Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / drivers / scsi / hpsa.c
blob5be944c8b71c4f926dd592c861f80f72661b335a
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
16 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.14-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 "Use 'simple mode' rather than 'performant mode'");
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
148 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149 {0,}
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 /* board_id = Subsystem Device ID & Vendor ID
155 * product = Marketing Name for the board
156 * access = Address of the struct of function pointers
158 static struct board_type products[] = {
159 {0x3241103C, "Smart Array P212", &SA5_access},
160 {0x3243103C, "Smart Array P410", &SA5_access},
161 {0x3245103C, "Smart Array P410i", &SA5_access},
162 {0x3247103C, "Smart Array P411", &SA5_access},
163 {0x3249103C, "Smart Array P812", &SA5_access},
164 {0x324A103C, "Smart Array P712m", &SA5_access},
165 {0x324B103C, "Smart Array P711m", &SA5_access},
166 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167 {0x3350103C, "Smart Array P222", &SA5_access},
168 {0x3351103C, "Smart Array P420", &SA5_access},
169 {0x3352103C, "Smart Array P421", &SA5_access},
170 {0x3353103C, "Smart Array P822", &SA5_access},
171 {0x3354103C, "Smart Array P420i", &SA5_access},
172 {0x3355103C, "Smart Array P220i", &SA5_access},
173 {0x3356103C, "Smart Array P721m", &SA5_access},
174 {0x1921103C, "Smart Array P830i", &SA5_access},
175 {0x1922103C, "Smart Array P430", &SA5_access},
176 {0x1923103C, "Smart Array P431", &SA5_access},
177 {0x1924103C, "Smart Array P830", &SA5_access},
178 {0x1926103C, "Smart Array P731m", &SA5_access},
179 {0x1928103C, "Smart Array P230i", &SA5_access},
180 {0x1929103C, "Smart Array P530", &SA5_access},
181 {0x21BD103C, "Smart Array P244br", &SA5_access},
182 {0x21BE103C, "Smart Array P741m", &SA5_access},
183 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184 {0x21C0103C, "Smart Array P440ar", &SA5_access},
185 {0x21C1103C, "Smart Array P840ar", &SA5_access},
186 {0x21C2103C, "Smart Array P440", &SA5_access},
187 {0x21C3103C, "Smart Array P441", &SA5_access},
188 {0x21C4103C, "Smart Array", &SA5_access},
189 {0x21C5103C, "Smart Array P841", &SA5_access},
190 {0x21C6103C, "Smart HBA H244br", &SA5_access},
191 {0x21C7103C, "Smart HBA H240", &SA5_access},
192 {0x21C8103C, "Smart HBA H241", &SA5_access},
193 {0x21C9103C, "Smart Array", &SA5_access},
194 {0x21CA103C, "Smart Array P246br", &SA5_access},
195 {0x21CB103C, "Smart Array P840", &SA5_access},
196 {0x21CC103C, "Smart Array", &SA5_access},
197 {0x21CD103C, "Smart Array", &SA5_access},
198 {0x21CE103C, "Smart HBA", &SA5_access},
199 {0x05809005, "SmartHBA-SA", &SA5_access},
200 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217 struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221 struct sas_rphy *rphy);
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235 void __user *arg);
236 #endif
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242 struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245 int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253 unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264 struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266 struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269 int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275 u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277 unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280 int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295 struct ReportExtendedLUNdata *buf, int bufsize);
296 static int hpsa_luns_changed(struct ctlr_info *h);
298 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
300 unsigned long *priv = shost_priv(sdev->host);
301 return (struct ctlr_info *) *priv;
304 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
306 unsigned long *priv = shost_priv(sh);
307 return (struct ctlr_info *) *priv;
310 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
312 return c->scsi_cmd == SCSI_CMD_IDLE;
315 static inline bool hpsa_is_pending_event(struct CommandList *c)
317 return c->abort_pending || c->reset_pending;
320 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
321 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
322 u8 *sense_key, u8 *asc, u8 *ascq)
324 struct scsi_sense_hdr sshdr;
325 bool rc;
327 *sense_key = -1;
328 *asc = -1;
329 *ascq = -1;
331 if (sense_data_len < 1)
332 return;
334 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
335 if (rc) {
336 *sense_key = sshdr.sense_key;
337 *asc = sshdr.asc;
338 *ascq = sshdr.ascq;
342 static int check_for_unit_attention(struct ctlr_info *h,
343 struct CommandList *c)
345 u8 sense_key, asc, ascq;
346 int sense_len;
348 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
349 sense_len = sizeof(c->err_info->SenseInfo);
350 else
351 sense_len = c->err_info->SenseLen;
353 decode_sense_data(c->err_info->SenseInfo, sense_len,
354 &sense_key, &asc, &ascq);
355 if (sense_key != UNIT_ATTENTION || asc == 0xff)
356 return 0;
358 switch (asc) {
359 case STATE_CHANGED:
360 dev_warn(&h->pdev->dev,
361 "%s: a state change detected, command retried\n",
362 h->devname);
363 break;
364 case LUN_FAILED:
365 dev_warn(&h->pdev->dev,
366 "%s: LUN failure detected\n", h->devname);
367 break;
368 case REPORT_LUNS_CHANGED:
369 dev_warn(&h->pdev->dev,
370 "%s: report LUN data changed\n", h->devname);
372 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
373 * target (array) devices.
375 break;
376 case POWER_OR_RESET:
377 dev_warn(&h->pdev->dev,
378 "%s: a power on or device reset detected\n",
379 h->devname);
380 break;
381 case UNIT_ATTENTION_CLEARED:
382 dev_warn(&h->pdev->dev,
383 "%s: unit attention cleared by another initiator\n",
384 h->devname);
385 break;
386 default:
387 dev_warn(&h->pdev->dev,
388 "%s: unknown unit attention detected\n",
389 h->devname);
390 break;
392 return 1;
395 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
397 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
398 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
399 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
400 return 0;
401 dev_warn(&h->pdev->dev, HPSA "device busy");
402 return 1;
405 static u32 lockup_detected(struct ctlr_info *h);
406 static ssize_t host_show_lockup_detected(struct device *dev,
407 struct device_attribute *attr, char *buf)
409 int ld;
410 struct ctlr_info *h;
411 struct Scsi_Host *shost = class_to_shost(dev);
413 h = shost_to_hba(shost);
414 ld = lockup_detected(h);
416 return sprintf(buf, "ld=%d\n", ld);
419 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
420 struct device_attribute *attr,
421 const char *buf, size_t count)
423 int status, len;
424 struct ctlr_info *h;
425 struct Scsi_Host *shost = class_to_shost(dev);
426 char tmpbuf[10];
428 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
429 return -EACCES;
430 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
431 strncpy(tmpbuf, buf, len);
432 tmpbuf[len] = '\0';
433 if (sscanf(tmpbuf, "%d", &status) != 1)
434 return -EINVAL;
435 h = shost_to_hba(shost);
436 h->acciopath_status = !!status;
437 dev_warn(&h->pdev->dev,
438 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
439 h->acciopath_status ? "enabled" : "disabled");
440 return count;
443 static ssize_t host_store_raid_offload_debug(struct device *dev,
444 struct device_attribute *attr,
445 const char *buf, size_t count)
447 int debug_level, len;
448 struct ctlr_info *h;
449 struct Scsi_Host *shost = class_to_shost(dev);
450 char tmpbuf[10];
452 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
453 return -EACCES;
454 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
455 strncpy(tmpbuf, buf, len);
456 tmpbuf[len] = '\0';
457 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
458 return -EINVAL;
459 if (debug_level < 0)
460 debug_level = 0;
461 h = shost_to_hba(shost);
462 h->raid_offload_debug = debug_level;
463 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
464 h->raid_offload_debug);
465 return count;
468 static ssize_t host_store_rescan(struct device *dev,
469 struct device_attribute *attr,
470 const char *buf, size_t count)
472 struct ctlr_info *h;
473 struct Scsi_Host *shost = class_to_shost(dev);
474 h = shost_to_hba(shost);
475 hpsa_scan_start(h->scsi_host);
476 return count;
479 static ssize_t host_show_firmware_revision(struct device *dev,
480 struct device_attribute *attr, char *buf)
482 struct ctlr_info *h;
483 struct Scsi_Host *shost = class_to_shost(dev);
484 unsigned char *fwrev;
486 h = shost_to_hba(shost);
487 if (!h->hba_inquiry_data)
488 return 0;
489 fwrev = &h->hba_inquiry_data[32];
490 return snprintf(buf, 20, "%c%c%c%c\n",
491 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
494 static ssize_t host_show_commands_outstanding(struct device *dev,
495 struct device_attribute *attr, char *buf)
497 struct Scsi_Host *shost = class_to_shost(dev);
498 struct ctlr_info *h = shost_to_hba(shost);
500 return snprintf(buf, 20, "%d\n",
501 atomic_read(&h->commands_outstanding));
504 static ssize_t host_show_transport_mode(struct device *dev,
505 struct device_attribute *attr, char *buf)
507 struct ctlr_info *h;
508 struct Scsi_Host *shost = class_to_shost(dev);
510 h = shost_to_hba(shost);
511 return snprintf(buf, 20, "%s\n",
512 h->transMethod & CFGTBL_Trans_Performant ?
513 "performant" : "simple");
516 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
517 struct device_attribute *attr, char *buf)
519 struct ctlr_info *h;
520 struct Scsi_Host *shost = class_to_shost(dev);
522 h = shost_to_hba(shost);
523 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
524 (h->acciopath_status == 1) ? "enabled" : "disabled");
527 /* List of controllers which cannot be hard reset on kexec with reset_devices */
528 static u32 unresettable_controller[] = {
529 0x324a103C, /* Smart Array P712m */
530 0x324b103C, /* Smart Array P711m */
531 0x3223103C, /* Smart Array P800 */
532 0x3234103C, /* Smart Array P400 */
533 0x3235103C, /* Smart Array P400i */
534 0x3211103C, /* Smart Array E200i */
535 0x3212103C, /* Smart Array E200 */
536 0x3213103C, /* Smart Array E200i */
537 0x3214103C, /* Smart Array E200i */
538 0x3215103C, /* Smart Array E200i */
539 0x3237103C, /* Smart Array E500 */
540 0x323D103C, /* Smart Array P700m */
541 0x40800E11, /* Smart Array 5i */
542 0x409C0E11, /* Smart Array 6400 */
543 0x409D0E11, /* Smart Array 6400 EM */
544 0x40700E11, /* Smart Array 5300 */
545 0x40820E11, /* Smart Array 532 */
546 0x40830E11, /* Smart Array 5312 */
547 0x409A0E11, /* Smart Array 641 */
548 0x409B0E11, /* Smart Array 642 */
549 0x40910E11, /* Smart Array 6i */
552 /* List of controllers which cannot even be soft reset */
553 static u32 soft_unresettable_controller[] = {
554 0x40800E11, /* Smart Array 5i */
555 0x40700E11, /* Smart Array 5300 */
556 0x40820E11, /* Smart Array 532 */
557 0x40830E11, /* Smart Array 5312 */
558 0x409A0E11, /* Smart Array 641 */
559 0x409B0E11, /* Smart Array 642 */
560 0x40910E11, /* Smart Array 6i */
561 /* Exclude 640x boards. These are two pci devices in one slot
562 * which share a battery backed cache module. One controls the
563 * cache, the other accesses the cache through the one that controls
564 * it. If we reset the one controlling the cache, the other will
565 * likely not be happy. Just forbid resetting this conjoined mess.
566 * The 640x isn't really supported by hpsa anyway.
568 0x409C0E11, /* Smart Array 6400 */
569 0x409D0E11, /* Smart Array 6400 EM */
572 static u32 needs_abort_tags_swizzled[] = {
573 0x323D103C, /* Smart Array P700m */
574 0x324a103C, /* Smart Array P712m */
575 0x324b103C, /* SmartArray P711m */
578 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
580 int i;
582 for (i = 0; i < nelems; i++)
583 if (a[i] == board_id)
584 return 1;
585 return 0;
588 static int ctlr_is_hard_resettable(u32 board_id)
590 return !board_id_in_array(unresettable_controller,
591 ARRAY_SIZE(unresettable_controller), board_id);
594 static int ctlr_is_soft_resettable(u32 board_id)
596 return !board_id_in_array(soft_unresettable_controller,
597 ARRAY_SIZE(soft_unresettable_controller), board_id);
600 static int ctlr_is_resettable(u32 board_id)
602 return ctlr_is_hard_resettable(board_id) ||
603 ctlr_is_soft_resettable(board_id);
606 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
608 return board_id_in_array(needs_abort_tags_swizzled,
609 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
612 static ssize_t host_show_resettable(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 struct ctlr_info *h;
616 struct Scsi_Host *shost = class_to_shost(dev);
618 h = shost_to_hba(shost);
619 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
622 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
624 return (scsi3addr[3] & 0xC0) == 0x40;
627 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
628 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
630 #define HPSA_RAID_0 0
631 #define HPSA_RAID_4 1
632 #define HPSA_RAID_1 2 /* also used for RAID 10 */
633 #define HPSA_RAID_5 3 /* also used for RAID 50 */
634 #define HPSA_RAID_51 4
635 #define HPSA_RAID_6 5 /* also used for RAID 60 */
636 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
637 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
638 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
640 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
642 return !device->physical_device;
645 static ssize_t raid_level_show(struct device *dev,
646 struct device_attribute *attr, char *buf)
648 ssize_t l = 0;
649 unsigned char rlevel;
650 struct ctlr_info *h;
651 struct scsi_device *sdev;
652 struct hpsa_scsi_dev_t *hdev;
653 unsigned long flags;
655 sdev = to_scsi_device(dev);
656 h = sdev_to_hba(sdev);
657 spin_lock_irqsave(&h->lock, flags);
658 hdev = sdev->hostdata;
659 if (!hdev) {
660 spin_unlock_irqrestore(&h->lock, flags);
661 return -ENODEV;
664 /* Is this even a logical drive? */
665 if (!is_logical_device(hdev)) {
666 spin_unlock_irqrestore(&h->lock, flags);
667 l = snprintf(buf, PAGE_SIZE, "N/A\n");
668 return l;
671 rlevel = hdev->raid_level;
672 spin_unlock_irqrestore(&h->lock, flags);
673 if (rlevel > RAID_UNKNOWN)
674 rlevel = RAID_UNKNOWN;
675 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
676 return l;
679 static ssize_t lunid_show(struct device *dev,
680 struct device_attribute *attr, char *buf)
682 struct ctlr_info *h;
683 struct scsi_device *sdev;
684 struct hpsa_scsi_dev_t *hdev;
685 unsigned long flags;
686 unsigned char lunid[8];
688 sdev = to_scsi_device(dev);
689 h = sdev_to_hba(sdev);
690 spin_lock_irqsave(&h->lock, flags);
691 hdev = sdev->hostdata;
692 if (!hdev) {
693 spin_unlock_irqrestore(&h->lock, flags);
694 return -ENODEV;
696 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
697 spin_unlock_irqrestore(&h->lock, flags);
698 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
699 lunid[0], lunid[1], lunid[2], lunid[3],
700 lunid[4], lunid[5], lunid[6], lunid[7]);
703 static ssize_t unique_id_show(struct device *dev,
704 struct device_attribute *attr, char *buf)
706 struct ctlr_info *h;
707 struct scsi_device *sdev;
708 struct hpsa_scsi_dev_t *hdev;
709 unsigned long flags;
710 unsigned char sn[16];
712 sdev = to_scsi_device(dev);
713 h = sdev_to_hba(sdev);
714 spin_lock_irqsave(&h->lock, flags);
715 hdev = sdev->hostdata;
716 if (!hdev) {
717 spin_unlock_irqrestore(&h->lock, flags);
718 return -ENODEV;
720 memcpy(sn, hdev->device_id, sizeof(sn));
721 spin_unlock_irqrestore(&h->lock, flags);
722 return snprintf(buf, 16 * 2 + 2,
723 "%02X%02X%02X%02X%02X%02X%02X%02X"
724 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
725 sn[0], sn[1], sn[2], sn[3],
726 sn[4], sn[5], sn[6], sn[7],
727 sn[8], sn[9], sn[10], sn[11],
728 sn[12], sn[13], sn[14], sn[15]);
731 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
732 struct device_attribute *attr, char *buf)
734 struct ctlr_info *h;
735 struct scsi_device *sdev;
736 struct hpsa_scsi_dev_t *hdev;
737 unsigned long flags;
738 int offload_enabled;
740 sdev = to_scsi_device(dev);
741 h = sdev_to_hba(sdev);
742 spin_lock_irqsave(&h->lock, flags);
743 hdev = sdev->hostdata;
744 if (!hdev) {
745 spin_unlock_irqrestore(&h->lock, flags);
746 return -ENODEV;
748 offload_enabled = hdev->offload_enabled;
749 spin_unlock_irqrestore(&h->lock, flags);
750 return snprintf(buf, 20, "%d\n", offload_enabled);
753 #define MAX_PATHS 8
754 static ssize_t path_info_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
757 struct ctlr_info *h;
758 struct scsi_device *sdev;
759 struct hpsa_scsi_dev_t *hdev;
760 unsigned long flags;
761 int i;
762 int output_len = 0;
763 u8 box;
764 u8 bay;
765 u8 path_map_index = 0;
766 char *active;
767 unsigned char phys_connector[2];
769 sdev = to_scsi_device(dev);
770 h = sdev_to_hba(sdev);
771 spin_lock_irqsave(&h->devlock, flags);
772 hdev = sdev->hostdata;
773 if (!hdev) {
774 spin_unlock_irqrestore(&h->devlock, flags);
775 return -ENODEV;
778 bay = hdev->bay;
779 for (i = 0; i < MAX_PATHS; i++) {
780 path_map_index = 1<<i;
781 if (i == hdev->active_path_index)
782 active = "Active";
783 else if (hdev->path_map & path_map_index)
784 active = "Inactive";
785 else
786 continue;
788 output_len += scnprintf(buf + output_len,
789 PAGE_SIZE - output_len,
790 "[%d:%d:%d:%d] %20.20s ",
791 h->scsi_host->host_no,
792 hdev->bus, hdev->target, hdev->lun,
793 scsi_device_type(hdev->devtype));
795 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
796 output_len += scnprintf(buf + output_len,
797 PAGE_SIZE - output_len,
798 "%s\n", active);
799 continue;
802 box = hdev->box[i];
803 memcpy(&phys_connector, &hdev->phys_connector[i],
804 sizeof(phys_connector));
805 if (phys_connector[0] < '0')
806 phys_connector[0] = '0';
807 if (phys_connector[1] < '0')
808 phys_connector[1] = '0';
809 output_len += scnprintf(buf + output_len,
810 PAGE_SIZE - output_len,
811 "PORT: %.2s ",
812 phys_connector);
813 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
814 hdev->expose_device) {
815 if (box == 0 || box == 0xFF) {
816 output_len += scnprintf(buf + output_len,
817 PAGE_SIZE - output_len,
818 "BAY: %hhu %s\n",
819 bay, active);
820 } else {
821 output_len += scnprintf(buf + output_len,
822 PAGE_SIZE - output_len,
823 "BOX: %hhu BAY: %hhu %s\n",
824 box, bay, active);
826 } else if (box != 0 && box != 0xFF) {
827 output_len += scnprintf(buf + output_len,
828 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
829 box, active);
830 } else
831 output_len += scnprintf(buf + output_len,
832 PAGE_SIZE - output_len, "%s\n", active);
835 spin_unlock_irqrestore(&h->devlock, flags);
836 return output_len;
839 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
840 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
841 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
842 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
843 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
844 host_show_hp_ssd_smart_path_enabled, NULL);
845 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
846 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
847 host_show_hp_ssd_smart_path_status,
848 host_store_hp_ssd_smart_path_status);
849 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
850 host_store_raid_offload_debug);
851 static DEVICE_ATTR(firmware_revision, S_IRUGO,
852 host_show_firmware_revision, NULL);
853 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
854 host_show_commands_outstanding, NULL);
855 static DEVICE_ATTR(transport_mode, S_IRUGO,
856 host_show_transport_mode, NULL);
857 static DEVICE_ATTR(resettable, S_IRUGO,
858 host_show_resettable, NULL);
859 static DEVICE_ATTR(lockup_detected, S_IRUGO,
860 host_show_lockup_detected, NULL);
862 static struct device_attribute *hpsa_sdev_attrs[] = {
863 &dev_attr_raid_level,
864 &dev_attr_lunid,
865 &dev_attr_unique_id,
866 &dev_attr_hp_ssd_smart_path_enabled,
867 &dev_attr_path_info,
868 NULL,
871 static struct device_attribute *hpsa_shost_attrs[] = {
872 &dev_attr_rescan,
873 &dev_attr_firmware_revision,
874 &dev_attr_commands_outstanding,
875 &dev_attr_transport_mode,
876 &dev_attr_resettable,
877 &dev_attr_hp_ssd_smart_path_status,
878 &dev_attr_raid_offload_debug,
879 &dev_attr_lockup_detected,
880 NULL,
883 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
884 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
886 static struct scsi_host_template hpsa_driver_template = {
887 .module = THIS_MODULE,
888 .name = HPSA,
889 .proc_name = HPSA,
890 .queuecommand = hpsa_scsi_queue_command,
891 .scan_start = hpsa_scan_start,
892 .scan_finished = hpsa_scan_finished,
893 .change_queue_depth = hpsa_change_queue_depth,
894 .this_id = -1,
895 .use_clustering = ENABLE_CLUSTERING,
896 .eh_abort_handler = hpsa_eh_abort_handler,
897 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
898 .ioctl = hpsa_ioctl,
899 .slave_alloc = hpsa_slave_alloc,
900 .slave_configure = hpsa_slave_configure,
901 .slave_destroy = hpsa_slave_destroy,
902 #ifdef CONFIG_COMPAT
903 .compat_ioctl = hpsa_compat_ioctl,
904 #endif
905 .sdev_attrs = hpsa_sdev_attrs,
906 .shost_attrs = hpsa_shost_attrs,
907 .max_sectors = 8192,
908 .no_write_same = 1,
911 static inline u32 next_command(struct ctlr_info *h, u8 q)
913 u32 a;
914 struct reply_queue_buffer *rq = &h->reply_queue[q];
916 if (h->transMethod & CFGTBL_Trans_io_accel1)
917 return h->access.command_completed(h, q);
919 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
920 return h->access.command_completed(h, q);
922 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
923 a = rq->head[rq->current_entry];
924 rq->current_entry++;
925 atomic_dec(&h->commands_outstanding);
926 } else {
927 a = FIFO_EMPTY;
929 /* Check for wraparound */
930 if (rq->current_entry == h->max_commands) {
931 rq->current_entry = 0;
932 rq->wraparound ^= 1;
934 return a;
938 * There are some special bits in the bus address of the
939 * command that we have to set for the controller to know
940 * how to process the command:
942 * Normal performant mode:
943 * bit 0: 1 means performant mode, 0 means simple mode.
944 * bits 1-3 = block fetch table entry
945 * bits 4-6 = command type (== 0)
947 * ioaccel1 mode:
948 * bit 0 = "performant mode" bit.
949 * bits 1-3 = block fetch table entry
950 * bits 4-6 = command type (== 110)
951 * (command type is needed because ioaccel1 mode
952 * commands are submitted through the same register as normal
953 * mode commands, so this is how the controller knows whether
954 * the command is normal mode or ioaccel1 mode.)
956 * ioaccel2 mode:
957 * bit 0 = "performant mode" bit.
958 * bits 1-4 = block fetch table entry (note extra bit)
959 * bits 4-6 = not needed, because ioaccel2 mode has
960 * a separate special register for submitting commands.
964 * set_performant_mode: Modify the tag for cciss performant
965 * set bit 0 for pull model, bits 3-1 for block fetch
966 * register number
968 #define DEFAULT_REPLY_QUEUE (-1)
969 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
970 int reply_queue)
972 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
973 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
974 if (unlikely(!h->msix_vector))
975 return;
976 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
977 c->Header.ReplyQueue =
978 raw_smp_processor_id() % h->nreply_queues;
979 else
980 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
984 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
985 struct CommandList *c,
986 int reply_queue)
988 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
991 * Tell the controller to post the reply to the queue for this
992 * processor. This seems to give the best I/O throughput.
