2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock
);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node
);
74 EXPORT_PER_CPU_SYMBOL(numa_node
);
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
84 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
86 int _node_numa_mem_
[MAX_NUMNODES
];
90 * Array of node states.
92 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
93 [N_POSSIBLE
] = NODE_MASK_ALL
,
94 [N_ONLINE
] = { { [0] = 1UL } },
96 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
98 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY
] = { { [0] = 1UL } },
103 [N_CPU
] = { { [0] = 1UL } },
106 EXPORT_SYMBOL(node_states
);
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock
);
111 unsigned long totalram_pages __read_mostly
;
112 unsigned long totalreserve_pages __read_mostly
;
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
119 unsigned long dirty_balance_reserve __read_mostly
;
121 int percpu_pagelist_fraction
;
122 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
124 #ifdef CONFIG_PM_SLEEP
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
134 static gfp_t saved_gfp_mask
;
136 void pm_restore_gfp_mask(void)
138 WARN_ON(!mutex_is_locked(&pm_mutex
));
139 if (saved_gfp_mask
) {
140 gfp_allowed_mask
= saved_gfp_mask
;
145 void pm_restrict_gfp_mask(void)
147 WARN_ON(!mutex_is_locked(&pm_mutex
));
148 WARN_ON(saved_gfp_mask
);
149 saved_gfp_mask
= gfp_allowed_mask
;
150 gfp_allowed_mask
&= ~GFP_IOFS
;
153 bool pm_suspended_storage(void)
155 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
159 #endif /* CONFIG_PM_SLEEP */
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly
;
165 static void __free_pages_ok(struct page
*page
, unsigned int order
);
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
178 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
179 #ifdef CONFIG_ZONE_DMA
182 #ifdef CONFIG_ZONE_DMA32
185 #ifdef CONFIG_HIGHMEM
191 EXPORT_SYMBOL(totalram_pages
);
193 static char * const zone_names
[MAX_NR_ZONES
] = {
194 #ifdef CONFIG_ZONE_DMA
197 #ifdef CONFIG_ZONE_DMA32
201 #ifdef CONFIG_HIGHMEM
207 int min_free_kbytes
= 1024;
208 int user_min_free_kbytes
= -1;
210 static unsigned long __meminitdata nr_kernel_pages
;
211 static unsigned long __meminitdata nr_all_pages
;
212 static unsigned long __meminitdata dma_reserve
;
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
217 static unsigned long __initdata required_kernelcore
;
218 static unsigned long __initdata required_movablecore
;
219 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 EXPORT_SYMBOL(movable_zone
);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
228 int nr_online_nodes __read_mostly
= 1;
229 EXPORT_SYMBOL(nr_node_ids
);
230 EXPORT_SYMBOL(nr_online_nodes
);
233 int page_group_by_mobility_disabled __read_mostly
;
235 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
237 if (unlikely(page_group_by_mobility_disabled
&&
238 migratetype
< MIGRATE_PCPTYPES
))
239 migratetype
= MIGRATE_UNMOVABLE
;
241 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
242 PB_migrate
, PB_migrate_end
);
245 bool oom_killer_disabled __read_mostly
;
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
252 unsigned long pfn
= page_to_pfn(page
);
253 unsigned long sp
, start_pfn
;
256 seq
= zone_span_seqbegin(zone
);
257 start_pfn
= zone
->zone_start_pfn
;
258 sp
= zone
->spanned_pages
;
259 if (!zone_spans_pfn(zone
, pfn
))
261 } while (zone_span_seqretry(zone
, seq
));
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn
, zone_to_nid(zone
), zone
->name
,
266 start_pfn
, start_pfn
+ sp
);
271 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
273 if (!pfn_valid_within(page_to_pfn(page
)))
275 if (zone
!= page_zone(page
))
281 * Temporary debugging check for pages not lying within a given zone.
283 static int bad_range(struct zone
*zone
, struct page
*page
)
285 if (page_outside_zone_boundaries(zone
, page
))
287 if (!page_is_consistent(zone
, page
))
293 static inline int bad_range(struct zone
*zone
, struct page
*page
)
299 static void bad_page(struct page
*page
, const char *reason
,
300 unsigned long bad_flags
)
302 static unsigned long resume
;
303 static unsigned long nr_shown
;
304 static unsigned long nr_unshown
;
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page
)) {
308 page_mapcount_reset(page
); /* remove PageBuddy */
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
316 if (nr_shown
== 60) {
317 if (time_before(jiffies
, resume
)) {
323 "BUG: Bad page state: %lu messages suppressed\n",
330 resume
= jiffies
+ 60 * HZ
;
332 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
333 current
->comm
, page_to_pfn(page
));
334 dump_page_badflags(page
, reason
, bad_flags
);
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page
); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
345 * Higher-order pages are called "compound pages". They are structured thusly:
347 * The first PAGE_SIZE page is called the "head page".
349 * The remaining PAGE_SIZE pages are called "tail pages".
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
359 static void free_compound_page(struct page
*page
)
361 __free_pages_ok(page
, compound_order(page
));
364 void prep_compound_page(struct page
*page
, unsigned long order
)
367 int nr_pages
= 1 << order
;
369 set_compound_page_dtor(page
, free_compound_page
);
370 set_compound_order(page
, order
);
372 for (i
= 1; i
< nr_pages
; i
++) {
373 struct page
*p
= page
+ i
;
374 set_page_count(p
, 0);
375 p
->first_page
= page
;
376 /* Make sure p->first_page is always valid for PageTail() */
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page
*page
, unsigned long order
)
386 int nr_pages
= 1 << order
;
389 if (unlikely(compound_order(page
) != order
)) {
390 bad_page(page
, "wrong compound order", 0);
394 __ClearPageHead(page
);
396 for (i
= 1; i
< nr_pages
; i
++) {
397 struct page
*p
= page
+ i
;
399 if (unlikely(!PageTail(p
))) {
400 bad_page(page
, "PageTail not set", 0);
402 } else if (unlikely(p
->first_page
!= page
)) {
403 bad_page(page
, "first_page not consistent", 0);
412 static inline void prep_zero_page(struct page
*page
, unsigned int order
,
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
422 for (i
= 0; i
< (1 << order
); i
++)
423 clear_highpage(page
+ i
);
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder
;
429 static int __init
debug_guardpage_minorder_setup(char *buf
)
433 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
434 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
437 _debug_guardpage_minorder
= res
;
438 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
443 static inline void set_page_guard_flag(struct page
*page
)
445 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
448 static inline void clear_page_guard_flag(struct page
*page
)
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
453 static inline void set_page_guard_flag(struct page
*page
) { }
454 static inline void clear_page_guard_flag(struct page
*page
) { }
457 static inline void set_page_order(struct page
*page
, unsigned int order
)
459 set_page_private(page
, order
);
460 __SetPageBuddy(page
);
463 static inline void rmv_page_order(struct page
*page
)
465 __ClearPageBuddy(page
);
466 set_page_private(page
, 0);
470 * This function checks whether a page is free && is the buddy
471 * we can do coalesce a page and its buddy if
472 * (a) the buddy is not in a hole &&
473 * (b) the buddy is in the buddy system &&
474 * (c) a page and its buddy have the same order &&
475 * (d) a page and its buddy are in the same zone.
477 * For recording whether a page is in the buddy system, we set ->_mapcount
478 * PAGE_BUDDY_MAPCOUNT_VALUE.
479 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
480 * serialized by zone->lock.
482 * For recording page's order, we use page_private(page).
484 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
487 if (!pfn_valid_within(page_to_pfn(buddy
)))
490 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
491 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
493 if (page_zone_id(page
) != page_zone_id(buddy
))
499 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
500 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
503 * zone check is done late to avoid uselessly
504 * calculating zone/node ids for pages that could
507 if (page_zone_id(page
) != page_zone_id(buddy
))
516 * Freeing function for a buddy system allocator.
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
528 * free pages of length of (1 << order) and marked with _mapcount
529 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
531 * So when we are allocating or freeing one, we can derive the state of the
532 * other. That is, if we allocate a small block, and both were
533 * free, the remainder of the region must be split into blocks.
534 * If a block is freed, and its buddy is also free, then this
535 * triggers coalescing into a block of larger size.
540 static inline void __free_one_page(struct page
*page
,
542 struct zone
*zone
, unsigned int order
,
545 unsigned long page_idx
;
546 unsigned long combined_idx
;
547 unsigned long uninitialized_var(buddy_idx
);
549 int max_order
= MAX_ORDER
;
551 VM_BUG_ON(!zone_is_initialized(zone
));
553 if (unlikely(PageCompound(page
)))
554 if (unlikely(destroy_compound_page(page
, order
)))
557 VM_BUG_ON(migratetype
== -1);
558 if (is_migrate_isolate(migratetype
)) {
560 * We restrict max order of merging to prevent merge
561 * between freepages on isolate pageblock and normal
562 * pageblock. Without this, pageblock isolation
563 * could cause incorrect freepage accounting.
565 max_order
= min(MAX_ORDER
, pageblock_order
+ 1);
567 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
570 page_idx
= pfn
& ((1 << max_order
) - 1);
572 VM_BUG_ON_PAGE(page_idx
& ((1 << order
) - 1), page
);
573 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
575 while (order
< max_order
- 1) {
576 buddy_idx
= __find_buddy_index(page_idx
, order
);
577 buddy
= page
+ (buddy_idx
- page_idx
);
578 if (!page_is_buddy(page
, buddy
, order
))
581 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
582 * merge with it and move up one order.
584 if (page_is_guard(buddy
)) {
585 clear_page_guard_flag(buddy
);
586 set_page_private(buddy
, 0);
587 if (!is_migrate_isolate(migratetype
)) {
588 __mod_zone_freepage_state(zone
, 1 << order
,
592 list_del(&buddy
->lru
);
593 zone
->free_area
[order
].nr_free
--;
594 rmv_page_order(buddy
);
596 combined_idx
= buddy_idx
& page_idx
;
597 page
= page
+ (combined_idx
- page_idx
);
598 page_idx
= combined_idx
;
601 set_page_order(page
, order
);
604 * If this is not the largest possible page, check if the buddy
605 * of the next-highest order is free. If it is, it's possible
606 * that pages are being freed that will coalesce soon. In case,
607 * that is happening, add the free page to the tail of the list
608 * so it's less likely to be used soon and more likely to be merged
609 * as a higher order page
611 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
612 struct page
*higher_page
, *higher_buddy
;
613 combined_idx
= buddy_idx
& page_idx
;
614 higher_page
= page
+ (combined_idx
- page_idx
);
615 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
616 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
617 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
618 list_add_tail(&page
->lru
,
619 &zone
->free_area
[order
].free_list
[migratetype
]);
624 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
626 zone
->free_area
[order
].nr_free
++;
629 static inline int free_pages_check(struct page
*page
)
631 const char *bad_reason
= NULL
;
632 unsigned long bad_flags
= 0;
634 if (unlikely(page_mapcount(page
)))
635 bad_reason
= "nonzero mapcount";
636 if (unlikely(page
->mapping
!= NULL
))
637 bad_reason
= "non-NULL mapping";
638 if (unlikely(atomic_read(&page
->_count
) != 0))
639 bad_reason
= "nonzero _count";
640 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
641 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
642 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
644 if (unlikely(mem_cgroup_bad_page_check(page
)))
645 bad_reason
= "cgroup check failed";
646 if (unlikely(bad_reason
)) {
647 bad_page(page
, bad_reason
, bad_flags
);
650 page_cpupid_reset_last(page
);
651 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
652 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
657 * Frees a number of pages from the PCP lists
658 * Assumes all pages on list are in same zone, and of same order.
659 * count is the number of pages to free.
661 * If the zone was previously in an "all pages pinned" state then look to
662 * see if this freeing clears that state.
664 * And clear the zone's pages_scanned counter, to hold off the "all pages are
665 * pinned" detection logic.
667 static void free_pcppages_bulk(struct zone
*zone
, int count
,
668 struct per_cpu_pages
*pcp
)
673 unsigned long nr_scanned
;
675 spin_lock(&zone
->lock
);
676 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
678 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
682 struct list_head
*list
;
685 * Remove pages from lists in a round-robin fashion. A
686 * batch_free count is maintained that is incremented when an
687 * empty list is encountered. This is so more pages are freed
688 * off fuller lists instead of spinning excessively around empty
693 if (++migratetype
== MIGRATE_PCPTYPES
)
695 list
= &pcp
->lists
[migratetype
];
696 } while (list_empty(list
));
698 /* This is the only non-empty list. Free them all. */
699 if (batch_free
== MIGRATE_PCPTYPES
)
700 batch_free
= to_free
;
703 int mt
; /* migratetype of the to-be-freed page */
705 page
= list_entry(list
->prev
, struct page
, lru
);
706 /* must delete as __free_one_page list manipulates */
707 list_del(&page
->lru
);
708 mt
= get_freepage_migratetype(page
);
709 if (unlikely(has_isolate_pageblock(zone
)))
710 mt
= get_pageblock_migratetype(page
);
712 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
713 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
714 trace_mm_page_pcpu_drain(page
, 0, mt
);
715 } while (--to_free
&& --batch_free
&& !list_empty(list
));
717 spin_unlock(&zone
->lock
);
720 static void free_one_page(struct zone
*zone
,
721 struct page
*page
, unsigned long pfn
,
725 unsigned long nr_scanned
;
726 spin_lock(&zone
->lock
);
727 nr_scanned
= zone_page_state(zone
, NR_PAGES_SCANNED
);
729 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, -nr_scanned
);
731 if (unlikely(has_isolate_pageblock(zone
) ||
732 is_migrate_isolate(migratetype
))) {
733 migratetype
= get_pfnblock_migratetype(page
, pfn
);
735 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
736 spin_unlock(&zone
->lock
);
739 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
744 trace_mm_page_free(page
, order
);
745 kmemcheck_free_shadow(page
, order
);
748 page
->mapping
= NULL
;
749 for (i
= 0; i
< (1 << order
); i
++)
750 bad
+= free_pages_check(page
+ i
);
754 if (!PageHighMem(page
)) {
755 debug_check_no_locks_freed(page_address(page
),
757 debug_check_no_obj_freed(page_address(page
),
760 arch_free_page(page
, order
);
761 kernel_map_pages(page
, 1 << order
, 0);
766 static void __free_pages_ok(struct page
*page
, unsigned int order
)
770 unsigned long pfn
= page_to_pfn(page
);
772 if (!free_pages_prepare(page
, order
))
775 migratetype
= get_pfnblock_migratetype(page
, pfn
);
776 local_irq_save(flags
);
777 __count_vm_events(PGFREE
, 1 << order
);
778 set_freepage_migratetype(page
, migratetype
);
779 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
780 local_irq_restore(flags
);
783 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
785 unsigned int nr_pages
= 1 << order
;
786 struct page
*p
= page
;
790 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
792 __ClearPageReserved(p
);
793 set_page_count(p
, 0);
795 __ClearPageReserved(p
);
796 set_page_count(p
, 0);
798 page_zone(page
)->managed_pages
+= nr_pages
;
799 set_page_refcounted(page
);
800 __free_pages(page
, order
);
804 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
805 void __init
init_cma_reserved_pageblock(struct page
*page
)
807 unsigned i
= pageblock_nr_pages
;
808 struct page
*p
= page
;
811 __ClearPageReserved(p
);
812 set_page_count(p
, 0);
815 set_pageblock_migratetype(page
, MIGRATE_CMA
);
817 if (pageblock_order
>= MAX_ORDER
) {
818 i
= pageblock_nr_pages
;
821 set_page_refcounted(p
);
822 __free_pages(p
, MAX_ORDER
- 1);
823 p
+= MAX_ORDER_NR_PAGES
;
824 } while (i
-= MAX_ORDER_NR_PAGES
);
826 set_page_refcounted(page
);
827 __free_pages(page
, pageblock_order
);
830 adjust_managed_page_count(page
, pageblock_nr_pages
);
835 * The order of subdivision here is critical for the IO subsystem.
836 * Please do not alter this order without good reasons and regression
837 * testing. Specifically, as large blocks of memory are subdivided,
838 * the order in which smaller blocks are delivered depends on the order
839 * they're subdivided in this function. This is the primary factor
840 * influencing the order in which pages are delivered to the IO
841 * subsystem according to empirical testing, and this is also justified
842 * by considering the behavior of a buddy system containing a single
843 * large block of memory acted on by a series of small allocations.
844 * This behavior is a critical factor in sglist merging's success.
848 static inline void expand(struct zone
*zone
, struct page
*page
,
849 int low
, int high
, struct free_area
*area
,
852 unsigned long size
= 1 << high
;
858 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
860 #ifdef CONFIG_DEBUG_PAGEALLOC
861 if (high
< debug_guardpage_minorder()) {
863 * Mark as guard pages (or page), that will allow to
864 * merge back to allocator when buddy will be freed.
865 * Corresponding page table entries will not be touched,
866 * pages will stay not present in virtual address space
868 INIT_LIST_HEAD(&page
[size
].lru
);
869 set_page_guard_flag(&page
[size
]);
870 set_page_private(&page
[size
], high
);
871 /* Guard pages are not available for any usage */
872 __mod_zone_freepage_state(zone
, -(1 << high
),
877 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
879 set_page_order(&page
[size
], high
);
884 * This page is about to be returned from the page allocator
886 static inline int check_new_page(struct page
*page
)
888 const char *bad_reason
= NULL
;
889 unsigned long bad_flags
= 0;
891 if (unlikely(page_mapcount(page
)))
892 bad_reason
= "nonzero mapcount";
893 if (unlikely(page
->mapping
!= NULL
))
894 bad_reason
= "non-NULL mapping";
895 if (unlikely(atomic_read(&page
->_count
) != 0))
896 bad_reason
= "nonzero _count";
897 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
898 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
899 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
901 if (unlikely(mem_cgroup_bad_page_check(page
)))
902 bad_reason
= "cgroup check failed";
903 if (unlikely(bad_reason
)) {
904 bad_page(page
, bad_reason
, bad_flags
);
910 static int prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
)
914 for (i
= 0; i
< (1 << order
); i
++) {
915 struct page
*p
= page
+ i
;
916 if (unlikely(check_new_page(p
)))
920 set_page_private(page
, 0);
921 set_page_refcounted(page
);
923 arch_alloc_page(page
, order
);
924 kernel_map_pages(page
, 1 << order
, 1);
926 if (gfp_flags
& __GFP_ZERO
)
927 prep_zero_page(page
, order
, gfp_flags
);
929 if (order
&& (gfp_flags
& __GFP_COMP
))
930 prep_compound_page(page
, order
);
936 * Go through the free lists for the given migratetype and remove
937 * the smallest available page from the freelists
940 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
943 unsigned int current_order
;
944 struct free_area
*area
;
947 /* Find a page of the appropriate size in the preferred list */
948 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
949 area
= &(zone
->free_area
[current_order
]);
950 if (list_empty(&area
->free_list
[migratetype
]))
953 page
= list_entry(area
->free_list
[migratetype
].next
,
955 list_del(&page
->lru
);
956 rmv_page_order(page
);
958 expand(zone
, page
, order
, current_order
, area
, migratetype
);
959 set_freepage_migratetype(page
, migratetype
);
968 * This array describes the order lists are fallen back to when
969 * the free lists for the desirable migrate type are depleted
971 static int fallbacks
[MIGRATE_TYPES
][4] = {
972 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
973 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
975 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
976 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
978 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
980 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
981 #ifdef CONFIG_MEMORY_ISOLATION
982 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
987 * Move the free pages in a range to the free lists of the requested type.
