(h->board_id);
7395 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7396 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7398 err = pci_enable_device(h->pdev);
7399 if (err) {
7400 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7401 pci_disable_device(h->pdev);
7402 return err;
7405 err = pci_request_regions(h->pdev, HPSA);
7406 if (err) {
7407 dev_err(&h->pdev->dev,
7408 "failed to obtain PCI resources\n");
7409 pci_disable_device(h->pdev);
7410 return err;
7413 pci_set_master(h->pdev);
7415 hpsa_interrupt_mode(h);
7416 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7417 if (err)
7418 goto clean2; /* intmode+region, pci */
7419 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7420 if (!h->vaddr) {
7421 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7422 err = -ENOMEM;
7423 goto clean2; /* intmode+region, pci */
7425 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7426 if (err)
7427 goto clean3; /* vaddr, intmode+region, pci */
7428 err = hpsa_find_cfgtables(h);
7429 if (err)
7430 goto clean3; /* vaddr, intmode+region, pci */
7431 hpsa_find_board_params(h);
7433 if (!hpsa_CISS_signature_present(h)) {
7434 err = -ENODEV;
7435 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7437 hpsa_set_driver_support_bits(h);
7438 hpsa_p600_dma_prefetch_quirk(h);
7439 err = hpsa_enter_simple_mode(h);
7440 if (err)
7441 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7442 return 0;
7444 clean4: /* cfgtables, vaddr, intmode+region, pci */
7445 hpsa_free_cfgtables(h);
7446 clean3: /* vaddr, intmode+region, pci */
7447 iounmap(h->vaddr);
7448 h->vaddr = NULL;
7449 clean2: /* intmode+region, pci */
7450 hpsa_disable_interrupt_mode(h);
7452 * call pci_disable_device before pci_release_regions per
7453 * Documentation/PCI/pci.txt
7455 pci_disable_device(h->pdev);
7456 pci_release_regions(h->pdev);
7457 return err;
7460 static void hpsa_hba_inquiry(struct ctlr_info *h)
7462 int rc;
7464 #define HBA_INQUIRY_BYTE_COUNT 64
7465 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7466 if (!h->hba_inquiry_data)
7467 return;
7468 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7469 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7470 if (rc != 0) {
7471 kfree(h->hba_inquiry_data);
7472 h->hba_inquiry_data = NULL;
7476 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7478 int rc, i;
7479 void __iomem *vaddr;
7481 if (!reset_devices)
7482 return 0;
7484 /* kdump kernel is loading, we don't know in which state is
7485 * the pci interface. The dev->enable_cnt is equal zero
7486 * so we call enable+disable, wait a while and switch it on.
7488 rc = pci_enable_device(pdev);
7489 if (rc) {
7490 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7491 return -ENODEV;
7493 pci_disable_device(pdev);
7494 msleep(260); /* a randomly chosen number */
7495 rc = pci_enable_device(pdev);
7496 if (rc) {
7497 dev_warn(&pdev->dev, "failed to enable device.\n");
7498 return -ENODEV;
7501 pci_set_master(pdev);
7503 vaddr = pci_ioremap_bar(pdev, 0);
7504 if (vaddr == NULL) {
7505 rc = -ENOMEM;
7506 goto out_disable;
7508 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7509 iounmap(vaddr);
7511 /* Reset the controller with a PCI power-cycle or via doorbell */
7512 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7514 /* -ENOTSUPP here means we cannot reset the controller
7515 * but it's already (and still) up and running in
7516 * "performant mode". Or, it might be 640x, which can't reset
7517 * due to concerns about shared bbwc between 6402/6404 pair.
7519 if (rc)
7520 goto out_disable;
7522 /* Now try to get the controller to respond to a no-op */
7523 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7524 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7525 if (hpsa_noop(pdev) == 0)
7526 break;
7527 else
7528 dev_warn(&pdev->dev, "no-op failed%s\n",
7529 (i < 11 ? "; re-trying" : ""));
7532 out_disable:
7534 pci_disable_device(pdev);
7535 return rc;
7538 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7540 kfree(h->cmd_pool_bits);
7541 h->cmd_pool_bits = NULL;
7542 if (h->cmd_pool) {
7543 pci_free_consistent(h->pdev,
7544 h->nr_cmds * sizeof(struct CommandList),
7545 h->cmd_pool,
7546 h->cmd_pool_dhandle);
7547 h->cmd_pool = NULL;
7548 h->cmd_pool_dhandle = 0;
7550 if (h->errinfo_pool) {
7551 pci_free_consistent(h->pdev,
7552 h->nr_cmds * sizeof(struct ErrorInfo),
7553 h->errinfo_pool,
7554 h->errinfo_pool_dhandle);
7555 h->errinfo_pool = NULL;
7556 h->errinfo_pool_dhandle = 0;
7560 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7562 h->cmd_pool_bits = kzalloc(
7563 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7564 sizeof(unsigned long), GFP_KERNEL);
7565 h->cmd_pool = pci_alloc_consistent(h->pdev,
7566 h->nr_cmds * sizeof(*h->cmd_pool),
7567 &(h->cmd_pool_dhandle));
7568 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7569 h->nr_cmds * sizeof(*h->errinfo_pool),
7570 &(h->errinfo_pool_dhandle));
7571 if ((h->cmd_pool_bits == NULL)
7572 || (h->cmd_pool == NULL)
7573 || (h->errinfo_pool == NULL)) {
7574 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7575 goto clean_up;
7577 hpsa_preinitialize_commands(h);
7578 return 0;
7579 clean_up:
7580 hpsa_free_cmd_pool(h);
7581 return -ENOMEM;
7584 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7586 int i, cpu;
7588 cpu = cpumask_first(cpu_online_mask);
7589 for (i = 0; i < h->msix_vector; i++) {
7590 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7591 cpu = cpumask_next(cpu, cpu_online_mask);
7595 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7596 static void hpsa_free_irqs(struct ctlr_info *h)
7598 int i;
7600 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7601 /* Single reply queue, only one irq to free */
7602 i = h->intr_mode;
7603 irq_set_affinity_hint(h->intr[i], NULL);
7604 free_irq(h->intr[i], &h->q[i]);
7605 h->q[i] = 0;
7606 return;
7609 for (i = 0; i < h->msix_vector; i++) {
7610 irq_set_affinity_hint(h->intr[i], NULL);
7611 free_irq(h->intr[i], &h->q[i]);
7612 h->q[i] = 0;
7614 for (; i < MAX_REPLY_QUEUES; i++)
7615 h->q[i] = 0;
7618 /* returns 0 on success; cleans up and returns -Enn on error */
7619 static int hpsa_request_irqs(struct ctlr_info *h,
7620 irqreturn_t (*msixhandler)(int, void *),
7621 irqreturn_t (*intxhandler)(int, void *))
7623 int rc, i;
7626 * initialize h->q[x] = x so that interrupt handlers know which
7627 * queue to process.