994 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
995 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
996 else
997 cp->ReplyQueue = reply_queue % h->nreply_queues;
999 * Set the bits in the address sent down to include:
1000 * - performant mode bit (bit 0)
1001 * - pull count (bits 1-3)
1002 * - command type (bits 4-6)
1004 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1005 IOACCEL1_BUSADDR_CMDTYPE;
1008 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1009 struct CommandList *c,
1010 int reply_queue)
1012 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1013 &h->ioaccel2_cmd_pool[c->cmdindex];
1015 /* Tell the controller to post the reply to the queue for this
1016 * processor. This seems to give the best I/O throughput.
1018 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1019 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1020 else
1021 cp->reply_queue = reply_queue % h->nreply_queues;
1022 /* Set the bits in the address sent down to include:
1023 * - performant mode bit not used in ioaccel mode 2
1024 * - pull count (bits 0-3)
1025 * - command type isn't needed for ioaccel2
1027 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1030 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1031 struct CommandList *c,
1032 int reply_queue)
1034 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1037 * Tell the controller to post the reply to the queue for this
1038 * processor. This seems to give the best I/O throughput.
1040 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1041 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1042 else
1043 cp->reply_queue = reply_queue % h->nreply_queues;
1045 * Set the bits in the address sent down to include:
1046 * - performant mode bit not used in ioaccel mode 2
1047 * - pull count (bits 0-3)
1048 * - command type isn't needed for ioaccel2
1050 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1053 static int is_firmware_flash_cmd(u8 *cdb)
1055 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1059 * During firmware flash, the heartbeat register may not update as frequently
1060 * as it should. So we dial down lockup detection during firmware flash. and
1061 * dial it back up when firmware flash completes.
1063 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1064 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1065 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1066 struct CommandList *c)
1068 if (!is_firmware_flash_cmd(c->Request.CDB))
1069 return;
1070 atomic_inc(&h->firmware_flash_in_progress);
1071 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1074 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1075 struct CommandList *c)
1077 if (is_firmware_flash_cmd(c->Request.CDB) &&
1078 atomic_dec_and_test(&h->firmware_flash_in_progress))
1079 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1082 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1083 struct CommandList *c, int reply_queue)
1085 dial_down_lockup_detection_during_fw_flash(h, c);
1086 atomic_inc(&h->commands_outstanding);
1087 switch (c->cmd_type) {
1088 case CMD_IOACCEL1:
1089 set_ioaccel1_performant_mode(h, c, reply_queue);
1090 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1091 break;
1092 case CMD_IOACCEL2:
1093 set_ioaccel2_performant_mode(h, c, reply_queue);
1094 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1095 break;
1096 case IOACCEL2_TMF:
1097 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1098 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1099 break;
1100 default:
1101 set_performant_mode(h, c, reply_queue);
1102 h->access.submit_command(h, c);
1106 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1108 if (unlikely(hpsa_is_pending_event(c)))
1109 return finish_cmd(c);
1111 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1114 static inline int is_hba_lunid(unsigned char scsi3addr[])
1116 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1119 static inline int is_scsi_rev_5(struct ctlr_info *h)
1121 if (!h->hba_inquiry_data)
1122 return 0;
1123 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1124 return 1;
1125 return 0;
1128 static int hpsa_find_target_lun(struct ctlr_info *h,
1129 unsigned char scsi3addr[], int bus, int *target, int *lun)
1131 /* finds an unused bus, target, lun for a new physical device
1132 * assumes h->devlock is held
1134 int i, found = 0;
1135 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1137 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1139 for (i = 0; i < h->ndevices; i++) {
1140 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1141 __set_bit(h->dev[i]->target, lun_taken);
1144 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1145 if (i < HPSA_MAX_DEVICES) {
1146 /* *bus = 1; */
1147 *target = i;
1148 *lun = 0;
1149 found = 1;
1151 return !found;
1154 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1155 struct hpsa_scsi_dev_t *dev, char *description)
1157 #define LABEL_SIZE 25
1158 char label[LABEL_SIZE];
1160 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1161 return;
1163 switch (dev->devtype) {
1164 case TYPE_RAID:
1165 snprintf(label, LABEL_SIZE, "controller");
1166 break;
1167 case TYPE_ENCLOSURE:
1168 snprintf(label, LABEL_SIZE, "enclosure");
1169 break;
1170 case TYPE_DISK:
1171 case TYPE_ZBC:
1172 if (dev->external)
1173 snprintf(label, LABEL_SIZE, "external");
1174 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1175 snprintf(label, LABEL_SIZE, "%s",
1176 raid_label[PHYSICAL_DRIVE]);
1177 else
1178 snprintf(label, LABEL_SIZE, "RAID-%s",
1179 dev->raid_level > RAID_UNKNOWN ? "?" :
1180 raid_label[dev->raid_level]);
1181 break;
1182 case TYPE_ROM:
1183 snprintf(label, LABEL_SIZE, "rom");
1184 break;
1185 case TYPE_TAPE:
1186 snprintf(label, LABEL_SIZE, "tape");
1187 break;
1188 case TYPE_MEDIUM_CHANGER:
1189 snprintf(label, LABEL_SIZE, "changer");
1190 break;
1191 default:
1192 snprintf(label, LABEL_SIZE, "UNKNOWN");
1193 break;
1196 dev_printk(level, &h->pdev->dev,
1197 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1198 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1199 description,
1200 scsi_device_type(dev->devtype),
1201 dev->vendor,
1202 dev->model,
1203 label,
1204 dev->offload_config ? '+' : '-',
1205 dev->offload_enabled ? '+' : '-',
1206 dev->expose_device);
1209 /* Add an entry into h->dev[] array. */
1210 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1211 struct hpsa_scsi_dev_t *device,
1212 struct hpsa_scsi_dev_t *added[], int *nadded)
1214 /* assumes h->devlock is held */
1215 int n = h->ndevices;
1216 int i;
1217 unsigned char addr1[8], addr2[8];
1218 struct hpsa_scsi_dev_t *sd;
1220 if (n >= HPSA_MAX_DEVICES) {
1221 dev_err(&h->pdev->dev, "too many devices, some will be "
1222 "inaccessible.\n");
1223 return -1;
1226 /* physical devices do not have lun or target assigned until now. */
1227 if (device->lun != -1)
1228 /* Logical device, lun is already assigned. */
1229 goto lun_assigned;
1231 /* If this device a non-zero lun of a multi-lun device
1232 * byte 4 of the 8-byte LUN addr will contain the logical
1233 * unit no, zero otherwise.
1235 if (device->scsi3addr[4] == 0) {
1236 /* This is not a non-zero lun of a multi-lun device */
1237 if (hpsa_find_target_lun(h, device->scsi3addr,
1238 device->bus, &device->target, &device->lun) != 0)
1239 return -1;
1240 goto lun_assigned;
1243 /* This is a non-zero lun of a multi-lun device.
1244 * Search through our list and find the device which
1245 * has the same 8 byte LUN address, excepting byte 4 and 5.
1246 * Assign the same bus and target for this new LUN.
1247 * Use the logical unit number from the firmware.
1249 memcpy(addr1, device->scsi3addr, 8);
1250 addr1[4] = 0;
1251 addr1[5] = 0;
1252 for (i = 0; i < n; i++) {
1253 sd = h->dev[i];
1254 memcpy(addr2, sd->scsi3addr, 8);
1255 addr2[4] = 0;
1256 addr2[5] = 0;
1257 /* differ only in byte 4 and 5? */
1258 if (memcmp(addr1, addr2, 8) == 0) {
1259 device->bus = sd->bus;
1260 device->target = sd->target;
1261 device->lun = device->scsi3addr[4];
1262 break;
1265 if (device->lun == -1) {
1266 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1267 " suspect firmware bug or unsupported hardware "
1268 "configuration.\n");
1269 return -1;
1272 lun_assigned:
1274 h->dev[n] = device;
1275 h->ndevices++;
1276 added[*nadded] = device;
1277 (*nadded)++;
1278 hpsa_show_dev_msg(KERN_INFO, h, device,
1279 device->expose_device ? "added" : "masked");
1280 device->offload_to_be_enabled = device->offload_enabled;
1281 device->offload_enabled = 0;
1282 return 0;
1285 /* Update an entry in h->dev[] array. */
1286 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1287 int entry, struct hpsa_scsi_dev_t *new_entry)
1289 int offload_enabled;
1290 /* assumes h->devlock is held */
1291 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1293 /* Raid level changed. */
1294 h->dev[entry]->raid_level = new_entry->raid_level;
1296 /* Raid offload parameters changed. Careful about the ordering. */
1297 if (new_entry->offload_config && new_entry->offload_enabled) {
1299 * if drive is newly offload_enabled, we want to copy the
1300 * raid map data first. If previously offload_enabled and
1301 * offload_config were set, raid map data had better be
1302 * the same as it was before. if raid map data is changed
1303 * then it had better be the case that
1304 * h->dev[entry]->offload_enabled is currently 0.
1306 h->dev[entry]->raid_map = new_entry->raid_map;
1307 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309 if (new_entry->hba_ioaccel_enabled) {
1310 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1311 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1314 h->dev[entry]->offload_config = new_entry->offload_config;
1315 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1316 h->dev[entry]->queue_depth = new_entry->queue_depth;
1319 * We can turn off ioaccel offload now, but need to delay turning
1320 * it on until we can update h->dev[entry]->phys_disk[], but we
1321 * can't do that until all the devices are updated.
1323 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1324 if (!new_entry->offload_enabled)
1325 h->dev[entry]->offload_enabled = 0;
1327 offload_enabled = h->dev[entry]->offload_enabled;
1328 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1329 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1330 h->dev[entry]->offload_enabled = offload_enabled;
1333 /* Replace an entry from h->dev[] array. */
1334 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1335 int entry, struct hpsa_scsi_dev_t *new_entry,
1336 struct hpsa_scsi_dev_t *added[], int *nadded,
1337 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1339 /* assumes h->devlock is held */
1340 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1341 removed[*nremoved] = h->dev[entry];
1342 (*nremoved)++;
1345 * New physical devices won't have target/lun assigned yet
1346 * so we need to preserve the values in the slot we are replacing.
1348 if (new_entry->target == -1) {
1349 new_entry->target = h->dev[entry]->target;
1350 new_entry->lun = h->dev[entry]->lun;
1353 h->dev[entry] = new_entry;
1354 added[*nadded] = new_entry;
1355 (*nadded)++;
1356 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1357 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1358 new_entry->offload_enabled = 0;
1361 /* Remove an entry from h->dev[] array. */
1362 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1363 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1365 /* assumes h->devlock is held */
1366 int i;
1367 struct hpsa_scsi_dev_t *sd;
1369 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371 sd = h->dev[entry];
1372 removed[*nremoved] = h->dev[entry];
1373 (*nremoved)++;
1375 for (i = entry; i < h->ndevices-1; i++)
1376 h->dev[i] = h->dev[i+1];
1377 h->ndevices--;
1378 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1381 #define SCSI3ADDR_EQ(a, b) ( \
1382 (a)[7] == (b)[7] && \
1383 (a)[6] == (b)[6] && \
1384 (a)[5] == (b)[5] && \
1385 (a)[4] == (b)[4] && \
1386 (a)[3] == (b)[3] && \
1387 (a)[2] == (b)[2] && \
1388 (a)[1] == (b)[1] && \
1389 (a)[0] == (b)[0])
1391 static void fixup_botched_add(struct ctlr_info *h,
1392 struct hpsa_scsi_dev_t *added)
1394 /* called when scsi_add_device fails in order to re-adjust
1395 * h->dev[] to match the mid layer's view.
1397 unsigned long flags;
1398 int i, j;
1400 spin_lock_irqsave(&h->lock, flags);
1401 for (i = 0; i < h->ndevices; i++) {
1402 if (h->dev[i] == added) {
1403 for (j = i; j < h->ndevices-1; j++)
1404 h->dev[j] = h->dev[j+1];
1405 h->ndevices--;
1406 break;
1409 spin_unlock_irqrestore(&h->lock, flags);
1410 kfree(added);
1413 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1414 struct hpsa_scsi_dev_t *dev2)
1416 /* we compare everything except lun and target as these
1417 * are not yet assigned. Compare parts likely
1418 * to differ first
1420 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1421 sizeof(dev1->scsi3addr)) != 0)
1422 return 0;
1423 if (memcmp(dev1->device_id, dev2->device_id,
1424 sizeof(dev1->device_id)) != 0)
1425 return 0;
1426 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1427 return 0;
1428 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1429 return 0;
1430 if (dev1->devtype != dev2->devtype)
1431 return 0;
1432 if (dev1->bus != dev2->bus)
1433 return 0;
1434 return 1;
1437 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1438 struct hpsa_scsi_dev_t *dev2)
1440 /* Device attributes that can change, but don't mean
1441 * that the device is a different device, nor that the OS
1442 * needs to be told anything about the change.
1444 if (dev1->raid_level != dev2->raid_level)
1445 return 1;
1446 if (dev1->offload_config != dev2->offload_config)
1447 return 1;
1448 if (dev1->offload_enabled != dev2->offload_enabled)
1449 return 1;
1450 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1451 if (dev1->queue_depth != dev2->queue_depth)
1452 return 1;
1453 return 0;
1456 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1457 * and return needle location in *index. If scsi3addr matches, but not
1458 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1459 * location in *index.
1460 * In the case of a minor device attribute change, such as RAID level, just
1461 * return DEVICE_UPDATED, along with the updated device's location in index.
1462 * If needle not found, return DEVICE_NOT_FOUND.
1464 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1465 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1466 int *index)
1468 int i;
1469 #define DEVICE_NOT_FOUND 0
1470 #define DEVICE_CHANGED 1
1471 #define DEVICE_SAME 2
1472 #define DEVICE_UPDATED 3
1473 if (needle == NULL)
1474 return DEVICE_NOT_FOUND;
1476 for (i = 0; i < haystack_size; i++) {
1477 if (haystack[i] == NULL) /* previously removed. */
1478 continue;
1479 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1480 *index = i;
1481 if (device_is_the_same(needle, haystack[i])) {
1482 if (device_updated(needle, haystack[i]))
1483 return DEVICE_UPDATED;
1484 return DEVICE_SAME;
1485 } else {
1486 /* Keep offline devices offline */
1487 if (needle->volume_offline)
1488 return DEVICE_NOT_FOUND;
1489 return DEVICE_CHANGED;
1493 *index = -1;
1494 return DEVICE_NOT_FOUND;
1497 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1498 unsigned char scsi3addr[])
1500 struct offline_device_entry *device;
1501 unsigned long flags;
1503 /* Check to see if device is already on the list */
1504 spin_lock_irqsave(&h->offline_device_lock, flags);
1505 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1506 if (memcmp(device->scsi3addr, scsi3addr,
1507 sizeof(device->scsi3addr)) == 0) {
1508 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1509 return;
1512 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1514 /* Device is not on the list, add it. */
1515 device = kmalloc(sizeof(*device), GFP_KERNEL);
1516 if (!device) {
1517 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1518 return;
1520 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1521 spin_lock_irqsave(&h->offline_device_lock, flags);
1522 list_add_tail(&device->offline_list, &h->offline_device_list);
1523 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1526 /* Print a message explaining various offline volume states */
1527 static void hpsa_show_volume_status(struct ctlr_info *h,
1528 struct hpsa_scsi_dev_t *sd)
1530 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1531 dev_info(&h->pdev->dev,
1532 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1533 h->scsi_host->host_no,
1534 sd->bus, sd->target, sd->lun);
1535 switch (sd->volume_offline) {
1536 case HPSA_LV_OK:
1537 break;
1538 case HPSA_LV_UNDERGOING_ERASE:
1539 dev_info(&h->pdev->dev,
1540 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1541 h->scsi_host->host_no,
1542 sd->bus, sd->target, sd->lun);
1543 break;
1544 case HPSA_LV_NOT_AVAILABLE:
1545 dev_info(&h->pdev->dev,
1546 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1547 h->scsi_host->host_no,
1548 sd->bus, sd->target, sd->lun);
1549 break;
1550 case HPSA_LV_UNDERGOING_RPI:
1551 dev_info(&h->pdev->dev,
1552 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1553 h->scsi_host->host_no,
1554 sd->bus, sd->target, sd->lun);
1555 break;
1556 case HPSA_LV_PENDING_RPI:
1557 dev_info(&h->pdev->dev,
1558 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1559 h->scsi_host->host_no,
1560 sd->bus, sd->target, sd->lun);
1561 break;
1562 case HPSA_LV_ENCRYPTED_NO_KEY:
1563 dev_info(&h->pdev->dev,
1564 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1565 h->scsi_host->host_no,
1566 sd->bus, sd->target, sd->lun);
1567 break;
1568 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1569 dev_info(&h->pdev->dev,
1570 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1571 h->scsi_host->host_no,
1572 sd->bus, sd->target, sd->lun);
1573 break;
1574 case HPSA_LV_UNDERGOING_ENCRYPTION:
1575 dev_info(&h->pdev->dev,
1576 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1577 h->scsi_host->host_no,
1578 sd->bus, sd->target, sd->lun);
1579 break;
1580 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1581 dev_info(&h->pdev->dev,
1582 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1583 h->scsi_host->host_no,
1584 sd->bus, sd->target, sd->lun);
1585 break;
1586 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1587 dev_info(&h->pdev->dev,
1588 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1589 h->scsi_host->host_no,
1590 sd->bus, sd->target, sd->lun);
1591 break;
1592 case HPSA_LV_PENDING_ENCRYPTION:
1593 dev_info(&h->pdev->dev,
1594 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1595 h->scsi_host->host_no,
1596 sd->bus, sd->target, sd->lun);
1597 break;
1598 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1599 dev_info(&h->pdev->dev,
1600 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1601 h->scsi_host->host_no,
1602 sd->bus, sd->target, sd->lun);
1603 break;
1608 * Figure the list of physical drive pointers for a logical drive with
1609 * raid offload configured.
1611 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1612 struct hpsa_scsi_dev_t *dev[], int ndevices,
1613 struct hpsa_scsi_dev_t *logical_drive)
1615 struct raid_map_data *map = &logical_drive->raid_map;
1616 struct raid_map_disk_data *dd = &map->data[0];
1617 int i, j;
1618 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1619 le16_to_cpu(map->metadata_disks_per_row);
1620 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1621 le16_to_cpu(map->layout_map_count) *
1622 total_disks_per_row;
1623 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1624 total_disks_per_row;
1625 int qdepth;
1627 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1628 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1630 logical_drive->nphysical_disks = nraid_map_entries;
1632 qdepth = 0;
1633 for (i = 0; i < nraid_map_entries; i++) {
1634 logical_drive->phys_disk[i] = NULL;
1635 if (!logical_drive->offload_config)
1636 continue;
1637 for (j = 0; j < ndevices; j++) {
1638 if (dev[j] == NULL)
1639 continue;
1640 if (dev[j]->devtype != TYPE_DISK)
1641 continue;
1642 if (dev[j]->devtype != TYPE_ZBC)
1643 continue;
1644 if (is_logical_device(dev[j]))
1645 continue;
1646 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1647 continue;
1649 logical_drive->phys_disk[i] = dev[j];
1650 if (i < nphys_disk)
1651 qdepth = min(h->nr_cmds, qdepth +
1652 logical_drive->phys_disk[i]->queue_depth);
1653 break;
1657 * This can happen if a physical drive is removed and
1658 * the logical drive is degraded. In that case, the RAID
1659 * map data will refer to a physical disk which isn't actually
1660 * present. And in that case offload_enabled should already
1661 * be 0, but we'll turn it off here just in case
1663 if (!logical_drive->phys_disk[i]) {
1664 logical_drive->offload_enabled = 0;
1665 logical_drive->offload_to_be_enabled = 0;
1666 logical_drive->queue_depth = 8;
1669 if (nraid_map_entries)
1671 * This is correct for reads, too high for full stripe writes,
1672 * way too high for partial stripe writes
1674 logical_drive->queue_depth = qdepth;
1675 else
1676 logical_drive->queue_depth = h->nr_cmds;
1679 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1680 struct hpsa_scsi_dev_t *dev[], int ndevices)
1682 int i;
1684 for (i = 0; i < ndevices; i++) {
1685 if (dev[i] == NULL)
1686 continue;
1687 if (dev[i]->devtype != TYPE_DISK)
1688 continue;
1689 if (dev[i]->devtype != TYPE_ZBC)
1690 continue;
1691 if (!is_logical_device(dev[i]))
1692 continue;
1695 * If offload is currently enabled, the RAID map and
1696 * phys_disk[] assignment *better* not be changing
1697 * and since it isn't changing, we do not need to
1698 * update it.
1700 if (dev[i]->offload_enabled)
1701 continue;
1703 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1707 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1709 int rc = 0;
1711 if (!h->scsi_host)
1712 return 1;
1714 if (is_logical_device(device)) /* RAID */
1715 rc = scsi_add_device(h->scsi_host, device->bus,
1716 device->target, device->lun);
1717 else /* HBA */
1718 rc = hpsa_add_sas_device(h->sas_host, device);
1720 return rc;
1723 static void hpsa_remove_device(struct ctlr_info *h,
1724 struct hpsa_scsi_dev_t *device)
1726 struct scsi_device *sdev = NULL;
1728 if (!h->scsi_host)
1729 return;
1731 if (is_logical_device(device)) { /* RAID */
1732 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1733 device->target, device->lun);
1734 if (sdev) {
1735 scsi_remove_device(sdev);
1736 scsi_device_put(sdev);
1737 } else {
1739 * We don't expect to get here. Future commands
1740 * to this device will get a selection timeout as
1741 * if the device were gone.
1743 hpsa_show_dev_msg(KERN_WARNING, h, device,
1744 "didn't find device for removal.");
1746 } else /* HBA */
1747 hpsa_remove_sas_device(device);
1750 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1751 struct hpsa_scsi_dev_t *sd[], int nsds)
1753 /* sd contains scsi3 addresses and devtypes, and inquiry
1754 * data. This function takes what's in sd to be the current
1755 * reality and updates h->dev[] to reflect that reality.
1757 int i, entry, device_change, changes = 0;
1758 struct hpsa_scsi_dev_t *csd;
1759 unsigned long flags;
1760 struct hpsa_scsi_dev_t **added, **removed;
1761 int nadded, nremoved;
1764 * A reset can cause a device status to change
1765 * re-schedule the scan to see what happened.
1767 if (h->reset_in_progress) {
1768 h->drv_req_rescan = 1;
1769 return;
1772 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1773 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1775 if (!added || !removed) {
1776 dev_warn(&h->pdev->dev, "out of memory in "
1777 "adjust_hpsa_scsi_table\n");
1778 goto free_and_out;
1781 spin_lock_irqsave(&h->devlock, flags);
1783 /* find any devices in h->dev[] that are not in
1784 * sd[] and remove them from h->dev[], and for any
1785 * devices which have changed, remove the old device
1786 * info and add the new device info.
1787 * If minor device attributes change, just update
1788 * the existing device structure.
1790 i = 0;
1791 nremoved = 0;
1792 nadded = 0;
1793 while (i < h->ndevices) {
1794 csd = h->dev[i];
1795 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1796 if (device_change == DEVICE_NOT_FOUND) {
1797 changes++;
1798 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1799 continue; /* remove ^^^, hence i not incremented */
1800 } else if (device_change == DEVICE_CHANGED) {
1801 changes++;
1802 hpsa_scsi_replace_entry(h, i, sd[entry],
1803 added, &nadded, removed, &nremoved);
1804 /* Set it to NULL to prevent it from being freed
1805 * at the bottom of hpsa_update_scsi_devices()
1807 sd[entry] = NULL;
1808 } else if (device_change == DEVICE_UPDATED) {
1809 hpsa_scsi_update_entry(h, i, sd[entry]);
1811 i++;
1814 /* Now, make sure every device listed in sd[] is also
1815 * listed in h->dev[], adding them if they aren't found
1818 for (i = 0; i < nsds; i++) {
1819 if (!sd[i]) /* if already added above. */
1820 continue;
1822 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1823 * as the SCSI mid-layer does not handle such devices well.
1824 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1825 * at 160Hz, and prevents the system from coming up.