988 * Note that start_page and end_pages are not aligned on a pageblock
989 * boundary. If alignment is required, use move_freepages_block()
991 int move_freepages(struct zone
*zone
,
992 struct page
*start_page
, struct page
*end_page
,
999 #ifndef CONFIG_HOLES_IN_ZONE
1001 * page_zone is not safe to call in this context when
1002 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1003 * anyway as we check zone boundaries in move_freepages_block().
1004 * Remove at a later date when no bug reports exist related to
1005 * grouping pages by mobility
1007 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1010 for (page
= start_page
; page
<= end_page
;) {
1011 /* Make sure we are not inadvertently changing nodes */
1012 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1014 if (!pfn_valid_within(page_to_pfn(page
))) {
1019 if (!PageBuddy(page
)) {
1024 order
= page_order(page
);
1025 list_move(&page
->lru
,
1026 &zone
->free_area
[order
].free_list
[migratetype
]);
1027 set_freepage_migratetype(page
, migratetype
);
1029 pages_moved
+= 1 << order
;
1035 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1038 unsigned long start_pfn
, end_pfn
;
1039 struct page
*start_page
, *end_page
;
1041 start_pfn
= page_to_pfn(page
);
1042 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1043 start_page
= pfn_to_page(start_pfn
);
1044 end_page
= start_page
+ pageblock_nr_pages
- 1;
1045 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1047 /* Do not cross zone boundaries */
1048 if (!zone_spans_pfn(zone
, start_pfn
))
1050 if (!zone_spans_pfn(zone
, end_pfn
))
1053 return move_freepages(zone
, start_page
, end_page
, migratetype
);
1056 static void change_pageblock_range(struct page
*pageblock_page
,
1057 int start_order
, int migratetype
)
1059 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1061 while (nr_pageblocks
--) {
1062 set_pageblock_migratetype(pageblock_page
, migratetype
);
1063 pageblock_page
+= pageblock_nr_pages
;
1068 * If breaking a large block of pages, move all free pages to the preferred
1069 * allocation list. If falling back for a reclaimable kernel allocation, be
1070 * more aggressive about taking ownership of free pages.
1072 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1073 * nor move CMA pages to different free lists. We don't want unmovable pages
1074 * to be allocated from MIGRATE_CMA areas.
1076 * Returns the new migratetype of the pageblock (or the same old migratetype
1077 * if it was unchanged).
1079 static int try_to_steal_freepages(struct zone
*zone
, struct page
*page
,
1080 int start_type
, int fallback_type
)
1082 int current_order
= page_order(page
);
1085 * When borrowing from MIGRATE_CMA, we need to release the excess
1086 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1087 * is set to CMA so it is returned to the correct freelist in case
1088 * the page ends up being not actually allocated from the pcp lists.
1090 if (is_migrate_cma(fallback_type
))
1091 return fallback_type
;
1093 /* Take ownership for orders >= pageblock_order */
1094 if (current_order
>= pageblock_order
) {
1095 change_pageblock_range(page
, current_order
, start_type
);
1099 if (current_order
>= pageblock_order
/ 2 ||
1100 start_type
== MIGRATE_RECLAIMABLE
||
1101 page_group_by_mobility_disabled
) {
1104 pages
= move_freepages_block(zone
, page
, start_type
);
1106 /* Claim the whole block if over half of it is free */
1107 if (pages
>= (1 << (pageblock_order
-1)) ||
1108 page_group_by_mobility_disabled
) {
1110 set_pageblock_migratetype(page
, start_type
);
1116 return fallback_type
;
1119 /* Remove an element from the buddy allocator from the fallback list */
1120 static inline struct page
*
1121 __rmqueue_fallback(struct zone
*zone
, unsigned int order
, int start_migratetype
)
1123 struct free_area
*area
;
1124 unsigned int current_order
;
1126 int migratetype
, new_type
, i
;
1128 /* Find the largest possible block of pages in the other list */
1129 for (current_order
= MAX_ORDER
-1;
1130 current_order
>= order
&& current_order
<= MAX_ORDER
-1;
1133 migratetype
= fallbacks
[start_migratetype
][i
];
1135 /* MIGRATE_RESERVE handled later if necessary */
1136 if (migratetype
== MIGRATE_RESERVE
)
1139 area
= &(zone
->free_area
[current_order
]);
1140 if (list_empty(&area
->free_list
[migratetype
]))
1143 page
= list_entry(area
->free_list
[migratetype
].next
,
1147 new_type
= try_to_steal_freepages(zone
, page
,
1151 /* Remove the page from the freelists */
1152 list_del(&page
->lru
);
1153 rmv_page_order(page
);
1155 expand(zone
, page
, order
, current_order
, area
,
1157 /* The freepage_migratetype may differ from pageblock's
1158 * migratetype depending on the decisions in
1159 * try_to_steal_freepages. This is OK as long as it does
1160 * not differ for MIGRATE_CMA type.
1162 set_freepage_migratetype(page
, new_type
);
1164 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1165 start_migratetype
, migratetype
, new_type
);
1175 * Do the hard work of removing an element from the buddy allocator.
1176 * Call me with the zone->lock already held.
1178 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1184 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1186 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1187 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1190 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1191 * is used because __rmqueue_smallest is an inline function
1192 * and we want just one call site
1195 migratetype
= MIGRATE_RESERVE
;
1200 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1205 * Obtain a specified number of elements from the buddy allocator, all under
1206 * a single hold of the lock, for efficiency. Add them to the supplied list.
1207 * Returns the number of new pages which were placed at *list.
1209 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1210 unsigned long count
, struct list_head
*list
,
1211 int migratetype
, bool cold
)
1215 spin_lock(&zone
->lock
);
1216 for (i
= 0; i
< count
; ++i
) {
1217 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1218 if (unlikely(page
== NULL
))
1222 * Split buddy pages returned by expand() are received here
1223 * in physical page order. The page is added to the callers and
1224 * list and the list head then moves forward. From the callers
1225 * perspective, the linked list is ordered by page number in
1226 * some conditions. This is useful for IO devices that can
1227 * merge IO requests if the physical pages are ordered
1231 list_add(&page
->lru
, list
);
1233 list_add_tail(&page
->lru
, list
);
1235 if (is_migrate_cma(get_freepage_migratetype(page
)))
1236 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1239 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1240 spin_unlock(&zone
->lock
);
1246 * Called from the vmstat counter updater to drain pagesets of this
1247 * currently executing processor on remote nodes after they have
1250 * Note that this function must be called with the thread pinned to
1251 * a single processor.
1253 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1255 unsigned long flags
;
1256 int to_drain
, batch
;
1258 local_irq_save(flags
);
1259 batch
= ACCESS_ONCE(pcp
->batch
);
1260 to_drain
= min(pcp
->count
, batch
);
1262 free_pcppages_bulk(zone
, to_drain
, pcp
);
1263 pcp
->count
-= to_drain
;
1265 local_irq_restore(flags
);
1270 * Drain pages of the indicated processor.
1272 * The processor must either be the current processor and the
1273 * thread pinned to the current processor or a processor that
1276 static void drain_pages(unsigned int cpu
)
1278 unsigned long flags
;
1281 for_each_populated_zone(zone
) {
1282 struct per_cpu_pageset
*pset
;
1283 struct per_cpu_pages
*pcp
;
1285 local_irq_save(flags
);
1286 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1290 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1293 local_irq_restore(flags
);
1298 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1300 void drain_local_pages(void *arg
)
1302 drain_pages(smp_processor_id());
1306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1308 * Note that this code is protected against sending an IPI to an offline
1309 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1310 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1311 * nothing keeps CPUs from showing up after we populated the cpumask and
1312 * before the call to on_each_cpu_mask().
1314 void drain_all_pages(void)
1317 struct per_cpu_pageset
*pcp
;
1321 * Allocate in the BSS so we wont require allocation in
1322 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1324 static cpumask_t cpus_with_pcps
;
1327 * We don't care about racing with CPU hotplug event
1328 * as offline notification will cause the notified
1329 * cpu to drain that CPU pcps and on_each_cpu_mask
1330 * disables preemption as part of its processing
1332 for_each_online_cpu(cpu
) {
1333 bool has_pcps
= false;
1334 for_each_populated_zone(zone
) {
1335 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1336 if (pcp
->pcp
.count
) {
1342 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1344 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1346 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1349 #ifdef CONFIG_HIBERNATION
1351 void mark_free_pages(struct zone
*zone
)
1353 unsigned long pfn
, max_zone_pfn
;
1354 unsigned long flags
;
1355 unsigned int order
, t
;
1356 struct list_head
*curr
;
1358 if (zone_is_empty(zone
))
1361 spin_lock_irqsave(&zone
->lock
, flags
);
1363 max_zone_pfn
= zone_end_pfn(zone
);
1364 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1365 if (pfn_valid(pfn
)) {
1366 struct page
*page
= pfn_to_page(pfn
);
1368 if (!swsusp_page_is_forbidden(page
))
1369 swsusp_unset_page_free(page
);
1372 for_each_migratetype_order(order
, t
) {
1373 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1376 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1377 for (i
= 0; i
< (1UL << order
); i
++)
1378 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1381 spin_unlock_irqrestore(&zone
->lock
, flags
);
1383 #endif /* CONFIG_PM */
1386 * Free a 0-order page
1387 * cold == true ? free a cold page : free a hot page
1389 void free_hot_cold_page(struct page
*page
, bool cold
)
1391 struct zone
*zone
= page_zone(page
);
1392 struct per_cpu_pages
*pcp
;
1393 unsigned long flags
;
1394 unsigned long pfn
= page_to_pfn(page
);
1397 if (!free_pages_prepare(page
, 0))
1400 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1401 set_freepage_migratetype(page
, migratetype
);
1402 local_irq_save(flags
);
1403 __count_vm_event(PGFREE
);
1406 * We only track unmovable, reclaimable and movable on pcp lists.
1407 * Free ISOLATE pages back to the allocator because they are being
1408 * offlined but treat RESERVE as movable pages so we can get those
1409 * areas back if necessary. Otherwise, we may have to free
1410 * excessively into the page allocator
1412 if (migratetype
>= MIGRATE_PCPTYPES
) {
1413 if (unlikely(is_migrate_isolate(migratetype
))) {
1414 free_one_page(zone
, page
, pfn
, 0, migratetype
);
1417 migratetype
= MIGRATE_MOVABLE
;
1420 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1422 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1424 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1426 if (pcp
->count
>= pcp
->high
) {
1427 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1428 free_pcppages_bulk(zone
, batch
, pcp
);
1429 pcp
->count
-= batch
;
1433 local_irq_restore(flags
);
1437 * Free a list of 0-order pages
1439 void free_hot_cold_page_list(struct list_head
*list
, bool cold
)
1441 struct page
*page
, *next
;
1443 list_for_each_entry_safe(page
, next
, list
, lru
) {
1444 trace_mm_page_free_batched(page
, cold
);
1445 free_hot_cold_page(page
, cold
);
1450 * split_page takes a non-compound higher-order page, and splits it into
1451 * n (1<<order) sub-pages: page[0..n]
1452 * Each sub-page must be freed individually.
1454 * Note: this is probably too low level an operation for use in drivers.
1455 * Please consult with lkml before using this in your driver.
1457 void split_page(struct page
*page
, unsigned int order
)
1461 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1462 VM_BUG_ON_PAGE(!page_count(page
), page
);
1464 #ifdef CONFIG_KMEMCHECK
1466 * Split shadow pages too, because free(page[0]) would
1467 * otherwise free the whole shadow.
1469 if (kmemcheck_page_is_tracked(page
))
1470 split_page(virt_to_page(page
[0].shadow
), order
);
1473 for (i
= 1; i
< (1 << order
); i
++)
1474 set_page_refcounted(page
+ i
);
1476 EXPORT_SYMBOL_GPL(split_page
);
1478 int __isolate_free_page(struct page
*page
, unsigned int order
)
1480 unsigned long watermark
;
1484 BUG_ON(!PageBuddy(page
));
1486 zone
= page_zone(page
);
1487 mt
= get_pageblock_migratetype(page
);
1489 if (!is_migrate_isolate(mt
)) {
1490 /* Obey watermarks as if the page was being allocated */
1491 watermark
= low_wmark_pages(zone
) + (1 << order
);
1492 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1495 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1498 /* Remove page from free list */
1499 list_del(&page
->lru
);
1500 zone
->free_area
[order
].nr_free
--;
1501 rmv_page_order(page
);
1503 /* Set the pageblock if the isolated page is at least a pageblock */
1504 if (order
>= pageblock_order
- 1) {
1505 struct page
*endpage
= page
+ (1 << order
) - 1;
1506 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1507 int mt
= get_pageblock_migratetype(page
);
1508 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1509 set_pageblock_migratetype(page
,
1514 return 1UL << order
;
1518 * Similar to split_page except the page is already free. As this is only
1519 * being used for migration, the migratetype of the block also changes.
1520 * As this is called with interrupts disabled, the caller is responsible
1521 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1524 * Note: this is probably too low level an operation for use in drivers.
1525 * Please consult with lkml before using this in your driver.
1527 int split_free_page(struct page
*page
)
1532 order
= page_order(page
);
1534 nr_pages
= __isolate_free_page(page
, order
);
1538 /* Split into individual pages */
1539 set_page_refcounted(page
);
1540 split_page(page
, order
);
1545 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1546 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1550 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1551 struct zone
*zone
, unsigned int order
,
1552 gfp_t gfp_flags
, int migratetype
)
1554 unsigned long flags
;
1556 bool cold
= ((gfp_flags
& __GFP_COLD
) != 0);
1559 if (likely(order
== 0)) {
1560 struct per_cpu_pages
*pcp
;
1561 struct list_head
*list
;
1563 local_irq_save(flags
);
1564 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1565 list
= &pcp
->lists
[migratetype
];
1566 if (list_empty(list
)) {
1567 pcp
->count
+= rmqueue_bulk(zone
, 0,
1570 if (unlikely(list_empty(list
)))
1575 page
= list_entry(list
->prev
, struct page
, lru
);
1577 page
= list_entry(list
->next
, struct page
, lru
);
1579 list_del(&page
->lru
);
1582 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1584 * __GFP_NOFAIL is not to be used in new code.
1586 * All __GFP_NOFAIL callers should be fixed so that they
1587 * properly detect and handle allocation failures.
1589 * We most definitely don't want callers attempting to
1590 * allocate greater than order-1 page units with
1593 WARN_ON_ONCE(order
> 1);
1595 spin_lock_irqsave(&zone
->lock
, flags
);
1596 page
= __rmqueue(zone
, order
, migratetype
);
1597 spin_unlock(&zone
->lock
);
1600 __mod_zone_freepage_state(zone
, -(1 << order
),
1601 get_freepage_migratetype(page
));
1604 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
, -(1 << order
));
1605 if (atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]) <= 0 &&
1606 !test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
))
1607 set_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
1609 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1610 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1611 local_irq_restore(flags
);
1613 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
1614 if (prep_new_page(page
, order
, gfp_flags
))
1619 local_irq_restore(flags
);
1623 #ifdef CONFIG_FAIL_PAGE_ALLOC
1626 struct fault_attr attr
;
1628 u32 ignore_gfp_highmem
;
1629 u32 ignore_gfp_wait
;
1631 } fail_page_alloc
= {
1632 .attr
= FAULT_ATTR_INITIALIZER
,
1633 .ignore_gfp_wait
= 1,
1634 .ignore_gfp_highmem
= 1,
1638 static int __init
setup_fail_page_alloc(char *str
)
1640 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1642 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1644 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1646 if (order
< fail_page_alloc
.min_order
)
1648 if (gfp_mask
& __GFP_NOFAIL
)
1650 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1652 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1655 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1658 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1660 static int __init
fail_page_alloc_debugfs(void)
1662 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1665 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1666 &fail_page_alloc
.attr
);
1668 return PTR_ERR(dir
);
1670 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1671 &fail_page_alloc
.ignore_gfp_wait
))
1673 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1674 &fail_page_alloc
.ignore_gfp_highmem
))
1676 if (!debugfs_create_u32("min-order", mode
, dir
,
1677 &fail_page_alloc
.min_order
))
1682 debugfs_remove_recursive(dir
);
1687 late_initcall(fail_page_alloc_debugfs
);
1689 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1691 #else /* CONFIG_FAIL_PAGE_ALLOC */
1693 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1698 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1701 * Return true if free pages are above 'mark'. This takes into account the order
1702 * of the allocation.
1704 static bool __zone_watermark_ok(struct zone
*z
, unsigned int order
,
1705 unsigned long mark
, int classzone_idx
, int alloc_flags
,
1708 /* free_pages my go negative - that's OK */
1713 free_pages
-= (1 << order
) - 1;
1714 if (alloc_flags
& ALLOC_HIGH
)
1716 if (alloc_flags
& ALLOC_HARDER
)
1719 /* If allocation can't use CMA areas don't use free CMA pages */
1720 if (!(alloc_flags
& ALLOC_CMA
))
1721 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1724 if (free_pages
- free_cma
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1726 for (o
= 0; o
< order
; o
++) {
1727 /* At the next order, this order's pages become unavailable */
1728 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1730 /* Require fewer higher order pages to be free */
1733 if (free_pages
<= min
)
1739 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
1740 int classzone_idx
, int alloc_flags
)
1742 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1743 zone_page_state(z
, NR_FREE_PAGES
));
1746 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
1747 unsigned long mark
, int classzone_idx
, int alloc_flags
)
1749 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1751 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1752 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1754 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1760 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1761 * skip over zones that are not allowed by the cpuset, or that have
1762 * been recently (in last second) found to be nearly full. See further
1763 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1764 * that have to skip over a lot of full or unallowed zones.
1766 * If the zonelist cache is present in the passed zonelist, then
1767 * returns a pointer to the allowed node mask (either the current
1768 * tasks mems_allowed, or node_states[N_MEMORY].)
1770 * If the zonelist cache is not available for this zonelist, does
1771 * nothing and returns NULL.