7629 for (i = 0; i < MAX_REPLY_QUEUES; i++)
7630 h->q[i] = (u8) i;
7632 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7633 /* If performant mode and MSI-X, use multiple reply queues */
7634 for (i = 0; i < h->msix_vector; i++) {
7635 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7636 rc = request_irq(h->intr[i], msixhandler,
7637 0, h->intrname[i],
7638 &h->q[i]);
7639 if (rc) {
7640 int j;
7642 dev_err(&h->pdev->dev,
7643 "failed to get irq %d for %s\n",
7644 h->intr[i], h->devname);
7645 for (j = 0; j < i; j++) {
7646 free_irq(h->intr[j], &h->q[j]);
7647 h->q[j] = 0;
7649 for (; j < MAX_REPLY_QUEUES; j++)
7650 h->q[j] = 0;
7651 return rc;
7654 hpsa_irq_affinity_hints(h);
7655 } else {
7656 /* Use single reply pool */
7657 if (h->msix_vector > 0 || h->msi_vector) {
7658 if (h->msix_vector)
7659 sprintf(h->intrname[h->intr_mode],
7660 "%s-msix", h->devname);
7661 else
7662 sprintf(h->intrname[h->intr_mode],
7663 "%s-msi", h->devname);
7664 rc = request_irq(h->intr[h->intr_mode],
7665 msixhandler, 0,
7666 h->intrname[h->intr_mode],
7667 &h->q[h->intr_mode]);
7668 } else {
7669 sprintf(h->intrname[h->intr_mode],
7670 "%s-intx", h->devname);
7671 rc = request_irq(h->intr[h->intr_mode],
7672 intxhandler, IRQF_SHARED,
7673 h->intrname[h->intr_mode],
7674 &h->q[h->intr_mode]);
7676 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7678 if (rc) {
7679 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7680 h->intr[h->intr_mode], h->devname);
7681 hpsa_free_irqs(h);
7682 return -ENODEV;
7684 return 0;
7687 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7689 int rc;
7690 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7692 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7693 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7694 if (rc) {
7695 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7696 return rc;
7699 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7700 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7701 if (rc) {
7702 dev_warn(&h->pdev->dev, "Board failed to become ready "
7703 "after soft reset.\n");
7704 return rc;
7707 return 0;
7710 static void hpsa_free_reply_queues(struct ctlr_info *h)
7712 int i;
7714 for (i = 0; i < h->nreply_queues; i++) {
7715 if (!h->reply_queue[i].head)
7716 continue;
7717 pci_free_consistent(h->pdev,
7718 h->reply_queue_size,
7719 h->reply_queue[i].head,
7720 h->reply_queue[i].busaddr);
7721 h->reply_queue[i].head = NULL;
7722 h->reply_queue[i].busaddr = 0;
7724 h->reply_queue_size = 0;
7727 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7729 hpsa_free_performant_mode(h); /* init_one 7 */
7730 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
7731 hpsa_free_cmd_pool(h); /* init_one 5 */
7732 hpsa_free_irqs(h); /* init_one 4 */
7733 scsi_host_put(h->scsi_host); /* init_one 3 */
7734 h->scsi_host = NULL; /* init_one 3 */
7735 hpsa_free_pci_init(h); /* init_one 2_5 */
7736 free_percpu(h->lockup_detected); /* init_one 2 */
7737 h->lockup_detected = NULL; /* init_one 2 */
7738 if (h->resubmit_wq) {
7739 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
7740 h->resubmit_wq = NULL;
7742 if (h->rescan_ctlr_wq) {
7743 destroy_workqueue(h->rescan_ctlr_wq);
7744 h->rescan_ctlr_wq = NULL;
7746 kfree(h); /* init_one 1 */
7749 /* Called when controller lockup detected. */
7750 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7752 int i, refcount;
7753 struct CommandList *c;
7754 int failcount = 0;
7756 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7757 for (i = 0; i < h->nr_cmds; i++) {
7758 c = h->cmd_pool + i;
7759 refcount = atomic_inc_return(&c->refcount);
7760 if (refcount > 1) {
7761 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7762 finish_cmd(c);
7763 atomic_dec(&h->commands_outstanding);
7764 failcount++;
7766 cmd_free(h, c);
7768 dev_warn(&h->pdev->dev,
7769 "failed %d commands in fail_all\n", failcount);
7772 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7774 int cpu;
7776 for_each_online_cpu(cpu) {
7777 u32 *lockup_detected;
7778 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7779 *lockup_detected = value;
7781 wmb(); /* be sure the per-cpu variables are out to memory */
7784 static void controller_lockup_detected(struct ctlr_info *h)
7786 unsigned long flags;
7787 u32 lockup_detected;
7789 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7790 spin_lock_irqsave(&h->lock, flags);
7791 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7792 if (!lockup_detected) {
7793 /* no heartbeat, but controller gave us a zero. */
7794 dev_warn(&h->pdev->dev,
7795 "lockup detected after %d but scratchpad register is zero\n",
7796 h->heartbeat_sample_interval / HZ);
7797 lockup_detected = 0xffffffff;
7799 set_lockup_detected_for_all_cpus(h, lockup_detected);
7800 spin_unlock_irqrestore(&h->lock, flags);
7801 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7802 lockup_detected, h->heartbeat_sample_interval / HZ);
7803 pci_disable_device(h->pdev);
7804 fail_all_outstanding_cmds(h);
7807 static int detect_controller_lockup(struct ctlr_info *h)
7809 u64 now;
7810 u32 heartbeat;
7811 unsigned long flags;
7813 now = get_jiffies_64();
7814 /* If we've received an interrupt recently, we're ok. */
7815 if (time_after64(h->last_intr_timestamp +
7816 (h->heartbeat_sample_interval), now))
7817 return false;
7820 * If we've already checked the heartbeat recently, we're ok.