1827 if (sd[i]->volume_offline) {
1828 hpsa_show_volume_status(h, sd[i]);
1829 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1830 continue;
1833 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1834 h->ndevices, &entry);
1835 if (device_change == DEVICE_NOT_FOUND) {
1836 changes++;
1837 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1838 break;
1839 sd[i] = NULL; /* prevent from being freed later. */
1840 } else if (device_change == DEVICE_CHANGED) {
1841 /* should never happen... */
1842 changes++;
1843 dev_warn(&h->pdev->dev,
1844 "device unexpectedly changed.\n");
1845 /* but if it does happen, we just ignore that device */
1848 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1850 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1851 * any logical drives that need it enabled.
1853 for (i = 0; i < h->ndevices; i++) {
1854 if (h->dev[i] == NULL)
1855 continue;
1856 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1859 spin_unlock_irqrestore(&h->devlock, flags);
1861 /* Monitor devices which are in one of several NOT READY states to be
1862 * brought online later. This must be done without holding h->devlock,
1863 * so don't touch h->dev[]
1865 for (i = 0; i < nsds; i++) {
1866 if (!sd[i]) /* if already added above. */
1867 continue;
1868 if (sd[i]->volume_offline)
1869 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1872 /* Don't notify scsi mid layer of any changes the first time through
1873 * (or if there are no changes) scsi_scan_host will do it later the
1874 * first time through.
1876 if (!changes)
1877 goto free_and_out;
1879 /* Notify scsi mid layer of any removed devices */
1880 for (i = 0; i < nremoved; i++) {
1881 if (removed[i] == NULL)
1882 continue;
1883 if (removed[i]->expose_device)
1884 hpsa_remove_device(h, removed[i]);
1885 kfree(removed[i]);
1886 removed[i] = NULL;
1889 /* Notify scsi mid layer of any added devices */
1890 for (i = 0; i < nadded; i++) {
1891 int rc = 0;
1893 if (added[i] == NULL)
1894 continue;
1895 if (!(added[i]->expose_device))
1896 continue;
1897 rc = hpsa_add_device(h, added[i]);
1898 if (!rc)
1899 continue;
1900 dev_warn(&h->pdev->dev,
1901 "addition failed %d, device not added.", rc);
1902 /* now we have to remove it from h->dev,
1903 * since it didn't get added to scsi mid layer
1905 fixup_botched_add(h, added[i]);
1906 h->drv_req_rescan = 1;
1909 free_and_out:
1910 kfree(added);
1911 kfree(removed);
1915 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1916 * Assume's h->devlock is held.
1918 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1919 int bus, int target, int lun)
1921 int i;
1922 struct hpsa_scsi_dev_t *sd;
1924 for (i = 0; i < h->ndevices; i++) {
1925 sd = h->dev[i];
1926 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1927 return sd;
1929 return NULL;
1932 static int hpsa_slave_alloc(struct scsi_device *sdev)
1934 struct hpsa_scsi_dev_t *sd;
1935 unsigned long flags;
1936 struct ctlr_info *h;
1938 h = sdev_to_hba(sdev);
1939 spin_lock_irqsave(&h->devlock, flags);
1940 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1941 struct scsi_target *starget;
1942 struct sas_rphy *rphy;
1944 starget = scsi_target(sdev);
1945 rphy = target_to_rphy(starget);
1946 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1947 if (sd) {
1948 sd->target = sdev_id(sdev);
1949 sd->lun = sdev->lun;
1951 } else
1952 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1953 sdev_id(sdev), sdev->lun);
1955 if (sd && sd->expose_device) {
1956 atomic_set(&sd->ioaccel_cmds_out, 0);
1957 sdev->hostdata = sd;
1958 } else
1959 sdev->hostdata = NULL;
1960 spin_unlock_irqrestore(&h->devlock, flags);
1961 return 0;
1964 /* configure scsi device based on internal per-device structure */
1965 static int hpsa_slave_configure(struct scsi_device *sdev)
1967 struct hpsa_scsi_dev_t *sd;
1968 int queue_depth;
1970 sd = sdev->hostdata;
1971 sdev->no_uld_attach = !sd || !sd->expose_device;
1973 if (sd)
1974 queue_depth = sd->queue_depth != 0 ?
1975 sd->queue_depth : sdev->host->can_queue;
1976 else
1977 queue_depth = sdev->host->can_queue;
1979 scsi_change_queue_depth(sdev, queue_depth);
1981 return 0;
1984 static void hpsa_slave_destroy(struct scsi_device *sdev)
1986 /* nothing to do. */
1989 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1991 int i;
1993 if (!h->ioaccel2_cmd_sg_list)
1994 return;
1995 for (i = 0; i < h->nr_cmds; i++) {
1996 kfree(h->ioaccel2_cmd_sg_list[i]);
1997 h->ioaccel2_cmd_sg_list[i] = NULL;
1999 kfree(h->ioaccel2_cmd_sg_list);
2000 h->ioaccel2_cmd_sg_list = NULL;
2003 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2005 int i;
2007 if (h->chainsize <= 0)
2008 return 0;
2010 h->ioaccel2_cmd_sg_list =
2011 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2012 GFP_KERNEL);
2013 if (!h->ioaccel2_cmd_sg_list)
2014 return -ENOMEM;
2015 for (i = 0; i < h->nr_cmds; i++) {
2016 h->ioaccel2_cmd_sg_list[i] =
2017 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2018 h->maxsgentries, GFP_KERNEL);
2019 if (!h->ioaccel2_cmd_sg_list[i])
2020 goto clean;
2022 return 0;
2024 clean:
2025 hpsa_free_ioaccel2_sg_chain_blocks(h);
2026 return -ENOMEM;
2029 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2031 int i;
2033 if (!h->cmd_sg_list)
2034 return;
2035 for (i = 0; i < h->nr_cmds; i++) {
2036 kfree(h->cmd_sg_list[i]);
2037 h->cmd_sg_list[i] = NULL;
2039 kfree(h->cmd_sg_list);
2040 h->cmd_sg_list = NULL;
2043 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2045 int i;
2047 if (h->chainsize <= 0)
2048 return 0;
2050 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2051 GFP_KERNEL);
2052 if (!h->cmd_sg_list) {
2053 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2054 return -ENOMEM;
2056 for (i = 0; i < h->nr_cmds; i++) {
2057 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2058 h->chainsize, GFP_KERNEL);
2059 if (!h->cmd_sg_list[i]) {
2060 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2061 goto clean;
2064 return 0;
2066 clean:
2067 hpsa_free_sg_chain_blocks(h);
2068 return -ENOMEM;
2071 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2072 struct io_accel2_cmd *cp, struct CommandList *c)
2074 struct ioaccel2_sg_element *chain_block;
2075 u64 temp64;
2076 u32 chain_size;
2078 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2079 chain_size = le32_to_cpu(cp->sg[0].length);
2080 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2081 PCI_DMA_TODEVICE);
2082 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2083 /* prevent subsequent unmapping */
2084 cp->sg->address = 0;
2085 return -1;
2087 cp->sg->address = cpu_to_le64(temp64);
2088 return 0;
2091 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2092 struct io_accel2_cmd *cp)
2094 struct ioaccel2_sg_element *chain_sg;
2095 u64 temp64;
2096 u32 chain_size;
2098 chain_sg = cp->sg;
2099 temp64 = le64_to_cpu(chain_sg->address);
2100 chain_size = le32_to_cpu(cp->sg[0].length);
2101 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2104 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2105 struct CommandList *c)
2107 struct SGDescriptor *chain_sg, *chain_block;
2108 u64 temp64;
2109 u32 chain_len;
2111 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2112 chain_block = h->cmd_sg_list[c->cmdindex];
2113 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2114 chain_len = sizeof(*chain_sg) *
2115 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2116 chain_sg->Len = cpu_to_le32(chain_len);
2117 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2118 PCI_DMA_TODEVICE);
2119 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2120 /* prevent subsequent unmapping */
2121 chain_sg->Addr = cpu_to_le64(0);
2122 return -1;
2124 chain_sg->Addr = cpu_to_le64(temp64);
2125 return 0;
2128 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2129 struct CommandList *c)
2131 struct SGDescriptor *chain_sg;
2133 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2134 return;
2136 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2137 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2138 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2142 /* Decode the various types of errors on ioaccel2 path.
2143 * Return 1 for any error that should generate a RAID path retry.
2144 * Return 0 for errors that don't require a RAID path retry.
2146 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2147 struct CommandList *c,
2148 struct scsi_cmnd *cmd,
2149 struct io_accel2_cmd *c2)
2151 int data_len;
2152 int retry = 0;
2153 u32 ioaccel2_resid = 0;
2155 switch (c2->error_data.serv_response) {
2156 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2157 switch (c2->error_data.status) {
2158 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2159 break;
2160 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2161 cmd->result |= SAM_STAT_CHECK_CONDITION;
2162 if (c2->error_data.data_present !=
2163 IOACCEL2_SENSE_DATA_PRESENT) {
2164 memset(cmd->sense_buffer, 0,
2165 SCSI_SENSE_BUFFERSIZE);
2166 break;
2168 /* copy the sense data */
2169 data_len = c2->error_data.sense_data_len;
2170 if (data_len > SCSI_SENSE_BUFFERSIZE)
2171 data_len = SCSI_SENSE_BUFFERSIZE;
2172 if (data_len > sizeof(c2->error_data.sense_data_buff))
2173 data_len =
2174 sizeof(c2->error_data.sense_data_buff);
2175 memcpy(cmd->sense_buffer,
2176 c2->error_data.sense_data_buff, data_len);
2177 retry = 1;
2178 break;
2179 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2180 retry = 1;
2181 break;
2182 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2183 retry = 1;
2184 break;
2185 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2186 retry = 1;
2187 break;
2188 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2189 retry = 1;
2190 break;
2191 default:
2192 retry = 1;
2193 break;
2195 break;
2196 case IOACCEL2_SERV_RESPONSE_FAILURE:
2197 switch (c2->error_data.status) {
2198 case IOACCEL2_STATUS_SR_IO_ERROR:
2199 case IOACCEL2_STATUS_SR_IO_ABORTED:
2200 case IOACCEL2_STATUS_SR_OVERRUN:
2201 retry = 1;
2202 break;
2203 case IOACCEL2_STATUS_SR_UNDERRUN:
2204 cmd->result = (DID_OK << 16); /* host byte */
2205 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2206 ioaccel2_resid = get_unaligned_le32(
2207 &c2->error_data.resid_cnt[0]);
2208 scsi_set_resid(cmd, ioaccel2_resid);
2209 break;
2210 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2211 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2212 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2213 /* We will get an event from ctlr to trigger rescan */
2214 retry = 1;
2215 break;
2216 default:
2217 retry = 1;
2219 break;
2220 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2221 break;
2222 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2223 break;
2224 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2225 retry = 1;
2226 break;
2227 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2228 break;
2229 default:
2230 retry = 1;
2231 break;
2234 return retry; /* retry on raid path? */
2237 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2238 struct CommandList *c)
2240 bool do_wake = false;
2243 * Prevent the following race in the abort handler:
2245 * 1. LLD is requested to abort a SCSI command
2246 * 2. The SCSI command completes
2247 * 3. The struct CommandList associated with step 2 is made available
2248 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2249 * 5. Abort handler follows scsi_cmnd->host_scribble and
2250 * finds struct CommandList and tries to aborts it
2251 * Now we have aborted the wrong command.
2253 * Reset c->scsi_cmd here so that the abort or reset handler will know
2254 * this command has completed. Then, check to see if the handler is
2255 * waiting for this command, and, if so, wake it.
2257 c->scsi_cmd = SCSI_CMD_IDLE;
2258 mb(); /* Declare command idle before checking for pending events. */
2259 if (c->abort_pending) {
2260 do_wake = true;
2261 c->abort_pending = false;
2263 if (c->reset_pending) {
2264 unsigned long flags;
2265 struct hpsa_scsi_dev_t *dev;
2268 * There appears to be a reset pending; lock the lock and
2269 * reconfirm. If so, then decrement the count of outstanding
2270 * commands and wake the reset command if this is the last one.
2272 spin_lock_irqsave(&h->lock, flags);
2273 dev = c->reset_pending; /* Re-fetch under the lock. */
2274 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2275 do_wake = true;
2276 c->reset_pending = NULL;
2277 spin_unlock_irqrestore(&h->lock, flags);
2280 if (do_wake)
2281 wake_up_all(&h->event_sync_wait_queue);
2284 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2285 struct CommandList *c)
2287 hpsa_cmd_resolve_events(h, c);
2288 cmd_tagged_free(h, c);
2291 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2292 struct CommandList *c, struct scsi_cmnd *cmd)
2294 hpsa_cmd_resolve_and_free(h, c);
2295 cmd->scsi_done(cmd);
2298 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2300 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2301 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2304 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2306 cmd->result = DID_ABORT << 16;
2309 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2310 struct scsi_cmnd *cmd)
2312 hpsa_set_scsi_cmd_aborted(cmd);
2313 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2314 c->Request.CDB, c->err_info->ScsiStatus);
2315 hpsa_cmd_resolve_and_free(h, c);
2318 static void process_ioaccel2_completion(struct ctlr_info *h,
2319 struct CommandList *c, struct scsi_cmnd *cmd,
2320 struct hpsa_scsi_dev_t *dev)
2322 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2324 /* check for good status */
2325 if (likely(c2->error_data.serv_response == 0 &&
2326 c2->error_data.status == 0))
2327 return hpsa_cmd_free_and_done(h, c, cmd);
2330 * Any RAID offload error results in retry which will use
2331 * the normal I/O path so the controller can handle whatever's
2332 * wrong.
2334 if (is_logical_device(dev) &&
2335 c2->error_data.serv_response ==
2336 IOACCEL2_SERV_RESPONSE_FAILURE) {
2337 if (c2->error_data.status ==
2338 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2339 dev->offload_enabled = 0;
2341 return hpsa_retry_cmd(h, c);
2344 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2345 return hpsa_retry_cmd(h, c);
2347 return hpsa_cmd_free_and_done(h, c, cmd);
2350 /* Returns 0 on success, < 0 otherwise. */
2351 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2352 struct CommandList *cp)
2354 u8 tmf_status = cp->err_info->ScsiStatus;
2356 switch (tmf_status) {
2357 case CISS_TMF_COMPLETE:
2359 * CISS_TMF_COMPLETE never happens, instead,
2360 * ei->CommandStatus == 0 for this case.
2362 case CISS_TMF_SUCCESS:
2363 return 0;
2364 case CISS_TMF_INVALID_FRAME:
2365 case CISS_TMF_NOT_SUPPORTED:
2366 case CISS_TMF_FAILED:
2367 case CISS_TMF_WRONG_LUN:
2368 case CISS_TMF_OVERLAPPED_TAG:
2369 break;
2370 default:
2371 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2372 tmf_status);
2373 break;
2375 return -tmf_status;
2378 static void complete_scsi_command(struct CommandList *cp)
2380 struct scsi_cmnd *cmd;
2381 struct ctlr_info *h;
2382 struct ErrorInfo *ei;
2383 struct hpsa_scsi_dev_t *dev;
2384 struct io_accel2_cmd *c2;
2386 u8 sense_key;
2387 u8 asc; /* additional sense code */
2388 u8 ascq; /* additional sense code qualifier */
2389 unsigned long sense_data_size;
2391 ei = cp->err_info;
2392 cmd = cp->scsi_cmd;
2393 h = cp->h;
2394 dev = cmd->device->hostdata;
2395 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2397 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2398 if ((cp->cmd_type == CMD_SCSI) &&
2399 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2400 hpsa_unmap_sg_chain_block(h, cp);
2402 if ((cp->cmd_type == CMD_IOACCEL2) &&
2403 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2404 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2406 cmd->result = (DID_OK << 16); /* host byte */
2407 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2409 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2410 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2413 * We check for lockup status here as it may be set for
2414 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2415 * fail_all_oustanding_cmds()
2417 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2418 /* DID_NO_CONNECT will prevent a retry */
2419 cmd->result = DID_NO_CONNECT << 16;
2420 return hpsa_cmd_free_and_done(h, cp, cmd);
2423 if ((unlikely(hpsa_is_pending_event(cp)))) {
2424 if (cp->reset_pending)
2425 return hpsa_cmd_resolve_and_free(h, cp);
2426 if (cp->abort_pending)
2427 return hpsa_cmd_abort_and_free(h, cp, cmd);
2430 if (cp->cmd_type == CMD_IOACCEL2)
2431 return process_ioaccel2_completion(h, cp, cmd, dev);
2433 scsi_set_resid(cmd, ei->ResidualCnt);
2434 if (ei->CommandStatus == 0)
2435 return hpsa_cmd_free_and_done(h, cp, cmd);
2437 /* For I/O accelerator commands, copy over some fields to the normal
2438 * CISS header used below for error handling.
2440 if (cp->cmd_type == CMD_IOACCEL1) {
2441 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2442 cp->Header.SGList = scsi_sg_count(cmd);
2443 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2444 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2445 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2446 cp->Header.tag = c->tag;
2447 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2448 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2450 /* Any RAID offload error results in retry which will use
2451 * the normal I/O path so the controller can handle whatever's
2452 * wrong.
2454 if (is_logical_device(dev)) {
2455 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2456 dev->offload_enabled = 0;
2457 return hpsa_retry_cmd(h, cp);
2461 /* an error has occurred */
2462 switch (ei->CommandStatus) {
2464 case CMD_TARGET_STATUS:
2465 cmd->result |= ei->ScsiStatus;
2466 /* copy the sense data */
2467 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2468 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2469 else
2470 sense_data_size = sizeof(ei->SenseInfo);
2471 if (ei->SenseLen < sense_data_size)
2472 sense_data_size = ei->SenseLen;
2473 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2474 if (ei->ScsiStatus)
2475 decode_sense_data(ei->SenseInfo, sense_data_size,
2476 &sense_key, &asc, &ascq);
2477 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2478 if (sense_key == ABORTED_COMMAND) {
2479 cmd->result |= DID_SOFT_ERROR << 16;
2480 break;
2482 break;
2484 /* Problem was not a check condition
2485 * Pass it up to the upper layers...
2487 if (ei->ScsiStatus) {
2488 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2489 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2490 "Returning result: 0x%x\n",
2491 cp, ei->ScsiStatus,
2492 sense_key, asc, ascq,
2493 cmd->result);
2494 } else { /* scsi status is zero??? How??? */
2495 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2496 "Returning no connection.\n", cp),
2498 /* Ordinarily, this case should never happen,
2499 * but there is a bug in some released firmware
2500 * revisions that allows it to happen if, for
2501 * example, a 4100 backplane loses power and
2502 * the tape drive is in it. We assume that
2503 * it's a fatal error of some kind because we
2504 * can't show that it wasn't. We will make it
2505 * look like selection timeout since that is
2506 * the most common reason for this to occur,
2507 * and it's severe enough.
2510 cmd->result = DID_NO_CONNECT << 16;
2512 break;
2514 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2515 break;
2516 case CMD_DATA_OVERRUN:
2517 dev_warn(&h->pdev->dev,
2518 "CDB %16phN data overrun\n", cp->Request.CDB);
2519 break;
2520 case CMD_INVALID: {
2521 /* print_bytes(cp, sizeof(*cp), 1, 0);
2522 print_cmd(cp); */
2523 /* We get CMD_INVALID if you address a non-existent device
2524 * instead of a selection timeout (no response). You will
2525 * see this if you yank out a drive, then try to access it.
2526 * This is kind of a shame because it means that any other
2527 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2528 * missing target. */
2529 cmd->result = DID_NO_CONNECT << 16;
2531 break;
2532 case CMD_PROTOCOL_ERR:
2533 cmd->result = DID_ERROR << 16;
2534 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2535 cp->Request.CDB);
2536 break;
2537 case CMD_HARDWARE_ERR:
2538 cmd->result = DID_ERROR << 16;
2539 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2540 cp->Request.CDB);
2541 break;
2542 case CMD_CONNECTION_LOST:
2543 cmd->result = DID_ERROR << 16;
2544 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2545 cp->Request.CDB);
2546 break;
2547 case CMD_ABORTED:
2548 /* Return now to avoid calling scsi_done(). */
2549 return hpsa_cmd_abort_and_free(h, cp, cmd);
2550 case CMD_ABORT_FAILED:
2551 cmd->result = DID_ERROR << 16;
2552 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2553 cp->Request.CDB);
2554 break;
2555 case CMD_UNSOLICITED_ABORT:
2556 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2557 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2558 cp->Request.CDB);
2559 break;
2560 case CMD_TIMEOUT:
2561 cmd->result = DID_TIME_OUT << 16;
2562 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2563 cp->Request.CDB);
2564 break;
2565 case CMD_UNABORTABLE:
2566 cmd->result = DID_ERROR << 16;
2567 dev_warn(&h->pdev->dev, "Command unabortable\n");
2568 break;
2569 case CMD_TMF_STATUS:
2570 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2571 cmd->result = DID_ERROR << 16;
2572 break;
2573 case CMD_IOACCEL_DISABLED:
2574 /* This only handles the direct pass-through case since RAID
2575 * offload is handled above. Just attempt a retry.
2577 cmd->result = DID_SOFT_ERROR << 16;
2578 dev_warn(&h->pdev->dev,
2579 "cp %p had HP SSD Smart Path error\n", cp);
2580 break;
2581 default:
2582 cmd->result = DID_ERROR << 16;
2583 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2584 cp, ei->CommandStatus);
2587 return hpsa_cmd_free_and_done(h, cp, cmd);
2590 static void hpsa_pci_unmap(struct pci_dev *pdev,
2591 struct CommandList *c, int sg_used, int data_direction)
2593 int i;
2595 for (i = 0; i < sg_used; i++)
2596 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2597 le32_to_cpu(c->SG[i].Len),
2598 data_direction);
2601 static int hpsa_map_one(struct pci_dev *pdev,
2602 struct CommandList *cp,
2603 unsigned char *buf,
2604 size_t buflen,
2605 int data_direction)
2607 u64 addr64;
2609 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2610 cp->Header.SGList = 0;
2611 cp->Header.SGTotal = cpu_to_le16(0);
2612 return 0;
2615 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2616 if (dma_mapping_error(&pdev->dev, addr64)) {
2617 /* Prevent subsequent unmap of something never mapped */
2618 cp->Header.SGList = 0;
2619 cp->Header.SGTotal = cpu_to_le16(0);
2620 return -1;
2622 cp->SG[0].Addr = cpu_to_le64(addr64);
2623 cp->SG[0].Len = cpu_to_le32(buflen);
2624 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2625 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2626 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2627 return 0;
2630 #define NO_TIMEOUT ((unsigned long) -1)
2631 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2632 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2633 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2635 DECLARE_COMPLETION_ONSTACK(wait);
2637 c->waiting = &wait;
2638 __enqueue_cmd_and_start_io(h, c, reply_queue);
2639 if (timeout_msecs == NO_TIMEOUT) {
2640 /* TODO: get rid of this no-timeout thing */
2641 wait_for_completion_io(&wait);
2642 return IO_OK;
2644 if (!wait_for_completion_io_timeout(&wait,
2645 msecs_to_jiffies(timeout_msecs))) {
2646 dev_warn(&h->pdev->dev, "Command timed out.\n");
2647 return -ETIMEDOUT;
2649 return IO_OK;
2652 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2653 int reply_queue, unsigned long timeout_msecs)
2655 if (unlikely(lockup_detected(h))) {
2656 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2657 return IO_OK;
2659 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2662 static u32 lockup_detected(struct ctlr_info *h)
2664 int cpu;
2665 u32 rc, *lockup_detected;
2667 cpu = get_cpu();
2668 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2669 rc = *lockup_detected;
2670 put_cpu();
2671 return rc;
2674 #define MAX_DRIVER_CMD_RETRIES 25
2675 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2676 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2678 int backoff_time = 10, retry_count = 0;
2679 int rc;
2681 do {
2682 memset(c->err_info, 0, sizeof(*c->err_info));
2683 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2684 timeout_msecs);
2685 if (rc)
2686 break;
2687 retry_count++;
2688 if (retry_count > 3) {
2689 msleep(backoff_time);
2690 if (backoff_time < 1000)
2691 backoff_time *= 2;
2693 } while ((check_for_unit_attention(h, c) ||
2694 check_for_busy(h, c)) &&
2695 retry_count <= MAX_DRIVER_CMD_RETRIES);
2696 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2697 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2698 rc = -EIO;
2699 return rc;
2702 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2703 struct CommandList *c)
2705 const u8 *cdb = c->Request.CDB;
2706 const u8 *lun = c->Header.LUN.LunAddrBytes;
2708 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2709 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2710 txt, lun[0], lun[1], lun[2], lun[3],
2711 lun[4], lun[5], lun[6], lun[7],
2712 cdb[0], cdb[1], cdb[2], cdb[3],
2713 cdb[4], cdb[5], cdb[6], cdb[7],
2714 cdb[8], cdb[9], cdb[10], cdb[11],
2715 cdb[12], cdb[13], cdb[14], cdb[15]);
2718 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2719 struct CommandList *cp)
2721 const struct ErrorInfo *ei = cp->err_info;
2722 struct device *d = &cp->h->pdev->dev;
2723 u8 sense_key, asc, ascq;
2724 int sense_len;
2726 switch (ei->CommandStatus) {
2727 case CMD_TARGET_STATUS:
2728 if (ei->SenseLen > sizeof(ei->SenseInfo))
2729 sense_len = sizeof(ei->SenseInfo);
2730 else
2731 sense_len = ei->SenseLen;
2732 decode_sense_data(ei->SenseInfo, sense_len,
2733 &sense_key, &asc, &ascq);
2734 hpsa_print_cmd(h, "SCSI status", cp);
2735 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2736 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2737 sense_key, asc, ascq);
2738 else
2739 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2740 if (ei->ScsiStatus == 0)
2741 dev_warn(d, "SCSI status is abnormally zero. "
2742 "(probably indicates selection timeout "
2743 "reported incorrectly due to a known "
2744 "firmware bug, circa July, 2001.)\n");
2745 break;
2746 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2747 break;
2748 case CMD_DATA_OVERRUN:
2749 hpsa_print_cmd(h, "overrun condition", cp);
2750 break;
2751 case CMD_INVALID: {
2752 /* controller unfortunately reports SCSI passthru's
2753 * to non-existent targets as invalid commands.