1773 * If the fullzones BITMAP in the zonelist cache is stale (more than
1774 * a second since last zap'd) then we zap it out (clear its bits.)
1776 * We hold off even calling zlc_setup, until after we've checked the
1777 * first zone in the zonelist, on the theory that most allocations will
1778 * be satisfied from that first zone, so best to examine that zone as
1779 * quickly as we can.
1781 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1783 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1784 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1786 zlc
= zonelist
->zlcache_ptr
;
1790 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1791 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1792 zlc
->last_full_zap
= jiffies
;
1795 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1796 &cpuset_current_mems_allowed
:
1797 &node_states
[N_MEMORY
];
1798 return allowednodes
;
1802 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1803 * if it is worth looking at further for free memory:
1804 * 1) Check that the zone isn't thought to be full (doesn't have its
1805 * bit set in the zonelist_cache fullzones BITMAP).
1806 * 2) Check that the zones node (obtained from the zonelist_cache
1807 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1808 * Return true (non-zero) if zone is worth looking at further, or
1809 * else return false (zero) if it is not.
1811 * This check -ignores- the distinction between various watermarks,
1812 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1813 * found to be full for any variation of these watermarks, it will
1814 * be considered full for up to one second by all requests, unless
1815 * we are so low on memory on all allowed nodes that we are forced
1816 * into the second scan of the zonelist.
1818 * In the second scan we ignore this zonelist cache and exactly
1819 * apply the watermarks to all zones, even it is slower to do so.
1820 * We are low on memory in the second scan, and should leave no stone
1821 * unturned looking for a free page.
1823 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1824 nodemask_t
*allowednodes
)
1826 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1827 int i
; /* index of *z in zonelist zones */
1828 int n
; /* node that zone *z is on */
1830 zlc
= zonelist
->zlcache_ptr
;
1834 i
= z
- zonelist
->_zonerefs
;
1837 /* This zone is worth trying if it is allowed but not full */
1838 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1842 * Given 'z' scanning a zonelist, set the corresponding bit in
1843 * zlc->fullzones, so that subsequent attempts to allocate a page
1844 * from that zone don't waste time re-examining it.
1846 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1848 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1849 int i
; /* index of *z in zonelist zones */
1851 zlc
= zonelist
->zlcache_ptr
;
1855 i
= z
- zonelist
->_zonerefs
;
1857 set_bit(i
, zlc
->fullzones
);
1861 * clear all zones full, called after direct reclaim makes progress so that
1862 * a zone that was recently full is not skipped over for up to a second
1864 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1866 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1868 zlc
= zonelist
->zlcache_ptr
;
1872 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1875 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1877 return local_zone
->node
== zone
->node
;
1880 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1882 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <
1886 #else /* CONFIG_NUMA */
1888 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1893 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1894 nodemask_t
*allowednodes
)
1899 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1903 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1907 static bool zone_local(struct zone
*local_zone
, struct zone
*zone
)
1912 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1917 #endif /* CONFIG_NUMA */
1919 static void reset_alloc_batches(struct zone
*preferred_zone
)
1921 struct zone
*zone
= preferred_zone
->zone_pgdat
->node_zones
;
1924 mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
1925 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
1926 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
1927 clear_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
);
1928 } while (zone
++ != preferred_zone
);
1932 * get_page_from_freelist goes through the zonelist trying to allocate
1935 static struct page
*
1936 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1937 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1938 struct zone
*preferred_zone
, int classzone_idx
, int migratetype
)
1941 struct page
*page
= NULL
;
1943 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1944 int zlc_active
= 0; /* set if using zonelist_cache */
1945 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1946 bool consider_zone_dirty
= (alloc_flags
& ALLOC_WMARK_LOW
) &&
1947 (gfp_mask
& __GFP_WRITE
);
1948 int nr_fair_skipped
= 0;
1949 bool zonelist_rescan
;
1952 zonelist_rescan
= false;
1955 * Scan zonelist, looking for a zone with enough free.
1956 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1958 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1959 high_zoneidx
, nodemask
) {
1962 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1963 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1965 if (cpusets_enabled() &&
1966 (alloc_flags
& ALLOC_CPUSET
) &&
1967 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1970 * Distribute pages in proportion to the individual
1971 * zone size to ensure fair page aging. The zone a
1972 * page was allocated in should have no effect on the
1973 * time the page has in memory before being reclaimed.
1975 if (alloc_flags
& ALLOC_FAIR
) {
1976 if (!zone_local(preferred_zone
, zone
))
1978 if (test_bit(ZONE_FAIR_DEPLETED
, &zone
->flags
)) {
1984 * When allocating a page cache page for writing, we
1985 * want to get it from a zone that is within its dirty
1986 * limit, such that no single zone holds more than its
1987 * proportional share of globally allowed dirty pages.
1988 * The dirty limits take into account the zone's
1989 * lowmem reserves and high watermark so that kswapd
1990 * should be able to balance it without having to
1991 * write pages from its LRU list.
1993 * This may look like it could increase pressure on
1994 * lower zones by failing allocations in higher zones
1995 * before they are full. But the pages that do spill
1996 * over are limited as the lower zones are protected
1997 * by this very same mechanism. It should not become
1998 * a practical burden to them.
2000 * XXX: For now, allow allocations to potentially
2001 * exceed the per-zone dirty limit in the slowpath
2002 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2003 * which is important when on a NUMA setup the allowed
2004 * zones are together not big enough to reach the
2005 * global limit. The proper fix for these situations
2006 * will require awareness of zones in the
2007 * dirty-throttling and the flusher threads.
2009 if (consider_zone_dirty
&& !zone_dirty_ok(zone
))
2012 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
2013 if (!zone_watermark_ok(zone
, order
, mark
,
2014 classzone_idx
, alloc_flags
)) {
2017 /* Checked here to keep the fast path fast */
2018 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
2019 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
2022 if (IS_ENABLED(CONFIG_NUMA
) &&
2023 !did_zlc_setup
&& nr_online_nodes
> 1) {
2025 * we do zlc_setup if there are multiple nodes
2026 * and before considering the first zone allowed
2029 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
2034 if (zone_reclaim_mode
== 0 ||
2035 !zone_allows_reclaim(preferred_zone
, zone
))
2036 goto this_zone_full
;
2039 * As we may have just activated ZLC, check if the first
2040 * eligible zone has failed zone_reclaim recently.
2042 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
2043 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
2046 ret
= zone_reclaim(zone
, gfp_mask
, order
);
2048 case ZONE_RECLAIM_NOSCAN
:
2051 case ZONE_RECLAIM_FULL
:
2052 /* scanned but unreclaimable */
2055 /* did we reclaim enough */
2056 if (zone_watermark_ok(zone
, order
, mark
,
2057 classzone_idx
, alloc_flags
))
2061 * Failed to reclaim enough to meet watermark.
2062 * Only mark the zone full if checking the min
2063 * watermark or if we failed to reclaim just
2064 * 1<<order pages or else the page allocator
2065 * fastpath will prematurely mark zones full
2066 * when the watermark is between the low and
2069 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
2070 ret
== ZONE_RECLAIM_SOME
)
2071 goto this_zone_full
;
2078 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
2079 gfp_mask
, migratetype
);
2083 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
)
2084 zlc_mark_zone_full(zonelist
, z
);
2089 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2090 * necessary to allocate the page. The expectation is
2091 * that the caller is taking steps that will free more
2092 * memory. The caller should avoid the page being used
2093 * for !PFMEMALLOC purposes.
2095 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
2100 * The first pass makes sure allocations are spread fairly within the
2101 * local node. However, the local node might have free pages left
2102 * after the fairness batches are exhausted, and remote zones haven't
2103 * even been considered yet. Try once more without fairness, and
2104 * include remote zones now, before entering the slowpath and waking
2105 * kswapd: prefer spilling to a remote zone over swapping locally.
2107 if (alloc_flags
& ALLOC_FAIR
) {
2108 alloc_flags
&= ~ALLOC_FAIR
;
2109 if (nr_fair_skipped
) {
2110 zonelist_rescan
= true;
2111 reset_alloc_batches(preferred_zone
);
2113 if (nr_online_nodes
> 1)
2114 zonelist_rescan
= true;
2117 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && zlc_active
)) {
2118 /* Disable zlc cache for second zonelist scan */
2120 zonelist_rescan
= true;
2123 if (zonelist_rescan
)
2130 * Large machines with many possible nodes should not always dump per-node
2131 * meminfo in irq context.
2133 static inline bool should_suppress_show_mem(void)
2138 ret
= in_interrupt();
2143 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2144 DEFAULT_RATELIMIT_INTERVAL
,
2145 DEFAULT_RATELIMIT_BURST
);
2147 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2149 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2151 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2152 debug_guardpage_minorder() > 0)
2156 * This documents exceptions given to allocations in certain
2157 * contexts that are allowed to allocate outside current's set
2160 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2161 if (test_thread_flag(TIF_MEMDIE
) ||
2162 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2163 filter
&= ~SHOW_MEM_FILTER_NODES
;
2164 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2165 filter
&= ~SHOW_MEM_FILTER_NODES
;
2168 struct va_format vaf
;
2171 va_start(args
, fmt
);
2176 pr_warn("%pV", &vaf
);
2181 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2182 current
->comm
, order
, gfp_mask
);
2185 if (!should_suppress_show_mem())
2190 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2191 unsigned long did_some_progress
,
2192 unsigned long pages_reclaimed
)
2194 /* Do not loop if specifically requested */
2195 if (gfp_mask
& __GFP_NORETRY
)
2198 /* Always retry if specifically requested */
2199 if (gfp_mask
& __GFP_NOFAIL
)
2203 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2204 * making forward progress without invoking OOM. Suspend also disables
2205 * storage devices so kswapd will not help. Bail if we are suspending.
2207 if (!did_some_progress
&& pm_suspended_storage())
2211 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2212 * means __GFP_NOFAIL, but that may not be true in other
2215 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2219 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2220 * specified, then we retry until we no longer reclaim any pages
2221 * (above), or we've reclaimed an order of pages at least as
2222 * large as the allocation's order. In both cases, if the
2223 * allocation still fails, we stop retrying.
2225 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2231 static inline struct page
*
2232 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2233 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2234 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2235 int classzone_idx
, int migratetype
)
2239 /* Acquire the per-zone oom lock for each zone */
2240 if (!oom_zonelist_trylock(zonelist
, gfp_mask
)) {
2241 schedule_timeout_uninterruptible(1);
2246 * PM-freezer should be notified that there might be an OOM killer on
2247 * its way to kill and wake somebody up. This is too early and we might
2248 * end up not killing anything but false positives are acceptable.
2249 * See freeze_processes.
2254 * Go through the zonelist yet one more time, keep very high watermark
2255 * here, this is only to catch a parallel oom killing, we must fail if
2256 * we're still under heavy pressure.
2258 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2259 order
, zonelist
, high_zoneidx
,
2260 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2261 preferred_zone
, classzone_idx
, migratetype
);
2265 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2266 /* The OOM killer will not help higher order allocs */
2267 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2269 /* The OOM killer does not needlessly kill tasks for lowmem */
2270 if (high_zoneidx
< ZONE_NORMAL
)
2273 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2274 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2275 * The caller should handle page allocation failure by itself if
2276 * it specifies __GFP_THISNODE.
2277 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2279 if (gfp_mask
& __GFP_THISNODE
)
2282 /* Exhausted what can be done so it's blamo time */
2283 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2286 oom_zonelist_unlock(zonelist
, gfp_mask
);
2290 #ifdef CONFIG_COMPACTION
2291 /* Try memory compaction for high-order allocations before reclaim */
2292 static struct page
*
2293 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2294 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2295 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2296 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2297 int *contended_compaction
, bool *deferred_compaction
)
2299 struct zone
*last_compact_zone
= NULL
;
2300 unsigned long compact_result
;
2306 current
->flags
|= PF_MEMALLOC
;
2307 compact_result
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2309 contended_compaction
,
2310 &last_compact_zone
);
2311 current
->flags
&= ~PF_MEMALLOC
;
2313 switch (compact_result
) {
2314 case COMPACT_DEFERRED
:
2315 *deferred_compaction
= true;
2317 case COMPACT_SKIPPED
:
2324 * At least in one zone compaction wasn't deferred or skipped, so let's
2325 * count a compaction stall
2327 count_vm_event(COMPACTSTALL
);
2329 /* Page migration frees to the PCP lists but we want merging */
2330 drain_pages(get_cpu());
2333 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2334 order
, zonelist
, high_zoneidx
,
2335 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2336 preferred_zone
, classzone_idx
, migratetype
);
2339 struct zone
*zone
= page_zone(page
);
2341 zone
->compact_blockskip_flush
= false;
2342 compaction_defer_reset(zone
, order
, true);
2343 count_vm_event(COMPACTSUCCESS
);
2348 * last_compact_zone is where try_to_compact_pages thought allocation
2349 * should succeed, so it did not defer compaction. But here we know
2350 * that it didn't succeed, so we do the defer.
2352 if (last_compact_zone
&& mode
!= MIGRATE_ASYNC
)
2353 defer_compaction(last_compact_zone
, order
);
2356 * It's bad if compaction run occurs and fails. The most likely reason
2357 * is that pages exist, but not enough to satisfy watermarks.
2359 count_vm_event(COMPACTFAIL
);
2366 static inline struct page
*
2367 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2368 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2369 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2370 int classzone_idx
, int migratetype
, enum migrate_mode mode
,
2371 int *contended_compaction
, bool *deferred_compaction
)
2375 #endif /* CONFIG_COMPACTION */
2377 /* Perform direct synchronous page reclaim */
2379 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2380 nodemask_t
*nodemask
)
2382 struct reclaim_state reclaim_state
;
2387 /* We now go into synchronous reclaim */
2388 cpuset_memory_pressure_bump();
2389 current
->flags
|= PF_MEMALLOC
;
2390 lockdep_set_current_reclaim_state(gfp_mask
);
2391 reclaim_state
.reclaimed_slab
= 0;
2392 current
->reclaim_state
= &reclaim_state
;
2394 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2396 current
->reclaim_state
= NULL
;
2397 lockdep_clear_current_reclaim_state();
2398 current
->flags
&= ~PF_MEMALLOC
;
2405 /* The really slow allocator path where we enter direct reclaim */
2406 static inline struct page
*
2407 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2408 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2409 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2410 int classzone_idx
, int migratetype
, unsigned long *did_some_progress
)
2412 struct page
*page
= NULL
;
2413 bool drained
= false;
2415 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2417 if (unlikely(!(*did_some_progress
)))
2420 /* After successful reclaim, reconsider all zones for allocation */
2421 if (IS_ENABLED(CONFIG_NUMA
))
2422 zlc_clear_zones_full(zonelist
);
2425 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2426 zonelist
, high_zoneidx
,
2427 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2428 preferred_zone
, classzone_idx
,
2432 * If an allocation failed after direct reclaim, it could be because
2433 * pages are pinned on the per-cpu lists. Drain them and try again
2435 if (!page
&& !drained
) {
2445 * This is called in the allocator slow-path if the allocation request is of
2446 * sufficient urgency to ignore watermarks and take other desperate measures
2448 static inline struct page
*
2449 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2450 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2451 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2452 int classzone_idx
, int migratetype
)
2457 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2458 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2459 preferred_zone
, classzone_idx
, migratetype
);
2461 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2462 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2463 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2468 static void wake_all_kswapds(unsigned int order
,
2469 struct zonelist
*zonelist
,
2470 enum zone_type high_zoneidx
,
2471 struct zone
*preferred_zone
,
2472 nodemask_t
*nodemask
)
2477 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2478 high_zoneidx
, nodemask
)
2479 wakeup_kswapd(zone
, order
, zone_idx(preferred_zone
));
2483 gfp_to_alloc_flags(gfp_t gfp_mask
)
2485 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2486 const bool atomic
= !(gfp_mask
& (__GFP_WAIT
| __GFP_NO_KSWAPD
));
2488 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2489 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2492 * The caller may dip into page reserves a bit more if the caller
2493 * cannot run direct reclaim, or if the caller has realtime scheduling
2494 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2495 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2497 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2501 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2502 * if it can't schedule.
2504 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2505 alloc_flags
|= ALLOC_HARDER
;
2507 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2508 * comment for __cpuset_node_allowed_softwall().
2510 alloc_flags
&= ~ALLOC_CPUSET
;
2511 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2512 alloc_flags
|= ALLOC_HARDER
;
2514 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2515 if (gfp_mask
& __GFP_MEMALLOC
)
2516 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2517 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2518 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2519 else if (!in_interrupt() &&
2520 ((current
->flags
& PF_MEMALLOC
) ||
2521 unlikely(test_thread_flag(TIF_MEMDIE
))))
2522 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2525 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2526 alloc_flags
|= ALLOC_CMA
;
2531 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2533 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2536 static inline struct page
*
2537 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2538 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2539 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2540 int classzone_idx
, int migratetype
)
2542 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2543 struct page
*page
= NULL
;
2545 unsigned long pages_reclaimed
= 0;
2546 unsigned long did_some_progress
;
2547 enum migrate_mode migration_mode
= MIGRATE_ASYNC
;
2548 bool deferred_compaction
= false;
2549 int contended_compaction
= COMPACT_CONTENDED_NONE
;
2552 * In the slowpath, we sanity check order to avoid ever trying to
2553 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2554 * be using allocators in order of preference for an area that is
2557 if (order
>= MAX_ORDER
) {
2558 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2563 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2564 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2565 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2566 * using a larger set of nodes after it has established that the
2567 * allowed per node queues are empty and that nodes are
2570 if (IS_ENABLED(CONFIG_NUMA
) &&
2571 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2575 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2576 wake_all_kswapds(order
, zonelist
, high_zoneidx
,
2577 preferred_zone
, nodemask
);
2580 * OK, we're below the kswapd watermark and have kicked background
2581 * reclaim. Now things get more complex, so set up alloc_flags according
2582 * to how we want to proceed.
2584 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2587 * Find the true preferred zone if the allocation is unconstrained by
2590 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
) {
2591 struct zoneref
*preferred_zoneref
;
2592 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2593 NULL
, &preferred_zone
);
2594 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2598 /* This is the last chance, in general, before the goto nopage. */
2599 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2600 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2601 preferred_zone
, classzone_idx
, migratetype
);
2605 /* Allocate without watermarks if the context allows */
2606 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2608 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2609 * the allocation is high priority and these type of
2610 * allocations are system rather than user orientated
2612 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2614 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2615 zonelist
, high_zoneidx
, nodemask
,
2616 preferred_zone
, classzone_idx
, migratetype
);
2622 /* Atomic allocations - we can't balance anything */
2625 * All existing users of the deprecated __GFP_NOFAIL are
2626 * blockable, so warn of any new users that actually allow this
2627 * type of allocation to fail.