7821 * This could happen if someone sends us a signal. We
7822 * otherwise don't care about signals in this thread.
7824 if (time_after64(h->last_heartbeat_timestamp +
7825 (h->heartbeat_sample_interval), now))
7826 return false;
7828 /* If heartbeat has not changed since we last looked, we're not ok. */
7829 spin_lock_irqsave(&h->lock, flags);
7830 heartbeat = readl(&h->cfgtable->HeartBeat);
7831 spin_unlock_irqrestore(&h->lock, flags);
7832 if (h->last_heartbeat == heartbeat) {
7833 controller_lockup_detected(h);
7834 return true;
7837 /* We're ok. */
7838 h->last_heartbeat = heartbeat;
7839 h->last_heartbeat_timestamp = now;
7840 return false;
7843 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7845 int i;
7846 char *event_type;
7848 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7849 return;
7851 /* Ask the controller to clear the events we're handling. */
7852 if ((h->transMethod & (CFGTBL_Trans_io_accel1
7853 | CFGTBL_Trans_io_accel2)) &&
7854 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7855 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7857 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7858 event_type = "state change";
7859 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7860 event_type = "configuration change";
7861 /* Stop sending new RAID offload reqs via the IO accelerator */
7862 scsi_block_requests(h->scsi_host);
7863 for (i = 0; i < h->ndevices; i++)
7864 h->dev[i]->offload_enabled = 0;
7865 hpsa_drain_accel_commands(h);
7866 /* Set 'accelerator path config change' bit */
7867 dev_warn(&h->pdev->dev,
7868 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7869 h->events, event_type);
7870 writel(h->events, &(h->cfgtable->clear_event_notify));
7871 /* Set the "clear event notify field update" bit 6 */
7872 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7873 /* Wait until ctlr clears 'clear event notify field', bit 6 */
7874 hpsa_wait_for_clear_event_notify_ack(h);
7875 scsi_unblock_requests(h->scsi_host);
7876 } else {
7877 /* Acknowledge controller notification events. */
7878 writel(h->events, &(h->cfgtable->clear_event_notify));
7879 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7880 hpsa_wait_for_clear_event_notify_ack(h);
7881 #if 0
7882 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7883 hpsa_wait_for_mode_change_ack(h);
7884 #endif
7886 return;
7889 /* Check a register on the controller to see if there are configuration
7890 * changes (added/changed/removed logical drives, etc.) which mean that
7891 * we should rescan the controller for devices.
7892 * Also check flag for driver-initiated rescan.
7894 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7896 if (h->drv_req_rescan) {
7897 h->drv_req_rescan = 0;
7898 return 1;
7901 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7902 return 0;
7904 h->events = readl(&(h->cfgtable->event_notify));
7905 return h->events & RESCAN_REQUIRED_EVENT_BITS;
7909 * Check if any of the offline devices have become ready
7911 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7913 unsigned long flags;
7914 struct offline_device_entry *d;
7915 struct list_head *this, *tmp;
7917 spin_lock_irqsave(&h->offline_device_lock, flags);
7918 list_for_each_safe(this, tmp, &h->offline_device_list) {
7919 d = list_entry(this, struct offline_device_entry,
7920 offline_list);
7921 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7922 if (!hpsa_volume_offline(h, d->scsi3addr)) {
7923 spin_lock_irqsave(&h->offline_device_lock, flags);
7924 list_del(&d->offline_list);
7925 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7926 return 1;
7928 spin_lock_irqsave(&h->offline_device_lock, flags);
7930 spin_unlock_irqrestore(&h->offline_device_lock, flags);
7931 return 0;
7934 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7936 unsigned long flags;
7937 struct ctlr_info *h = container_of(to_delayed_work(work),
7938 struct ctlr_info, rescan_ctlr_work);
7941 if (h->remove_in_progress)
7942 return;
7944 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7945 scsi_host_get(h->scsi_host);
7946 hpsa_ack_ctlr_events(h);
7947 hpsa_scan_start(h->scsi_host);
7948 scsi_host_put(h->scsi_host);
7950 spin_lock_irqsave(&h->lock, flags);
7951 if (!h->remove_in_progress)
7952 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7953 h->heartbeat_sample_interval);
7954 spin_unlock_irqrestore(&h->lock, flags);
7957 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7959 unsigned long flags;
7960 struct ctlr_info *h = container_of(to_delayed_work(work),
7961 struct ctlr_info, monitor_ctlr_work);
7963 detect_controller_lockup(h);
7964 if (lockup_detected(h))
7965 return;
7967 spin_lock_irqsave(&h->lock, flags);
7968 if (!h->remove_in_progress)
7969 schedule_delayed_work(&h->monitor_ctlr_work,
7970 h->heartbeat_sample_interval);
7971 spin_unlock_irqrestore(&h->lock, flags);
7974 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7975 char *name)
7977 struct workqueue_struct *wq = NULL;
7979 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7980 if (!wq)
7981 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7983 return wq;
7986 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7988 int dac, rc;
7989 struct ctlr_info *h;
7990 int try_soft_reset = 0;
7991 unsigned long flags;
7992 u32 board_id;
7994 if (number_of_controllers == 0)
7995 printk(KERN_INFO DRIVER_NAME "\n");
7997 rc = hpsa_lookup_board_id(pdev, &board_id);
7998 if (rc < 0) {
7999 dev_warn(&pdev->dev, "Board ID not found\n");
8000 return rc;
8003 rc = hpsa_init_reset_devices(pdev, board_id);
8004 if (rc) {
8005 if (rc != -ENOTSUPP)
8006 return rc;
8007 /* If the reset fails in a particular way (it has no way to do
8008 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8009 * a soft reset once we get the controller configured up to the
8010 * point that it can accept a command.