2755 hpsa_print_cmd(h, "invalid command", cp);
2756 dev_warn(d, "probably means device no longer present\n");
2758 break;
2759 case CMD_PROTOCOL_ERR:
2760 hpsa_print_cmd(h, "protocol error", cp);
2761 break;
2762 case CMD_HARDWARE_ERR:
2763 hpsa_print_cmd(h, "hardware error", cp);
2764 break;
2765 case CMD_CONNECTION_LOST:
2766 hpsa_print_cmd(h, "connection lost", cp);
2767 break;
2768 case CMD_ABORTED:
2769 hpsa_print_cmd(h, "aborted", cp);
2770 break;
2771 case CMD_ABORT_FAILED:
2772 hpsa_print_cmd(h, "abort failed", cp);
2773 break;
2774 case CMD_UNSOLICITED_ABORT:
2775 hpsa_print_cmd(h, "unsolicited abort", cp);
2776 break;
2777 case CMD_TIMEOUT:
2778 hpsa_print_cmd(h, "timed out", cp);
2779 break;
2780 case CMD_UNABORTABLE:
2781 hpsa_print_cmd(h, "unabortable", cp);
2782 break;
2783 case CMD_CTLR_LOCKUP:
2784 hpsa_print_cmd(h, "controller lockup detected", cp);
2785 break;
2786 default:
2787 hpsa_print_cmd(h, "unknown status", cp);
2788 dev_warn(d, "Unknown command status %x\n",
2789 ei->CommandStatus);
2793 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2794 u16 page, unsigned char *buf,
2795 unsigned char bufsize)
2797 int rc = IO_OK;
2798 struct CommandList *c;
2799 struct ErrorInfo *ei;
2801 c = cmd_alloc(h);
2803 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2804 page, scsi3addr, TYPE_CMD)) {
2805 rc = -1;
2806 goto out;
2808 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2809 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2810 if (rc)
2811 goto out;
2812 ei = c->err_info;
2813 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2814 hpsa_scsi_interpret_error(h, c);
2815 rc = -1;
2817 out:
2818 cmd_free(h, c);
2819 return rc;
2822 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2823 u8 reset_type, int reply_queue)
2825 int rc = IO_OK;
2826 struct CommandList *c;
2827 struct ErrorInfo *ei;
2829 c = cmd_alloc(h);
2832 /* fill_cmd can't fail here, no data buffer to map. */
2833 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2834 scsi3addr, TYPE_MSG);
2835 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2836 if (rc) {
2837 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2838 goto out;
2840 /* no unmap needed here because no data xfer. */
2842 ei = c->err_info;
2843 if (ei->CommandStatus != 0) {
2844 hpsa_scsi_interpret_error(h, c);
2845 rc = -1;
2847 out:
2848 cmd_free(h, c);
2849 return rc;
2852 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2853 struct hpsa_scsi_dev_t *dev,
2854 unsigned char *scsi3addr)
2856 int i;
2857 bool match = false;
2858 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2859 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2861 if (hpsa_is_cmd_idle(c))
2862 return false;
2864 switch (c->cmd_type) {
2865 case CMD_SCSI:
2866 case CMD_IOCTL_PEND:
2867 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2868 sizeof(c->Header.LUN.LunAddrBytes));
2869 break;
2871 case CMD_IOACCEL1:
2872 case CMD_IOACCEL2:
2873 if (c->phys_disk == dev) {
2874 /* HBA mode match */
2875 match = true;
2876 } else {
2877 /* Possible RAID mode -- check each phys dev. */
2878 /* FIXME: Do we need to take out a lock here? If
2879 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2880 * instead. */
2881 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2882 /* FIXME: an alternate test might be
2884 * match = dev->phys_disk[i]->ioaccel_handle
2885 * == c2->scsi_nexus; */
2886 match = dev->phys_disk[i] == c->phys_disk;
2889 break;
2891 case IOACCEL2_TMF:
2892 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2893 match = dev->phys_disk[i]->ioaccel_handle ==
2894 le32_to_cpu(ac->it_nexus);
2896 break;
2898 case 0: /* The command is in the middle of being initialized. */
2899 match = false;
2900 break;
2902 default:
2903 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2904 c->cmd_type);
2905 BUG();
2908 return match;
2911 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2912 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2914 int i;
2915 int rc = 0;
2917 /* We can really only handle one reset at a time */
2918 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2919 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2920 return -EINTR;
2923 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2925 for (i = 0; i < h->nr_cmds; i++) {
2926 struct CommandList *c = h->cmd_pool + i;
2927 int refcount = atomic_inc_return(&c->refcount);
2929 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2930 unsigned long flags;
2933 * Mark the target command as having a reset pending,
2934 * then lock a lock so that the command cannot complete
2935 * while we're considering it. If the command is not
2936 * idle then count it; otherwise revoke the event.
2938 c->reset_pending = dev;
2939 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2940 if (!hpsa_is_cmd_idle(c))
2941 atomic_inc(&dev->reset_cmds_out);
2942 else
2943 c->reset_pending = NULL;
2944 spin_unlock_irqrestore(&h->lock, flags);
2947 cmd_free(h, c);
2950 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2951 if (!rc)
2952 wait_event(h->event_sync_wait_queue,
2953 atomic_read(&dev->reset_cmds_out) == 0 ||
2954 lockup_detected(h));
2956 if (unlikely(lockup_detected(h))) {
2957 dev_warn(&h->pdev->dev,
2958 "Controller lockup detected during reset wait\n");
2959 rc = -ENODEV;
2962 if (unlikely(rc))
2963 atomic_set(&dev->reset_cmds_out, 0);
2965 mutex_unlock(&h->reset_mutex);
2966 return rc;
2969 static void hpsa_get_raid_level(struct ctlr_info *h,
2970 unsigned char *scsi3addr, unsigned char *raid_level)
2972 int rc;
2973 unsigned char *buf;
2975 *raid_level = RAID_UNKNOWN;
2976 buf = kzalloc(64, GFP_KERNEL);
2977 if (!buf)
2978 return;
2979 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2980 if (rc == 0)
2981 *raid_level = buf[8];
2982 if (*raid_level > RAID_UNKNOWN)
2983 *raid_level = RAID_UNKNOWN;
2984 kfree(buf);
2985 return;
2988 #define HPSA_MAP_DEBUG
2989 #ifdef HPSA_MAP_DEBUG
2990 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2991 struct raid_map_data *map_buff)
2993 struct raid_map_disk_data *dd = &map_buff->data[0];
2994 int map, row, col;
2995 u16 map_cnt, row_cnt, disks_per_row;
2997 if (rc != 0)
2998 return;
3000 /* Show details only if debugging has been activated. */
3001 if (h->raid_offload_debug < 2)
3002 return;
3004 dev_info(&h->pdev->dev, "structure_size = %u\n",
3005 le32_to_cpu(map_buff->structure_size));
3006 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3007 le32_to_cpu(map_buff->volume_blk_size));
3008 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3009 le64_to_cpu(map_buff->volume_blk_cnt));
3010 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3011 map_buff->phys_blk_shift);
3012 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3013 map_buff->parity_rotation_shift);
3014 dev_info(&h->pdev->dev, "strip_size = %u\n",
3015 le16_to_cpu(map_buff->strip_size));
3016 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3017 le64_to_cpu(map_buff->disk_starting_blk));
3018 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3019 le64_to_cpu(map_buff->disk_blk_cnt));
3020 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3021 le16_to_cpu(map_buff->data_disks_per_row));
3022 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3023 le16_to_cpu(map_buff->metadata_disks_per_row));
3024 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3025 le16_to_cpu(map_buff->row_cnt));
3026 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3027 le16_to_cpu(map_buff->layout_map_count));
3028 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3029 le16_to_cpu(map_buff->flags));
3030 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3031 le16_to_cpu(map_buff->flags) &
3032 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3033 dev_info(&h->pdev->dev, "dekindex = %u\n",
3034 le16_to_cpu(map_buff->dekindex));
3035 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3036 for (map = 0; map < map_cnt; map++) {
3037 dev_info(&h->pdev->dev, "Map%u:\n", map);
3038 row_cnt = le16_to_cpu(map_buff->row_cnt);
3039 for (row = 0; row < row_cnt; row++) {
3040 dev_info(&h->pdev->dev, " Row%u:\n", row);
3041 disks_per_row =
3042 le16_to_cpu(map_buff->data_disks_per_row);
3043 for (col = 0; col < disks_per_row; col++, dd++)
3044 dev_info(&h->pdev->dev,
3045 " D%02u: h=0x%04x xor=%u,%u\n",
3046 col, dd->ioaccel_handle,
3047 dd->xor_mult[0], dd->xor_mult[1]);
3048 disks_per_row =
3049 le16_to_cpu(map_buff->metadata_disks_per_row);
3050 for (col = 0; col < disks_per_row; col++, dd++)
3051 dev_info(&h->pdev->dev,
3052 " M%02u: h=0x%04x xor=%u,%u\n",
3053 col, dd->ioaccel_handle,
3054 dd->xor_mult[0], dd->xor_mult[1]);
3058 #else
3059 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3060 __attribute__((unused)) int rc,
3061 __attribute__((unused)) struct raid_map_data *map_buff)
3064 #endif
3066 static int hpsa_get_raid_map(struct ctlr_info *h,
3067 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3069 int rc = 0;
3070 struct CommandList *c;
3071 struct ErrorInfo *ei;
3073 c = cmd_alloc(h);
3075 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3076 sizeof(this_device->raid_map), 0,
3077 scsi3addr, TYPE_CMD)) {
3078 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3079 cmd_free(h, c);
3080 return -1;
3082 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3083 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3084 if (rc)
3085 goto out;
3086 ei = c->err_info;
3087 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3088 hpsa_scsi_interpret_error(h, c);
3089 rc = -1;
3090 goto out;
3092 cmd_free(h, c);
3094 /* @todo in the future, dynamically allocate RAID map memory */
3095 if (le32_to_cpu(this_device->raid_map.structure_size) >
3096 sizeof(this_device->raid_map)) {
3097 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3098 rc = -1;
3100 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3101 return rc;
3102 out:
3103 cmd_free(h, c);
3104 return rc;
3107 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3108 unsigned char scsi3addr[], u16 bmic_device_index,
3109 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3111 int rc = IO_OK;
3112 struct CommandList *c;
3113 struct ErrorInfo *ei;
3115 c = cmd_alloc(h);
3117 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3118 0, RAID_CTLR_LUNID, TYPE_CMD);
3119 if (rc)
3120 goto out;
3122 c->Request.CDB[2] = bmic_device_index & 0xff;
3123 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3125 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3126 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3127 if (rc)
3128 goto out;
3129 ei = c->err_info;
3130 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3131 hpsa_scsi_interpret_error(h, c);
3132 rc = -1;
3134 out:
3135 cmd_free(h, c);
3136 return rc;
3139 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3140 struct bmic_identify_controller *buf, size_t bufsize)
3142 int rc = IO_OK;
3143 struct CommandList *c;
3144 struct ErrorInfo *ei;
3146 c = cmd_alloc(h);
3148 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3149 0, RAID_CTLR_LUNID, TYPE_CMD);
3150 if (rc)
3151 goto out;
3153 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3154 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3155 if (rc)
3156 goto out;
3157 ei = c->err_info;
3158 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3159 hpsa_scsi_interpret_error(h, c);
3160 rc = -1;
3162 out:
3163 cmd_free(h, c);
3164 return rc;
3167 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3168 unsigned char scsi3addr[], u16 bmic_device_index,
3169 struct bmic_identify_physical_device *buf, size_t bufsize)
3171 int rc = IO_OK;
3172 struct CommandList *c;
3173 struct ErrorInfo *ei;
3175 c = cmd_alloc(h);
3176 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3177 0, RAID_CTLR_LUNID, TYPE_CMD);
3178 if (rc)
3179 goto out;
3181 c->Request.CDB[2] = bmic_device_index & 0xff;
3182 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3184 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3185 NO_TIMEOUT);
3186 ei = c->err_info;
3187 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3188 hpsa_scsi_interpret_error(h, c);
3189 rc = -1;
3191 out:
3192 cmd_free(h, c);
3194 return rc;
3198 * get enclosure information
3199 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3200 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3201 * Uses id_physical_device to determine the box_index.
3203 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3204 unsigned char *scsi3addr,
3205 struct ReportExtendedLUNdata *rlep, int rle_index,
3206 struct hpsa_scsi_dev_t *encl_dev)
3208 int rc = -1;
3209 struct CommandList *c = NULL;
3210 struct ErrorInfo *ei = NULL;
3211 struct bmic_sense_storage_box_params *bssbp = NULL;
3212 struct bmic_identify_physical_device *id_phys = NULL;
3213 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3214 u16 bmic_device_index = 0;
3216 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3218 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3219 rc = IO_OK;
3220 goto out;
3223 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3224 if (!bssbp)
3225 goto out;
3227 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3228 if (!id_phys)
3229 goto out;
3231 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3232 id_phys, sizeof(*id_phys));
3233 if (rc) {
3234 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3235 __func__, encl_dev->external, bmic_device_index);
3236 goto out;
3239 c = cmd_alloc(h);
3241 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3242 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3244 if (rc)
3245 goto out;
3247 if (id_phys->phys_connector[1] == 'E')
3248 c->Request.CDB[5] = id_phys->box_index;
3249 else
3250 c->Request.CDB[5] = 0;
3252 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3253 NO_TIMEOUT);
3254 if (rc)
3255 goto out;
3257 ei = c->err_info;
3258 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3259 rc = -1;
3260 goto out;
3263 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3264 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3265 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3267 rc = IO_OK;
3268 out:
3269 kfree(bssbp);
3270 kfree(id_phys);
3272 if (c)
3273 cmd_free(h, c);
3275 if (rc != IO_OK)
3276 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3277 "Error, could not get enclosure information\n");
3280 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3281 unsigned char *scsi3addr)
3283 struct ReportExtendedLUNdata *physdev;
3284 u32 nphysicals;
3285 u64 sa = 0;
3286 int i;
3288 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3289 if (!physdev)
3290 return 0;
3292 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3293 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3294 kfree(physdev);
3295 return 0;
3297 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3299 for (i = 0; i < nphysicals; i++)
3300 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3301 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3302 break;
3305 kfree(physdev);
3307 return sa;
3310 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3311 struct hpsa_scsi_dev_t *dev)
3313 int rc;
3314 u64 sa = 0;
3316 if (is_hba_lunid(scsi3addr)) {
3317 struct bmic_sense_subsystem_info *ssi;
3319 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3320 if (ssi == NULL) {
3321 dev_warn(&h->pdev->dev,
3322 "%s: out of memory\n", __func__);
3323 return;
3326 rc = hpsa_bmic_sense_subsystem_information(h,
3327 scsi3addr, 0, ssi, sizeof(*ssi));
3328 if (rc == 0) {
3329 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3330 h->sas_address = sa;
3333 kfree(ssi);
3334 } else
3335 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3337 dev->sas_address = sa;
3340 /* Get a device id from inquiry page 0x83 */
3341 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3342 unsigned char scsi3addr[], u8 page)
3344 int rc;
3345 int i;
3346 int pages;
3347 unsigned char *buf, bufsize;
3349 buf = kzalloc(256, GFP_KERNEL);
3350 if (!buf)
3351 return 0;
3353 /* Get the size of the page list first */
3354 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3355 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3356 buf, HPSA_VPD_HEADER_SZ);
3357 if (rc != 0)
3358 goto exit_unsupported;
3359 pages = buf[3];
3360 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3361 bufsize = pages + HPSA_VPD_HEADER_SZ;
3362 else
3363 bufsize = 255;
3365 /* Get the whole VPD page list */
3366 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3367 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3368 buf, bufsize);
3369 if (rc != 0)
3370 goto exit_unsupported;
3372 pages = buf[3];
3373 for (i = 1; i <= pages; i++)
3374 if (buf[3 + i] == page)
3375 goto exit_supported;
3376 exit_unsupported:
3377 kfree(buf);
3378 return 0;
3379 exit_supported:
3380 kfree(buf);
3381 return 1;
3384 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3385 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3387 int rc;
3388 unsigned char *buf;
3389 u8 ioaccel_status;
3391 this_device->offload_config = 0;
3392 this_device->offload_enabled = 0;
3393 this_device->offload_to_be_enabled = 0;
3395 buf = kzalloc(64, GFP_KERNEL);
3396 if (!buf)
3397 return;
3398 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3399 goto out;
3400 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3401 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3402 if (rc != 0)
3403 goto out;
3405 #define IOACCEL_STATUS_BYTE 4
3406 #define OFFLOAD_CONFIGURED_BIT 0x01
3407 #define OFFLOAD_ENABLED_BIT 0x02
3408 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3409 this_device->offload_config =
3410 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3411 if (this_device->offload_config) {
3412 this_device->offload_enabled =
3413 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3414 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3415 this_device->offload_enabled = 0;
3417 this_device->offload_to_be_enabled = this_device->offload_enabled;
3418 out:
3419 kfree(buf);
3420 return;
3423 /* Get the device id from inquiry page 0x83 */
3424 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3425 unsigned char *device_id, int index, int buflen)
3427 int rc;
3428 unsigned char *buf;
3430 if (buflen > 16)
3431 buflen = 16;
3432 buf = kzalloc(64, GFP_KERNEL);
3433 if (!buf)
3434 return -ENOMEM;
3435 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3436 if (rc == 0)
3437 memcpy(device_id, &buf[index], buflen);
3439 kfree(buf);
3441 return rc != 0;
3444 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3445 void *buf, int bufsize,
3446 int extended_response)
3448 int rc = IO_OK;
3449 struct CommandList *c;
3450 unsigned char scsi3addr[8];
3451 struct ErrorInfo *ei;
3453 c = cmd_alloc(h);
3455 /* address the controller */
3456 memset(scsi3addr, 0, sizeof(scsi3addr));
3457 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3458 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3459 rc = -1;
3460 goto out;
3462 if (extended_response)
3463 c->Request.CDB[1] = extended_response;
3464 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3465 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3466 if (rc)
3467 goto out;
3468 ei = c->err_info;
3469 if (ei->CommandStatus != 0 &&
3470 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3471 hpsa_scsi_interpret_error(h, c);
3472 rc = -1;
3473 } else {
3474 struct ReportLUNdata *rld = buf;
3476 if (rld->extended_response_flag != extended_response) {
3477 dev_err(&h->pdev->dev,
3478 "report luns requested format %u, got %u\n",
3479 extended_response,
3480 rld->extended_response_flag);
3481 rc = -1;
3484 out:
3485 cmd_free(h, c);
3486 return rc;
3489 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3490 struct ReportExtendedLUNdata *buf, int bufsize)
3492 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3493 HPSA_REPORT_PHYS_EXTENDED);
3496 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3497 struct ReportLUNdata *buf, int bufsize)
3499 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3502 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3503 int bus, int target, int lun)
3505 device->bus = bus;
3506 device->target = target;
3507 device->lun = lun;
3510 /* Use VPD inquiry to get details of volume status */
3511 static int hpsa_get_volume_status(struct ctlr_info *h,
3512 unsigned char scsi3addr[])
3514 int rc;
3515 int status;
3516 int size;
3517 unsigned char *buf;
3519 buf = kzalloc(64, GFP_KERNEL);
3520 if (!buf)
3521 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3523 /* Does controller have VPD for logical volume status? */
3524 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3525 goto exit_failed;
3527 /* Get the size of the VPD return buffer */
3528 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3529 buf, HPSA_VPD_HEADER_SZ);
3530 if (rc != 0)
3531 goto exit_failed;
3532 size = buf[3];
3534 /* Now get the whole VPD buffer */
3535 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3536 buf, size + HPSA_VPD_HEADER_SZ);
3537 if (rc != 0)
3538 goto exit_failed;
3539 status = buf[4]; /* status byte */
3541 kfree(buf);
3542 return status;
3543 exit_failed:
3544 kfree(buf);
3545 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3548 /* Determine offline status of a volume.
3549 * Return either:
3550 * 0 (not offline)
3551 * 0xff (offline for unknown reasons)
3552 * # (integer code indicating one of several NOT READY states
3553 * describing why a volume is to be kept offline)
3555 static int hpsa_volume_offline(struct ctlr_info *h,
3556 unsigned char scsi3addr[])
3558 struct CommandList *c;
3559 unsigned char *sense;
3560 u8 sense_key, asc, ascq;
3561 int sense_len;
3562 int rc, ldstat = 0;
3563 u16 cmd_status;
3564 u8 scsi_status;
3565 #define ASC_LUN_NOT_READY 0x04
3566 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3567 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3569 c = cmd_alloc(h);
3571 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3572 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3573 if (rc) {
3574 cmd_free(h, c);
3575 return 0;
3577 sense = c->err_info->SenseInfo;
3578 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3579 sense_len = sizeof(c->err_info->SenseInfo);
3580 else
3581 sense_len = c->err_info->SenseLen;
3582 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3583 cmd_status = c->err_info->CommandStatus;
3584 scsi_status = c->err_info->ScsiStatus;
3585 cmd_free(h, c);
3586 /* Is the volume 'not ready'? */
3587 if (cmd_status != CMD_TARGET_STATUS ||
3588 scsi_status != SAM_STAT_CHECK_CONDITION ||
3589 sense_key != NOT_READY ||
3590 asc != ASC_LUN_NOT_READY) {
3591 return 0;
3594 /* Determine the reason for not ready state */
3595 ldstat = hpsa_get_volume_status(h, scsi3addr);
3597 /* Keep volume offline in certain cases: */
3598 switch (ldstat) {
3599 case HPSA_LV_UNDERGOING_ERASE:
3600 case HPSA_LV_NOT_AVAILABLE:
3601 case HPSA_LV_UNDERGOING_RPI:
3602 case HPSA_LV_PENDING_RPI:
3603 case HPSA_LV_ENCRYPTED_NO_KEY:
3604 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3605 case HPSA_LV_UNDERGOING_ENCRYPTION:
3606 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3607 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3608 return ldstat;
3609 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3610 /* If VPD status page isn't available,
3611 * use ASC/ASCQ to determine state
3613 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3614 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3615 return ldstat;
3616 break;
3617 default:
3618 break;
3620 return 0;
3624 * Find out if a logical device supports aborts by simply trying one.
3625 * Smart Array may claim not to support aborts on logical drives, but
3626 * if a MSA2000 * is connected, the drives on that will be presented
3627 * by the Smart Array as logical drives, and aborts may be sent to
3628 * those devices successfully. So the simplest way to find out is
3629 * to simply try an abort and see how the device responds.