2629 WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
);
2633 /* Avoid recursion of direct reclaim */
2634 if (current
->flags
& PF_MEMALLOC
)
2637 /* Avoid allocations with no watermarks from looping endlessly */
2638 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2642 * Try direct compaction. The first pass is asynchronous. Subsequent
2643 * attempts after direct reclaim are synchronous
2645 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2646 high_zoneidx
, nodemask
, alloc_flags
,
2648 classzone_idx
, migratetype
,
2649 migration_mode
, &contended_compaction
,
2650 &deferred_compaction
);
2654 /* Checks for THP-specific high-order allocations */
2655 if ((gfp_mask
& GFP_TRANSHUGE
) == GFP_TRANSHUGE
) {
2657 * If compaction is deferred for high-order allocations, it is
2658 * because sync compaction recently failed. If this is the case
2659 * and the caller requested a THP allocation, we do not want
2660 * to heavily disrupt the system, so we fail the allocation
2661 * instead of entering direct reclaim.
2663 if (deferred_compaction
)
2667 * In all zones where compaction was attempted (and not
2668 * deferred or skipped), lock contention has been detected.
2669 * For THP allocation we do not want to disrupt the others
2670 * so we fallback to base pages instead.
2672 if (contended_compaction
== COMPACT_CONTENDED_LOCK
)
2676 * If compaction was aborted due to need_resched(), we do not
2677 * want to further increase allocation latency, unless it is
2678 * khugepaged trying to collapse.
2680 if (contended_compaction
== COMPACT_CONTENDED_SCHED
2681 && !(current
->flags
& PF_KTHREAD
))
2686 * It can become very expensive to allocate transparent hugepages at
2687 * fault, so use asynchronous memory compaction for THP unless it is
2688 * khugepaged trying to collapse.
2690 if ((gfp_mask
& GFP_TRANSHUGE
) != GFP_TRANSHUGE
||
2691 (current
->flags
& PF_KTHREAD
))
2692 migration_mode
= MIGRATE_SYNC_LIGHT
;
2694 /* Try direct reclaim and then allocating */
2695 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2696 zonelist
, high_zoneidx
,
2698 alloc_flags
, preferred_zone
,
2699 classzone_idx
, migratetype
,
2700 &did_some_progress
);
2705 * If we failed to make any progress reclaiming, then we are
2706 * running out of options and have to consider going OOM
2708 if (!did_some_progress
) {
2709 if (oom_gfp_allowed(gfp_mask
)) {
2710 if (oom_killer_disabled
)
2712 /* Coredumps can quickly deplete all memory reserves */
2713 if ((current
->flags
& PF_DUMPCORE
) &&
2714 !(gfp_mask
& __GFP_NOFAIL
))
2716 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2717 zonelist
, high_zoneidx
,
2718 nodemask
, preferred_zone
,
2719 classzone_idx
, migratetype
);
2723 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2725 * The oom killer is not called for high-order
2726 * allocations that may fail, so if no progress
2727 * is being made, there are no other options and
2728 * retrying is unlikely to help.
2730 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2733 * The oom killer is not called for lowmem
2734 * allocations to prevent needlessly killing
2737 if (high_zoneidx
< ZONE_NORMAL
)
2745 /* Check if we should retry the allocation */
2746 pages_reclaimed
+= did_some_progress
;
2747 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2749 /* Wait for some write requests to complete then retry */
2750 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2754 * High-order allocations do not necessarily loop after
2755 * direct reclaim and reclaim/compaction depends on compaction
2756 * being called after reclaim so call directly if necessary
2758 page
= __alloc_pages_direct_compact(gfp_mask
, order
, zonelist
,
2759 high_zoneidx
, nodemask
, alloc_flags
,
2761 classzone_idx
, migratetype
,
2762 migration_mode
, &contended_compaction
,
2763 &deferred_compaction
);
2769 warn_alloc_failed(gfp_mask
, order
, NULL
);
2772 if (kmemcheck_enabled
)
2773 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2779 * This is the 'heart' of the zoned buddy allocator.
2782 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2783 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2785 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2786 struct zone
*preferred_zone
;
2787 struct zoneref
*preferred_zoneref
;
2788 struct page
*page
= NULL
;
2789 int migratetype
= gfpflags_to_migratetype(gfp_mask
);
2790 unsigned int cpuset_mems_cookie
;
2791 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
|ALLOC_FAIR
;
2794 gfp_mask
&= gfp_allowed_mask
;
2796 lockdep_trace_alloc(gfp_mask
);
2798 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2800 if (should_fail_alloc_page(gfp_mask
, order
))
2804 * Check the zones suitable for the gfp_mask contain at least one
2805 * valid zone. It's possible to have an empty zonelist as a result
2806 * of GFP_THISNODE and a memoryless node
2808 if (unlikely(!zonelist
->_zonerefs
->zone
))
2811 if (IS_ENABLED(CONFIG_CMA
) && migratetype
== MIGRATE_MOVABLE
)
2812 alloc_flags
|= ALLOC_CMA
;
2815 cpuset_mems_cookie
= read_mems_allowed_begin();
2817 /* The preferred zone is used for statistics later */
2818 preferred_zoneref
= first_zones_zonelist(zonelist
, high_zoneidx
,
2819 nodemask
? : &cpuset_current_mems_allowed
,
2821 if (!preferred_zone
)
2823 classzone_idx
= zonelist_zone_idx(preferred_zoneref
);
2825 /* First allocation attempt */
2826 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2827 zonelist
, high_zoneidx
, alloc_flags
,
2828 preferred_zone
, classzone_idx
, migratetype
);
2829 if (unlikely(!page
)) {
2831 * Runtime PM, block IO and its error handling path
2832 * can deadlock because I/O on the device might not
2835 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2836 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2837 zonelist
, high_zoneidx
, nodemask
,
2838 preferred_zone
, classzone_idx
, migratetype
);
2841 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2845 * When updating a task's mems_allowed, it is possible to race with
2846 * parallel threads in such a way that an allocation can fail while
2847 * the mask is being updated. If a page allocation is about to fail,
2848 * check if the cpuset changed during allocation and if so, retry.
2850 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2855 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2858 * Common helper functions.
2860 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2865 * __get_free_pages() returns a 32-bit address, which cannot represent
2868 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2870 page
= alloc_pages(gfp_mask
, order
);
2873 return (unsigned long) page_address(page
);
2875 EXPORT_SYMBOL(__get_free_pages
);
2877 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2879 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2881 EXPORT_SYMBOL(get_zeroed_page
);
2883 void __free_pages(struct page
*page
, unsigned int order
)
2885 if (put_page_testzero(page
)) {
2887 free_hot_cold_page(page
, false);
2889 __free_pages_ok(page
, order
);
2893 EXPORT_SYMBOL(__free_pages
);
2895 void free_pages(unsigned long addr
, unsigned int order
)
2898 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2899 __free_pages(virt_to_page((void *)addr
), order
);
2903 EXPORT_SYMBOL(free_pages
);
2906 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2907 * of the current memory cgroup.
2909 * It should be used when the caller would like to use kmalloc, but since the
2910 * allocation is large, it has to fall back to the page allocator.
2912 struct page
*alloc_kmem_pages(gfp_t gfp_mask
, unsigned int order
)
2915 struct mem_cgroup
*memcg
= NULL
;
2917 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2919 page
= alloc_pages(gfp_mask
, order
);
2920 memcg_kmem_commit_charge(page
, memcg
, order
);
2924 struct page
*alloc_kmem_pages_node(int nid
, gfp_t gfp_mask
, unsigned int order
)
2927 struct mem_cgroup
*memcg
= NULL
;
2929 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2931 page
= alloc_pages_node(nid
, gfp_mask
, order
);
2932 memcg_kmem_commit_charge(page
, memcg
, order
);
2937 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2940 void __free_kmem_pages(struct page
*page
, unsigned int order
)
2942 memcg_kmem_uncharge_pages(page
, order
);
2943 __free_pages(page
, order
);
2946 void free_kmem_pages(unsigned long addr
, unsigned int order
)
2949 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2950 __free_kmem_pages(virt_to_page((void *)addr
), order
);
2954 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2957 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2958 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2960 split_page(virt_to_page((void *)addr
), order
);
2961 while (used
< alloc_end
) {
2966 return (void *)addr
;
2970 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2971 * @size: the number of bytes to allocate
2972 * @gfp_mask: GFP flags for the allocation
2974 * This function is similar to alloc_pages(), except that it allocates the
2975 * minimum number of pages to satisfy the request. alloc_pages() can only
2976 * allocate memory in power-of-two pages.
2978 * This function is also limited by MAX_ORDER.
2980 * Memory allocated by this function must be released by free_pages_exact().
2982 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2984 unsigned int order
= get_order(size
);
2987 addr
= __get_free_pages(gfp_mask
, order
);
2988 return make_alloc_exact(addr
, order
, size
);
2990 EXPORT_SYMBOL(alloc_pages_exact
);
2993 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2995 * @nid: the preferred node ID where memory should be allocated
2996 * @size: the number of bytes to allocate
2997 * @gfp_mask: GFP flags for the allocation
2999 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3001 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3004 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
3006 unsigned order
= get_order(size
);
3007 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
3010 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
3014 * free_pages_exact - release memory allocated via alloc_pages_exact()
3015 * @virt: the value returned by alloc_pages_exact.
3016 * @size: size of allocation, same value as passed to alloc_pages_exact().
3018 * Release the memory allocated by a previous call to alloc_pages_exact.
3020 void free_pages_exact(void *virt
, size_t size
)
3022 unsigned long addr
= (unsigned long)virt
;
3023 unsigned long end
= addr
+ PAGE_ALIGN(size
);
3025 while (addr
< end
) {
3030 EXPORT_SYMBOL(free_pages_exact
);
3033 * nr_free_zone_pages - count number of pages beyond high watermark
3034 * @offset: The zone index of the highest zone
3036 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3037 * high watermark within all zones at or below a given zone index. For each
3038 * zone, the number of pages is calculated as:
3039 * managed_pages - high_pages
3041 static unsigned long nr_free_zone_pages(int offset
)
3046 /* Just pick one node, since fallback list is circular */
3047 unsigned long sum
= 0;
3049 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
3051 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
3052 unsigned long size
= zone
->managed_pages
;
3053 unsigned long high
= high_wmark_pages(zone
);
3062 * nr_free_buffer_pages - count number of pages beyond high watermark
3064 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3065 * watermark within ZONE_DMA and ZONE_NORMAL.
3067 unsigned long nr_free_buffer_pages(void)
3069 return nr_free_zone_pages(gfp_zone(GFP_USER
));
3071 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
3074 * nr_free_pagecache_pages - count number of pages beyond high watermark
3076 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3077 * high watermark within all zones.
3079 unsigned long nr_free_pagecache_pages(void)
3081 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
3084 static inline void show_node(struct zone
*zone
)
3086 if (IS_ENABLED(CONFIG_NUMA
))
3087 printk("Node %d ", zone_to_nid(zone
));
3090 void si_meminfo(struct sysinfo
*val
)
3092 val
->totalram
= totalram_pages
;
3093 val
->sharedram
= global_page_state(NR_SHMEM
);
3094 val
->freeram
= global_page_state(NR_FREE_PAGES
);
3095 val
->bufferram
= nr_blockdev_pages();
3096 val
->totalhigh
= totalhigh_pages
;
3097 val
->freehigh
= nr_free_highpages();
3098 val
->mem_unit
= PAGE_SIZE
;
3101 EXPORT_SYMBOL(si_meminfo
);
3104 void si_meminfo_node(struct sysinfo
*val
, int nid
)
3106 int zone_type
; /* needs to be signed */
3107 unsigned long managed_pages
= 0;
3108 pg_data_t
*pgdat
= NODE_DATA(nid
);
3110 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
3111 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
3112 val
->totalram
= managed_pages
;
3113 val
->sharedram
= node_page_state(nid
, NR_SHMEM
);
3114 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
3115 #ifdef CONFIG_HIGHMEM
3116 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
3117 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
3123 val
->mem_unit
= PAGE_SIZE
;
3128 * Determine whether the node should be displayed or not, depending on whether
3129 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3131 bool skip_free_areas_node(unsigned int flags
, int nid
)
3134 unsigned int cpuset_mems_cookie
;
3136 if (!(flags
& SHOW_MEM_FILTER_NODES
))
3140 cpuset_mems_cookie
= read_mems_allowed_begin();
3141 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
3142 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
3147 #define K(x) ((x) << (PAGE_SHIFT-10))
3149 static void show_migration_types(unsigned char type
)
3151 static const char types
[MIGRATE_TYPES
] = {
3152 [MIGRATE_UNMOVABLE
] = 'U',
3153 [MIGRATE_RECLAIMABLE
] = 'E',
3154 [MIGRATE_MOVABLE
] = 'M',
3155 [MIGRATE_RESERVE
] = 'R',
3157 [MIGRATE_CMA
] = 'C',
3159 #ifdef CONFIG_MEMORY_ISOLATION
3160 [MIGRATE_ISOLATE
] = 'I',
3163 char tmp
[MIGRATE_TYPES
+ 1];
3167 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
3168 if (type
& (1 << i
))
3173 printk("(%s) ", tmp
);
3177 * Show free area list (used inside shift_scroll-lock stuff)
3178 * We also calculate the percentage fragmentation. We do this by counting the
3179 * memory on each free list with the exception of the first item on the list.
3180 * Suppresses nodes that are not allowed by current's cpuset if
3181 * SHOW_MEM_FILTER_NODES is passed.
3183 void show_free_areas(unsigned int filter
)
3188 for_each_populated_zone(zone
) {
3189 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3192 printk("%s per-cpu:\n", zone
->name
);
3194 for_each_online_cpu(cpu
) {
3195 struct per_cpu_pageset
*pageset
;
3197 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3199 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3200 cpu
, pageset
->pcp
.high
,
3201 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3205 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3206 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3208 " dirty:%lu writeback:%lu unstable:%lu\n"
3209 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3210 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3212 global_page_state(NR_ACTIVE_ANON
),
3213 global_page_state(NR_INACTIVE_ANON
),
3214 global_page_state(NR_ISOLATED_ANON
),
3215 global_page_state(NR_ACTIVE_FILE
),
3216 global_page_state(NR_INACTIVE_FILE
),
3217 global_page_state(NR_ISOLATED_FILE
),
3218 global_page_state(NR_UNEVICTABLE
),
3219 global_page_state(NR_FILE_DIRTY
),
3220 global_page_state(NR_WRITEBACK
),
3221 global_page_state(NR_UNSTABLE_NFS
),
3222 global_page_state(NR_FREE_PAGES
),
3223 global_page_state(NR_SLAB_RECLAIMABLE
),
3224 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3225 global_page_state(NR_FILE_MAPPED
),
3226 global_page_state(NR_SHMEM
),
3227 global_page_state(NR_PAGETABLE
),
3228 global_page_state(NR_BOUNCE
),
3229 global_page_state(NR_FREE_CMA_PAGES
));
3231 for_each_populated_zone(zone
) {
3234 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3242 " active_anon:%lukB"
3243 " inactive_anon:%lukB"
3244 " active_file:%lukB"
3245 " inactive_file:%lukB"
3246 " unevictable:%lukB"
3247 " isolated(anon):%lukB"
3248 " isolated(file):%lukB"
3256 " slab_reclaimable:%lukB"
3257 " slab_unreclaimable:%lukB"
3258 " kernel_stack:%lukB"
3263 " writeback_tmp:%lukB"
3264 " pages_scanned:%lu"
3265 " all_unreclaimable? %s"
3268 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3269 K(min_wmark_pages(zone
)),
3270 K(low_wmark_pages(zone
)),
3271 K(high_wmark_pages(zone
)),
3272 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3273 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3274 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3275 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3276 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3277 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3278 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3279 K(zone
->present_pages
),
3280 K(zone
->managed_pages
),
3281 K(zone_page_state(zone
, NR_MLOCK
)),
3282 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3283 K(zone_page_state(zone
, NR_WRITEBACK
)),
3284 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3285 K(zone_page_state(zone
, NR_SHMEM
)),
3286 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3287 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3288 zone_page_state(zone
, NR_KERNEL_STACK
) *
3290 K(zone_page_state(zone
, NR_PAGETABLE
)),
3291 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3292 K(zone_page_state(zone
, NR_BOUNCE
)),
3293 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3294 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3295 K(zone_page_state(zone
, NR_PAGES_SCANNED
)),
3296 (!zone_reclaimable(zone
) ? "yes" : "no")
3298 printk("lowmem_reserve[]:");
3299 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3300 printk(" %ld", zone
->lowmem_reserve
[i
]);
3304 for_each_populated_zone(zone
) {
3305 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3306 unsigned char types
[MAX_ORDER
];
3308 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3311 printk("%s: ", zone
->name
);
3313 spin_lock_irqsave(&zone
->lock
, flags
);
3314 for (order
= 0; order
< MAX_ORDER
; order
++) {
3315 struct free_area
*area
= &zone
->free_area
[order
];
3318 nr
[order
] = area
->nr_free
;
3319 total
+= nr
[order
] << order
;
3322 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3323 if (!list_empty(&area
->free_list
[type
]))
3324 types
[order
] |= 1 << type
;
3327 spin_unlock_irqrestore(&zone
->lock
, flags
);
3328 for (order
= 0; order
< MAX_ORDER
; order
++) {
3329 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3331 show_migration_types(types
[order
]);
3333 printk("= %lukB\n", K(total
));
3336 hugetlb_show_meminfo();
3338 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3340 show_swap_cache_info();
3343 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3345 zoneref
->zone
= zone
;
3346 zoneref
->zone_idx
= zone_idx(zone
);
3350 * Builds allocation fallback zone lists.
3352 * Add all populated zones of a node to the zonelist.
3354 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3358 enum zone_type zone_type
= MAX_NR_ZONES
;
3362 zone
= pgdat
->node_zones
+ zone_type
;
3363 if (populated_zone(zone
)) {
3364 zoneref_set_zone(zone
,
3365 &zonelist
->_zonerefs
[nr_zones
++]);
3366 check_highest_zone(zone_type
);
3368 } while (zone_type
);
3376 * 0 = automatic detection of better ordering.
3377 * 1 = order by ([node] distance, -zonetype)
3378 * 2 = order by (-zonetype, [node] distance)
3380 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3381 * the same zonelist. So only NUMA can configure this param.
3383 #define ZONELIST_ORDER_DEFAULT 0
3384 #define ZONELIST_ORDER_NODE 1
3385 #define ZONELIST_ORDER_ZONE 2
3387 /* zonelist order in the kernel.
3388 * set_zonelist_order() will set this to NODE or ZONE.