8012 try_soft_reset = 1;
8013 rc = 0;
8016 reinit_after_soft_reset:
8018 /* Command structures must be aligned on a 32-byte boundary because
8019 * the 5 lower bits of the address are used by the hardware. and by
8020 * the driver. See comments in hpsa.h for more info.
8022 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8023 h = kzalloc(sizeof(*h), GFP_KERNEL);
8024 if (!h) {
8025 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8026 return -ENOMEM;
8029 h->pdev = pdev;
8031 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8032 INIT_LIST_HEAD(&h->offline_device_list);
8033 spin_lock_init(&h->lock);
8034 spin_lock_init(&h->offline_device_lock);
8035 spin_lock_init(&h->scan_lock);
8036 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8037 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8039 /* Allocate and clear per-cpu variable lockup_detected */
8040 h->lockup_detected = alloc_percpu(u32);
8041 if (!h->lockup_detected) {
8042 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8043 rc = -ENOMEM;
8044 goto clean1; /* aer/h */
8046 set_lockup_detected_for_all_cpus(h, 0);
8048 rc = hpsa_pci_init(h);
8049 if (rc)
8050 goto clean2; /* lu, aer/h */
8052 /* relies on h-> settings made by hpsa_pci_init, including
8053 * interrupt_mode h->intr */
8054 rc = hpsa_scsi_host_alloc(h);
8055 if (rc)
8056 goto clean2_5; /* pci, lu, aer/h */
8058 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8059 h->ctlr = number_of_controllers;
8060 number_of_controllers++;
8062 /* configure PCI DMA stuff */
8063 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8064 if (rc == 0) {
8065 dac = 1;
8066 } else {
8067 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8068 if (rc == 0) {
8069 dac = 0;
8070 } else {
8071 dev_err(&pdev->dev, "no suitable DMA available\n");
8072 goto clean3; /* shost, pci, lu, aer/h */
8076 /* make sure the board interrupts are off */
8077 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8079 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8080 if (rc)
8081 goto clean3; /* shost, pci, lu, aer/h */
8082 rc = hpsa_alloc_cmd_pool(h);
8083 if (rc)
8084 goto clean4; /* irq, shost, pci, lu, aer/h */
8085 rc = hpsa_alloc_sg_chain_blocks(h);
8086 if (rc)
8087 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8088 init_waitqueue_head(&h->scan_wait_queue);
8089 init_waitqueue_head(&h->abort_cmd_wait_queue);
8090 init_waitqueue_head(&h->event_sync_wait_queue);
8091 mutex_init(&h->reset_mutex);
8092 h->scan_finished = 1; /* no scan currently in progress */
8094 pci_set_drvdata(pdev, h);
8095 h->ndevices = 0;
8097 spin_lock_init(&h->devlock);
8098 rc = hpsa_put_ctlr_into_performant_mode(h);
8099 if (rc)
8100 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8102 /* hook into SCSI subsystem */
8103 rc = hpsa_scsi_add_host(h);
8104 if (rc)
8105 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8107 /* create the resubmit workqueue */
8108 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8109 if (!h->rescan_ctlr_wq) {
8110 rc = -ENOMEM;
8111 goto clean7;
8114 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8115 if (!h->resubmit_wq) {
8116 rc = -ENOMEM;
8117 goto clean7; /* aer/h */
8121 * At this point, the controller is ready to take commands.
8122 * Now, if reset_devices and the hard reset didn't work, try
8123 * the soft reset and see if that works.
8125 if (try_soft_reset) {
8127 /* This is kind of gross. We may or may not get a completion
8128 * from the soft reset command, and if we do, then the value
8129 * from the fifo may or may not be valid. So, we wait 10 secs
8130 * after the reset throwing away any completions we get during
8131 * that time. Unregister the interrupt handler and register
8132 * fake ones to scoop up any residual completions.
8134 spin_lock_irqsave(&h->lock, flags);
8135 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8136 spin_unlock_irqrestore(&h->lock, flags);
8137 hpsa_free_irqs(h);
8138 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8139 hpsa_intx_discard_completions);
8140 if (rc) {
8141 dev_warn(&h->pdev->dev,
8142 "Failed to request_irq after soft reset.\n");
8144 * cannot goto clean7 or free_irqs will be called
8145 * again. Instead, do its work
8147 hpsa_free_performant_mode(h); /* clean7 */
8148 hpsa_free_sg_chain_blocks(h); /* clean6 */
8149 hpsa_free_cmd_pool(h); /* clean5 */
8151 * skip hpsa_free_irqs(h) clean4 since that
8152 * was just called before request_irqs failed
8154 goto clean3;
8157 rc = hpsa_kdump_soft_reset(h);
8158 if (rc)
8159 /* Neither hard nor soft reset worked, we're hosed. */
8160 goto clean7;
8162 dev_info(&h->pdev->dev, "Board READY.\n");
8163 dev_info(&h->pdev->dev,
8164 "Waiting for stale completions to drain.\n");
8165 h->access.set_intr_mask(h, HPSA_INTR_ON);
8166 msleep(10000);
8167 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8169 rc = controller_reset_failed(h->cfgtable);
8170 if (rc)
8171 dev_info(&h->pdev->dev,
8172 "Soft reset appears to have failed.\n");
8174 /* since the controller's reset, we have to go back and re-init
8175 * everything. Easiest to just forget what we've done and do it
8176 * all over again.