3631 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3632 unsigned char *scsi3addr)
3634 struct CommandList *c;
3635 struct ErrorInfo *ei;
3636 int rc = 0;
3638 u64 tag = (u64) -1; /* bogus tag */
3640 /* Assume that physical devices support aborts */
3641 if (!is_logical_dev_addr_mode(scsi3addr))
3642 return 1;
3644 c = cmd_alloc(h);
3646 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3647 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3648 /* no unmap needed here because no data xfer. */
3649 ei = c->err_info;
3650 switch (ei->CommandStatus) {
3651 case CMD_INVALID:
3652 rc = 0;
3653 break;
3654 case CMD_UNABORTABLE:
3655 case CMD_ABORT_FAILED:
3656 rc = 1;
3657 break;
3658 case CMD_TMF_STATUS:
3659 rc = hpsa_evaluate_tmf_status(h, c);
3660 break;
3661 default:
3662 rc = 0;
3663 break;
3665 cmd_free(h, c);
3666 return rc;
3669 static int hpsa_update_device_info(struct ctlr_info *h,
3670 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3671 unsigned char *is_OBDR_device)
3674 #define OBDR_SIG_OFFSET 43
3675 #define OBDR_TAPE_SIG "$DR-10"
3676 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3677 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3679 unsigned char *inq_buff;
3680 unsigned char *obdr_sig;
3681 int rc = 0;
3683 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3684 if (!inq_buff) {
3685 rc = -ENOMEM;
3686 goto bail_out;
3689 /* Do an inquiry to the device to see what it is. */
3690 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3691 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3692 /* Inquiry failed (msg printed already) */
3693 dev_err(&h->pdev->dev,
3694 "hpsa_update_device_info: inquiry failed\n");
3695 rc = -EIO;
3696 goto bail_out;
3699 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3700 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3702 this_device->devtype = (inq_buff[0] & 0x1f);
3703 memcpy(this_device->scsi3addr, scsi3addr, 8);
3704 memcpy(this_device->vendor, &inq_buff[8],
3705 sizeof(this_device->vendor));
3706 memcpy(this_device->model, &inq_buff[16],
3707 sizeof(this_device->model));
3708 memset(this_device->device_id, 0,
3709 sizeof(this_device->device_id));
3710 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3711 sizeof(this_device->device_id));
3713 if ((this_device->devtype == TYPE_DISK ||
3714 this_device->devtype == TYPE_ZBC) &&
3715 is_logical_dev_addr_mode(scsi3addr)) {
3716 int volume_offline;
3718 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3719 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3720 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3721 volume_offline = hpsa_volume_offline(h, scsi3addr);
3722 if (volume_offline < 0 || volume_offline > 0xff)
3723 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3724 this_device->volume_offline = volume_offline & 0xff;
3725 } else {
3726 this_device->raid_level = RAID_UNKNOWN;
3727 this_device->offload_config = 0;
3728 this_device->offload_enabled = 0;
3729 this_device->offload_to_be_enabled = 0;
3730 this_device->hba_ioaccel_enabled = 0;
3731 this_device->volume_offline = 0;
3732 this_device->queue_depth = h->nr_cmds;
3735 if (is_OBDR_device) {
3736 /* See if this is a One-Button-Disaster-Recovery device
3737 * by looking for "$DR-10" at offset 43 in inquiry data.
3739 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3740 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3741 strncmp(obdr_sig, OBDR_TAPE_SIG,
3742 OBDR_SIG_LEN) == 0);
3744 kfree(inq_buff);
3745 return 0;
3747 bail_out:
3748 kfree(inq_buff);
3749 return rc;
3752 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3753 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3755 unsigned long flags;
3756 int rc, entry;
3758 * See if this device supports aborts. If we already know
3759 * the device, we already know if it supports aborts, otherwise
3760 * we have to find out if it supports aborts by trying one.
3762 spin_lock_irqsave(&h->devlock, flags);
3763 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3764 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3765 entry >= 0 && entry < h->ndevices) {
3766 dev->supports_aborts = h->dev[entry]->supports_aborts;
3767 spin_unlock_irqrestore(&h->devlock, flags);
3768 } else {
3769 spin_unlock_irqrestore(&h->devlock, flags);
3770 dev->supports_aborts =
3771 hpsa_device_supports_aborts(h, scsi3addr);
3772 if (dev->supports_aborts < 0)
3773 dev->supports_aborts = 0;
3778 * Helper function to assign bus, target, lun mapping of devices.
3779 * Logical drive target and lun are assigned at this time, but
3780 * physical device lun and target assignment are deferred (assigned
3781 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3783 static void figure_bus_target_lun(struct ctlr_info *h,
3784 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3786 u32 lunid = get_unaligned_le32(lunaddrbytes);
3788 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3789 /* physical device, target and lun filled in later */
3790 if (is_hba_lunid(lunaddrbytes))
3791 hpsa_set_bus_target_lun(device,
3792 HPSA_HBA_BUS, 0, lunid & 0x3fff);
3793 else
3794 /* defer target, lun assignment for physical devices */
3795 hpsa_set_bus_target_lun(device,
3796 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3797 return;
3799 /* It's a logical device */
3800 if (device->external) {
3801 hpsa_set_bus_target_lun(device,
3802 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3803 lunid & 0x00ff);
3804 return;
3806 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3807 0, lunid & 0x3fff);
3812 * Get address of physical disk used for an ioaccel2 mode command:
3813 * 1. Extract ioaccel2 handle from the command.
3814 * 2. Find a matching ioaccel2 handle from list of physical disks.
3815 * 3. Return:
3816 * 1 and set scsi3addr to address of matching physical
3817 * 0 if no matching physical disk was found.
3819 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3820 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3822 struct io_accel2_cmd *c2 =
3823 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3824 unsigned long flags;
3825 int i;
3827 spin_lock_irqsave(&h->devlock, flags);
3828 for (i = 0; i < h->ndevices; i++)
3829 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3830 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3831 sizeof(h->dev[i]->scsi3addr));
3832 spin_unlock_irqrestore(&h->devlock, flags);
3833 return 1;
3835 spin_unlock_irqrestore(&h->devlock, flags);
3836 return 0;
3839 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3840 int i, int nphysicals, int nlocal_logicals)
3842 /* In report logicals, local logicals are listed first,
3843 * then any externals.
3845 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3847 if (i == raid_ctlr_position)
3848 return 0;
3850 if (i < logicals_start)
3851 return 0;
3853 /* i is in logicals range, but still within local logicals */
3854 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3855 return 0;
3857 return 1; /* it's an external lun */
3861 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3862 * logdev. The number of luns in physdev and logdev are returned in
3863 * *nphysicals and *nlogicals, respectively.
3864 * Returns 0 on success, -1 otherwise.
3866 static int hpsa_gather_lun_info(struct ctlr_info *h,
3867 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3868 struct ReportLUNdata *logdev, u32 *nlogicals)
3870 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3871 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3872 return -1;
3874 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3875 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3876 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3877 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3878 *nphysicals = HPSA_MAX_PHYS_LUN;
3880 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3881 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3882 return -1;
3884 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3885 /* Reject Logicals in excess of our max capability. */
3886 if (*nlogicals > HPSA_MAX_LUN) {
3887 dev_warn(&h->pdev->dev,
3888 "maximum logical LUNs (%d) exceeded. "
3889 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3890 *nlogicals - HPSA_MAX_LUN);
3891 *nlogicals = HPSA_MAX_LUN;
3893 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3894 dev_warn(&h->pdev->dev,
3895 "maximum logical + physical LUNs (%d) exceeded. "
3896 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3897 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3898 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3900 return 0;
3903 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3904 int i, int nphysicals, int nlogicals,
3905 struct ReportExtendedLUNdata *physdev_list,
3906 struct ReportLUNdata *logdev_list)
3908 /* Helper function, figure out where the LUN ID info is coming from
3909 * given index i, lists of physical and logical devices, where in
3910 * the list the raid controller is supposed to appear (first or last)
3913 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3914 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3916 if (i == raid_ctlr_position)
3917 return RAID_CTLR_LUNID;
3919 if (i < logicals_start)
3920 return &physdev_list->LUN[i -
3921 (raid_ctlr_position == 0)].lunid[0];
3923 if (i < last_device)
3924 return &logdev_list->LUN[i - nphysicals -
3925 (raid_ctlr_position == 0)][0];
3926 BUG();
3927 return NULL;
3930 /* get physical drive ioaccel handle and queue depth */
3931 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3932 struct hpsa_scsi_dev_t *dev,
3933 struct ReportExtendedLUNdata *rlep, int rle_index,
3934 struct bmic_identify_physical_device *id_phys)
3936 int rc;
3937 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3939 dev->ioaccel_handle = rle->ioaccel_handle;
3940 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3941 dev->hba_ioaccel_enabled = 1;
3942 memset(id_phys, 0, sizeof(*id_phys));
3943 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3944 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3945 sizeof(*id_phys));
3946 if (!rc)
3947 /* Reserve space for FW operations */
3948 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3949 #define DRIVE_QUEUE_DEPTH 7
3950 dev->queue_depth =
3951 le16_to_cpu(id_phys->current_queue_depth_limit) -
3952 DRIVE_CMDS_RESERVED_FOR_FW;
3953 else
3954 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3957 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3958 struct ReportExtendedLUNdata *rlep, int rle_index,
3959 struct bmic_identify_physical_device *id_phys)
3961 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3963 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3964 this_device->hba_ioaccel_enabled = 1;
3966 memcpy(&this_device->active_path_index,
3967 &id_phys->active_path_number,
3968 sizeof(this_device->active_path_index));
3969 memcpy(&this_device->path_map,
3970 &id_phys->redundant_path_present_map,
3971 sizeof(this_device->path_map));
3972 memcpy(&this_device->box,
3973 &id_phys->alternate_paths_phys_box_on_port,
3974 sizeof(this_device->box));
3975 memcpy(&this_device->phys_connector,
3976 &id_phys->alternate_paths_phys_connector,
3977 sizeof(this_device->phys_connector));
3978 memcpy(&this_device->bay,
3979 &id_phys->phys_bay_in_box,
3980 sizeof(this_device->bay));
3983 /* get number of local logical disks. */
3984 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3985 struct bmic_identify_controller *id_ctlr,
3986 u32 *nlocals)
3988 int rc;
3990 if (!id_ctlr) {
3991 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3992 __func__);
3993 return -ENOMEM;
3995 memset(id_ctlr, 0, sizeof(*id_ctlr));
3996 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3997 if (!rc)
3998 if (id_ctlr->configured_logical_drive_count < 256)
3999 *nlocals = id_ctlr->configured_logical_drive_count;
4000 else
4001 *nlocals = le16_to_cpu(
4002 id_ctlr->extended_logical_unit_count);
4003 else
4004 *nlocals = -1;
4005 return rc;
4009 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4011 /* the idea here is we could get notified
4012 * that some devices have changed, so we do a report
4013 * physical luns and report logical luns cmd, and adjust
4014 * our list of devices accordingly.
4016 * The scsi3addr's of devices won't change so long as the
4017 * adapter is not reset. That means we can rescan and
4018 * tell which devices we already know about, vs. new
4019 * devices, vs. disappearing devices.
4021 struct ReportExtendedLUNdata *physdev_list = NULL;
4022 struct ReportLUNdata *logdev_list = NULL;
4023 struct bmic_identify_physical_device *id_phys = NULL;
4024 struct bmic_identify_controller *id_ctlr = NULL;
4025 u32 nphysicals = 0;
4026 u32 nlogicals = 0;
4027 u32 nlocal_logicals = 0;
4028 u32 ndev_allocated = 0;
4029 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4030 int ncurrent = 0;
4031 int i, n_ext_target_devs, ndevs_to_allocate;
4032 int raid_ctlr_position;
4033 bool physical_device;
4034 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4036 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4037 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4038 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4039 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4040 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4041 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4043 if (!currentsd || !physdev_list || !logdev_list ||
4044 !tmpdevice || !id_phys || !id_ctlr) {
4045 dev_err(&h->pdev->dev, "out of memory\n");
4046 goto out;
4048 memset(lunzerobits, 0, sizeof(lunzerobits));
4050 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4052 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4053 logdev_list, &nlogicals)) {
4054 h->drv_req_rescan = 1;
4055 goto out;
4058 /* Set number of local logicals (non PTRAID) */
4059 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4060 dev_warn(&h->pdev->dev,
4061 "%s: Can't determine number of local logical devices.\n",
4062 __func__);
4065 /* We might see up to the maximum number of logical and physical disks
4066 * plus external target devices, and a device for the local RAID
4067 * controller.
4069 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4071 /* Allocate the per device structures */
4072 for (i = 0; i < ndevs_to_allocate; i++) {
4073 if (i >= HPSA_MAX_DEVICES) {
4074 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4075 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4076 ndevs_to_allocate - HPSA_MAX_DEVICES);
4077 break;
4080 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4081 if (!currentsd[i]) {
4082 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4083 __FILE__, __LINE__);
4084 h->drv_req_rescan = 1;
4085 goto out;
4087 ndev_allocated++;
4090 if (is_scsi_rev_5(h))
4091 raid_ctlr_position = 0;
4092 else
4093 raid_ctlr_position = nphysicals + nlogicals;
4095 /* adjust our table of devices */
4096 n_ext_target_devs = 0;
4097 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4098 u8 *lunaddrbytes, is_OBDR = 0;
4099 int rc = 0;
4100 int phys_dev_index = i - (raid_ctlr_position == 0);
4102 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4104 /* Figure out where the LUN ID info is coming from */
4105 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4106 i, nphysicals, nlogicals, physdev_list, logdev_list);
4108 /* skip masked non-disk devices */
4109 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4110 (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4111 (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4112 continue;
4114 /* Get device type, vendor, model, device id */
4115 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4116 &is_OBDR);
4117 if (rc == -ENOMEM) {
4118 dev_warn(&h->pdev->dev,
4119 "Out of memory, rescan deferred.\n");
4120 h->drv_req_rescan = 1;
4121 goto out;
4123 if (rc) {
4124 dev_warn(&h->pdev->dev,
4125 "Inquiry failed, skipping device.\n");
4126 continue;
4129 /* Determine if this is a lun from an external target array */
4130 tmpdevice->external =
4131 figure_external_status(h, raid_ctlr_position, i,
4132 nphysicals, nlocal_logicals);
4134 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4135 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4136 this_device = currentsd[ncurrent];
4138 /* Turn on discovery_polling if there are ext target devices.
4139 * Event-based change notification is unreliable for those.
4141 if (!h->discovery_polling) {
4142 if (tmpdevice->external) {
4143 h->discovery_polling = 1;
4144 dev_info(&h->pdev->dev,
4145 "External target, activate discovery polling.\n");
4150 *this_device = *tmpdevice;
4151 this_device->physical_device = physical_device;
4154 * Expose all devices except for physical devices that
4155 * are masked.
4157 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4158 this_device->expose_device = 0;
4159 else
4160 this_device->expose_device = 1;
4164 * Get the SAS address for physical devices that are exposed.
4166 if (this_device->physical_device && this_device->expose_device)
4167 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4169 switch (this_device->devtype) {
4170 case TYPE_ROM:
4171 /* We don't *really* support actual CD-ROM devices,
4172 * just "One Button Disaster Recovery" tape drive
4173 * which temporarily pretends to be a CD-ROM drive.
4174 * So we check that the device is really an OBDR tape
4175 * device by checking for "$DR-10" in bytes 43-48 of
4176 * the inquiry data.
4178 if (is_OBDR)
4179 ncurrent++;
4180 break;
4181 case TYPE_DISK:
4182 case TYPE_ZBC:
4183 if (this_device->physical_device) {
4184 /* The disk is in HBA mode. */
4185 /* Never use RAID mapper in HBA mode. */
4186 this_device->offload_enabled = 0;
4187 hpsa_get_ioaccel_drive_info(h, this_device,
4188 physdev_list, phys_dev_index, id_phys);
4189 hpsa_get_path_info(this_device,
4190 physdev_list, phys_dev_index, id_phys);
4192 ncurrent++;
4193 break;
4194 case TYPE_TAPE:
4195 case TYPE_MEDIUM_CHANGER:
4196 ncurrent++;
4197 break;
4198 case TYPE_ENCLOSURE:
4199 if (!this_device->external)
4200 hpsa_get_enclosure_info(h, lunaddrbytes,
4201 physdev_list, phys_dev_index,
4202 this_device);
4203 ncurrent++;
4204 break;
4205 case TYPE_RAID:
4206 /* Only present the Smartarray HBA as a RAID controller.
4207 * If it's a RAID controller other than the HBA itself
4208 * (an external RAID controller, MSA500 or similar)
4209 * don't present it.
4211 if (!is_hba_lunid(lunaddrbytes))
4212 break;
4213 ncurrent++;
4214 break;
4215 default:
4216 break;
4218 if (ncurrent >= HPSA_MAX_DEVICES)
4219 break;
4222 if (h->sas_host == NULL) {
4223 int rc = 0;
4225 rc = hpsa_add_sas_host(h);
4226 if (rc) {
4227 dev_warn(&h->pdev->dev,
4228 "Could not add sas host %d\n", rc);
4229 goto out;
4233 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4234 out:
4235 kfree(tmpdevice);
4236 for (i = 0; i < ndev_allocated; i++)
4237 kfree(currentsd[i]);
4238 kfree(currentsd);
4239 kfree(physdev_list);
4240 kfree(logdev_list);
4241 kfree(id_ctlr);
4242 kfree(id_phys);
4245 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4246 struct scatterlist *sg)
4248 u64 addr64 = (u64) sg_dma_address(sg);
4249 unsigned int len = sg_dma_len(sg);
4251 desc->Addr = cpu_to_le64(addr64);
4252 desc->Len = cpu_to_le32(len);
4253 desc->Ext = 0;
4257 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4258 * dma mapping and fills in the scatter gather entries of the
4259 * hpsa command, cp.
4261 static int hpsa_scatter_gather(struct ctlr_info *h,
4262 struct CommandList *cp,
4263 struct scsi_cmnd *cmd)
4265 struct scatterlist *sg;
4266 int use_sg, i, sg_limit, chained, last_sg;
4267 struct SGDescriptor *curr_sg;
4269 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4271 use_sg = scsi_dma_map(cmd);
4272 if (use_sg < 0)
4273 return use_sg;
4275 if (!use_sg)
4276 goto sglist_finished;
4279 * If the number of entries is greater than the max for a single list,
4280 * then we have a chained list; we will set up all but one entry in the
4281 * first list (the last entry is saved for link information);
4282 * otherwise, we don't have a chained list and we'll set up at each of
4283 * the entries in the one list.
4285 curr_sg = cp->SG;
4286 chained = use_sg > h->max_cmd_sg_entries;
4287 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4288 last_sg = scsi_sg_count(cmd) - 1;
4289 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4290 hpsa_set_sg_descriptor(curr_sg, sg);
4291 curr_sg++;
4294 if (chained) {
4296 * Continue with the chained list. Set curr_sg to the chained
4297 * list. Modify the limit to the total count less the entries
4298 * we've already set up. Resume the scan at the list entry
4299 * where the previous loop left off.
4301 curr_sg = h->cmd_sg_list[cp->cmdindex];
4302 sg_limit = use_sg - sg_limit;
4303 for_each_sg(sg, sg, sg_limit, i) {
4304 hpsa_set_sg_descriptor(curr_sg, sg);
4305 curr_sg++;
4309 /* Back the pointer up to the last entry and mark it as "last". */
4310 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4312 if (use_sg + chained > h->maxSG)
4313 h->maxSG = use_sg + chained;
4315 if (chained) {
4316 cp->Header.SGList = h->max_cmd_sg_entries;
4317 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4318 if (hpsa_map_sg_chain_block(h, cp)) {
4319 scsi_dma_unmap(cmd);
4320 return -1;
4322 return 0;
4325 sglist_finished:
4327 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4328 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4329 return 0;
4332 #define IO_ACCEL_INELIGIBLE (1)
4333 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4335 int is_write = 0;
4336 u32 block;
4337 u32 block_cnt;
4339 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4340 switch (cdb[0]) {
4341 case WRITE_6:
4342 case WRITE_12:
4343 is_write = 1;
4344 case READ_6:
4345 case READ_12:
4346 if (*cdb_len == 6) {
4347 block = get_unaligned_be16(&cdb[2]);
4348 block_cnt = cdb[4];
4349 if (block_cnt == 0)
4350 block_cnt = 256;
4351 } else {
4352 BUG_ON(*cdb_len != 12);
4353 block = get_unaligned_be32(&cdb[2]);
4354 block_cnt = get_unaligned_be32(&cdb[6]);
4356 if (block_cnt > 0xffff)
4357 return IO_ACCEL_INELIGIBLE;
4359 cdb[0] = is_write ? WRITE_10 : READ_10;
4360 cdb[1] = 0;
4361 cdb[2] = (u8) (block >> 24);
4362 cdb[3] = (u8) (block >> 16);
4363 cdb[4] = (u8) (block >> 8);
4364 cdb[5] = (u8) (block);
4365 cdb[6] = 0;
4366 cdb[7] = (u8) (block_cnt >> 8);
4367 cdb[8] = (u8) (block_cnt);
4368 cdb[9] = 0;
4369 *cdb_len = 10;
4370 break;
4372 return 0;
4375 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4376 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4377 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4379 struct scsi_cmnd *cmd = c->scsi_cmd;
4380 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4381 unsigned int len;
4382 unsigned int total_len = 0;
4383 struct scatterlist *sg;
4384 u64 addr64;
4385 int use_sg, i;
4386 struct SGDescriptor *curr_sg;
4387 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4389 /* TODO: implement chaining support */
4390 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4391 atomic_dec(&phys_disk->ioaccel_cmds_out);
4392 return IO_ACCEL_INELIGIBLE;
4395 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4397 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4398 atomic_dec(&phys_disk->ioaccel_cmds_out);
4399 return IO_ACCEL_INELIGIBLE;
4402 c->cmd_type = CMD_IOACCEL1;
4404 /* Adjust the DMA address to point to the accelerated command buffer */
4405 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4406 (c->cmdindex * sizeof(*cp));
4407 BUG_ON(c->busaddr & 0x0000007F);
4409 use_sg = scsi_dma_map(cmd);
4410 if (use_sg < 0) {
4411 atomic_dec(&phys_disk->ioaccel_cmds_out);
4412 return use_sg;
4415 if (use_sg) {
4416 curr_sg = cp->SG;
4417 scsi_for_each_sg(cmd, sg, use_sg, i) {
4418 addr64 = (u64) sg_dma_address(sg);
4419 len = sg_dma_len(sg);
4420 total_len += len;
4421 curr_sg->Addr = cpu_to_le64(addr64);
4422 curr_sg->Len = cpu_to_le32(len);
4423 curr_sg->Ext = cpu_to_le32(0);
4424 curr_sg++;
4426 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4428 switch (cmd->sc_data_direction) {
4429 case DMA_TO_DEVICE:
4430 control |= IOACCEL1_CONTROL_DATA_OUT;
4431 break;
4432 case DMA_FROM_DEVICE:
4433 control |= IOACCEL1_CONTROL_DATA_IN;
4434 break;
4435 case DMA_NONE:
4436 control |= IOACCEL1_CONTROL_NODATAXFER;
4437 break;
4438 default:
4439 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4440 cmd->sc_data_direction);
4441 BUG();
4442 break;
4444 } else {
4445 control |= IOACCEL1_CONTROL_NODATAXFER;
4448 c->Header.SGList = use_sg;
4449 /* Fill out the command structure to submit */
4450 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4451 cp->transfer_len = cpu_to_le32(total_len);
4452 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4453 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4454 cp->control = cpu_to_le32(control);
4455 memcpy(cp->CDB, cdb, cdb_len);
4456 memcpy(cp->CISS_LUN, scsi3addr, 8);
4457 /* Tag was already set at init time. */
4458 enqueue_cmd_and_start_io(h, c);
4459 return 0;
4463 * Queue a command directly to a device behind the controller using the
4464 * I/O accelerator path.