3390 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3391 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3395 /* The value user specified ....changed by config */
3396 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3397 /* string for sysctl */
3398 #define NUMA_ZONELIST_ORDER_LEN 16
3399 char numa_zonelist_order
[16] = "default";
3402 * interface for configure zonelist ordering.
3403 * command line option "numa_zonelist_order"
3404 * = "[dD]efault - default, automatic configuration.
3405 * = "[nN]ode - order by node locality, then by zone within node
3406 * = "[zZ]one - order by zone, then by locality within zone
3409 static int __parse_numa_zonelist_order(char *s
)
3411 if (*s
== 'd' || *s
== 'D') {
3412 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3413 } else if (*s
== 'n' || *s
== 'N') {
3414 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3415 } else if (*s
== 'z' || *s
== 'Z') {
3416 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3419 "Ignoring invalid numa_zonelist_order value: "
3426 static __init
int setup_numa_zonelist_order(char *s
)
3433 ret
= __parse_numa_zonelist_order(s
);
3435 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3439 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3442 * sysctl handler for numa_zonelist_order
3444 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
3445 void __user
*buffer
, size_t *length
,
3448 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3450 static DEFINE_MUTEX(zl_order_mutex
);
3452 mutex_lock(&zl_order_mutex
);
3454 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3458 strcpy(saved_string
, (char *)table
->data
);
3460 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3464 int oldval
= user_zonelist_order
;
3466 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3469 * bogus value. restore saved string
3471 strncpy((char *)table
->data
, saved_string
,
3472 NUMA_ZONELIST_ORDER_LEN
);
3473 user_zonelist_order
= oldval
;
3474 } else if (oldval
!= user_zonelist_order
) {
3475 mutex_lock(&zonelists_mutex
);
3476 build_all_zonelists(NULL
, NULL
);
3477 mutex_unlock(&zonelists_mutex
);
3481 mutex_unlock(&zl_order_mutex
);
3486 #define MAX_NODE_LOAD (nr_online_nodes)
3487 static int node_load
[MAX_NUMNODES
];
3490 * find_next_best_node - find the next node that should appear in a given node's fallback list
3491 * @node: node whose fallback list we're appending
3492 * @used_node_mask: nodemask_t of already used nodes
3494 * We use a number of factors to determine which is the next node that should
3495 * appear on a given node's fallback list. The node should not have appeared
3496 * already in @node's fallback list, and it should be the next closest node
3497 * according to the distance array (which contains arbitrary distance values
3498 * from each node to each node in the system), and should also prefer nodes
3499 * with no CPUs, since presumably they'll have very little allocation pressure
3500 * on them otherwise.
3501 * It returns -1 if no node is found.
3503 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3506 int min_val
= INT_MAX
;
3507 int best_node
= NUMA_NO_NODE
;
3508 const struct cpumask
*tmp
= cpumask_of_node(0);
3510 /* Use the local node if we haven't already */
3511 if (!node_isset(node
, *used_node_mask
)) {
3512 node_set(node
, *used_node_mask
);
3516 for_each_node_state(n
, N_MEMORY
) {
3518 /* Don't want a node to appear more than once */
3519 if (node_isset(n
, *used_node_mask
))
3522 /* Use the distance array to find the distance */
3523 val
= node_distance(node
, n
);
3525 /* Penalize nodes under us ("prefer the next node") */
3528 /* Give preference to headless and unused nodes */
3529 tmp
= cpumask_of_node(n
);
3530 if (!cpumask_empty(tmp
))
3531 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3533 /* Slight preference for less loaded node */
3534 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3535 val
+= node_load
[n
];
3537 if (val
< min_val
) {
3544 node_set(best_node
, *used_node_mask
);
3551 * Build zonelists ordered by node and zones within node.
3552 * This results in maximum locality--normal zone overflows into local
3553 * DMA zone, if any--but risks exhausting DMA zone.
3555 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3558 struct zonelist
*zonelist
;
3560 zonelist
= &pgdat
->node_zonelists
[0];
3561 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3563 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3564 zonelist
->_zonerefs
[j
].zone
= NULL
;
3565 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3569 * Build gfp_thisnode zonelists
3571 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3574 struct zonelist
*zonelist
;
3576 zonelist
= &pgdat
->node_zonelists
[1];
3577 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3578 zonelist
->_zonerefs
[j
].zone
= NULL
;
3579 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3583 * Build zonelists ordered by zone and nodes within zones.
3584 * This results in conserving DMA zone[s] until all Normal memory is
3585 * exhausted, but results in overflowing to remote node while memory
3586 * may still exist in local DMA zone.
3588 static int node_order
[MAX_NUMNODES
];
3590 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3593 int zone_type
; /* needs to be signed */
3595 struct zonelist
*zonelist
;
3597 zonelist
= &pgdat
->node_zonelists
[0];
3599 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3600 for (j
= 0; j
< nr_nodes
; j
++) {
3601 node
= node_order
[j
];
3602 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3603 if (populated_zone(z
)) {
3605 &zonelist
->_zonerefs
[pos
++]);
3606 check_highest_zone(zone_type
);
3610 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3611 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3614 #if defined(CONFIG_64BIT)
3616 * Devices that require DMA32/DMA are relatively rare and do not justify a
3617 * penalty to every machine in case the specialised case applies. Default
3618 * to Node-ordering on 64-bit NUMA machines
3620 static int default_zonelist_order(void)
3622 return ZONELIST_ORDER_NODE
;
3626 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3627 * by the kernel. If processes running on node 0 deplete the low memory zone
3628 * then reclaim will occur more frequency increasing stalls and potentially
3629 * be easier to OOM if a large percentage of the zone is under writeback or
3630 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3631 * Hence, default to zone ordering on 32-bit.
3633 static int default_zonelist_order(void)
3635 return ZONELIST_ORDER_ZONE
;
3637 #endif /* CONFIG_64BIT */
3639 static void set_zonelist_order(void)
3641 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3642 current_zonelist_order
= default_zonelist_order();
3644 current_zonelist_order
= user_zonelist_order
;
3647 static void build_zonelists(pg_data_t
*pgdat
)
3651 nodemask_t used_mask
;
3652 int local_node
, prev_node
;
3653 struct zonelist
*zonelist
;
3654 int order
= current_zonelist_order
;
3656 /* initialize zonelists */
3657 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3658 zonelist
= pgdat
->node_zonelists
+ i
;
3659 zonelist
->_zonerefs
[0].zone
= NULL
;
3660 zonelist
->_zonerefs
[0].zone_idx
= 0;
3663 /* NUMA-aware ordering of nodes */
3664 local_node
= pgdat
->node_id
;
3665 load
= nr_online_nodes
;
3666 prev_node
= local_node
;
3667 nodes_clear(used_mask
);
3669 memset(node_order
, 0, sizeof(node_order
));
3672 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3674 * We don't want to pressure a particular node.
3675 * So adding penalty to the first node in same
3676 * distance group to make it round-robin.
3678 if (node_distance(local_node
, node
) !=
3679 node_distance(local_node
, prev_node
))
3680 node_load
[node
] = load
;
3684 if (order
== ZONELIST_ORDER_NODE
)
3685 build_zonelists_in_node_order(pgdat
, node
);
3687 node_order
[j
++] = node
; /* remember order */
3690 if (order
== ZONELIST_ORDER_ZONE
) {
3691 /* calculate node order -- i.e., DMA last! */
3692 build_zonelists_in_zone_order(pgdat
, j
);
3695 build_thisnode_zonelists(pgdat
);
3698 /* Construct the zonelist performance cache - see further mmzone.h */
3699 static void build_zonelist_cache(pg_data_t
*pgdat
)
3701 struct zonelist
*zonelist
;
3702 struct zonelist_cache
*zlc
;
3705 zonelist
= &pgdat
->node_zonelists
[0];
3706 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3707 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3708 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3709 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3712 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3714 * Return node id of node used for "local" allocations.
3715 * I.e., first node id of first zone in arg node's generic zonelist.
3716 * Used for initializing percpu 'numa_mem', which is used primarily
3717 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3719 int local_memory_node(int node
)
3723 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3724 gfp_zone(GFP_KERNEL
),
3731 #else /* CONFIG_NUMA */
3733 static void set_zonelist_order(void)
3735 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3738 static void build_zonelists(pg_data_t
*pgdat
)
3740 int node
, local_node
;
3742 struct zonelist
*zonelist
;
3744 local_node
= pgdat
->node_id
;
3746 zonelist
= &pgdat
->node_zonelists
[0];
3747 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3750 * Now we build the zonelist so that it contains the zones
3751 * of all the other nodes.
3752 * We don't want to pressure a particular node, so when
3753 * building the zones for node N, we make sure that the
3754 * zones coming right after the local ones are those from
3755 * node N+1 (modulo N)
3757 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3758 if (!node_online(node
))
3760 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3762 for (node
= 0; node
< local_node
; node
++) {
3763 if (!node_online(node
))
3765 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3768 zonelist
->_zonerefs
[j
].zone
= NULL
;
3769 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3772 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3773 static void build_zonelist_cache(pg_data_t
*pgdat
)
3775 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3778 #endif /* CONFIG_NUMA */
3781 * Boot pageset table. One per cpu which is going to be used for all
3782 * zones and all nodes. The parameters will be set in such a way
3783 * that an item put on a list will immediately be handed over to
3784 * the buddy list. This is safe since pageset manipulation is done
3785 * with interrupts disabled.
3787 * The boot_pagesets must be kept even after bootup is complete for
3788 * unused processors and/or zones. They do play a role for bootstrapping
3789 * hotplugged processors.
3791 * zoneinfo_show() and maybe other functions do
3792 * not check if the processor is online before following the pageset pointer.
3793 * Other parts of the kernel may not check if the zone is available.
3795 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3796 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3797 static void setup_zone_pageset(struct zone
*zone
);
3800 * Global mutex to protect against size modification of zonelists
3801 * as well as to serialize pageset setup for the new populated zone.
3803 DEFINE_MUTEX(zonelists_mutex
);
3805 /* return values int ....just for stop_machine() */
3806 static int __build_all_zonelists(void *data
)
3810 pg_data_t
*self
= data
;
3813 memset(node_load
, 0, sizeof(node_load
));
3816 if (self
&& !node_online(self
->node_id
)) {
3817 build_zonelists(self
);
3818 build_zonelist_cache(self
);
3821 for_each_online_node(nid
) {
3822 pg_data_t
*pgdat
= NODE_DATA(nid
);
3824 build_zonelists(pgdat
);
3825 build_zonelist_cache(pgdat
);
3829 * Initialize the boot_pagesets that are going to be used
3830 * for bootstrapping processors. The real pagesets for
3831 * each zone will be allocated later when the per cpu
3832 * allocator is available.
3834 * boot_pagesets are used also for bootstrapping offline
3835 * cpus if the system is already booted because the pagesets
3836 * are needed to initialize allocators on a specific cpu too.
3837 * F.e. the percpu allocator needs the page allocator which
3838 * needs the percpu allocator in order to allocate its pagesets
3839 * (a chicken-egg dilemma).
3841 for_each_possible_cpu(cpu
) {
3842 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3844 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3846 * We now know the "local memory node" for each node--
3847 * i.e., the node of the first zone in the generic zonelist.
3848 * Set up numa_mem percpu variable for on-line cpus. During
3849 * boot, only the boot cpu should be on-line; we'll init the
3850 * secondary cpus' numa_mem as they come on-line. During
3851 * node/memory hotplug, we'll fixup all on-line cpus.
3853 if (cpu_online(cpu
))
3854 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3862 * Called with zonelists_mutex held always
3863 * unless system_state == SYSTEM_BOOTING.
3865 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3867 set_zonelist_order();
3869 if (system_state
== SYSTEM_BOOTING
) {
3870 __build_all_zonelists(NULL
);
3871 mminit_verify_zonelist();
3872 cpuset_init_current_mems_allowed();
3874 #ifdef CONFIG_MEMORY_HOTPLUG
3876 setup_zone_pageset(zone
);
3878 /* we have to stop all cpus to guarantee there is no user
3880 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3881 /* cpuset refresh routine should be here */
3883 vm_total_pages
= nr_free_pagecache_pages();
3885 * Disable grouping by mobility if the number of pages in the
3886 * system is too low to allow the mechanism to work. It would be
3887 * more accurate, but expensive to check per-zone. This check is
3888 * made on memory-hotadd so a system can start with mobility
3889 * disabled and enable it later
3891 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3892 page_group_by_mobility_disabled
= 1;
3894 page_group_by_mobility_disabled
= 0;
3896 printk("Built %i zonelists in %s order, mobility grouping %s. "
3897 "Total pages: %ld\n",
3899 zonelist_order_name
[current_zonelist_order
],
3900 page_group_by_mobility_disabled
? "off" : "on",
3903 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3908 * Helper functions to size the waitqueue hash table.
3909 * Essentially these want to choose hash table sizes sufficiently
3910 * large so that collisions trying to wait on pages are rare.
3911 * But in fact, the number of active page waitqueues on typical
3912 * systems is ridiculously low, less than 200. So this is even
3913 * conservative, even though it seems large.
3915 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3916 * waitqueues, i.e. the size of the waitq table given the number of pages.
3918 #define PAGES_PER_WAITQUEUE 256
3920 #ifndef CONFIG_MEMORY_HOTPLUG
3921 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3923 unsigned long size
= 1;
3925 pages
/= PAGES_PER_WAITQUEUE
;
3927 while (size
< pages
)
3931 * Once we have dozens or even hundreds of threads sleeping
3932 * on IO we've got bigger problems than wait queue collision.
3933 * Limit the size of the wait table to a reasonable size.
3935 size
= min(size
, 4096UL);
3937 return max(size
, 4UL);
3941 * A zone's size might be changed by hot-add, so it is not possible to determine
3942 * a suitable size for its wait_table. So we use the maximum size now.
3944 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3946 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3947 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3948 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3950 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3951 * or more by the traditional way. (See above). It equals:
3953 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3954 * ia64(16K page size) : = ( 8G + 4M)byte.
3955 * powerpc (64K page size) : = (32G +16M)byte.
3957 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3964 * This is an integer logarithm so that shifts can be used later
3965 * to extract the more random high bits from the multiplicative
3966 * hash function before the remainder is taken.
3968 static inline unsigned long wait_table_bits(unsigned long size
)
3974 * Check if a pageblock contains reserved pages
3976 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3980 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3981 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3988 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3989 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3990 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3991 * higher will lead to a bigger reserve which will get freed as contiguous
3992 * blocks as reclaim kicks in
3994 static void setup_zone_migrate_reserve(struct zone
*zone
)
3996 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3998 unsigned long block_migratetype
;
4003 * Get the start pfn, end pfn and the number of blocks to reserve
4004 * We have to be careful to be aligned to pageblock_nr_pages to
4005 * make sure that we always check pfn_valid for the first page in
4008 start_pfn
= zone
->zone_start_pfn
;
4009 end_pfn
= zone_end_pfn(zone
);
4010 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
4011 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
4015 * Reserve blocks are generally in place to help high-order atomic
4016 * allocations that are short-lived. A min_free_kbytes value that
4017 * would result in more than 2 reserve blocks for atomic allocations
4018 * is assumed to be in place to help anti-fragmentation for the
4019 * future allocation of hugepages at runtime.
4021 reserve
= min(2, reserve
);
4022 old_reserve
= zone
->nr_migrate_reserve_block
;
4024 /* When memory hot-add, we almost always need to do nothing */
4025 if (reserve
== old_reserve
)
4027 zone
->nr_migrate_reserve_block
= reserve
;
4029 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
4030 if (!pfn_valid(pfn
))
4032 page
= pfn_to_page(pfn
);
4034 /* Watch out for overlapping nodes */
4035 if (page_to_nid(page
) != zone_to_nid(zone
))
4038 block_migratetype
= get_pageblock_migratetype(page
);
4040 /* Only test what is necessary when the reserves are not met */
4043 * Blocks with reserved pages will never free, skip
4046 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
4047 if (pageblock_is_reserved(pfn
, block_end_pfn
))
4050 /* If this block is reserved, account for it */
4051 if (block_migratetype
== MIGRATE_RESERVE
) {
4056 /* Suitable for reserving if this block is movable */
4057 if (block_migratetype
== MIGRATE_MOVABLE
) {
4058 set_pageblock_migratetype(page
,
4060 move_freepages_block(zone
, page
,
4065 } else if (!old_reserve
) {
4067 * At boot time we don't need to scan the whole zone
4068 * for turning off MIGRATE_RESERVE.
4074 * If the reserve is met and this is a previous reserved block,
4077 if (block_migratetype
== MIGRATE_RESERVE
) {
4078 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4079 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4085 * Initially all pages are reserved - free ones are freed
4086 * up by free_all_bootmem() once the early boot process is
4087 * done. Non-atomic initialization, single-pass.
4089 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
4090 unsigned long start_pfn
, enum memmap_context context
)
4093 unsigned long end_pfn
= start_pfn
+ size
;
4097 if (highest_memmap_pfn
< end_pfn
- 1)
4098 highest_memmap_pfn
= end_pfn
- 1;
4100 z
= &NODE_DATA(nid
)->node_zones
[zone
];
4101 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
4103 * There can be holes in boot-time mem_map[]s
4104 * handed to this function. They do not
4105 * exist on hotplugged memory.
4107 if (context
== MEMMAP_EARLY
) {
4108 if (!early_pfn_valid(pfn
))
4110 if (!early_pfn_in_nid(pfn
, nid
))
4113 page
= pfn_to_page(pfn
);
4114 set_page_links(page
, zone
, nid
, pfn
);
4115 mminit_verify_page_links(page
, zone
, nid
, pfn
);
4116 init_page_count(page
);
4117 page_mapcount_reset(page
);
4118 page_cpupid_reset_last(page
);
4119 SetPageReserved(page
);
4121 * Mark the block movable so that blocks are reserved for
4122 * movable at startup. This will force kernel allocations
4123 * to reserve their blocks rather than leaking throughout
4124 * the address space during boot when many long-lived
4125 * kernel allocations are made. Later some blocks near
4126 * the start are marked MIGRATE_RESERVE by
4127 * setup_zone_migrate_reserve()
4129 * bitmap is created for zone's valid pfn range. but memmap
4130 * can be created for invalid pages (for alignment)
4131 * check here not to call set_pageblock_migratetype() against
4134 if ((z
->zone_start_pfn
<= pfn
)
4135 && (pfn
< zone_end_pfn(z
))
4136 && !(pfn
& (pageblock_nr_pages
- 1)))
4137 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4139 INIT_LIST_HEAD(&page
->lru
);
4140 #ifdef WANT_PAGE_VIRTUAL
4141 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4142 if (!is_highmem_idx(zone
))
4143 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
4148 static void __meminit
zone_init_free_lists(struct zone
*zone
)
4150 unsigned int order
, t
;
4151 for_each_migratetype_order(order
, t
) {
4152 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
4153 zone
->free_area
[order
].nr_free
= 0;
4157 #ifndef __HAVE_ARCH_MEMMAP_INIT
4158 #define memmap_init(size, nid, zone, start_pfn) \
4159 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4162 static int zone_batchsize(struct zone
*zone
)
4168 * The per-cpu-pages pools are set to around 1000th of the
4169 * size of the zone. But no more than 1/2 of a meg.