8178 hpsa_undo_allocations_after_kdump_soft_reset(h);
8179 try_soft_reset = 0;
8180 if (rc)
8181 /* don't goto clean, we already unallocated */
8182 return -ENODEV;
8184 goto reinit_after_soft_reset;
8187 /* Enable Accelerated IO path at driver layer */
8188 h->acciopath_status = 1;
8191 /* Turn the interrupts on so we can service requests */
8192 h->access.set_intr_mask(h, HPSA_INTR_ON);
8194 hpsa_hba_inquiry(h);
8196 /* Monitor the controller for firmware lockups */
8197 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8198 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8199 schedule_delayed_work(&h->monitor_ctlr_work,
8200 h->heartbeat_sample_interval);
8201 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8202 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8203 h->heartbeat_sample_interval);
8204 return 0;
8206 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8207 hpsa_free_performant_mode(h);
8208 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8209 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8210 hpsa_free_sg_chain_blocks(h);
8211 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8212 hpsa_free_cmd_pool(h);
8213 clean4: /* irq, shost, pci, lu, aer/h */
8214 hpsa_free_irqs(h);
8215 clean3: /* shost, pci, lu, aer/h */
8216 scsi_host_put(h->scsi_host);
8217 h->scsi_host = NULL;
8218 clean2_5: /* pci, lu, aer/h */
8219 hpsa_free_pci_init(h);
8220 clean2: /* lu, aer/h */
8221 if (h->lockup_detected) {
8222 free_percpu(h->lockup_detected);
8223 h->lockup_detected = NULL;
8225 clean1: /* wq/aer/h */
8226 if (h->resubmit_wq) {
8227 destroy_workqueue(h->resubmit_wq);
8228 h->resubmit_wq = NULL;
8230 if (h->rescan_ctlr_wq) {
8231 destroy_workqueue(h->rescan_ctlr_wq);
8232 h->rescan_ctlr_wq = NULL;
8234 kfree(h);
8235 return rc;
8238 static void hpsa_flush_cache(struct ctlr_info *h)
8240 char *flush_buf;
8241 struct CommandList *c;
8242 int rc;
8244 if (unlikely(lockup_detected(h)))
8245 return;
8246 flush_buf = kzalloc(4, GFP_KERNEL);
8247 if (!flush_buf)
8248 return;
8250 c = cmd_alloc(h);
8252 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8253 RAID_CTLR_LUNID, TYPE_CMD)) {
8254 goto out;
8256 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8257 PCI_DMA_TODEVICE, NO_TIMEOUT);
8258 if (rc)
8259 goto out;
8260 if (c->err_info->CommandStatus != 0)
8261 out:
8262 dev_warn(&h->pdev->dev,
8263 "error flushing cache on controller\n");
8264 cmd_free(h, c);
8265 kfree(flush_buf);
8268 static void hpsa_shutdown(struct pci_dev *pdev)
8270 struct ctlr_info *h;
8272 h = pci_get_drvdata(pdev);
8273 /* Turn board interrupts off and send the flush cache command
8274 * sendcmd will turn off interrupt, and send the flush...
8275 * To write all data in the battery backed cache to disks
8277 hpsa_flush_cache(h);
8278 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8279 hpsa_free_irqs(h); /* init_one 4 */
8280 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8283 static void hpsa_free_device_info(struct ctlr_info *h)
8285 int i;
8287 for (i = 0; i < h->ndevices; i++) {
8288 kfree(h->dev[i]);
8289 h->dev[i] = NULL;
8293 static void hpsa_remove_one(struct pci_dev *pdev)
8295 struct ctlr_info *h;
8296 unsigned long flags;
8298 if (pci_get_drvdata(pdev) == NULL) {
8299 dev_err(&pdev->dev, "unable to remove device\n");
8300 return;
8302 h = pci_get_drvdata(pdev);
8304 /* Get rid of any controller monitoring work items */
8305 spin_lock_irqsave(&h->lock, flags);
8306 h->remove_in_progress = 1;
8307 spin_unlock_irqrestore(&h->lock, flags);
8308 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8309 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8310 destroy_workqueue(h->rescan_ctlr_wq);
8311 destroy_workqueue(h->resubmit_wq);
8314 * Call before disabling interrupts.
8315 * scsi_remove_host can trigger I/O operations especially
8316 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8317 * operations which cannot complete and will hang the system.
8319 if (h->scsi_host)
8320 scsi_remove_host(h->scsi_host); /* init_one 8 */
8321 /* includes hpsa_free_irqs - init_one 4 */
8322 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8323 hpsa_shutdown(pdev);
8325 hpsa_free_device_info(h); /* scan */
8327 kfree(h->hba_inquiry_data); /* init_one 10 */
8328 h->hba_inquiry_data = NULL; /* init_one 10 */
8329 hpsa_free_ioaccel2_sg_chain_blocks(h);
8330 hpsa_free_performant_mode(h); /* init_one 7 */
8331 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8332 hpsa_free_cmd_pool(h); /* init_one 5 */
8334 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8336 scsi_host_put(h->scsi_host); /* init_one 3 */
8337 h->scsi_host = NULL; /* init_one 3 */
8339 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8340 hpsa_free_pci_init(h); /* init_one 2.5 */
8342 free_percpu(h->lockup_detected); /* init_one 2 */
8343 h->lockup_detected = NULL; /* init_one 2 */
8344 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8345 kfree(h); /* init_one 1 */
8348 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8349 __attribute__((unused)) pm_message_t state)
8351 return -ENOSYS;
8354 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8356 return -ENOSYS;
8359 static struct pci_driver hpsa_pci_driver = {
8360 .name = HPSA,
8361 .probe = hpsa_init_one,
8362 .remove = hpsa_remove_one,
8363 .id_table = hpsa_pci_device_id, /* id_table */
8364 .shutdown = hpsa_shutdown,
8365 .suspend = hpsa_suspend,
8366 .resume = hpsa_resume,
8369 /* Fill in bucket_map[], given nsgs (the max number of
8370 * scatter gather elements supported) and bucket[],
8371 * which is an array of 8 integers. The bucket[] array
8372 * contains 8 different DMA transfer sizes (in 16
8373 * byte increments) which the controller uses to fetch
8374 * commands. This function fills in bucket_map[], which
8375 * maps a given number of scatter gather elements to one of
8376 * the 8 DMA transfer sizes. The point of it is to allow the
8377 * controller to only do as much DMA as needed to fetch the
8378 * command, with the DMA transfer size encoded in the lower
8379 * bits of the command address.