4466 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4467 struct CommandList *c)
4469 struct scsi_cmnd *cmd = c->scsi_cmd;
4470 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4472 c->phys_disk = dev;
4474 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4475 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4479 * Set encryption parameters for the ioaccel2 request
4481 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4482 struct CommandList *c, struct io_accel2_cmd *cp)
4484 struct scsi_cmnd *cmd = c->scsi_cmd;
4485 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4486 struct raid_map_data *map = &dev->raid_map;
4487 u64 first_block;
4489 /* Are we doing encryption on this device */
4490 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4491 return;
4492 /* Set the data encryption key index. */
4493 cp->dekindex = map->dekindex;
4495 /* Set the encryption enable flag, encoded into direction field. */
4496 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4498 /* Set encryption tweak values based on logical block address
4499 * If block size is 512, tweak value is LBA.
4500 * For other block sizes, tweak is (LBA * block size)/ 512)
4502 switch (cmd->cmnd[0]) {
4503 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4504 case WRITE_6:
4505 case READ_6:
4506 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4507 break;
4508 case WRITE_10:
4509 case READ_10:
4510 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4511 case WRITE_12:
4512 case READ_12:
4513 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4514 break;
4515 case WRITE_16:
4516 case READ_16:
4517 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4518 break;
4519 default:
4520 dev_err(&h->pdev->dev,
4521 "ERROR: %s: size (0x%x) not supported for encryption\n",
4522 __func__, cmd->cmnd[0]);
4523 BUG();
4524 break;
4527 if (le32_to_cpu(map->volume_blk_size) != 512)
4528 first_block = first_block *
4529 le32_to_cpu(map->volume_blk_size)/512;
4531 cp->tweak_lower = cpu_to_le32(first_block);
4532 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4535 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4536 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4537 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4539 struct scsi_cmnd *cmd = c->scsi_cmd;
4540 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4541 struct ioaccel2_sg_element *curr_sg;
4542 int use_sg, i;
4543 struct scatterlist *sg;
4544 u64 addr64;
4545 u32 len;
4546 u32 total_len = 0;
4548 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4550 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4551 atomic_dec(&phys_disk->ioaccel_cmds_out);
4552 return IO_ACCEL_INELIGIBLE;
4555 c->cmd_type = CMD_IOACCEL2;
4556 /* Adjust the DMA address to point to the accelerated command buffer */
4557 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4558 (c->cmdindex * sizeof(*cp));
4559 BUG_ON(c->busaddr & 0x0000007F);
4561 memset(cp, 0, sizeof(*cp));
4562 cp->IU_type = IOACCEL2_IU_TYPE;
4564 use_sg = scsi_dma_map(cmd);
4565 if (use_sg < 0) {
4566 atomic_dec(&phys_disk->ioaccel_cmds_out);
4567 return use_sg;
4570 if (use_sg) {
4571 curr_sg = cp->sg;
4572 if (use_sg > h->ioaccel_maxsg) {
4573 addr64 = le64_to_cpu(
4574 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4575 curr_sg->address = cpu_to_le64(addr64);
4576 curr_sg->length = 0;
4577 curr_sg->reserved[0] = 0;
4578 curr_sg->reserved[1] = 0;
4579 curr_sg->reserved[2] = 0;
4580 curr_sg->chain_indicator = 0x80;
4582 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4584 scsi_for_each_sg(cmd, sg, use_sg, i) {
4585 addr64 = (u64) sg_dma_address(sg);
4586 len = sg_dma_len(sg);
4587 total_len += len;
4588 curr_sg->address = cpu_to_le64(addr64);
4589 curr_sg->length = cpu_to_le32(len);
4590 curr_sg->reserved[0] = 0;
4591 curr_sg->reserved[1] = 0;
4592 curr_sg->reserved[2] = 0;
4593 curr_sg->chain_indicator = 0;
4594 curr_sg++;
4597 switch (cmd->sc_data_direction) {
4598 case DMA_TO_DEVICE:
4599 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4600 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4601 break;
4602 case DMA_FROM_DEVICE:
4603 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4604 cp->direction |= IOACCEL2_DIR_DATA_IN;
4605 break;
4606 case DMA_NONE:
4607 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4608 cp->direction |= IOACCEL2_DIR_NO_DATA;
4609 break;
4610 default:
4611 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4612 cmd->sc_data_direction);
4613 BUG();
4614 break;
4616 } else {
4617 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4618 cp->direction |= IOACCEL2_DIR_NO_DATA;
4621 /* Set encryption parameters, if necessary */
4622 set_encrypt_ioaccel2(h, c, cp);
4624 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4625 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4626 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4628 cp->data_len = cpu_to_le32(total_len);
4629 cp->err_ptr = cpu_to_le64(c->busaddr +
4630 offsetof(struct io_accel2_cmd, error_data));
4631 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4633 /* fill in sg elements */
4634 if (use_sg > h->ioaccel_maxsg) {
4635 cp->sg_count = 1;
4636 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4637 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4638 atomic_dec(&phys_disk->ioaccel_cmds_out);
4639 scsi_dma_unmap(cmd);
4640 return -1;
4642 } else
4643 cp->sg_count = (u8) use_sg;
4645 enqueue_cmd_and_start_io(h, c);
4646 return 0;
4650 * Queue a command to the correct I/O accelerator path.
4652 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4653 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4654 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4656 /* Try to honor the device's queue depth */
4657 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4658 phys_disk->queue_depth) {
4659 atomic_dec(&phys_disk->ioaccel_cmds_out);
4660 return IO_ACCEL_INELIGIBLE;
4662 if (h->transMethod & CFGTBL_Trans_io_accel1)
4663 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4664 cdb, cdb_len, scsi3addr,
4665 phys_disk);
4666 else
4667 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4668 cdb, cdb_len, scsi3addr,
4669 phys_disk);
4672 static void raid_map_helper(struct raid_map_data *map,
4673 int offload_to_mirror, u32 *map_index, u32 *current_group)
4675 if (offload_to_mirror == 0) {
4676 /* use physical disk in the first mirrored group. */
4677 *map_index %= le16_to_cpu(map->data_disks_per_row);
4678 return;
4680 do {
4681 /* determine mirror group that *map_index indicates */
4682 *current_group = *map_index /
4683 le16_to_cpu(map->data_disks_per_row);
4684 if (offload_to_mirror == *current_group)
4685 continue;
4686 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4687 /* select map index from next group */
4688 *map_index += le16_to_cpu(map->data_disks_per_row);
4689 (*current_group)++;
4690 } else {
4691 /* select map index from first group */
4692 *map_index %= le16_to_cpu(map->data_disks_per_row);
4693 *current_group = 0;
4695 } while (offload_to_mirror != *current_group);
4699 * Attempt to perform offload RAID mapping for a logical volume I/O.
4701 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4702 struct CommandList *c)
4704 struct scsi_cmnd *cmd = c->scsi_cmd;
4705 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706 struct raid_map_data *map = &dev->raid_map;
4707 struct raid_map_disk_data *dd = &map->data[0];
4708 int is_write = 0;
4709 u32 map_index;
4710 u64 first_block, last_block;
4711 u32 block_cnt;
4712 u32 blocks_per_row;
4713 u64 first_row, last_row;
4714 u32 first_row_offset, last_row_offset;
4715 u32 first_column, last_column;
4716 u64 r0_first_row, r0_last_row;
4717 u32 r5or6_blocks_per_row;
4718 u64 r5or6_first_row, r5or6_last_row;
4719 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4720 u32 r5or6_first_column, r5or6_last_column;
4721 u32 total_disks_per_row;
4722 u32 stripesize;
4723 u32 first_group, last_group, current_group;
4724 u32 map_row;
4725 u32 disk_handle;
4726 u64 disk_block;
4727 u32 disk_block_cnt;
4728 u8 cdb[16];
4729 u8 cdb_len;
4730 u16 strip_size;
4731 #if BITS_PER_LONG == 32
4732 u64 tmpdiv;
4733 #endif
4734 int offload_to_mirror;
4736 /* check for valid opcode, get LBA and block count */
4737 switch (cmd->cmnd[0]) {
4738 case WRITE_6:
4739 is_write = 1;
4740 case READ_6:
4741 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4742 block_cnt = cmd->cmnd[4];
4743 if (block_cnt == 0)
4744 block_cnt = 256;
4745 break;
4746 case WRITE_10:
4747 is_write = 1;
4748 case READ_10:
4749 first_block =
4750 (((u64) cmd->cmnd[2]) << 24) |
4751 (((u64) cmd->cmnd[3]) << 16) |
4752 (((u64) cmd->cmnd[4]) << 8) |
4753 cmd->cmnd[5];
4754 block_cnt =
4755 (((u32) cmd->cmnd[7]) << 8) |
4756 cmd->cmnd[8];
4757 break;
4758 case WRITE_12:
4759 is_write = 1;
4760 case READ_12:
4761 first_block =
4762 (((u64) cmd->cmnd[2]) << 24) |
4763 (((u64) cmd->cmnd[3]) << 16) |
4764 (((u64) cmd->cmnd[4]) << 8) |
4765 cmd->cmnd[5];
4766 block_cnt =
4767 (((u32) cmd->cmnd[6]) << 24) |
4768 (((u32) cmd->cmnd[7]) << 16) |
4769 (((u32) cmd->cmnd[8]) << 8) |
4770 cmd->cmnd[9];
4771 break;
4772 case WRITE_16:
4773 is_write = 1;
4774 case READ_16:
4775 first_block =
4776 (((u64) cmd->cmnd[2]) << 56) |
4777 (((u64) cmd->cmnd[3]) << 48) |
4778 (((u64) cmd->cmnd[4]) << 40) |
4779 (((u64) cmd->cmnd[5]) << 32) |
4780 (((u64) cmd->cmnd[6]) << 24) |
4781 (((u64) cmd->cmnd[7]) << 16) |
4782 (((u64) cmd->cmnd[8]) << 8) |
4783 cmd->cmnd[9];
4784 block_cnt =
4785 (((u32) cmd->cmnd[10]) << 24) |
4786 (((u32) cmd->cmnd[11]) << 16) |
4787 (((u32) cmd->cmnd[12]) << 8) |
4788 cmd->cmnd[13];
4789 break;
4790 default:
4791 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4793 last_block = first_block + block_cnt - 1;
4795 /* check for write to non-RAID-0 */
4796 if (is_write && dev->raid_level != 0)
4797 return IO_ACCEL_INELIGIBLE;
4799 /* check for invalid block or wraparound */
4800 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4801 last_block < first_block)
4802 return IO_ACCEL_INELIGIBLE;
4804 /* calculate stripe information for the request */
4805 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4806 le16_to_cpu(map->strip_size);
4807 strip_size = le16_to_cpu(map->strip_size);
4808 #if BITS_PER_LONG == 32
4809 tmpdiv = first_block;
4810 (void) do_div(tmpdiv, blocks_per_row);
4811 first_row = tmpdiv;
4812 tmpdiv = last_block;
4813 (void) do_div(tmpdiv, blocks_per_row);
4814 last_row = tmpdiv;
4815 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4816 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4817 tmpdiv = first_row_offset;
4818 (void) do_div(tmpdiv, strip_size);
4819 first_column = tmpdiv;
4820 tmpdiv = last_row_offset;
4821 (void) do_div(tmpdiv, strip_size);
4822 last_column = tmpdiv;
4823 #else
4824 first_row = first_block / blocks_per_row;
4825 last_row = last_block / blocks_per_row;
4826 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4827 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4828 first_column = first_row_offset / strip_size;
4829 last_column = last_row_offset / strip_size;
4830 #endif
4832 /* if this isn't a single row/column then give to the controller */
4833 if ((first_row != last_row) || (first_column != last_column))
4834 return IO_ACCEL_INELIGIBLE;
4836 /* proceeding with driver mapping */
4837 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4838 le16_to_cpu(map->metadata_disks_per_row);
4839 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4840 le16_to_cpu(map->row_cnt);
4841 map_index = (map_row * total_disks_per_row) + first_column;
4843 switch (dev->raid_level) {
4844 case HPSA_RAID_0:
4845 break; /* nothing special to do */
4846 case HPSA_RAID_1:
4847 /* Handles load balance across RAID 1 members.
4848 * (2-drive R1 and R10 with even # of drives.)
4849 * Appropriate for SSDs, not optimal for HDDs
4851 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4852 if (dev->offload_to_mirror)
4853 map_index += le16_to_cpu(map->data_disks_per_row);
4854 dev->offload_to_mirror = !dev->offload_to_mirror;
4855 break;
4856 case HPSA_RAID_ADM:
4857 /* Handles N-way mirrors (R1-ADM)
4858 * and R10 with # of drives divisible by 3.)
4860 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4862 offload_to_mirror = dev->offload_to_mirror;
4863 raid_map_helper(map, offload_to_mirror,
4864 &map_index, &current_group);
4865 /* set mirror group to use next time */
4866 offload_to_mirror =
4867 (offload_to_mirror >=
4868 le16_to_cpu(map->layout_map_count) - 1)
4869 ? 0 : offload_to_mirror + 1;
4870 dev->offload_to_mirror = offload_to_mirror;
4871 /* Avoid direct use of dev->offload_to_mirror within this
4872 * function since multiple threads might simultaneously
4873 * increment it beyond the range of dev->layout_map_count -1.
4875 break;
4876 case HPSA_RAID_5:
4877 case HPSA_RAID_6:
4878 if (le16_to_cpu(map->layout_map_count) <= 1)
4879 break;
4881 /* Verify first and last block are in same RAID group */
4882 r5or6_blocks_per_row =
4883 le16_to_cpu(map->strip_size) *
4884 le16_to_cpu(map->data_disks_per_row);
4885 BUG_ON(r5or6_blocks_per_row == 0);
4886 stripesize = r5or6_blocks_per_row *
4887 le16_to_cpu(map->layout_map_count);
4888 #if BITS_PER_LONG == 32
4889 tmpdiv = first_block;
4890 first_group = do_div(tmpdiv, stripesize);
4891 tmpdiv = first_group;
4892 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4893 first_group = tmpdiv;
4894 tmpdiv = last_block;
4895 last_group = do_div(tmpdiv, stripesize);
4896 tmpdiv = last_group;
4897 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4898 last_group = tmpdiv;
4899 #else
4900 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4901 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4902 #endif
4903 if (first_group != last_group)
4904 return IO_ACCEL_INELIGIBLE;
4906 /* Verify request is in a single row of RAID 5/6 */
4907 #if BITS_PER_LONG == 32
4908 tmpdiv = first_block;
4909 (void) do_div(tmpdiv, stripesize);
4910 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4911 tmpdiv = last_block;
4912 (void) do_div(tmpdiv, stripesize);
4913 r5or6_last_row = r0_last_row = tmpdiv;
4914 #else
4915 first_row = r5or6_first_row = r0_first_row =
4916 first_block / stripesize;
4917 r5or6_last_row = r0_last_row = last_block / stripesize;
4918 #endif
4919 if (r5or6_first_row != r5or6_last_row)
4920 return IO_ACCEL_INELIGIBLE;
4923 /* Verify request is in a single column */
4924 #if BITS_PER_LONG == 32
4925 tmpdiv = first_block;
4926 first_row_offset = do_div(tmpdiv, stripesize);
4927 tmpdiv = first_row_offset;
4928 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4929 r5or6_first_row_offset = first_row_offset;
4930 tmpdiv = last_block;
4931 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4932 tmpdiv = r5or6_last_row_offset;
4933 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4934 tmpdiv = r5or6_first_row_offset;
4935 (void) do_div(tmpdiv, map->strip_size);
4936 first_column = r5or6_first_column = tmpdiv;
4937 tmpdiv = r5or6_last_row_offset;
4938 (void) do_div(tmpdiv, map->strip_size);
4939 r5or6_last_column = tmpdiv;
4940 #else
4941 first_row_offset = r5or6_first_row_offset =
4942 (u32)((first_block % stripesize) %
4943 r5or6_blocks_per_row);
4945 r5or6_last_row_offset =
4946 (u32)((last_block % stripesize) %
4947 r5or6_blocks_per_row);
4949 first_column = r5or6_first_column =
4950 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4951 r5or6_last_column =
4952 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4953 #endif
4954 if (r5or6_first_column != r5or6_last_column)
4955 return IO_ACCEL_INELIGIBLE;
4957 /* Request is eligible */
4958 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4959 le16_to_cpu(map->row_cnt);
4961 map_index = (first_group *
4962 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4963 (map_row * total_disks_per_row) + first_column;
4964 break;
4965 default:
4966 return IO_ACCEL_INELIGIBLE;
4969 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4970 return IO_ACCEL_INELIGIBLE;
4972 c->phys_disk = dev->phys_disk[map_index];
4973 if (!c->phys_disk)
4974 return IO_ACCEL_INELIGIBLE;
4976 disk_handle = dd[map_index].ioaccel_handle;
4977 disk_block = le64_to_cpu(map->disk_starting_blk) +
4978 first_row * le16_to_cpu(map->strip_size) +
4979 (first_row_offset - first_column *
4980 le16_to_cpu(map->strip_size));
4981 disk_block_cnt = block_cnt;
4983 /* handle differing logical/physical block sizes */
4984 if (map->phys_blk_shift) {
4985 disk_block <<= map->phys_blk_shift;
4986 disk_block_cnt <<= map->phys_blk_shift;
4988 BUG_ON(disk_block_cnt > 0xffff);
4990 /* build the new CDB for the physical disk I/O */
4991 if (disk_block > 0xffffffff) {
4992 cdb[0] = is_write ? WRITE_16 : READ_16;
4993 cdb[1] = 0;
4994 cdb[2] = (u8) (disk_block >> 56);
4995 cdb[3] = (u8) (disk_block >> 48);
4996 cdb[4] = (u8) (disk_block >> 40);
4997 cdb[5] = (u8) (disk_block >> 32);
4998 cdb[6] = (u8) (disk_block >> 24);
4999 cdb[7] = (u8) (disk_block >> 16);
5000 cdb[8] = (u8) (disk_block >> 8);
5001 cdb[9] = (u8) (disk_block);
5002 cdb[10] = (u8) (disk_block_cnt >> 24);
5003 cdb[11] = (u8) (disk_block_cnt >> 16);
5004 cdb[12] = (u8) (disk_block_cnt >> 8);
5005 cdb[13] = (u8) (disk_block_cnt);
5006 cdb[14] = 0;
5007 cdb[15] = 0;
5008 cdb_len = 16;
5009 } else {
5010 cdb[0] = is_write ? WRITE_10 : READ_10;
5011 cdb[1] = 0;
5012 cdb[2] = (u8) (disk_block >> 24);
5013 cdb[3] = (u8) (disk_block >> 16);
5014 cdb[4] = (u8) (disk_block >> 8);
5015 cdb[5] = (u8) (disk_block);
5016 cdb[6] = 0;
5017 cdb[7] = (u8) (disk_block_cnt >> 8);
5018 cdb[8] = (u8) (disk_block_cnt);
5019 cdb[9] = 0;
5020 cdb_len = 10;
5022 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5023 dev->scsi3addr,
5024 dev->phys_disk[map_index]);
5028 * Submit commands down the "normal" RAID stack path
5029 * All callers to hpsa_ciss_submit must check lockup_detected
5030 * beforehand, before (opt.) and after calling cmd_alloc
5032 static int hpsa_ciss_submit(struct ctlr_info *h,
5033 struct CommandList *c, struct scsi_cmnd *cmd,
5034 unsigned char scsi3addr[])
5036 cmd->host_scribble = (unsigned char *) c;
5037 c->cmd_type = CMD_SCSI;
5038 c->scsi_cmd = cmd;
5039 c->Header.ReplyQueue = 0; /* unused in simple mode */
5040 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5041 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5043 /* Fill in the request block... */
5045 c->Request.Timeout = 0;
5046 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5047 c->Request.CDBLen = cmd->cmd_len;
5048 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5049 switch (cmd->sc_data_direction) {
5050 case DMA_TO_DEVICE:
5051 c->Request.type_attr_dir =
5052 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5053 break;
5054 case DMA_FROM_DEVICE:
5055 c->Request.type_attr_dir =
5056 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5057 break;
5058 case DMA_NONE:
5059 c->Request.type_attr_dir =
5060 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5061 break;
5062 case DMA_BIDIRECTIONAL:
5063 /* This can happen if a buggy application does a scsi passthru
5064 * and sets both inlen and outlen to non-zero. ( see
5065 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5068 c->Request.type_attr_dir =
5069 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5070 /* This is technically wrong, and hpsa controllers should
5071 * reject it with CMD_INVALID, which is the most correct
5072 * response, but non-fibre backends appear to let it
5073 * slide by, and give the same results as if this field
5074 * were set correctly. Either way is acceptable for
5075 * our purposes here.
5078 break;
5080 default:
5081 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5082 cmd->sc_data_direction);
5083 BUG();
5084 break;
5087 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5088 hpsa_cmd_resolve_and_free(h, c);
5089 return SCSI_MLQUEUE_HOST_BUSY;
5091 enqueue_cmd_and_start_io(h, c);
5092 /* the cmd'll come back via intr handler in complete_scsi_command() */
5093 return 0;
5096 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5097 struct CommandList *c)
5099 dma_addr_t cmd_dma_handle, err_dma_handle;
5101 /* Zero out all of commandlist except the last field, refcount */
5102 memset(c, 0, offsetof(struct CommandList, refcount));
5103 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5104 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5105 c->err_info = h->errinfo_pool + index;
5106 memset(c->err_info, 0, sizeof(*c->err_info));
5107 err_dma_handle = h->errinfo_pool_dhandle
5108 + index * sizeof(*c->err_info);
5109 c->cmdindex = index;
5110 c->busaddr = (u32) cmd_dma_handle;
5111 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5112 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5113 c->h = h;
5114 c->scsi_cmd = SCSI_CMD_IDLE;
5117 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5119 int i;
5121 for (i = 0; i < h->nr_cmds; i++) {
5122 struct CommandList *c = h->cmd_pool + i;
5124 hpsa_cmd_init(h, i, c);
5125 atomic_set(&c->refcount, 0);
5129 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5130 struct CommandList *c)
5132 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5134 BUG_ON(c->cmdindex != index);
5136 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5137 memset(c->err_info, 0, sizeof(*c->err_info));
5138 c->busaddr = (u32) cmd_dma_handle;
5141 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5142 struct CommandList *c, struct scsi_cmnd *cmd,
5143 unsigned char *scsi3addr)
5145 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5146 int rc = IO_ACCEL_INELIGIBLE;
5148 cmd->host_scribble = (unsigned char *) c;
5150 if (dev->offload_enabled) {
5151 hpsa_cmd_init(h, c->cmdindex, c);
5152 c->cmd_type = CMD_SCSI;
5153 c->scsi_cmd = cmd;
5154 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5155 if (rc < 0) /* scsi_dma_map failed. */
5156 rc = SCSI_MLQUEUE_HOST_BUSY;
5157 } else if (dev->hba_ioaccel_enabled) {
5158 hpsa_cmd_init(h, c->cmdindex, c);
5159 c->cmd_type = CMD_SCSI;
5160 c->scsi_cmd = cmd;
5161 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5162 if (rc < 0) /* scsi_dma_map failed. */
5163 rc = SCSI_MLQUEUE_HOST_BUSY;
5165 return rc;
5168 static void hpsa_command_resubmit_worker(struct work_struct *work)
5170 struct scsi_cmnd *cmd;
5171 struct hpsa_scsi_dev_t *dev;
5172 struct CommandList *c = container_of(work, struct CommandList, work);
5174 cmd = c->scsi_cmd;
5175 dev = cmd->device->hostdata;
5176 if (!dev) {
5177 cmd->result = DID_NO_CONNECT << 16;
5178 return hpsa_cmd_free_and_done(c->h, c, cmd);
5180 if (c->reset_pending)
5181 return hpsa_cmd_resolve_and_free(c->h, c);
5182 if (c->abort_pending)
5183 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5184 if (c->cmd_type == CMD_IOACCEL2) {
5185 struct ctlr_info *h = c->h;
5186 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5187 int rc;
5189 if (c2->error_data.serv_response ==
5190 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5191 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5192 if (rc == 0)
5193 return;
5194 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5196 * If we get here, it means dma mapping failed.
5197 * Try again via scsi mid layer, which will
5198 * then get SCSI_MLQUEUE_HOST_BUSY.
5200 cmd->result = DID_IMM_RETRY << 16;
5201 return hpsa_cmd_free_and_done(h, c, cmd);
5203 /* else, fall thru and resubmit down CISS path */
5206 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5207 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5209 * If we get here, it means dma mapping failed. Try
5210 * again via scsi mid layer, which will then get
5211 * SCSI_MLQUEUE_HOST_BUSY.