4171 * OK, so we don't know how big the cache is. So guess.
4173 batch
= zone
->managed_pages
/ 1024;
4174 if (batch
* PAGE_SIZE
> 512 * 1024)
4175 batch
= (512 * 1024) / PAGE_SIZE
;
4176 batch
/= 4; /* We effectively *= 4 below */
4181 * Clamp the batch to a 2^n - 1 value. Having a power
4182 * of 2 value was found to be more likely to have
4183 * suboptimal cache aliasing properties in some cases.
4185 * For example if 2 tasks are alternately allocating
4186 * batches of pages, one task can end up with a lot
4187 * of pages of one half of the possible page colors
4188 * and the other with pages of the other colors.
4190 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4195 /* The deferral and batching of frees should be suppressed under NOMMU
4198 * The problem is that NOMMU needs to be able to allocate large chunks
4199 * of contiguous memory as there's no hardware page translation to
4200 * assemble apparent contiguous memory from discontiguous pages.
4202 * Queueing large contiguous runs of pages for batching, however,
4203 * causes the pages to actually be freed in smaller chunks. As there
4204 * can be a significant delay between the individual batches being
4205 * recycled, this leads to the once large chunks of space being
4206 * fragmented and becoming unavailable for high-order allocations.
4213 * pcp->high and pcp->batch values are related and dependent on one another:
4214 * ->batch must never be higher then ->high.
4215 * The following function updates them in a safe manner without read side
4218 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4219 * those fields changing asynchronously (acording the the above rule).
4221 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4222 * outside of boot time (or some other assurance that no concurrent updaters
4225 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4226 unsigned long batch
)
4228 /* start with a fail safe value for batch */
4232 /* Update high, then batch, in order */
4239 /* a companion to pageset_set_high() */
4240 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4242 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4245 static void pageset_init(struct per_cpu_pageset
*p
)
4247 struct per_cpu_pages
*pcp
;
4250 memset(p
, 0, sizeof(*p
));
4254 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4255 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4258 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4261 pageset_set_batch(p
, batch
);
4265 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4266 * to the value high for the pageset p.
4268 static void pageset_set_high(struct per_cpu_pageset
*p
,
4271 unsigned long batch
= max(1UL, high
/ 4);
4272 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4273 batch
= PAGE_SHIFT
* 8;
4275 pageset_update(&p
->pcp
, high
, batch
);
4278 static void pageset_set_high_and_batch(struct zone
*zone
,
4279 struct per_cpu_pageset
*pcp
)
4281 if (percpu_pagelist_fraction
)
4282 pageset_set_high(pcp
,
4283 (zone
->managed_pages
/
4284 percpu_pagelist_fraction
));
4286 pageset_set_batch(pcp
, zone_batchsize(zone
));
4289 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4291 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4294 pageset_set_high_and_batch(zone
, pcp
);
4297 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4300 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4301 for_each_possible_cpu(cpu
)
4302 zone_pageset_init(zone
, cpu
);
4306 * Allocate per cpu pagesets and initialize them.
4307 * Before this call only boot pagesets were available.
4309 void __init
setup_per_cpu_pageset(void)
4313 for_each_populated_zone(zone
)
4314 setup_zone_pageset(zone
);
4317 static noinline __init_refok
4318 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4324 * The per-page waitqueue mechanism uses hashed waitqueues
4327 zone
->wait_table_hash_nr_entries
=
4328 wait_table_hash_nr_entries(zone_size_pages
);
4329 zone
->wait_table_bits
=
4330 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4331 alloc_size
= zone
->wait_table_hash_nr_entries
4332 * sizeof(wait_queue_head_t
);
4334 if (!slab_is_available()) {
4335 zone
->wait_table
= (wait_queue_head_t
*)
4336 memblock_virt_alloc_node_nopanic(
4337 alloc_size
, zone
->zone_pgdat
->node_id
);
4340 * This case means that a zone whose size was 0 gets new memory
4341 * via memory hot-add.
4342 * But it may be the case that a new node was hot-added. In
4343 * this case vmalloc() will not be able to use this new node's
4344 * memory - this wait_table must be initialized to use this new
4345 * node itself as well.
4346 * To use this new node's memory, further consideration will be
4349 zone
->wait_table
= vmalloc(alloc_size
);
4351 if (!zone
->wait_table
)
4354 for (i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4355 init_waitqueue_head(zone
->wait_table
+ i
);
4360 static __meminit
void zone_pcp_init(struct zone
*zone
)
4363 * per cpu subsystem is not up at this point. The following code
4364 * relies on the ability of the linker to provide the
4365 * offset of a (static) per cpu variable into the per cpu area.
4367 zone
->pageset
= &boot_pageset
;
4369 if (populated_zone(zone
))
4370 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4371 zone
->name
, zone
->present_pages
,
4372 zone_batchsize(zone
));
4375 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4376 unsigned long zone_start_pfn
,
4378 enum memmap_context context
)
4380 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4382 ret
= zone_wait_table_init(zone
, size
);
4385 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4387 zone
->zone_start_pfn
= zone_start_pfn
;
4389 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4390 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4392 (unsigned long)zone_idx(zone
),
4393 zone_start_pfn
, (zone_start_pfn
+ size
));
4395 zone_init_free_lists(zone
);
4400 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4401 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4403 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4405 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4407 unsigned long start_pfn
, end_pfn
;
4410 * NOTE: The following SMP-unsafe globals are only used early in boot
4411 * when the kernel is running single-threaded.
4413 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4414 static int __meminitdata last_nid
;
4416 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4419 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
4421 last_start_pfn
= start_pfn
;
4422 last_end_pfn
= end_pfn
;
4428 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4430 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4434 nid
= __early_pfn_to_nid(pfn
);
4437 /* just returns 0 */
4441 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4442 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4446 nid
= __early_pfn_to_nid(pfn
);
4447 if (nid
>= 0 && nid
!= node
)
4454 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4455 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4456 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4458 * If an architecture guarantees that all ranges registered contain no holes
4459 * and may be freed, this this function may be used instead of calling
4460 * memblock_free_early_nid() manually.
4462 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4464 unsigned long start_pfn
, end_pfn
;
4467 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4468 start_pfn
= min(start_pfn
, max_low_pfn
);
4469 end_pfn
= min(end_pfn
, max_low_pfn
);
4471 if (start_pfn
< end_pfn
)
4472 memblock_free_early_nid(PFN_PHYS(start_pfn
),
4473 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
4479 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4480 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4482 * If an architecture guarantees that all ranges registered contain no holes and may
4483 * be freed, this function may be used instead of calling memory_present() manually.
4485 void __init
sparse_memory_present_with_active_regions(int nid
)
4487 unsigned long start_pfn
, end_pfn
;
4490 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4491 memory_present(this_nid
, start_pfn
, end_pfn
);
4495 * get_pfn_range_for_nid - Return the start and end page frames for a node
4496 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4497 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4498 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4500 * It returns the start and end page frame of a node based on information
4501 * provided by memblock_set_node(). If called for a node
4502 * with no available memory, a warning is printed and the start and end
4505 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4506 unsigned long *start_pfn
, unsigned long *end_pfn
)
4508 unsigned long this_start_pfn
, this_end_pfn
;
4514 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4515 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4516 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4519 if (*start_pfn
== -1UL)
4524 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4525 * assumption is made that zones within a node are ordered in monotonic
4526 * increasing memory addresses so that the "highest" populated zone is used
4528 static void __init
find_usable_zone_for_movable(void)
4531 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4532 if (zone_index
== ZONE_MOVABLE
)
4535 if (arch_zone_highest_possible_pfn
[zone_index
] >
4536 arch_zone_lowest_possible_pfn
[zone_index
])
4540 VM_BUG_ON(zone_index
== -1);
4541 movable_zone
= zone_index
;
4545 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4546 * because it is sized independent of architecture. Unlike the other zones,
4547 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4548 * in each node depending on the size of each node and how evenly kernelcore
4549 * is distributed. This helper function adjusts the zone ranges
4550 * provided by the architecture for a given node by using the end of the
4551 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4552 * zones within a node are in order of monotonic increases memory addresses
4554 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4555 unsigned long zone_type
,
4556 unsigned long node_start_pfn
,
4557 unsigned long node_end_pfn
,
4558 unsigned long *zone_start_pfn
,
4559 unsigned long *zone_end_pfn
)
4561 /* Only adjust if ZONE_MOVABLE is on this node */
4562 if (zone_movable_pfn
[nid
]) {
4563 /* Size ZONE_MOVABLE */
4564 if (zone_type
== ZONE_MOVABLE
) {
4565 *zone_start_pfn
= zone_movable_pfn
[nid
];
4566 *zone_end_pfn
= min(node_end_pfn
,
4567 arch_zone_highest_possible_pfn
[movable_zone
]);
4569 /* Adjust for ZONE_MOVABLE starting within this range */
4570 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4571 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4572 *zone_end_pfn
= zone_movable_pfn
[nid
];
4574 /* Check if this whole range is within ZONE_MOVABLE */
4575 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4576 *zone_start_pfn
= *zone_end_pfn
;
4581 * Return the number of pages a zone spans in a node, including holes
4582 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4584 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4585 unsigned long zone_type
,
4586 unsigned long node_start_pfn
,
4587 unsigned long node_end_pfn
,
4588 unsigned long *ignored
)
4590 unsigned long zone_start_pfn
, zone_end_pfn
;
4592 /* Get the start and end of the zone */
4593 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4594 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4595 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4596 node_start_pfn
, node_end_pfn
,
4597 &zone_start_pfn
, &zone_end_pfn
);
4599 /* Check that this node has pages within the zone's required range */
4600 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4603 /* Move the zone boundaries inside the node if necessary */
4604 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4605 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4607 /* Return the spanned pages */
4608 return zone_end_pfn
- zone_start_pfn
;
4612 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4613 * then all holes in the requested range will be accounted for.
4615 unsigned long __meminit
__absent_pages_in_range(int nid
,
4616 unsigned long range_start_pfn
,
4617 unsigned long range_end_pfn
)
4619 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4620 unsigned long start_pfn
, end_pfn
;
4623 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4624 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4625 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4626 nr_absent
-= end_pfn
- start_pfn
;
4632 * absent_pages_in_range - Return number of page frames in holes within a range
4633 * @start_pfn: The start PFN to start searching for holes
4634 * @end_pfn: The end PFN to stop searching for holes
4636 * It returns the number of pages frames in memory holes within a range.
4638 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4639 unsigned long end_pfn
)
4641 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4644 /* Return the number of page frames in holes in a zone on a node */
4645 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4646 unsigned long zone_type
,
4647 unsigned long node_start_pfn
,
4648 unsigned long node_end_pfn
,
4649 unsigned long *ignored
)
4651 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4652 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4653 unsigned long zone_start_pfn
, zone_end_pfn
;
4655 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4656 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4658 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4659 node_start_pfn
, node_end_pfn
,
4660 &zone_start_pfn
, &zone_end_pfn
);
4661 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4664 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4665 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4666 unsigned long zone_type
,
4667 unsigned long node_start_pfn
,
4668 unsigned long node_end_pfn
,
4669 unsigned long *zones_size
)
4671 return zones_size
[zone_type
];
4674 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4675 unsigned long zone_type
,
4676 unsigned long node_start_pfn
,
4677 unsigned long node_end_pfn
,
4678 unsigned long *zholes_size
)
4683 return zholes_size
[zone_type
];
4686 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4688 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4689 unsigned long node_start_pfn
,
4690 unsigned long node_end_pfn
,
4691 unsigned long *zones_size
,
4692 unsigned long *zholes_size
)
4694 unsigned long realtotalpages
, totalpages
= 0;
4697 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4698 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4702 pgdat
->node_spanned_pages
= totalpages
;
4704 realtotalpages
= totalpages
;
4705 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4707 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4708 node_start_pfn
, node_end_pfn
,
4710 pgdat
->node_present_pages
= realtotalpages
;
4711 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4715 #ifndef CONFIG_SPARSEMEM
4717 * Calculate the size of the zone->blockflags rounded to an unsigned long
4718 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4719 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4720 * round what is now in bits to nearest long in bits, then return it in
4723 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4725 unsigned long usemapsize
;
4727 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4728 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4729 usemapsize
= usemapsize
>> pageblock_order
;
4730 usemapsize
*= NR_PAGEBLOCK_BITS
;
4731 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4733 return usemapsize
/ 8;
4736 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4738 unsigned long zone_start_pfn
,
4739 unsigned long zonesize
)
4741 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4742 zone
->pageblock_flags
= NULL
;
4744 zone
->pageblock_flags
=
4745 memblock_virt_alloc_node_nopanic(usemapsize
,
4749 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4750 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4751 #endif /* CONFIG_SPARSEMEM */
4753 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4755 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4756 void __paginginit
set_pageblock_order(void)
4760 /* Check that pageblock_nr_pages has not already been setup */
4761 if (pageblock_order
)
4764 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4765 order
= HUGETLB_PAGE_ORDER
;
4767 order
= MAX_ORDER
- 1;
4770 * Assume the largest contiguous order of interest is a huge page.
4771 * This value may be variable depending on boot parameters on IA64 and
4774 pageblock_order
= order
;
4776 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4779 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4780 * is unused as pageblock_order is set at compile-time. See
4781 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4784 void __paginginit
set_pageblock_order(void)
4788 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4790 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4791 unsigned long present_pages
)
4793 unsigned long pages
= spanned_pages
;
4796 * Provide a more accurate estimation if there are holes within
4797 * the zone and SPARSEMEM is in use. If there are holes within the
4798 * zone, each populated memory region may cost us one or two extra
4799 * memmap pages due to alignment because memmap pages for each
4800 * populated regions may not naturally algined on page boundary.
4801 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4803 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4804 IS_ENABLED(CONFIG_SPARSEMEM
))
4805 pages
= present_pages
;
4807 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4811 * Set up the zone data structures:
4812 * - mark all pages reserved
4813 * - mark all memory queues empty
4814 * - clear the memory bitmaps
4816 * NOTE: pgdat should get zeroed by caller.
4818 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4819 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4820 unsigned long *zones_size
, unsigned long *zholes_size
)
4823 int nid
= pgdat
->node_id
;
4824 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4827 pgdat_resize_init(pgdat
);
4828 #ifdef CONFIG_NUMA_BALANCING
4829 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4830 pgdat
->numabalancing_migrate_nr_pages
= 0;
4831 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4833 init_waitqueue_head(&pgdat
->kswapd_wait
);
4834 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4835 pgdat_page_cgroup_init(pgdat
);
4837 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4838 struct zone
*zone
= pgdat
->node_zones
+ j
;
4839 unsigned long size
, realsize
, freesize
, memmap_pages
;
4841 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4842 node_end_pfn
, zones_size
);
4843 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4849 * Adjust freesize so that it accounts for how much memory
4850 * is used by this zone for memmap. This affects the watermark
4851 * and per-cpu initialisations
4853 memmap_pages
= calc_memmap_size(size
, realsize
);
4854 if (freesize
>= memmap_pages
) {
4855 freesize
-= memmap_pages
;
4858 " %s zone: %lu pages used for memmap\n",
4859 zone_names
[j
], memmap_pages
);
4862 " %s zone: %lu pages exceeds freesize %lu\n",
4863 zone_names
[j
], memmap_pages
, freesize
);
4865 /* Account for reserved pages */
4866 if (j
== 0 && freesize
> dma_reserve
) {
4867 freesize
-= dma_reserve
;
4868 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4869 zone_names
[0], dma_reserve
);
4872 if (!is_highmem_idx(j
))
4873 nr_kernel_pages
+= freesize
;
4874 /* Charge for highmem memmap if there are enough kernel pages */
4875 else if (nr_kernel_pages
> memmap_pages
* 2)
4876 nr_kernel_pages
-= memmap_pages
;
4877 nr_all_pages
+= freesize
;
4879 zone
->spanned_pages
= size
;
4880 zone
->present_pages
= realsize
;
4882 * Set an approximate value for lowmem here, it will be adjusted
4883 * when the bootmem allocator frees pages into the buddy system.
4884 * And all highmem pages will be managed by the buddy system.
4886 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4889 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4891 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4893 zone
->name
= zone_names
[j
];
4894 spin_lock_init(&zone
->lock
);
4895 spin_lock_init(&zone
->lru_lock
);
4896 zone_seqlock_init(zone
);
4897 zone
->zone_pgdat
= pgdat
;
4898 zone_pcp_init(zone
);
4900 /* For bootup, initialized properly in watermark setup */
4901 mod_zone_page_state(zone
, NR_ALLOC_BATCH
, zone
->managed_pages
);
4903 lruvec_init(&zone
->lruvec
);
4907 set_pageblock_order();
4908 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4909 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4910 size
, MEMMAP_EARLY
);
4912 memmap_init(size
, nid
, j
, zone_start_pfn
);
4913 zone_start_pfn
+= size
;
4917 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4919 /* Skip empty nodes */
4920 if (!pgdat
->node_spanned_pages
)
4923 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4924 /* ia64 gets its own node_mem_map, before this, without bootmem */
4925 if (!pgdat
->node_mem_map
) {
4926 unsigned long size
, start
, end
;
4930 * The zone's endpoints aren't required to be MAX_ORDER
4931 * aligned but the node_mem_map endpoints must be in order
4932 * for the buddy allocator to function correctly.
4934 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4935 end
= pgdat_end_pfn(pgdat
);
4936 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4937 size
= (end
- start
) * sizeof(struct page
);
4938 map
= alloc_remap(pgdat
->node_id
, size
);
4940 map
= memblock_virt_alloc_node_nopanic(size
,
4942 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4944 #ifndef CONFIG_NEED_MULTIPLE_NODES
4946 * With no DISCONTIG, the global mem_map is just set as node 0's
4948 if (pgdat
== NODE_DATA(0)) {
4949 mem_map
= NODE_DATA(0)->node_mem_map
;
4950 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4951 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4952 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4953 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4956 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4959 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4960 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4962 pg_data_t
*pgdat
= NODE_DATA(nid
);
4963 unsigned long start_pfn
= 0;
4964 unsigned long end_pfn
= 0;
4966 /* pg_data_t should be reset to zero when it's allocated */
4967 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4969 pgdat
->node_id
= nid
;
4970 pgdat
->node_start_pfn
= node_start_pfn
;
4971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4972 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4973 printk(KERN_INFO
"Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid
,
4974 (u64
) start_pfn
<< PAGE_SHIFT
, (u64
) (end_pfn
<< PAGE_SHIFT
) - 1);
4976 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4977 zones_size
, zholes_size
);
4979 alloc_node_mem_map(pgdat
);
4980 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4981 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4982 nid
, (unsigned long)pgdat
,
4983 (unsigned long)pgdat
->node_mem_map
);
4986 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4987 zones_size
, zholes_size
);
4990 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4992 #if MAX_NUMNODES > 1
4994 * Figure out the number of possible node ids.