8381 static void calc_bucket_map(int bucket[], int num_buckets,
8382 int nsgs, int min_blocks, u32 *bucket_map)
8384 int i, j, b, size;
8386 /* Note, bucket_map must have nsgs+1 entries. */
8387 for (i = 0; i <= nsgs; i++) {
8388 /* Compute size of a command with i SG entries */
8389 size = i + min_blocks;
8390 b = num_buckets; /* Assume the biggest bucket */
8391 /* Find the bucket that is just big enough */
8392 for (j = 0; j < num_buckets; j++) {
8393 if (bucket[j] >= size) {
8394 b = j;
8395 break;
8398 /* for a command with i SG entries, use bucket b. */
8399 bucket_map[i] = b;
8404 * return -ENODEV on err, 0 on success (or no action)
8405 * allocates numerous items that must be freed later
8407 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8409 int i;
8410 unsigned long register_value;
8411 unsigned long transMethod = CFGTBL_Trans_Performant |
8412 (trans_support & CFGTBL_Trans_use_short_tags) |
8413 CFGTBL_Trans_enable_directed_msix |
8414 (trans_support & (CFGTBL_Trans_io_accel1 |
8415 CFGTBL_Trans_io_accel2));
8416 struct access_method access = SA5_performant_access;
8418 /* This is a bit complicated. There are 8 registers on
8419 * the controller which we write to to tell it 8 different
8420 * sizes of commands which there may be. It's a way of
8421 * reducing the DMA done to fetch each command. Encoded into
8422 * each command's tag are 3 bits which communicate to the controller
8423 * which of the eight sizes that command fits within. The size of
8424 * each command depends on how many scatter gather entries there are.
8425 * Each SG entry requires 16 bytes. The eight registers are programmed
8426 * with the number of 16-byte blocks a command of that size requires.
8427 * The smallest command possible requires 5 such 16 byte blocks.
8428 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8429 * blocks. Note, this only extends to the SG entries contained
8430 * within the command block, and does not extend to chained blocks
8431 * of SG elements. bft[] contains the eight values we write to
8432 * the registers. They are not evenly distributed, but have more
8433 * sizes for small commands, and fewer sizes for larger commands.
8435 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8436 #define MIN_IOACCEL2_BFT_ENTRY 5
8437 #define HPSA_IOACCEL2_HEADER_SZ 4
8438 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8439 13, 14, 15, 16, 17, 18, 19,
8440 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8441 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8442 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8443 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8444 16 * MIN_IOACCEL2_BFT_ENTRY);
8445 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8446 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8447 /* 5 = 1 s/g entry or 4k
8448 * 6 = 2 s/g entry or 8k
8449 * 8 = 4 s/g entry or 16k
8450 * 10 = 6 s/g entry or 24k
8453 /* If the controller supports either ioaccel method then
8454 * we can also use the RAID stack submit path that does not
8455 * perform the superfluous readl() after each command submission.
8457 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8458 access = SA5_performant_access_no_read;
8460 /* Controller spec: zero out this buffer. */
8461 for (i = 0; i < h->nreply_queues; i++)
8462 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8464 bft[7] = SG_ENTRIES_IN_CMD + 4;
8465 calc_bucket_map(bft, ARRAY_SIZE(bft),
8466 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8467 for (i = 0; i < 8; i++)
8468 writel(bft[i], &h->transtable->BlockFetch[i]);
8470 /* size of controller ring buffer */
8471 writel(h->max_commands, &h->transtable->RepQSize);
8472 writel(h->nreply_queues, &h->transtable->RepQCount);
8473 writel(0, &h->transtable->RepQCtrAddrLow32);
8474 writel(0, &h->transtable->RepQCtrAddrHigh32);
8476 for (i = 0; i < h->nreply_queues; i++) {
8477 writel(0, &h->transtable->RepQAddr[i].upper);
8478 writel(h->reply_queue[i].busaddr,
8479 &h->transtable->RepQAddr[i].lower);
8482 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8483 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8485 * enable outbound interrupt coalescing in accelerator mode;
8487 if (trans_support & CFGTBL_Trans_io_accel1) {
8488 access = SA5_ioaccel_mode1_access;
8489 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8490 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8491 } else {
8492 if (trans_support & CFGTBL_Trans_io_accel2) {
8493 access = SA5_ioaccel_mode2_access;
8494 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8495 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8498 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8499 if (hpsa_wait_for_mode_change_ack(h)) {
8500 dev_err(&h->pdev->dev,
8501 "performant mode problem - doorbell timeout\n");
8502 return -ENODEV;
8504 register_value = readl(&(h->cfgtable->TransportActive));
8505 if (!(register_value & CFGTBL_Trans_Performant)) {
8506 dev_err(&h->pdev->dev,
8507 "performant mode problem - transport not active\n");
8508 return -ENODEV;
8510 /* Change the access methods to the performant access methods */
8511 h->access = access;
8512 h->transMethod = transMethod;
8514 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8515 (trans_support & CFGTBL_Trans_io_accel2)))
8516 return 0;
8518 if (trans_support & CFGTBL_Trans_io_accel1) {
8519 /* Set up I/O accelerator mode */
8520 for (i = 0; i < h->nreply_queues; i++) {
8521 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8522 h->reply_queue[i].current_entry =
8523 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8525 bft[7] = h->ioaccel_maxsg + 8;
8526 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8527 h->ioaccel1_blockFetchTable);
8529 /* initialize all reply queue entries to unused */
8530 for (i = 0; i < h->nreply_queues; i++)
8531 memset(h->reply_queue[i].head,
8532 (u8) IOACCEL_MODE1_REPLY_UNUSED,
8533 h->reply_queue_size);
8535 /* set all the constant fields in the accelerator command
8536 * frames once at init time to save CPU cycles later.