5213 * hpsa_ciss_submit will have already freed c
5214 * if it encountered a dma mapping failure.
5216 cmd->result = DID_IMM_RETRY << 16;
5217 cmd->scsi_done(cmd);
5221 /* Running in struct Scsi_Host->host_lock less mode */
5222 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5224 struct ctlr_info *h;
5225 struct hpsa_scsi_dev_t *dev;
5226 unsigned char scsi3addr[8];
5227 struct CommandList *c;
5228 int rc = 0;
5230 /* Get the ptr to our adapter structure out of cmd->host. */
5231 h = sdev_to_hba(cmd->device);
5233 BUG_ON(cmd->request->tag < 0);
5235 dev = cmd->device->hostdata;
5236 if (!dev) {
5237 cmd->result = DID_NO_CONNECT << 16;
5238 cmd->scsi_done(cmd);
5239 return 0;
5242 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5244 if (unlikely(lockup_detected(h))) {
5245 cmd->result = DID_NO_CONNECT << 16;
5246 cmd->scsi_done(cmd);
5247 return 0;
5249 c = cmd_tagged_alloc(h, cmd);
5252 * Call alternate submit routine for I/O accelerated commands.
5253 * Retries always go down the normal I/O path.
5255 if (likely(cmd->retries == 0 &&
5256 cmd->request->cmd_type == REQ_TYPE_FS &&
5257 h->acciopath_status)) {
5258 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5259 if (rc == 0)
5260 return 0;
5261 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5262 hpsa_cmd_resolve_and_free(h, c);
5263 return SCSI_MLQUEUE_HOST_BUSY;
5266 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5269 static void hpsa_scan_complete(struct ctlr_info *h)
5271 unsigned long flags;
5273 spin_lock_irqsave(&h->scan_lock, flags);
5274 h->scan_finished = 1;
5275 wake_up_all(&h->scan_wait_queue);
5276 spin_unlock_irqrestore(&h->scan_lock, flags);
5279 static void hpsa_scan_start(struct Scsi_Host *sh)
5281 struct ctlr_info *h = shost_to_hba(sh);
5282 unsigned long flags;
5285 * Don't let rescans be initiated on a controller known to be locked
5286 * up. If the controller locks up *during* a rescan, that thread is
5287 * probably hosed, but at least we can prevent new rescan threads from
5288 * piling up on a locked up controller.
5290 if (unlikely(lockup_detected(h)))
5291 return hpsa_scan_complete(h);
5293 /* wait until any scan already in progress is finished. */
5294 while (1) {
5295 spin_lock_irqsave(&h->scan_lock, flags);
5296 if (h->scan_finished)
5297 break;
5298 spin_unlock_irqrestore(&h->scan_lock, flags);
5299 wait_event(h->scan_wait_queue, h->scan_finished);
5300 /* Note: We don't need to worry about a race between this
5301 * thread and driver unload because the midlayer will
5302 * have incremented the reference count, so unload won't
5303 * happen if we're in here.
5306 h->scan_finished = 0; /* mark scan as in progress */
5307 spin_unlock_irqrestore(&h->scan_lock, flags);
5309 if (unlikely(lockup_detected(h)))
5310 return hpsa_scan_complete(h);
5312 hpsa_update_scsi_devices(h);
5314 hpsa_scan_complete(h);
5317 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5319 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5321 if (!logical_drive)
5322 return -ENODEV;
5324 if (qdepth < 1)
5325 qdepth = 1;
5326 else if (qdepth > logical_drive->queue_depth)
5327 qdepth = logical_drive->queue_depth;
5329 return scsi_change_queue_depth(sdev, qdepth);
5332 static int hpsa_scan_finished(struct Scsi_Host *sh,
5333 unsigned long elapsed_time)
5335 struct ctlr_info *h = shost_to_hba(sh);
5336 unsigned long flags;
5337 int finished;
5339 spin_lock_irqsave(&h->scan_lock, flags);
5340 finished = h->scan_finished;
5341 spin_unlock_irqrestore(&h->scan_lock, flags);
5342 return finished;
5345 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5347 struct Scsi_Host *sh;
5349 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5350 if (sh == NULL) {
5351 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5352 return -ENOMEM;
5355 sh->io_port = 0;
5356 sh->n_io_port = 0;
5357 sh->this_id = -1;
5358 sh->max_channel = 3;
5359 sh->max_cmd_len = MAX_COMMAND_SIZE;
5360 sh->max_lun = HPSA_MAX_LUN;
5361 sh->max_id = HPSA_MAX_LUN;
5362 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5363 sh->cmd_per_lun = sh->can_queue;
5364 sh->sg_tablesize = h->maxsgentries;
5365 sh->transportt = hpsa_sas_transport_template;
5366 sh->hostdata[0] = (unsigned long) h;
5367 sh->irq = h->intr[h->intr_mode];
5368 sh->unique_id = sh->irq;
5370 h->scsi_host = sh;
5371 return 0;
5374 static int hpsa_scsi_add_host(struct ctlr_info *h)
5376 int rv;
5378 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5379 if (rv) {
5380 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5381 return rv;
5383 scsi_scan_host(h->scsi_host);
5384 return 0;
5388 * The block layer has already gone to the trouble of picking out a unique,
5389 * small-integer tag for this request. We use an offset from that value as
5390 * an index to select our command block. (The offset allows us to reserve the
5391 * low-numbered entries for our own uses.)
5393 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5395 int idx = scmd->request->tag;
5397 if (idx < 0)
5398 return idx;
5400 /* Offset to leave space for internal cmds. */
5401 return idx += HPSA_NRESERVED_CMDS;
5405 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5406 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5408 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5409 struct CommandList *c, unsigned char lunaddr[],
5410 int reply_queue)
5412 int rc;
5414 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5415 (void) fill_cmd(c, TEST_UNIT_READY, h,
5416 NULL, 0, 0, lunaddr, TYPE_CMD);
5417 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5418 if (rc)
5419 return rc;
5420 /* no unmap needed here because no data xfer. */
5422 /* Check if the unit is already ready. */
5423 if (c->err_info->CommandStatus == CMD_SUCCESS)
5424 return 0;
5427 * The first command sent after reset will receive "unit attention" to
5428 * indicate that the LUN has been reset...this is actually what we're
5429 * looking for (but, success is good too).
5431 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5432 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5433 (c->err_info->SenseInfo[2] == NO_SENSE ||
5434 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5435 return 0;
5437 return 1;
5441 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5442 * returns zero when the unit is ready, and non-zero when giving up.
5444 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5445 struct CommandList *c,
5446 unsigned char lunaddr[], int reply_queue)
5448 int rc;
5449 int count = 0;
5450 int waittime = 1; /* seconds */
5452 /* Send test unit ready until device ready, or give up. */
5453 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5456 * Wait for a bit. do this first, because if we send
5457 * the TUR right away, the reset will just abort it.
5459 msleep(1000 * waittime);
5461 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5462 if (!rc)
5463 break;
5465 /* Increase wait time with each try, up to a point. */
5466 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5467 waittime *= 2;
5469 dev_warn(&h->pdev->dev,
5470 "waiting %d secs for device to become ready.\n",
5471 waittime);
5474 return rc;
5477 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5478 unsigned char lunaddr[],
5479 int reply_queue)
5481 int first_queue;
5482 int last_queue;
5483 int rq;
5484 int rc = 0;
5485 struct CommandList *c;
5487 c = cmd_alloc(h);
5490 * If no specific reply queue was requested, then send the TUR
5491 * repeatedly, requesting a reply on each reply queue; otherwise execute
5492 * the loop exactly once using only the specified queue.
5494 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5495 first_queue = 0;
5496 last_queue = h->nreply_queues - 1;
5497 } else {
5498 first_queue = reply_queue;
5499 last_queue = reply_queue;
5502 for (rq = first_queue; rq <= last_queue; rq++) {
5503 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5504 if (rc)
5505 break;
5508 if (rc)
5509 dev_warn(&h->pdev->dev, "giving up on device.\n");
5510 else
5511 dev_warn(&h->pdev->dev, "device is ready.\n");
5513 cmd_free(h, c);
5514 return rc;
5517 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5518 * complaining. Doing a host- or bus-reset can't do anything good here.
5520 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5522 int rc;
5523 struct ctlr_info *h;
5524 struct hpsa_scsi_dev_t *dev;
5525 u8 reset_type;
5526 char msg[48];
5528 /* find the controller to which the command to be aborted was sent */
5529 h = sdev_to_hba(scsicmd->device);
5530 if (h == NULL) /* paranoia */
5531 return FAILED;
5533 if (lockup_detected(h))
5534 return FAILED;
5536 dev = scsicmd->device->hostdata;
5537 if (!dev) {
5538 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5539 return FAILED;
5542 /* if controller locked up, we can guarantee command won't complete */
5543 if (lockup_detected(h)) {
5544 snprintf(msg, sizeof(msg),
5545 "cmd %d RESET FAILED, lockup detected",
5546 hpsa_get_cmd_index(scsicmd));
5547 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5548 return FAILED;
5551 /* this reset request might be the result of a lockup; check */
5552 if (detect_controller_lockup(h)) {
5553 snprintf(msg, sizeof(msg),
5554 "cmd %d RESET FAILED, new lockup detected",
5555 hpsa_get_cmd_index(scsicmd));
5556 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5557 return FAILED;
5560 /* Do not attempt on controller */
5561 if (is_hba_lunid(dev->scsi3addr))
5562 return SUCCESS;
5564 if (is_logical_dev_addr_mode(dev->scsi3addr))
5565 reset_type = HPSA_DEVICE_RESET_MSG;
5566 else
5567 reset_type = HPSA_PHYS_TARGET_RESET;
5569 sprintf(msg, "resetting %s",
5570 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5571 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5573 h->reset_in_progress = 1;
5575 /* send a reset to the SCSI LUN which the command was sent to */
5576 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5577 DEFAULT_REPLY_QUEUE);
5578 sprintf(msg, "reset %s %s",
5579 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5580 rc == 0 ? "completed successfully" : "failed");
5581 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5582 h->reset_in_progress = 0;
5583 return rc == 0 ? SUCCESS : FAILED;
5586 static void swizzle_abort_tag(u8 *tag)
5588 u8 original_tag[8];
5590 memcpy(original_tag, tag, 8);
5591 tag[0] = original_tag[3];
5592 tag[1] = original_tag[2];
5593 tag[2] = original_tag[1];
5594 tag[3] = original_tag[0];
5595 tag[4] = original_tag[7];
5596 tag[5] = original_tag[6];
5597 tag[6] = original_tag[5];
5598 tag[7] = original_tag[4];
5601 static void hpsa_get_tag(struct ctlr_info *h,
5602 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5604 u64 tag;
5605 if (c->cmd_type == CMD_IOACCEL1) {
5606 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5607 &h->ioaccel_cmd_pool[c->cmdindex];
5608 tag = le64_to_cpu(cm1->tag);
5609 *tagupper = cpu_to_le32(tag >> 32);
5610 *taglower = cpu_to_le32(tag);
5611 return;
5613 if (c->cmd_type == CMD_IOACCEL2) {
5614 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5615 &h->ioaccel2_cmd_pool[c->cmdindex];
5616 /* upper tag not used in ioaccel2 mode */
5617 memset(tagupper, 0, sizeof(*tagupper));
5618 *taglower = cm2->Tag;
5619 return;
5621 tag = le64_to_cpu(c->Header.tag);
5622 *tagupper = cpu_to_le32(tag >> 32);
5623 *taglower = cpu_to_le32(tag);
5626 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5627 struct CommandList *abort, int reply_queue)
5629 int rc = IO_OK;
5630 struct CommandList *c;
5631 struct ErrorInfo *ei;
5632 __le32 tagupper, taglower;
5634 c = cmd_alloc(h);
5636 /* fill_cmd can't fail here, no buffer to map */
5637 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5638 0, 0, scsi3addr, TYPE_MSG);
5639 if (h->needs_abort_tags_swizzled)
5640 swizzle_abort_tag(&c->Request.CDB[4]);
5641 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5642 hpsa_get_tag(h, abort, &taglower, &tagupper);
5643 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5644 __func__, tagupper, taglower);
5645 /* no unmap needed here because no data xfer. */
5647 ei = c->err_info;
5648 switch (ei->CommandStatus) {
5649 case CMD_SUCCESS:
5650 break;
5651 case CMD_TMF_STATUS:
5652 rc = hpsa_evaluate_tmf_status(h, c);
5653 break;
5654 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5655 rc = -1;
5656 break;
5657 default:
5658 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5659 __func__, tagupper, taglower);
5660 hpsa_scsi_interpret_error(h, c);
5661 rc = -1;
5662 break;
5664 cmd_free(h, c);
5665 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5666 __func__, tagupper, taglower);
5667 return rc;
5670 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5671 struct CommandList *command_to_abort, int reply_queue)
5673 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5674 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5675 struct io_accel2_cmd *c2a =
5676 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5677 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5678 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5681 * We're overlaying struct hpsa_tmf_struct on top of something which
5682 * was allocated as a struct io_accel2_cmd, so we better be sure it
5683 * actually fits, and doesn't overrun the error info space.
5685 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5686 sizeof(struct io_accel2_cmd));
5687 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5688 offsetof(struct hpsa_tmf_struct, error_len) +
5689 sizeof(ac->error_len));
5691 c->cmd_type = IOACCEL2_TMF;
5692 c->scsi_cmd = SCSI_CMD_BUSY;
5694 /* Adjust the DMA address to point to the accelerated command buffer */
5695 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5696 (c->cmdindex * sizeof(struct io_accel2_cmd));
5697 BUG_ON(c->busaddr & 0x0000007F);
5699 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5700 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5701 ac->reply_queue = reply_queue;
5702 ac->tmf = IOACCEL2_TMF_ABORT;
5703 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5704 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5705 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5706 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5707 ac->error_ptr = cpu_to_le64(c->busaddr +
5708 offsetof(struct io_accel2_cmd, error_data));
5709 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5712 /* ioaccel2 path firmware cannot handle abort task requests.
5713 * Change abort requests to physical target reset, and send to the
5714 * address of the physical disk used for the ioaccel 2 command.
5715 * Return 0 on success (IO_OK)
5716 * -1 on failure
5719 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5720 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5722 int rc = IO_OK;
5723 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5724 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5725 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5726 unsigned char *psa = &phys_scsi3addr[0];
5728 /* Get a pointer to the hpsa logical device. */
5729 scmd = abort->scsi_cmd;
5730 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5731 if (dev == NULL) {
5732 dev_warn(&h->pdev->dev,
5733 "Cannot abort: no device pointer for command.\n");
5734 return -1; /* not abortable */
5737 if (h->raid_offload_debug > 0)
5738 dev_info(&h->pdev->dev,
5739 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5740 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5741 "Reset as abort",
5742 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5743 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5745 if (!dev->offload_enabled) {
5746 dev_warn(&h->pdev->dev,
5747 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5748 return -1; /* not abortable */
5751 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5752 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5753 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5754 return -1; /* not abortable */
5757 /* send the reset */
5758 if (h->raid_offload_debug > 0)
5759 dev_info(&h->pdev->dev,
5760 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5761 psa[0], psa[1], psa[2], psa[3],
5762 psa[4], psa[5], psa[6], psa[7]);
5763 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5764 if (rc != 0) {
5765 dev_warn(&h->pdev->dev,
5766 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5767 psa[0], psa[1], psa[2], psa[3],
5768 psa[4], psa[5], psa[6], psa[7]);
5769 return rc; /* failed to reset */
5772 /* wait for device to recover */
5773 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5774 dev_warn(&h->pdev->dev,
5775 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5776 psa[0], psa[1], psa[2], psa[3],
5777 psa[4], psa[5], psa[6], psa[7]);
5778 return -1; /* failed to recover */
5781 /* device recovered */
5782 dev_info(&h->pdev->dev,
5783 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5784 psa[0], psa[1], psa[2], psa[3],
5785 psa[4], psa[5], psa[6], psa[7]);
5787 return rc; /* success */
5790 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5791 struct CommandList *abort, int reply_queue)
5793 int rc = IO_OK;
5794 struct CommandList *c;
5795 __le32 taglower, tagupper;
5796 struct hpsa_scsi_dev_t *dev;
5797 struct io_accel2_cmd *c2;
5799 dev = abort->scsi_cmd->device->hostdata;
5800 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5801 return -1;
5803 c = cmd_alloc(h);
5804 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5805 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5806 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5807 hpsa_get_tag(h, abort, &taglower, &tagupper);
5808 dev_dbg(&h->pdev->dev,
5809 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5810 __func__, tagupper, taglower);
5811 /* no unmap needed here because no data xfer. */
5813 dev_dbg(&h->pdev->dev,
5814 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5815 __func__, tagupper, taglower, c2->error_data.serv_response);
5816 switch (c2->error_data.serv_response) {
5817 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5818 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5819 rc = 0;
5820 break;
5821 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5822 case IOACCEL2_SERV_RESPONSE_FAILURE:
5823 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5824 rc = -1;
5825 break;
5826 default:
5827 dev_warn(&h->pdev->dev,
5828 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5829 __func__, tagupper, taglower,
5830 c2->error_data.serv_response);
5831 rc = -1;
5833 cmd_free(h, c);
5834 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5835 tagupper, taglower);
5836 return rc;
5839 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5840 struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
5843 * ioccelerator mode 2 commands should be aborted via the
5844 * accelerated path, since RAID path is unaware of these commands,
5845 * but not all underlying firmware can handle abort TMF.
5846 * Change abort to physical device reset when abort TMF is unsupported.
5848 if (abort->cmd_type == CMD_IOACCEL2) {
5849 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5850 dev->physical_device)
5851 return hpsa_send_abort_ioaccel2(h, abort,
5852 reply_queue);
5853 else
5854 return hpsa_send_reset_as_abort_ioaccel2(h,
5855 dev->scsi3addr,
5856 abort, reply_queue);
5858 return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
5861 /* Find out which reply queue a command was meant to return on */
5862 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5863 struct CommandList *c)
5865 if (c->cmd_type == CMD_IOACCEL2)
5866 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5867 return c->Header.ReplyQueue;
5871 * Limit concurrency of abort commands to prevent
5872 * over-subscription of commands
5874 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5876 #define ABORT_CMD_WAIT_MSECS 5000
5877 return !wait_event_timeout(h->abort_cmd_wait_queue,
5878 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5879 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5882 /* Send an abort for the specified command.
5883 * If the device and controller support it,
5884 * send a task abort request.
5886 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5889 int rc;
5890 struct ctlr_info *h;
5891 struct hpsa_scsi_dev_t *dev;
5892 struct CommandList *abort; /* pointer to command to be aborted */
5893 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5894 char msg[256]; /* For debug messaging. */
5895 int ml = 0;
5896 __le32 tagupper, taglower;
5897 int refcount, reply_queue;
5899 if (sc == NULL)
5900 return FAILED;
5902 if (sc->device == NULL)
5903 return FAILED;
5905 /* Find the controller of the command to be aborted */
5906 h = sdev_to_hba(sc->device);
5907 if (h == NULL)
5908 return FAILED;
5910 /* Find the device of the command to be aborted */
5911 dev = sc->device->hostdata;
5912 if (!dev) {
5913 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5914 msg);
5915 return FAILED;
5918 /* If controller locked up, we can guarantee command won't complete */
5919 if (lockup_detected(h)) {
5920 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5921 "ABORT FAILED, lockup detected");
5922 return FAILED;
5925 /* This is a good time to check if controller lockup has occurred */
5926 if (detect_controller_lockup(h)) {
5927 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5928 "ABORT FAILED, new lockup detected");
5929 return FAILED;
5932 /* Check that controller supports some kind of task abort */
5933 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5934 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5935 return FAILED;
5937 memset(msg, 0, sizeof(msg));
5938 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5939 h->scsi_host->host_no, sc->device->channel,
5940 sc->device->id, sc->device->lun,
5941 "Aborting command", sc);
5943 /* Get SCSI command to be aborted */
5944 abort = (struct CommandList *) sc->host_scribble;
5945 if (abort == NULL) {
5946 /* This can happen if the command already completed. */
5947 return SUCCESS;
5949 refcount = atomic_inc_return(&abort->refcount);
5950 if (refcount == 1) { /* Command is done already. */
5951 cmd_free(h, abort);
5952 return SUCCESS;
5955 /* Don't bother trying the abort if we know it won't work. */
5956 if (abort->cmd_type != CMD_IOACCEL2 &&
5957 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5958 cmd_free(h, abort);
5959 return FAILED;
5963 * Check that we're aborting the right command.
5964 * It's possible the CommandList already completed and got re-used.
5966 if (abort->scsi_cmd != sc) {
5967 cmd_free(h, abort);
5968 return SUCCESS;
5971 abort->abort_pending = true;
5972 hpsa_get_tag(h, abort, &taglower, &tagupper);
5973 reply_queue = hpsa_extract_reply_queue(h, abort);
5974 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5975 as = abort->scsi_cmd;
5976 if (as != NULL)
5977 ml += sprintf(msg+ml,
5978 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5979 as->cmd_len, as->cmnd[0], as->cmnd[1],
5980 as->serial_number);
5981 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5982 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5985 * Command is in flight, or possibly already completed
5986 * by the firmware (but not to the scsi mid layer) but we can't
5987 * distinguish which. Send the abort down.
5989 if (wait_for_available_abort_cmd(h)) {
5990 dev_warn(&h->pdev->dev,
5991 "%s FAILED, timeout waiting for an abort command to become available.\n",
5992 msg);
5993 cmd_free(h, abort);
5994 return FAILED;
5996 rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
5997 atomic_inc(&h->abort_cmds_available);
5998 wake_up_all(&h->abort_cmd_wait_queue);
5999 if (rc != 0) {
6000 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6001 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6002 "FAILED to abort command");
6003 cmd_free(h, abort);
6004 return FAILED;
6006 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6007 wait_event(h->event_sync_wait_queue,
6008 abort->scsi_cmd != sc || lockup_detected(h));
6009 cmd_free(h, abort);
6010 return !lockup_detected(h) ? SUCCESS : FAILED;
6014 * For operations with an associated SCSI command, a command block is allocated
6015 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6016 * block request tag as an index into a table of entries. cmd_tagged_free() is
6017 * the complement, although cmd_free() may be called instead.
6019 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6020 struct scsi_cmnd *scmd)
6022 int idx = hpsa_get_cmd_index(scmd);
6023 struct CommandList *c = h->cmd_pool + idx;
6025 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6026 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6027 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6028 /* The index value comes from the block layer, so if it's out of
6029 * bounds, it's probably not our bug.
6031 BUG();
6034 atomic_inc(&c->refcount);
6035 if (unlikely(!hpsa_is_cmd_idle(c))) {
6037 * We expect that the SCSI layer will hand us a unique tag
6038 * value. Thus, there should never be a collision here between
6039 * two requests...because if the selected command isn't idle
6040 * then someone is going to be very disappointed.
6042 dev_err(&h->pdev->dev,
6043 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6044 idx);
6045 if (c->scsi_cmd != NULL)
6046 scsi_print_command(c->scsi_cmd);
6047 scsi_print_command(scmd);
6050 hpsa_cmd_partial_init(h, idx, c);
6051 return c;
6054 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6057 * Release our reference to the block. We don't need to do anything
6058 * else to free it, because it is accessed by index. (There's no point
6059 * in checking the result of the decrement, since we cannot guarantee
6060 * that there isn't a concurrent abort which is also accessing it.)
6062 (void)atomic_dec(&c->refcount);
6066 * For operations that cannot sleep, a command block is allocated at init,
6067 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6068 * which ones are free or in use. Lock must be held when calling this.
6069 * cmd_free() is the complement.
6070 * This function never gives up and returns NULL. If it hangs,
6071 * another thread must call cmd_free() to free some tags.
6074 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6076 struct CommandList *c;
6077 int refcount, i;
6078 int offset = 0;
6081 * There is some *extremely* small but non-zero chance that that
6082 * multiple threads could get in here, and one thread could
6083 * be scanning through the list of bits looking for a free
6084 * one, but the free ones are always behind him, and other
6085 * threads sneak in behind him and eat them before he can
6086 * get to them, so that while there is always a free one, a
6087 * very unlucky thread might be starved anyway, never able to
6088 * beat the other threads. In reality, this happens so
6089 * infrequently as to be indistinguishable from never.