4996 void __init
setup_nr_node_ids(void)
4999 unsigned int highest
= 0;
5001 for_each_node_mask(node
, node_possible_map
)
5003 nr_node_ids
= highest
+ 1;
5008 * node_map_pfn_alignment - determine the maximum internode alignment
5010 * This function should be called after node map is populated and sorted.
5011 * It calculates the maximum power of two alignment which can distinguish
5014 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5015 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5016 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5017 * shifted, 1GiB is enough and this function will indicate so.
5019 * This is used to test whether pfn -> nid mapping of the chosen memory
5020 * model has fine enough granularity to avoid incorrect mapping for the
5021 * populated node map.
5023 * Returns the determined alignment in pfn's. 0 if there is no alignment
5024 * requirement (single node).
5026 unsigned long __init
node_map_pfn_alignment(void)
5028 unsigned long accl_mask
= 0, last_end
= 0;
5029 unsigned long start
, end
, mask
;
5033 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
5034 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
5041 * Start with a mask granular enough to pin-point to the
5042 * start pfn and tick off bits one-by-one until it becomes
5043 * too coarse to separate the current node from the last.
5045 mask
= ~((1 << __ffs(start
)) - 1);
5046 while (mask
&& last_end
<= (start
& (mask
<< 1)))
5049 /* accumulate all internode masks */
5053 /* convert mask to number of pages */
5054 return ~accl_mask
+ 1;
5057 /* Find the lowest pfn for a node */
5058 static unsigned long __init
find_min_pfn_for_node(int nid
)
5060 unsigned long min_pfn
= ULONG_MAX
;
5061 unsigned long start_pfn
;
5064 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
5065 min_pfn
= min(min_pfn
, start_pfn
);
5067 if (min_pfn
== ULONG_MAX
) {
5069 "Could not find start_pfn for node %d\n", nid
);
5077 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5079 * It returns the minimum PFN based on information provided via
5080 * memblock_set_node().
5082 unsigned long __init
find_min_pfn_with_active_regions(void)
5084 return find_min_pfn_for_node(MAX_NUMNODES
);
5088 * early_calculate_totalpages()
5089 * Sum pages in active regions for movable zone.
5090 * Populate N_MEMORY for calculating usable_nodes.
5092 static unsigned long __init
early_calculate_totalpages(void)
5094 unsigned long totalpages
= 0;
5095 unsigned long start_pfn
, end_pfn
;
5098 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
5099 unsigned long pages
= end_pfn
- start_pfn
;
5101 totalpages
+= pages
;
5103 node_set_state(nid
, N_MEMORY
);
5109 * Find the PFN the Movable zone begins in each node. Kernel memory
5110 * is spread evenly between nodes as long as the nodes have enough
5111 * memory. When they don't, some nodes will have more kernelcore than
5114 static void __init
find_zone_movable_pfns_for_nodes(void)
5117 unsigned long usable_startpfn
;
5118 unsigned long kernelcore_node
, kernelcore_remaining
;
5119 /* save the state before borrow the nodemask */
5120 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
5121 unsigned long totalpages
= early_calculate_totalpages();
5122 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
5123 struct memblock_region
*r
;
5125 /* Need to find movable_zone earlier when movable_node is specified. */
5126 find_usable_zone_for_movable();
5129 * If movable_node is specified, ignore kernelcore and movablecore
5132 if (movable_node_is_enabled()) {
5133 for_each_memblock(memory
, r
) {
5134 if (!memblock_is_hotpluggable(r
))
5139 usable_startpfn
= PFN_DOWN(r
->base
);
5140 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
5141 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
5149 * If movablecore=nn[KMG] was specified, calculate what size of
5150 * kernelcore that corresponds so that memory usable for
5151 * any allocation type is evenly spread. If both kernelcore
5152 * and movablecore are specified, then the value of kernelcore
5153 * will be used for required_kernelcore if it's greater than
5154 * what movablecore would have allowed.
5156 if (required_movablecore
) {
5157 unsigned long corepages
;
5160 * Round-up so that ZONE_MOVABLE is at least as large as what
5161 * was requested by the user
5163 required_movablecore
=
5164 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
5165 corepages
= totalpages
- required_movablecore
;
5167 required_kernelcore
= max(required_kernelcore
, corepages
);
5170 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5171 if (!required_kernelcore
)
5174 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5175 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
5178 /* Spread kernelcore memory as evenly as possible throughout nodes */
5179 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5180 for_each_node_state(nid
, N_MEMORY
) {
5181 unsigned long start_pfn
, end_pfn
;
5184 * Recalculate kernelcore_node if the division per node
5185 * now exceeds what is necessary to satisfy the requested
5186 * amount of memory for the kernel
5188 if (required_kernelcore
< kernelcore_node
)
5189 kernelcore_node
= required_kernelcore
/ usable_nodes
;
5192 * As the map is walked, we track how much memory is usable
5193 * by the kernel using kernelcore_remaining. When it is
5194 * 0, the rest of the node is usable by ZONE_MOVABLE
5196 kernelcore_remaining
= kernelcore_node
;
5198 /* Go through each range of PFNs within this node */
5199 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5200 unsigned long size_pages
;
5202 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5203 if (start_pfn
>= end_pfn
)
5206 /* Account for what is only usable for kernelcore */
5207 if (start_pfn
< usable_startpfn
) {
5208 unsigned long kernel_pages
;
5209 kernel_pages
= min(end_pfn
, usable_startpfn
)
5212 kernelcore_remaining
-= min(kernel_pages
,
5213 kernelcore_remaining
);
5214 required_kernelcore
-= min(kernel_pages
,
5215 required_kernelcore
);
5217 /* Continue if range is now fully accounted */
5218 if (end_pfn
<= usable_startpfn
) {
5221 * Push zone_movable_pfn to the end so
5222 * that if we have to rebalance
5223 * kernelcore across nodes, we will
5224 * not double account here
5226 zone_movable_pfn
[nid
] = end_pfn
;
5229 start_pfn
= usable_startpfn
;
5233 * The usable PFN range for ZONE_MOVABLE is from
5234 * start_pfn->end_pfn. Calculate size_pages as the
5235 * number of pages used as kernelcore
5237 size_pages
= end_pfn
- start_pfn
;
5238 if (size_pages
> kernelcore_remaining
)
5239 size_pages
= kernelcore_remaining
;
5240 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5243 * Some kernelcore has been met, update counts and
5244 * break if the kernelcore for this node has been
5247 required_kernelcore
-= min(required_kernelcore
,
5249 kernelcore_remaining
-= size_pages
;
5250 if (!kernelcore_remaining
)
5256 * If there is still required_kernelcore, we do another pass with one
5257 * less node in the count. This will push zone_movable_pfn[nid] further
5258 * along on the nodes that still have memory until kernelcore is
5262 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5266 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5267 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5268 zone_movable_pfn
[nid
] =
5269 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5272 /* restore the node_state */
5273 node_states
[N_MEMORY
] = saved_node_state
;
5276 /* Any regular or high memory on that node ? */
5277 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5279 enum zone_type zone_type
;
5281 if (N_MEMORY
== N_NORMAL_MEMORY
)
5284 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5285 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5286 if (populated_zone(zone
)) {
5287 node_set_state(nid
, N_HIGH_MEMORY
);
5288 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5289 zone_type
<= ZONE_NORMAL
)
5290 node_set_state(nid
, N_NORMAL_MEMORY
);
5297 * free_area_init_nodes - Initialise all pg_data_t and zone data
5298 * @max_zone_pfn: an array of max PFNs for each zone
5300 * This will call free_area_init_node() for each active node in the system.
5301 * Using the page ranges provided by memblock_set_node(), the size of each
5302 * zone in each node and their holes is calculated. If the maximum PFN
5303 * between two adjacent zones match, it is assumed that the zone is empty.
5304 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5305 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5306 * starts where the previous one ended. For example, ZONE_DMA32 starts
5307 * at arch_max_dma_pfn.
5309 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5311 unsigned long start_pfn
, end_pfn
;
5314 /* Record where the zone boundaries are */
5315 memset(arch_zone_lowest_possible_pfn
, 0,
5316 sizeof(arch_zone_lowest_possible_pfn
));
5317 memset(arch_zone_highest_possible_pfn
, 0,
5318 sizeof(arch_zone_highest_possible_pfn
));
5319 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5320 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5321 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5322 if (i
== ZONE_MOVABLE
)
5324 arch_zone_lowest_possible_pfn
[i
] =
5325 arch_zone_highest_possible_pfn
[i
-1];
5326 arch_zone_highest_possible_pfn
[i
] =
5327 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5329 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5330 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5332 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5333 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5334 find_zone_movable_pfns_for_nodes();
5336 /* Print out the zone ranges */
5337 printk("Zone ranges:\n");
5338 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5339 if (i
== ZONE_MOVABLE
)
5341 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5342 if (arch_zone_lowest_possible_pfn
[i
] ==
5343 arch_zone_highest_possible_pfn
[i
])
5344 printk(KERN_CONT
"empty\n");
5346 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5347 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5348 (arch_zone_highest_possible_pfn
[i
]
5349 << PAGE_SHIFT
) - 1);
5352 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5353 printk("Movable zone start for each node\n");
5354 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5355 if (zone_movable_pfn
[i
])
5356 printk(" Node %d: %#010lx\n", i
,
5357 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5360 /* Print out the early node map */
5361 printk("Early memory node ranges\n");
5362 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5363 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5364 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5366 /* Initialise every node */
5367 mminit_verify_pageflags_layout();
5368 setup_nr_node_ids();
5369 for_each_online_node(nid
) {
5370 pg_data_t
*pgdat
= NODE_DATA(nid
);
5371 free_area_init_node(nid
, NULL
,
5372 find_min_pfn_for_node(nid
), NULL
);
5374 /* Any memory on that node */
5375 if (pgdat
->node_present_pages
)
5376 node_set_state(nid
, N_MEMORY
);
5377 check_for_memory(pgdat
, nid
);
5381 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5383 unsigned long long coremem
;
5387 coremem
= memparse(p
, &p
);
5388 *core
= coremem
>> PAGE_SHIFT
;
5390 /* Paranoid check that UL is enough for the coremem value */
5391 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5397 * kernelcore=size sets the amount of memory for use for allocations that
5398 * cannot be reclaimed or migrated.
5400 static int __init
cmdline_parse_kernelcore(char *p
)
5402 return cmdline_parse_core(p
, &required_kernelcore
);
5406 * movablecore=size sets the amount of memory for use for allocations that
5407 * can be reclaimed or migrated.
5409 static int __init
cmdline_parse_movablecore(char *p
)
5411 return cmdline_parse_core(p
, &required_movablecore
);
5414 early_param("kernelcore", cmdline_parse_kernelcore
);
5415 early_param("movablecore", cmdline_parse_movablecore
);
5417 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5419 void adjust_managed_page_count(struct page
*page
, long count
)
5421 spin_lock(&managed_page_count_lock
);
5422 page_zone(page
)->managed_pages
+= count
;
5423 totalram_pages
+= count
;
5424 #ifdef CONFIG_HIGHMEM
5425 if (PageHighMem(page
))
5426 totalhigh_pages
+= count
;
5428 spin_unlock(&managed_page_count_lock
);
5430 EXPORT_SYMBOL(adjust_managed_page_count
);
5432 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5435 unsigned long pages
= 0;
5437 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5438 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5439 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5440 if ((unsigned int)poison
<= 0xFF)
5441 memset(pos
, poison
, PAGE_SIZE
);
5442 free_reserved_page(virt_to_page(pos
));
5446 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5447 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5451 EXPORT_SYMBOL(free_reserved_area
);
5453 #ifdef CONFIG_HIGHMEM
5454 void free_highmem_page(struct page
*page
)
5456 __free_reserved_page(page
);
5458 page_zone(page
)->managed_pages
++;
5464 void __init
mem_init_print_info(const char *str
)
5466 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5467 unsigned long init_code_size
, init_data_size
;
5469 physpages
= get_num_physpages();
5470 codesize
= _etext
- _stext
;
5471 datasize
= _edata
- _sdata
;
5472 rosize
= __end_rodata
- __start_rodata
;
5473 bss_size
= __bss_stop
- __bss_start
;
5474 init_data_size
= __init_end
- __init_begin
;
5475 init_code_size
= _einittext
- _sinittext
;
5478 * Detect special cases and adjust section sizes accordingly:
5479 * 1) .init.* may be embedded into .data sections
5480 * 2) .init.text.* may be out of [__init_begin, __init_end],
5481 * please refer to arch/tile/kernel/vmlinux.lds.S.
5482 * 3) .rodata.* may be embedded into .text or .data sections.
5484 #define adj_init_size(start, end, size, pos, adj) \
5486 if (start <= pos && pos < end && size > adj) \
5490 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5491 _sinittext
, init_code_size
);
5492 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5493 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5494 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5495 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5497 #undef adj_init_size
5499 printk("Memory: %luK/%luK available "
5500 "(%luK kernel code, %luK rwdata, %luK rodata, "
5501 "%luK init, %luK bss, %luK reserved"
5502 #ifdef CONFIG_HIGHMEM
5506 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5507 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5508 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5509 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5510 #ifdef CONFIG_HIGHMEM
5511 totalhigh_pages
<< (PAGE_SHIFT
-10),
5513 str
? ", " : "", str
? str
: "");
5517 * set_dma_reserve - set the specified number of pages reserved in the first zone
5518 * @new_dma_reserve: The number of pages to mark reserved
5520 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5521 * In the DMA zone, a significant percentage may be consumed by kernel image
5522 * and other unfreeable allocations which can skew the watermarks badly. This
5523 * function may optionally be used to account for unfreeable pages in the
5524 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5525 * smaller per-cpu batchsize.
5527 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5529 dma_reserve
= new_dma_reserve
;
5532 void __init
free_area_init(unsigned long *zones_size
)
5534 free_area_init_node(0, zones_size
,
5535 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5538 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5539 unsigned long action
, void *hcpu
)
5541 int cpu
= (unsigned long)hcpu
;
5543 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5544 lru_add_drain_cpu(cpu
);
5548 * Spill the event counters of the dead processor
5549 * into the current processors event counters.
5550 * This artificially elevates the count of the current
5553 vm_events_fold_cpu(cpu
);
5556 * Zero the differential counters of the dead processor
5557 * so that the vm statistics are consistent.
5559 * This is only okay since the processor is dead and cannot
5560 * race with what we are doing.
5562 cpu_vm_stats_fold(cpu
);
5567 void __init
page_alloc_init(void)
5569 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5573 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5574 * or min_free_kbytes changes.
5576 static void calculate_totalreserve_pages(void)
5578 struct pglist_data
*pgdat
;
5579 unsigned long reserve_pages
= 0;
5580 enum zone_type i
, j
;
5582 for_each_online_pgdat(pgdat
) {
5583 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5584 struct zone
*zone
= pgdat
->node_zones
+ i
;
5587 /* Find valid and maximum lowmem_reserve in the zone */
5588 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5589 if (zone
->lowmem_reserve
[j
] > max
)
5590 max
= zone
->lowmem_reserve
[j
];
5593 /* we treat the high watermark as reserved pages. */
5594 max
+= high_wmark_pages(zone
);
5596 if (max
> zone
->managed_pages
)
5597 max
= zone
->managed_pages
;
5598 reserve_pages
+= max
;
5600 * Lowmem reserves are not available to
5601 * GFP_HIGHUSER page cache allocations and
5602 * kswapd tries to balance zones to their high
5603 * watermark. As a result, neither should be
5604 * regarded as dirtyable memory, to prevent a
5605 * situation where reclaim has to clean pages
5606 * in order to balance the zones.
5608 zone
->dirty_balance_reserve
= max
;
5611 dirty_balance_reserve
= reserve_pages
;
5612 totalreserve_pages
= reserve_pages
;
5616 * setup_per_zone_lowmem_reserve - called whenever
5617 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5618 * has a correct pages reserved value, so an adequate number of
5619 * pages are left in the zone after a successful __alloc_pages().
5621 static void setup_per_zone_lowmem_reserve(void)
5623 struct pglist_data
*pgdat
;
5624 enum zone_type j
, idx
;
5626 for_each_online_pgdat(pgdat
) {
5627 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5628 struct zone
*zone
= pgdat
->node_zones
+ j
;
5629 unsigned long managed_pages
= zone
->managed_pages
;
5631 zone
->lowmem_reserve
[j
] = 0;
5635 struct zone
*lower_zone
;
5639 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5640 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5642 lower_zone
= pgdat
->node_zones
+ idx
;
5643 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5644 sysctl_lowmem_reserve_ratio
[idx
];
5645 managed_pages
+= lower_zone
->managed_pages
;
5650 /* update totalreserve_pages */
5651 calculate_totalreserve_pages();
5654 static void __setup_per_zone_wmarks(void)
5656 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5657 unsigned long lowmem_pages
= 0;
5659 unsigned long flags
;
5661 /* Calculate total number of !ZONE_HIGHMEM pages */
5662 for_each_zone(zone
) {
5663 if (!is_highmem(zone
))
5664 lowmem_pages
+= zone
->managed_pages
;
5667 for_each_zone(zone
) {
5670 spin_lock_irqsave(&zone
->lock
, flags
);
5671 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5672 do_div(tmp
, lowmem_pages
);
5673 if (is_highmem(zone
)) {
5675 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5676 * need highmem pages, so cap pages_min to a small
5679 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5680 * deltas controls asynch page reclaim, and so should
5681 * not be capped for highmem.
5683 unsigned long min_pages
;
5685 min_pages
= zone
->managed_pages
/ 1024;
5686 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5687 zone
->watermark
[WMARK_MIN
] = min_pages
;
5690 * If it's a lowmem zone, reserve a number of pages
5691 * proportionate to the zone's size.
5693 zone
->watermark
[WMARK_MIN
] = tmp
;
5696 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5697 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5699 __mod_zone_page_state(zone
, NR_ALLOC_BATCH
,
5700 high_wmark_pages(zone
) - low_wmark_pages(zone
) -
5701 atomic_long_read(&zone
->vm_stat
[NR_ALLOC_BATCH
]));
5703 setup_zone_migrate_reserve(zone
);
5704 spin_unlock_irqrestore(&zone
->lock
, flags
);
5707 /* update totalreserve_pages */
5708 calculate_totalreserve_pages();
5712 * setup_per_zone_wmarks - called when min_free_kbytes changes
5713 * or when memory is hot-{added|removed}
5715 * Ensures that the watermark[min,low,high] values for each zone are set
5716 * correctly with respect to min_free_kbytes.