8538 for (i = 0; i < h->nr_cmds; i++) {
8539 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8541 cp->function = IOACCEL1_FUNCTION_SCSIIO;
8542 cp->err_info = (u32) (h->errinfo_pool_dhandle +
8543 (i * sizeof(struct ErrorInfo)));
8544 cp->err_info_len = sizeof(struct ErrorInfo);
8545 cp->sgl_offset = IOACCEL1_SGLOFFSET;
8546 cp->host_context_flags =
8547 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8548 cp->timeout_sec = 0;
8549 cp->ReplyQueue = 0;
8550 cp->tag =
8551 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8552 cp->host_addr =
8553 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8554 (i * sizeof(struct io_accel1_cmd)));
8556 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8557 u64 cfg_offset, cfg_base_addr_index;
8558 u32 bft2_offset, cfg_base_addr;
8559 int rc;
8561 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8562 &cfg_base_addr_index, &cfg_offset);
8563 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8564 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8565 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8566 4, h->ioaccel2_blockFetchTable);
8567 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8568 BUILD_BUG_ON(offsetof(struct CfgTable,
8569 io_accel_request_size_offset) != 0xb8);
8570 h->ioaccel2_bft2_regs =
8571 remap_pci_mem(pci_resource_start(h->pdev,
8572 cfg_base_addr_index) +
8573 cfg_offset + bft2_offset,
8574 ARRAY_SIZE(bft2) *
8575 sizeof(*h->ioaccel2_bft2_regs));
8576 for (i = 0; i < ARRAY_SIZE(bft2); i++)
8577 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8579 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8580 if (hpsa_wait_for_mode_change_ack(h)) {
8581 dev_err(&h->pdev->dev,
8582 "performant mode problem - enabling ioaccel mode\n");
8583 return -ENODEV;
8585 return 0;
8588 /* Free ioaccel1 mode command blocks and block fetch table */
8589 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8591 if (h->ioaccel_cmd_pool) {
8592 pci_free_consistent(h->pdev,
8593 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8594 h->ioaccel_cmd_pool,
8595 h->ioaccel_cmd_pool_dhandle);
8596 h->ioaccel_cmd_pool = NULL;
8597 h->ioaccel_cmd_pool_dhandle = 0;
8599 kfree(h->ioaccel1_blockFetchTable);
8600 h->ioaccel1_blockFetchTable = NULL;
8603 /* Allocate ioaccel1 mode command blocks and block fetch table */
8604 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8606 h->ioaccel_maxsg =
8607 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8608 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8609 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8611 /* Command structures must be aligned on a 128-byte boundary
8612 * because the 7 lower bits of the address are used by the
8613 * hardware.
8615 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8616 IOACCEL1_COMMANDLIST_ALIGNMENT);
8617 h->ioaccel_cmd_pool =
8618 pci_alloc_consistent(h->pdev,
8619 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8620 &(h->ioaccel_cmd_pool_dhandle));
8622 h->ioaccel1_blockFetchTable =
8623 kmalloc(((h->ioaccel_maxsg + 1) *
8624 sizeof(u32)), GFP_KERNEL);
8626 if ((h->ioaccel_cmd_pool == NULL) ||
8627 (h->ioaccel1_blockFetchTable == NULL))
8628 goto clean_up;
8630 memset(h->ioaccel_cmd_pool, 0,
8631 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8632 return 0;
8634 clean_up:
8635 hpsa_free_ioaccel1_cmd_and_bft(h);
8636 return -ENOMEM;
8639 /* Free ioaccel2 mode command blocks and block fetch table */
8640 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8642 hpsa_free_ioaccel2_sg_chain_blocks(h);
8644 if (h->ioaccel2_cmd_pool) {
8645 pci_free_consistent(h->pdev,
8646 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8647 h->ioaccel2_cmd_pool,
8648 h->ioaccel2_cmd_pool_dhandle);
8649 h->ioaccel2_cmd_pool = NULL;
8650 h->ioaccel2_cmd_pool_dhandle = 0;
8652 kfree(h->ioaccel2_blockFetchTable);
8653 h->ioaccel2_blockFetchTable = NULL;
8656 /* Allocate ioaccel2 mode command blocks and block fetch table */
8657 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8659 int rc;
8661 /* Allocate ioaccel2 mode command blocks and block fetch table */
8663 h->ioaccel_maxsg =
8664 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8665 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8666 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8668 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8669 IOACCEL2_COMMANDLIST_ALIGNMENT);
8670 h->ioaccel2_cmd_pool =
8671 pci_alloc_consistent(h->pdev,
8672 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8673 &(h->ioaccel2_cmd_pool_dhandle));
8675 h->ioaccel2_blockFetchTable =
8676 kmalloc(((h->ioaccel_maxsg + 1) *
8677 sizeof(u32)), GFP_KERNEL);
8679 if ((h->ioaccel2_cmd_pool == NULL) ||
8680 (h->ioaccel2_blockFetchTable == NULL)) {
8681 rc = -ENOMEM;
8682 goto clean_up;
8685 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8686 if (rc)
8687 goto clean_up;
8689 memset(h->ioaccel2_cmd_pool, 0,
8690 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8691 return 0;
8693 clean_up:
8694 hpsa_free_ioaccel2_cmd_and_bft(h);
8695 return rc;
8698 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8699 static void hpsa_free_performant_mode(struct ctlr_info *h)
8701 kfree(h->blockFetchTable);
8702 h->blockFetchTable = NULL;
8703 hpsa_free_reply_queues(h);
8704 hpsa_free_ioaccel1_cmd_and_bft(h);
8705 hpsa_free_ioaccel2_cmd_and_bft(h);
8708 /* return -ENODEV on error, 0 on success (or no action)
8709 * allocates numerous items that must be freed later
8711 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8713 u32 trans_support;
8714 unsigned long transMethod = CFGTBL_Trans_Performant |
8715 CFGTBL_Trans_use_short_tags;
8716 int i, rc;
8718 if (hpsa_simple_mode)
8719 return 0;
8721 trans_support = readl(&(h->cfgtable->TransportSupport));
8722 if (!(trans_support & PERFORMANT_MODE))
8723 return 0;
8725 /* Check for I/O accelerator mode support */
8726 if (trans_support & CFGTBL_Trans_io_accel1) {
8727 transMethod |= CFGTBL_Trans_io_accel1 |
8728 CFGTBL_Trans_enable_directed_msix;
8729 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8730 if (rc)
8731 return rc;
8732 } else if (trans_support & CFGTBL_Trans_io_accel2) {
8733 transMethod |= CFGTBL_Trans_io_accel2 |
8734 CFGTBL_Trans_enable_directed_msix;
8735 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8736 if (rc)
8737 return rc;
8740 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8741 hpsa_get_max_perf_mode_cmds(h);
8742 /* Performant mode ring buffer and supporting data structures */
8743 h->reply_queue_size = h->max_commands * sizeof(u64);
8745 for (i = 0; i < h->nreply_queues; i++) {
8746 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8747 h->reply_queue_size,
8748 &(h->reply_queue[i].busaddr));
8749 if (!h->reply_queue[i].head) {
8750 rc = -ENOMEM;
8751 goto clean1; /* rq, ioaccel */
8753 h->reply_queue[i].size = h->max_commands;
8754 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
8755 h->reply_queue[i].current_entry = 0;
8758 /* Need a block fetch table for performant mode */
8759 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8760 sizeof(u32)), GFP_KERNEL);
8761 if (!h->blockFetchTable) {
8762 rc = -ENOMEM;
8763 goto clean1; /* rq, ioaccel */
8766 rc = hpsa_enter_performant_mode(h, trans_support);
8767 if (rc)
8768 goto clean2; /* bft, rq, ioaccel */
8769 return 0;
8771 clean2: /* bft, rq, ioaccel */
8772 kfree(h->blockFetchTable);
8773 h->blockFetchTable = NULL;
8774 clean1: /* rq, ioaccel */
8775 hpsa_free_reply_queues(h);
8776 hpsa_free_ioaccel1_cmd_and_bft(h);
8777 hpsa_free_ioaccel2_cmd_and_bft(h);
8778 return rc;
8781 static int is_accelerated_cmd(struct CommandList *c)
8783 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8786 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8788 struct CommandList *c = NULL;
8789 int i, accel_cmds_out;
8790 int refcount;
8792 do { /* wait for all outstanding ioaccel commands to drain out */
8793 accel_cmds_out = 0;
8794 for (i = 0; i < h->nr_cmds; i++) {
8795 c = h->cmd_pool + i;
8796 refcount = atomic_inc_return(&c->refcount);
8797 if (refcount > 1) /* Command is allocated */
8798 accel_cmds_out += is_accelerated_cmd(c);
8799 cmd_free(h, c);
8801 if (accel_cmds_out <= 0)
8802 break;
8803 msleep(100);
8804 } while (1);
8808 * This is it. Register the PCI driver information for the cards we control
8809 * the OS will call our registered routines when it finds one of our cards.
8811 static int __init hpsa_init(void)
8813 return pci_register_driver(&hpsa_pci_driver);
8816 static void __exit hpsa_cleanup(void)
8818 pci_unregister_driver(&hpsa_pci_driver);
8821 static void __attribute__((unused)) verify_offsets(void)
8823 #define VERIFY_OFFSET(member, offset) \
8824 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8826 VERIFY_OFFSET(structure_size, 0);
8827 VERIFY_OFFSET(volume_blk_size, 4);
8828 VERIFY_OFFSET(volume_blk_cnt, 8);
8829 VERIFY_OFFSET(phys_blk_shift, 16);
8830 VERIFY_OFFSET(parity_rotation_shift, 17);
8831 VERIFY_OFFSET(strip_size, 18);
8832 VERIFY_OFFSET(disk_starting_blk, 20);
8833 VERIFY_OFFSET(disk_blk_cnt, 28);
8834 VERIFY_OFFSET(data_disks_per_row, 36);
8835 VERIFY_OFFSET(metadata_disks_per_row, 38);
8836 VERIFY_OFFSET(row_cnt, 40);
8837 VERIFY_OFFSET(layout_map_count, 42);
8838 VERIFY_OFFSET(flags, 44);
8839 VERIFY_OFFSET(dekindex, 46);
8840 /* VERIFY_OFFSET(reserved, 48 */
8841 VERIFY_OFFSET(data, 64);
8843 #undef VERIFY_OFFSET
8845 #define VERIFY_OFFSET(member, offset) \
8846 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8848 VERIFY_OFFSET(IU_type, 0);
8849 VERIFY_OFFSET(direction, 1);
8850 VERIFY_OFFSET(reply_queue, 2);
8851 /* VERIFY_OFFSET(reserved1, 3); */
8852 VERIFY_OFFSET(scsi_nexus, 4);
8853 VERIFY_OFFSET(Tag, 8);
8854 VERIFY_OFFSET(cdb, 16);
8855 VERIFY_OFFSET(cciss_lun, 32);
8856 VERIFY_OFFSET(data_len, 40);
8857 VERIFY_OFFSET(cmd_priority_task_attr, 44);
8858 VERIFY_OFFSET(sg_count, 45);
8859 /* VERIFY_OFFSET(reserved3 */
8860 VERIFY_OFFSET(err_ptr, 48);
8861 VERIFY_OFFSET(err_len, 56);
8862 /* VERIFY_OFFSET(reserved4 */
8863 VERIFY_OFFSET(sg, 64);
8865 #undef VERIFY_OFFSET
8867 #define VERIFY_OFFSET(member, offset) \
8868 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8870 VERIFY_OFFSET(dev_handle, 0x00);
8871 VERIFY_OFFSET(reserved1, 0x02);
8872 VERIFY_OFFSET(function, 0x03);
8873 VERIFY_OFFSET(reserved2, 0x04);
8874 VERIFY_OFFSET(err_info, 0x0C);
8875 VERIFY_OFFSET(reserved3, 0x10);
8876 VERIFY_OFFSET(err_info_len, 0x12);
8877 VERIFY_OFFSET(reserved4, 0x13);
8878 VERIFY_OFFSET(sgl_offset, 0x14);
8879 VERIFY_OFFSET(reserved5, 0x15);
8880 VERIFY_OFFSET(transfer_len, 0x1C);
8881 VERIFY_OFFSET(reserved6, 0x20);
8882 VERIFY_OFFSET(io_flags, 0x24);
8883 VERIFY_OFFSET(reserved7, 0x26);
8884 VERIFY_OFFSET(LUN, 0x34);
8885 VERIFY_OFFSET(control, 0x3C);
8886 VERIFY_OFFSET(CDB, 0x40);
8887 VERIFY_OFFSET(reserved8, 0x50);
8888 VERIFY_OFFSET(host_context_flags, 0x60);
8889 VERIFY_OFFSET(timeout_sec, 0x62);
8890 VERIFY_OFFSET(ReplyQueue, 0x64);
8891 VERIFY_OFFSET(reserved9, 0x65);
8892 VERIFY_OFFSET(tag, 0x68);
8893 VERIFY_OFFSET(host_addr, 0x70);
8894 VERIFY_OFFSET(CISS_LUN, 0x78);
8895 VERIFY_OFFSET(SG, 0x78 + 8);
8896 #undef VERIFY_OFFSET
8899 module_init(hpsa_init);
8900 module_exit(hpsa_cleanup);