5718 void setup_per_zone_wmarks(void)
5720 mutex_lock(&zonelists_mutex
);
5721 __setup_per_zone_wmarks();
5722 mutex_unlock(&zonelists_mutex
);
5726 * The inactive anon list should be small enough that the VM never has to
5727 * do too much work, but large enough that each inactive page has a chance
5728 * to be referenced again before it is swapped out.
5730 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5731 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5732 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5733 * the anonymous pages are kept on the inactive list.
5736 * memory ratio inactive anon
5737 * -------------------------------------
5746 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5748 unsigned int gb
, ratio
;
5750 /* Zone size in gigabytes */
5751 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5753 ratio
= int_sqrt(10 * gb
);
5757 zone
->inactive_ratio
= ratio
;
5760 static void __meminit
setup_per_zone_inactive_ratio(void)
5765 calculate_zone_inactive_ratio(zone
);
5769 * Initialise min_free_kbytes.
5771 * For small machines we want it small (128k min). For large machines
5772 * we want it large (64MB max). But it is not linear, because network
5773 * bandwidth does not increase linearly with machine size. We use
5775 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5776 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5792 int __meminit
init_per_zone_wmark_min(void)
5794 unsigned long lowmem_kbytes
;
5795 int new_min_free_kbytes
;
5797 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5798 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5800 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5801 min_free_kbytes
= new_min_free_kbytes
;
5802 if (min_free_kbytes
< 128)
5803 min_free_kbytes
= 128;
5804 if (min_free_kbytes
> 65536)
5805 min_free_kbytes
= 65536;
5807 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5808 new_min_free_kbytes
, user_min_free_kbytes
);
5810 setup_per_zone_wmarks();
5811 refresh_zone_stat_thresholds();
5812 setup_per_zone_lowmem_reserve();
5813 setup_per_zone_inactive_ratio();
5816 module_init(init_per_zone_wmark_min
)
5819 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5820 * that we can call two helper functions whenever min_free_kbytes
5823 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
5824 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5828 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5833 user_min_free_kbytes
= min_free_kbytes
;
5834 setup_per_zone_wmarks();
5840 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5841 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5846 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5851 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5852 sysctl_min_unmapped_ratio
) / 100;
5856 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5857 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5862 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5867 zone
->min_slab_pages
= (zone
->managed_pages
*
5868 sysctl_min_slab_ratio
) / 100;
5874 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5875 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5876 * whenever sysctl_lowmem_reserve_ratio changes.
5878 * The reserve ratio obviously has absolutely no relation with the
5879 * minimum watermarks. The lowmem reserve ratio can only make sense
5880 * if in function of the boot time zone sizes.
5882 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
5883 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5885 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5886 setup_per_zone_lowmem_reserve();
5891 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5892 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5893 * pagelist can have before it gets flushed back to buddy allocator.
5895 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
5896 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5899 int old_percpu_pagelist_fraction
;
5902 mutex_lock(&pcp_batch_high_lock
);
5903 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
5905 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5906 if (!write
|| ret
< 0)
5909 /* Sanity checking to avoid pcp imbalance */
5910 if (percpu_pagelist_fraction
&&
5911 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
5912 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
5918 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
5921 for_each_populated_zone(zone
) {
5924 for_each_possible_cpu(cpu
)
5925 pageset_set_high_and_batch(zone
,
5926 per_cpu_ptr(zone
->pageset
, cpu
));
5929 mutex_unlock(&pcp_batch_high_lock
);
5933 int hashdist
= HASHDIST_DEFAULT
;
5936 static int __init
set_hashdist(char *str
)
5940 hashdist
= simple_strtoul(str
, &str
, 0);
5943 __setup("hashdist=", set_hashdist
);
5947 * allocate a large system hash table from bootmem
5948 * - it is assumed that the hash table must contain an exact power-of-2
5949 * quantity of entries
5950 * - limit is the number of hash buckets, not the total allocation size
5952 void *__init
alloc_large_system_hash(const char *tablename
,
5953 unsigned long bucketsize
,
5954 unsigned long numentries
,
5957 unsigned int *_hash_shift
,
5958 unsigned int *_hash_mask
,
5959 unsigned long low_limit
,
5960 unsigned long high_limit
)
5962 unsigned long long max
= high_limit
;
5963 unsigned long log2qty
, size
;
5966 /* allow the kernel cmdline to have a say */
5968 /* round applicable memory size up to nearest megabyte */
5969 numentries
= nr_kernel_pages
;
5971 /* It isn't necessary when PAGE_SIZE >= 1MB */
5972 if (PAGE_SHIFT
< 20)
5973 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
5975 /* limit to 1 bucket per 2^scale bytes of low memory */
5976 if (scale
> PAGE_SHIFT
)
5977 numentries
>>= (scale
- PAGE_SHIFT
);
5979 numentries
<<= (PAGE_SHIFT
- scale
);
5981 /* Make sure we've got at least a 0-order allocation.. */
5982 if (unlikely(flags
& HASH_SMALL
)) {
5983 /* Makes no sense without HASH_EARLY */
5984 WARN_ON(!(flags
& HASH_EARLY
));
5985 if (!(numentries
>> *_hash_shift
)) {
5986 numentries
= 1UL << *_hash_shift
;
5987 BUG_ON(!numentries
);
5989 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5990 numentries
= PAGE_SIZE
/ bucketsize
;
5992 numentries
= roundup_pow_of_two(numentries
);
5994 /* limit allocation size to 1/16 total memory by default */
5996 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5997 do_div(max
, bucketsize
);
5999 max
= min(max
, 0x80000000ULL
);
6001 if (numentries
< low_limit
)
6002 numentries
= low_limit
;
6003 if (numentries
> max
)
6006 log2qty
= ilog2(numentries
);
6009 size
= bucketsize
<< log2qty
;
6010 if (flags
& HASH_EARLY
)
6011 table
= memblock_virt_alloc_nopanic(size
, 0);
6013 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
6016 * If bucketsize is not a power-of-two, we may free
6017 * some pages at the end of hash table which
6018 * alloc_pages_exact() automatically does
6020 if (get_order(size
) < MAX_ORDER
) {
6021 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
6022 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
6025 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
6028 panic("Failed to allocate %s hash table\n", tablename
);
6030 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
6033 ilog2(size
) - PAGE_SHIFT
,
6037 *_hash_shift
= log2qty
;
6039 *_hash_mask
= (1 << log2qty
) - 1;
6044 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6045 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
6048 #ifdef CONFIG_SPARSEMEM
6049 return __pfn_to_section(pfn
)->pageblock_flags
;
6051 return zone
->pageblock_flags
;
6052 #endif /* CONFIG_SPARSEMEM */
6055 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
6057 #ifdef CONFIG_SPARSEMEM
6058 pfn
&= (PAGES_PER_SECTION
-1);
6059 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6061 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
6062 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
6063 #endif /* CONFIG_SPARSEMEM */
6067 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6068 * @page: The page within the block of interest
6069 * @pfn: The target page frame number
6070 * @end_bitidx: The last bit of interest to retrieve
6071 * @mask: mask of bits that the caller is interested in
6073 * Return: pageblock_bits flags
6075 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
6076 unsigned long end_bitidx
,
6080 unsigned long *bitmap
;
6081 unsigned long bitidx
, word_bitidx
;
6084 zone
= page_zone(page
);
6085 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6086 bitidx
= pfn_to_bitidx(zone
, pfn
);
6087 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6088 bitidx
&= (BITS_PER_LONG
-1);
6090 word
= bitmap
[word_bitidx
];
6091 bitidx
+= end_bitidx
;
6092 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
6096 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6097 * @page: The page within the block of interest
6098 * @flags: The flags to set
6099 * @pfn: The target page frame number
6100 * @end_bitidx: The last bit of interest
6101 * @mask: mask of bits that the caller is interested in
6103 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
6105 unsigned long end_bitidx
,
6109 unsigned long *bitmap
;
6110 unsigned long bitidx
, word_bitidx
;
6111 unsigned long old_word
, word
;
6113 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
6115 zone
= page_zone(page
);
6116 bitmap
= get_pageblock_bitmap(zone
, pfn
);
6117 bitidx
= pfn_to_bitidx(zone
, pfn
);
6118 word_bitidx
= bitidx
/ BITS_PER_LONG
;
6119 bitidx
&= (BITS_PER_LONG
-1);
6121 VM_BUG_ON_PAGE(!zone_spans_pfn(zone
, pfn
), page
);
6123 bitidx
+= end_bitidx
;
6124 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
6125 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
6127 word
= ACCESS_ONCE(bitmap
[word_bitidx
]);
6129 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
6130 if (word
== old_word
)
6137 * This function checks whether pageblock includes unmovable pages or not.
6138 * If @count is not zero, it is okay to include less @count unmovable pages
6140 * PageLRU check without isolation or lru_lock could race so that
6141 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6142 * expect this function should be exact.
6144 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
6145 bool skip_hwpoisoned_pages
)
6147 unsigned long pfn
, iter
, found
;
6151 * For avoiding noise data, lru_add_drain_all() should be called
6152 * If ZONE_MOVABLE, the zone never contains unmovable pages
6154 if (zone_idx(zone
) == ZONE_MOVABLE
)
6156 mt
= get_pageblock_migratetype(page
);
6157 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
6160 pfn
= page_to_pfn(page
);
6161 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
6162 unsigned long check
= pfn
+ iter
;
6164 if (!pfn_valid_within(check
))
6167 page
= pfn_to_page(check
);
6170 * Hugepages are not in LRU lists, but they're movable.
6171 * We need not scan over tail pages bacause we don't
6172 * handle each tail page individually in migration.
6174 if (PageHuge(page
)) {
6175 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
6180 * We can't use page_count without pin a page
6181 * because another CPU can free compound page.
6182 * This check already skips compound tails of THP
6183 * because their page->_count is zero at all time.
6185 if (!atomic_read(&page
->_count
)) {
6186 if (PageBuddy(page
))
6187 iter
+= (1 << page_order(page
)) - 1;
6192 * The HWPoisoned page may be not in buddy system, and
6193 * page_count() is not 0.
6195 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
6201 * If there are RECLAIMABLE pages, we need to check it.
6202 * But now, memory offline itself doesn't call shrink_slab()
6203 * and it still to be fixed.
6206 * If the page is not RAM, page_count()should be 0.
6207 * we don't need more check. This is an _used_ not-movable page.
6209 * The problematic thing here is PG_reserved pages. PG_reserved
6210 * is set to both of a memory hole page and a _used_ kernel
6219 bool is_pageblock_removable_nolock(struct page
*page
)
6225 * We have to be careful here because we are iterating over memory
6226 * sections which are not zone aware so we might end up outside of
6227 * the zone but still within the section.
6228 * We have to take care about the node as well. If the node is offline
6229 * its NODE_DATA will be NULL - see page_zone.
6231 if (!node_online(page_to_nid(page
)))
6234 zone
= page_zone(page
);
6235 pfn
= page_to_pfn(page
);
6236 if (!zone_spans_pfn(zone
, pfn
))
6239 return !has_unmovable_pages(zone
, page
, 0, true);
6244 static unsigned long pfn_max_align_down(unsigned long pfn
)
6246 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6247 pageblock_nr_pages
) - 1);
6250 static unsigned long pfn_max_align_up(unsigned long pfn
)
6252 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6253 pageblock_nr_pages
));
6256 /* [start, end) must belong to a single zone. */
6257 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6258 unsigned long start
, unsigned long end
)
6260 /* This function is based on compact_zone() from compaction.c. */
6261 unsigned long nr_reclaimed
;
6262 unsigned long pfn
= start
;
6263 unsigned int tries
= 0;
6268 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6269 if (fatal_signal_pending(current
)) {
6274 if (list_empty(&cc
->migratepages
)) {
6275 cc
->nr_migratepages
= 0;
6276 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
6282 } else if (++tries
== 5) {
6283 ret
= ret
< 0 ? ret
: -EBUSY
;
6287 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6289 cc
->nr_migratepages
-= nr_reclaimed
;
6291 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6292 NULL
, 0, cc
->mode
, MR_CMA
);
6295 putback_movable_pages(&cc
->migratepages
);
6302 * alloc_contig_range() -- tries to allocate given range of pages
6303 * @start: start PFN to allocate
6304 * @end: one-past-the-last PFN to allocate
6305 * @migratetype: migratetype of the underlaying pageblocks (either
6306 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6307 * in range must have the same migratetype and it must
6308 * be either of the two.
6310 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6311 * aligned, however it's the caller's responsibility to guarantee that
6312 * we are the only thread that changes migrate type of pageblocks the
6315 * The PFN range must belong to a single zone.
6317 * Returns zero on success or negative error code. On success all
6318 * pages which PFN is in [start, end) are allocated for the caller and
6319 * need to be freed with free_contig_range().
6321 int alloc_contig_range(unsigned long start
, unsigned long end
,
6322 unsigned migratetype
)
6324 unsigned long outer_start
, outer_end
;
6327 struct compact_control cc
= {
6328 .nr_migratepages
= 0,
6330 .zone
= page_zone(pfn_to_page(start
)),
6331 .mode
= MIGRATE_SYNC
,
6332 .ignore_skip_hint
= true,
6334 INIT_LIST_HEAD(&cc
.migratepages
);
6337 * What we do here is we mark all pageblocks in range as
6338 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6339 * have different sizes, and due to the way page allocator
6340 * work, we align the range to biggest of the two pages so
6341 * that page allocator won't try to merge buddies from
6342 * different pageblocks and change MIGRATE_ISOLATE to some
6343 * other migration type.
6345 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6346 * migrate the pages from an unaligned range (ie. pages that
6347 * we are interested in). This will put all the pages in
6348 * range back to page allocator as MIGRATE_ISOLATE.
6350 * When this is done, we take the pages in range from page
6351 * allocator removing them from the buddy system. This way
6352 * page allocator will never consider using them.
6354 * This lets us mark the pageblocks back as
6355 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6356 * aligned range but not in the unaligned, original range are
6357 * put back to page allocator so that buddy can use them.
6360 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6361 pfn_max_align_up(end
), migratetype
,
6366 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6371 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6372 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6373 * more, all pages in [start, end) are free in page allocator.
6374 * What we are going to do is to allocate all pages from
6375 * [start, end) (that is remove them from page allocator).
6377 * The only problem is that pages at the beginning and at the
6378 * end of interesting range may be not aligned with pages that
6379 * page allocator holds, ie. they can be part of higher order
6380 * pages. Because of this, we reserve the bigger range and
6381 * once this is done free the pages we are not interested in.
6383 * We don't have to hold zone->lock here because the pages are
6384 * isolated thus they won't get removed from buddy.
6387 lru_add_drain_all();
6391 outer_start
= start
;
6392 while (!PageBuddy(pfn_to_page(outer_start
))) {
6393 if (++order
>= MAX_ORDER
) {
6397 outer_start
&= ~0UL << order
;
6400 /* Make sure the range is really isolated. */
6401 if (test_pages_isolated(outer_start
, end
, false)) {
6402 pr_info("%s: [%lx, %lx) PFNs busy\n",
6403 __func__
, outer_start
, end
);
6408 /* Grab isolated pages from freelists. */
6409 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6415 /* Free head and tail (if any) */
6416 if (start
!= outer_start
)
6417 free_contig_range(outer_start
, start
- outer_start
);
6418 if (end
!= outer_end
)
6419 free_contig_range(end
, outer_end
- end
);
6422 undo_isolate_page_range(pfn_max_align_down(start
),
6423 pfn_max_align_up(end
), migratetype
);
6427 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6429 unsigned int count
= 0;
6431 for (; nr_pages
--; pfn
++) {
6432 struct page
*page
= pfn_to_page(pfn
);
6434 count
+= page_count(page
) != 1;
6437 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6441 #ifdef CONFIG_MEMORY_HOTPLUG
6443 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6444 * page high values need to be recalulated.
6446 void __meminit
zone_pcp_update(struct zone
*zone
)
6449 mutex_lock(&pcp_batch_high_lock
);
6450 for_each_possible_cpu(cpu
)
6451 pageset_set_high_and_batch(zone
,
6452 per_cpu_ptr(zone
->pageset
, cpu
));
6453 mutex_unlock(&pcp_batch_high_lock
);
6457 void zone_pcp_reset(struct zone
*zone
)
6459 unsigned long flags
;
6461 struct per_cpu_pageset
*pset
;
6463 /* avoid races with drain_pages() */
6464 local_irq_save(flags
);
6465 if (zone
->pageset
!= &boot_pageset
) {
6466 for_each_online_cpu(cpu
) {
6467 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6468 drain_zonestat(zone
, pset
);
6470 free_percpu(zone
->pageset
);
6471 zone
->pageset
= &boot_pageset
;
6473 local_irq_restore(flags
);
6476 #ifdef CONFIG_MEMORY_HOTREMOVE
6478 * All pages in the range must be isolated before calling this.
6481 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6485 unsigned int order
, i
;
6487 unsigned long flags
;
6488 /* find the first valid pfn */
6489 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6494 zone
= page_zone(pfn_to_page(pfn
));
6495 spin_lock_irqsave(&zone
->lock
, flags
);
6497 while (pfn
< end_pfn
) {
6498 if (!pfn_valid(pfn
)) {
6502 page
= pfn_to_page(pfn
);
6504 * The HWPoisoned page may be not in buddy system, and
6505 * page_count() is not 0.
6507 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6509 SetPageReserved(page
);
6513 BUG_ON(page_count(page
));
6514 BUG_ON(!PageBuddy(page
));
6515 order
= page_order(page
);
6516 #ifdef CONFIG_DEBUG_VM
6517 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6518 pfn
, 1 << order
, end_pfn
);
6520 list_del(&page
->lru
);
6521 rmv_page_order(page
);
6522 zone
->free_area
[order
].nr_free
--;
6523 for (i
= 0; i
< (1 << order
); i
++)
6524 SetPageReserved((page
+i
));
6525 pfn
+= (1 << order
);
6527 spin_unlock_irqrestore(&zone
->lock
, flags
);
6531 #ifdef CONFIG_MEMORY_FAILURE
6532 bool is_free_buddy_page(struct page
*page
)
6534 struct zone
*zone
= page_zone(page
);
6535 unsigned long pfn
= page_to_pfn(page
);
6536 unsigned long flags
;
6539 spin_lock_irqsave(&zone
->lock
, flags
);
6540 for (order
= 0; order
< MAX_ORDER
; order
++) {
6541 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6543 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6546 spin_unlock_irqrestore(&zone
->lock
, flags
);
6548 return order
< MAX_ORDER
;