6091 * Note that we start allocating commands before the SCSI host structure
6092 * is initialized. Since the search starts at bit zero, this
6093 * all works, since we have at least one command structure available;
6094 * however, it means that the structures with the low indexes have to be
6095 * reserved for driver-initiated requests, while requests from the block
6096 * layer will use the higher indexes.
6099 for (;;) {
6100 i = find_next_zero_bit(h->cmd_pool_bits,
6101 HPSA_NRESERVED_CMDS,
6102 offset);
6103 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6104 offset = 0;
6105 continue;
6107 c = h->cmd_pool + i;
6108 refcount = atomic_inc_return(&c->refcount);
6109 if (unlikely(refcount > 1)) {
6110 cmd_free(h, c); /* already in use */
6111 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6112 continue;
6114 set_bit(i & (BITS_PER_LONG - 1),
6115 h->cmd_pool_bits + (i / BITS_PER_LONG));
6116 break; /* it's ours now. */
6118 hpsa_cmd_partial_init(h, i, c);
6119 return c;
6123 * This is the complementary operation to cmd_alloc(). Note, however, in some
6124 * corner cases it may also be used to free blocks allocated by
6125 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6126 * the clear-bit is harmless.
6128 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6130 if (atomic_dec_and_test(&c->refcount)) {
6131 int i;
6133 i = c - h->cmd_pool;
6134 clear_bit(i & (BITS_PER_LONG - 1),
6135 h->cmd_pool_bits + (i / BITS_PER_LONG));
6139 #ifdef CONFIG_COMPAT
6141 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6142 void __user *arg)
6144 IOCTL32_Command_struct __user *arg32 =
6145 (IOCTL32_Command_struct __user *) arg;
6146 IOCTL_Command_struct arg64;
6147 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6148 int err;
6149 u32 cp;
6151 memset(&arg64, 0, sizeof(arg64));
6152 err = 0;
6153 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6154 sizeof(arg64.LUN_info));
6155 err |= copy_from_user(&arg64.Request, &arg32->Request,
6156 sizeof(arg64.Request));
6157 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6158 sizeof(arg64.error_info));
6159 err |= get_user(arg64.buf_size, &arg32->buf_size);
6160 err |= get_user(cp, &arg32->buf);
6161 arg64.buf = compat_ptr(cp);
6162 err |= copy_to_user(p, &arg64, sizeof(arg64));
6164 if (err)
6165 return -EFAULT;
6167 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6168 if (err)
6169 return err;
6170 err |= copy_in_user(&arg32->error_info, &p->error_info,
6171 sizeof(arg32->error_info));
6172 if (err)
6173 return -EFAULT;
6174 return err;
6177 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6178 int cmd, void __user *arg)
6180 BIG_IOCTL32_Command_struct __user *arg32 =
6181 (BIG_IOCTL32_Command_struct __user *) arg;
6182 BIG_IOCTL_Command_struct arg64;
6183 BIG_IOCTL_Command_struct __user *p =
6184 compat_alloc_user_space(sizeof(arg64));
6185 int err;
6186 u32 cp;
6188 memset(&arg64, 0, sizeof(arg64));
6189 err = 0;
6190 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6191 sizeof(arg64.LUN_info));
6192 err |= copy_from_user(&arg64.Request, &arg32->Request,
6193 sizeof(arg64.Request));
6194 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6195 sizeof(arg64.error_info));
6196 err |= get_user(arg64.buf_size, &arg32->buf_size);
6197 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6198 err |= get_user(cp, &arg32->buf);
6199 arg64.buf = compat_ptr(cp);
6200 err |= copy_to_user(p, &arg64, sizeof(arg64));
6202 if (err)
6203 return -EFAULT;
6205 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6206 if (err)
6207 return err;
6208 err |= copy_in_user(&arg32->error_info, &p->error_info,
6209 sizeof(arg32->error_info));
6210 if (err)
6211 return -EFAULT;
6212 return err;
6215 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6217 switch (cmd) {
6218 case CCISS_GETPCIINFO:
6219 case CCISS_GETINTINFO:
6220 case CCISS_SETINTINFO:
6221 case CCISS_GETNODENAME:
6222 case CCISS_SETNODENAME:
6223 case CCISS_GETHEARTBEAT:
6224 case CCISS_GETBUSTYPES:
6225 case CCISS_GETFIRMVER:
6226 case CCISS_GETDRIVVER:
6227 case CCISS_REVALIDVOLS:
6228 case CCISS_DEREGDISK:
6229 case CCISS_REGNEWDISK:
6230 case CCISS_REGNEWD:
6231 case CCISS_RESCANDISK:
6232 case CCISS_GETLUNINFO:
6233 return hpsa_ioctl(dev, cmd, arg);
6235 case CCISS_PASSTHRU32:
6236 return hpsa_ioctl32_passthru(dev, cmd, arg);
6237 case CCISS_BIG_PASSTHRU32:
6238 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6240 default:
6241 return -ENOIOCTLCMD;
6244 #endif
6246 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6248 struct hpsa_pci_info pciinfo;
6250 if (!argp)
6251 return -EINVAL;
6252 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6253 pciinfo.bus = h->pdev->bus->number;
6254 pciinfo.dev_fn = h->pdev->devfn;
6255 pciinfo.board_id = h->board_id;
6256 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6257 return -EFAULT;
6258 return 0;
6261 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6263 DriverVer_type DriverVer;
6264 unsigned char vmaj, vmin, vsubmin;
6265 int rc;
6267 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6268 &vmaj, &vmin, &vsubmin);
6269 if (rc != 3) {
6270 dev_info(&h->pdev->dev, "driver version string '%s' "
6271 "unrecognized.", HPSA_DRIVER_VERSION);
6272 vmaj = 0;
6273 vmin = 0;
6274 vsubmin = 0;
6276 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6277 if (!argp)
6278 return -EINVAL;
6279 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6280 return -EFAULT;
6281 return 0;
6284 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6286 IOCTL_Command_struct iocommand;
6287 struct CommandList *c;
6288 char *buff = NULL;
6289 u64 temp64;
6290 int rc = 0;
6292 if (!argp)
6293 return -EINVAL;
6294 if (!capable(CAP_SYS_RAWIO))
6295 return -EPERM;
6296 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6297 return -EFAULT;
6298 if ((iocommand.buf_size < 1) &&
6299 (iocommand.Request.Type.Direction != XFER_NONE)) {
6300 return -EINVAL;
6302 if (iocommand.buf_size > 0) {
6303 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6304 if (buff == NULL)
6305 return -ENOMEM;
6306 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6307 /* Copy the data into the buffer we created */
6308 if (copy_from_user(buff, iocommand.buf,
6309 iocommand.buf_size)) {
6310 rc = -EFAULT;
6311 goto out_kfree;
6313 } else {
6314 memset(buff, 0, iocommand.buf_size);
6317 c = cmd_alloc(h);
6319 /* Fill in the command type */
6320 c->cmd_type = CMD_IOCTL_PEND;
6321 c->scsi_cmd = SCSI_CMD_BUSY;
6322 /* Fill in Command Header */
6323 c->Header.ReplyQueue = 0; /* unused in simple mode */
6324 if (iocommand.buf_size > 0) { /* buffer to fill */
6325 c->Header.SGList = 1;
6326 c->Header.SGTotal = cpu_to_le16(1);
6327 } else { /* no buffers to fill */
6328 c->Header.SGList = 0;
6329 c->Header.SGTotal = cpu_to_le16(0);
6331 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6333 /* Fill in Request block */
6334 memcpy(&c->Request, &iocommand.Request,
6335 sizeof(c->Request));
6337 /* Fill in the scatter gather information */
6338 if (iocommand.buf_size > 0) {
6339 temp64 = pci_map_single(h->pdev, buff,
6340 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6341 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6342 c->SG[0].Addr = cpu_to_le64(0);
6343 c->SG[0].Len = cpu_to_le32(0);
6344 rc = -ENOMEM;
6345 goto out;
6347 c->SG[0].Addr = cpu_to_le64(temp64);
6348 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6349 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6351 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6352 if (iocommand.buf_size > 0)
6353 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6354 check_ioctl_unit_attention(h, c);
6355 if (rc) {
6356 rc = -EIO;
6357 goto out;
6360 /* Copy the error information out */
6361 memcpy(&iocommand.error_info, c->err_info,
6362 sizeof(iocommand.error_info));
6363 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6364 rc = -EFAULT;
6365 goto out;
6367 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6368 iocommand.buf_size > 0) {
6369 /* Copy the data out of the buffer we created */
6370 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6371 rc = -EFAULT;
6372 goto out;
6375 out:
6376 cmd_free(h, c);
6377 out_kfree:
6378 kfree(buff);
6379 return rc;
6382 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6384 BIG_IOCTL_Command_struct *ioc;
6385 struct CommandList *c;
6386 unsigned char **buff = NULL;
6387 int *buff_size = NULL;
6388 u64 temp64;
6389 BYTE sg_used = 0;
6390 int status = 0;
6391 u32 left;
6392 u32 sz;
6393 BYTE __user *data_ptr;
6395 if (!argp)
6396 return -EINVAL;
6397 if (!capable(CAP_SYS_RAWIO))
6398 return -EPERM;
6399 ioc = (BIG_IOCTL_Command_struct *)
6400 kmalloc(sizeof(*ioc), GFP_KERNEL);
6401 if (!ioc) {
6402 status = -ENOMEM;
6403 goto cleanup1;
6405 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6406 status = -EFAULT;
6407 goto cleanup1;
6409 if ((ioc->buf_size < 1) &&
6410 (ioc->Request.Type.Direction != XFER_NONE)) {
6411 status = -EINVAL;
6412 goto cleanup1;
6414 /* Check kmalloc limits using all SGs */
6415 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6416 status = -EINVAL;
6417 goto cleanup1;
6419 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6420 status = -EINVAL;
6421 goto cleanup1;
6423 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6424 if (!buff) {
6425 status = -ENOMEM;
6426 goto cleanup1;
6428 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6429 if (!buff_size) {
6430 status = -ENOMEM;
6431 goto cleanup1;
6433 left = ioc->buf_size;
6434 data_ptr = ioc->buf;
6435 while (left) {
6436 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6437 buff_size[sg_used] = sz;
6438 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6439 if (buff[sg_used] == NULL) {
6440 status = -ENOMEM;
6441 goto cleanup1;
6443 if (ioc->Request.Type.Direction & XFER_WRITE) {
6444 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6445 status = -EFAULT;
6446 goto cleanup1;
6448 } else
6449 memset(buff[sg_used], 0, sz);
6450 left -= sz;
6451 data_ptr += sz;
6452 sg_used++;
6454 c = cmd_alloc(h);
6456 c->cmd_type = CMD_IOCTL_PEND;
6457 c->scsi_cmd = SCSI_CMD_BUSY;
6458 c->Header.ReplyQueue = 0;
6459 c->Header.SGList = (u8) sg_used;
6460 c->Header.SGTotal = cpu_to_le16(sg_used);
6461 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6462 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6463 if (ioc->buf_size > 0) {
6464 int i;
6465 for (i = 0; i < sg_used; i++) {
6466 temp64 = pci_map_single(h->pdev, buff[i],
6467 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6468 if (dma_mapping_error(&h->pdev->dev,
6469 (dma_addr_t) temp64)) {
6470 c->SG[i].Addr = cpu_to_le64(0);
6471 c->SG[i].Len = cpu_to_le32(0);
6472 hpsa_pci_unmap(h->pdev, c, i,
6473 PCI_DMA_BIDIRECTIONAL);
6474 status = -ENOMEM;
6475 goto cleanup0;
6477 c->SG[i].Addr = cpu_to_le64(temp64);
6478 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6479 c->SG[i].Ext = cpu_to_le32(0);
6481 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6483 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6484 if (sg_used)
6485 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6486 check_ioctl_unit_attention(h, c);
6487 if (status) {
6488 status = -EIO;
6489 goto cleanup0;
6492 /* Copy the error information out */
6493 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6494 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6495 status = -EFAULT;
6496 goto cleanup0;
6498 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6499 int i;
6501 /* Copy the data out of the buffer we created */
6502 BYTE __user *ptr = ioc->buf;
6503 for (i = 0; i < sg_used; i++) {
6504 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6505 status = -EFAULT;
6506 goto cleanup0;
6508 ptr += buff_size[i];
6511 status = 0;
6512 cleanup0:
6513 cmd_free(h, c);
6514 cleanup1:
6515 if (buff) {
6516 int i;
6518 for (i = 0; i < sg_used; i++)
6519 kfree(buff[i]);
6520 kfree(buff);
6522 kfree(buff_size);
6523 kfree(ioc);
6524 return status;
6527 static void check_ioctl_unit_attention(struct ctlr_info *h,
6528 struct CommandList *c)
6530 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6531 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6532 (void) check_for_unit_attention(h, c);
6536 * ioctl
6538 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6540 struct ctlr_info *h;
6541 void __user *argp = (void __user *)arg;
6542 int rc;
6544 h = sdev_to_hba(dev);
6546 switch (cmd) {
6547 case CCISS_DEREGDISK:
6548 case CCISS_REGNEWDISK:
6549 case CCISS_REGNEWD:
6550 hpsa_scan_start(h->scsi_host);
6551 return 0;
6552 case CCISS_GETPCIINFO:
6553 return hpsa_getpciinfo_ioctl(h, argp);
6554 case CCISS_GETDRIVVER:
6555 return hpsa_getdrivver_ioctl(h, argp);
6556 case CCISS_PASSTHRU:
6557 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6558 return -EAGAIN;
6559 rc = hpsa_passthru_ioctl(h, argp);
6560 atomic_inc(&h->passthru_cmds_avail);
6561 return rc;
6562 case CCISS_BIG_PASSTHRU:
6563 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6564 return -EAGAIN;
6565 rc = hpsa_big_passthru_ioctl(h, argp);
6566 atomic_inc(&h->passthru_cmds_avail);
6567 return rc;
6568 default:
6569 return -ENOTTY;
6573 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6574 u8 reset_type)
6576 struct CommandList *c;
6578 c = cmd_alloc(h);
6580 /* fill_cmd can't fail here, no data buffer to map */
6581 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6582 RAID_CTLR_LUNID, TYPE_MSG);
6583 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6584 c->waiting = NULL;
6585 enqueue_cmd_and_start_io(h, c);
6586 /* Don't wait for completion, the reset won't complete. Don't free
6587 * the command either. This is the last command we will send before
6588 * re-initializing everything, so it doesn't matter and won't leak.
6590 return;
6593 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6594 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6595 int cmd_type)
6597 int pci_dir = XFER_NONE;
6598 u64 tag; /* for commands to be aborted */
6600 c->cmd_type = CMD_IOCTL_PEND;
6601 c->scsi_cmd = SCSI_CMD_BUSY;
6602 c->Header.ReplyQueue = 0;
6603 if (buff != NULL && size > 0) {
6604 c->Header.SGList = 1;
6605 c->Header.SGTotal = cpu_to_le16(1);
6606 } else {
6607 c->Header.SGList = 0;
6608 c->Header.SGTotal = cpu_to_le16(0);
6610 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6612 if (cmd_type == TYPE_CMD) {
6613 switch (cmd) {
6614 case HPSA_INQUIRY:
6615 /* are we trying to read a vital product page */
6616 if (page_code & VPD_PAGE) {
6617 c->Request.CDB[1] = 0x01;
6618 c->Request.CDB[2] = (page_code & 0xff);
6620 c->Request.CDBLen = 6;
6621 c->Request.type_attr_dir =
6622 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6623 c->Request.Timeout = 0;
6624 c->Request.CDB[0] = HPSA_INQUIRY;
6625 c->Request.CDB[4] = size & 0xFF;
6626 break;
6627 case HPSA_REPORT_LOG:
6628 case HPSA_REPORT_PHYS:
6629 /* Talking to controller so It's a physical command
6630 mode = 00 target = 0. Nothing to write.
6632 c->Request.CDBLen = 12;
6633 c->Request.type_attr_dir =
6634 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6635 c->Request.Timeout = 0;
6636 c->Request.CDB[0] = cmd;
6637 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6638 c->Request.CDB[7] = (size >> 16) & 0xFF;
6639 c->Request.CDB[8] = (size >> 8) & 0xFF;
6640 c->Request.CDB[9] = size & 0xFF;
6641 break;
6642 case BMIC_SENSE_DIAG_OPTIONS:
6643 c->Request.CDBLen = 16;
6644 c->Request.type_attr_dir =
6645 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6646 c->Request.Timeout = 0;
6647 /* Spec says this should be BMIC_WRITE */
6648 c->Request.CDB[0] = BMIC_READ;
6649 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6650 break;
6651 case BMIC_SET_DIAG_OPTIONS:
6652 c->Request.CDBLen = 16;
6653 c->Request.type_attr_dir =
6654 TYPE_ATTR_DIR(cmd_type,
6655 ATTR_SIMPLE, XFER_WRITE);
6656 c->Request.Timeout = 0;
6657 c->Request.CDB[0] = BMIC_WRITE;
6658 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6659 break;
6660 case HPSA_CACHE_FLUSH:
6661 c->Request.CDBLen = 12;
6662 c->Request.type_attr_dir =
6663 TYPE_ATTR_DIR(cmd_type,
6664 ATTR_SIMPLE, XFER_WRITE);
6665 c->Request.Timeout = 0;
6666 c->Request.CDB[0] = BMIC_WRITE;
6667 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6668 c->Request.CDB[7] = (size >> 8) & 0xFF;
6669 c->Request.CDB[8] = size & 0xFF;
6670 break;
6671 case TEST_UNIT_READY:
6672 c->Request.CDBLen = 6;
6673 c->Request.type_attr_dir =
6674 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6675 c->Request.Timeout = 0;
6676 break;
6677 case HPSA_GET_RAID_MAP:
6678 c->Request.CDBLen = 12;
6679 c->Request.type_attr_dir =
6680 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6681 c->Request.Timeout = 0;
6682 c->Request.CDB[0] = HPSA_CISS_READ;
6683 c->Request.CDB[1] = cmd;
6684 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6685 c->Request.CDB[7] = (size >> 16) & 0xFF;
6686 c->Request.CDB[8] = (size >> 8) & 0xFF;
6687 c->Request.CDB[9] = size & 0xFF;
6688 break;
6689 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6690 c->Request.CDBLen = 10;
6691 c->Request.type_attr_dir =
6692 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6693 c->Request.Timeout = 0;
6694 c->Request.CDB[0] = BMIC_READ;
6695 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6696 c->Request.CDB[7] = (size >> 16) & 0xFF;
6697 c->Request.CDB[8] = (size >> 8) & 0xFF;
6698 break;
6699 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6700 c->Request.CDBLen = 10;
6701 c->Request.type_attr_dir =
6702 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6703 c->Request.Timeout = 0;
6704 c->Request.CDB[0] = BMIC_READ;
6705 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6706 c->Request.CDB[7] = (size >> 16) & 0xFF;
6707 c->Request.CDB[8] = (size >> 8) & 0XFF;
6708 break;
6709 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6710 c->Request.CDBLen = 10;
6711 c->Request.type_attr_dir =
6712 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6713 c->Request.Timeout = 0;
6714 c->Request.CDB[0] = BMIC_READ;
6715 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6716 c->Request.CDB[7] = (size >> 16) & 0xFF;
6717 c->Request.CDB[8] = (size >> 8) & 0XFF;
6718 break;
6719 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6720 c->Request.CDBLen = 10;
6721 c->Request.type_attr_dir =
6722 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6723 c->Request.Timeout = 0;
6724 c->Request.CDB[0] = BMIC_READ;
6725 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6726 c->Request.CDB[7] = (size >> 16) & 0xFF;
6727 c->Request.CDB[8] = (size >> 8) & 0XFF;
6728 break;
6729 case BMIC_IDENTIFY_CONTROLLER:
6730 c->Request.CDBLen = 10;
6731 c->Request.type_attr_dir =
6732 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 c->Request.Timeout = 0;
6734 c->Request.CDB[0] = BMIC_READ;
6735 c->Request.CDB[1] = 0;
6736 c->Request.CDB[2] = 0;
6737 c->Request.CDB[3] = 0;
6738 c->Request.CDB[4] = 0;
6739 c->Request.CDB[5] = 0;
6740 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6741 c->Request.CDB[7] = (size >> 16) & 0xFF;
6742 c->Request.CDB[8] = (size >> 8) & 0XFF;
6743 c->Request.CDB[9] = 0;
6744 break;
6745 default:
6746 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6747 BUG();
6748 return -1;
6750 } else if (cmd_type == TYPE_MSG) {
6751 switch (cmd) {
6753 case HPSA_PHYS_TARGET_RESET:
6754 c->Request.CDBLen = 16;
6755 c->Request.type_attr_dir =
6756 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6757 c->Request.Timeout = 0; /* Don't time out */
6758 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6759 c->Request.CDB[0] = HPSA_RESET;
6760 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6761 /* Physical target reset needs no control bytes 4-7*/
6762 c->Request.CDB[4] = 0x00;
6763 c->Request.CDB[5] = 0x00;
6764 c->Request.CDB[6] = 0x00;
6765 c->Request.CDB[7] = 0x00;
6766 break;
6767 case HPSA_DEVICE_RESET_MSG:
6768 c->Request.CDBLen = 16;
6769 c->Request.type_attr_dir =
6770 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6771 c->Request.Timeout = 0; /* Don't time out */
6772 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6773 c->Request.CDB[0] = cmd;
6774 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6775 /* If bytes 4-7 are zero, it means reset the */
6776 /* LunID device */
6777 c->Request.CDB[4] = 0x00;
6778 c->Request.CDB[5] = 0x00;
6779 c->Request.CDB[6] = 0x00;
6780 c->Request.CDB[7] = 0x00;
6781 break;
6782 case HPSA_ABORT_MSG:
6783 memcpy(&tag, buff, sizeof(tag));
6784 dev_dbg(&h->pdev->dev,
6785 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6786 tag, c->Header.tag);
6787 c->Request.CDBLen = 16;
6788 c->Request.type_attr_dir =
6789 TYPE_ATTR_DIR(cmd_type,
6790 ATTR_SIMPLE, XFER_WRITE);
6791 c->Request.Timeout = 0; /* Don't time out */
6792 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6793 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6794 c->Request.CDB[2] = 0x00; /* reserved */
6795 c->Request.CDB[3] = 0x00; /* reserved */
6796 /* Tag to abort goes in CDB[4]-CDB[11] */
6797 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6798 c->Request.CDB[12] = 0x00; /* reserved */
6799 c->Request.CDB[13] = 0x00; /* reserved */
6800 c->Request.CDB[14] = 0x00; /* reserved */
6801 c->Request.CDB[15] = 0x00; /* reserved */
6802 break;
6803 default:
6804 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6805 cmd);
6806 BUG();
6808 } else {
6809 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6810 BUG();
6813 switch (GET_DIR(c->Request.type_attr_dir)) {
6814 case XFER_READ:
6815 pci_dir = PCI_DMA_FROMDEVICE;
6816 break;
6817 case XFER_WRITE:
6818 pci_dir = PCI_DMA_TODEVICE;
6819 break;
6820 case XFER_NONE:
6821 pci_dir = PCI_DMA_NONE;
6822 break;
6823 default:
6824 pci_dir = PCI_DMA_BIDIRECTIONAL;
6826 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6827 return -1;
6828 return 0;
6832 * Map (physical) PCI mem into (virtual) kernel space
6834 static void __iomem *remap_pci_mem(ulong base, ulong size)
6836 ulong page_base = ((ulong) base) & PAGE_MASK;
6837 ulong page_offs = ((ulong) base) - page_base;
6838 void __iomem *page_remapped = ioremap_nocache(page_base,
6839 page_offs + size);
6841 return page_remapped ? (page_remapped + page_offs) : NULL;
6844 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6846 return h->access.command_completed(h, q);
6849 static inline bool interrupt_pending(struct ctlr_info *h)
6851 return h->access.intr_pending(h);
6854 static inline long interrupt_not_for_us(struct ctlr_info *h)
6856 return (h->access.intr_pending(h) == 0) ||
6857 (h->interrupts_enabled == 0);
6860 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6861 u32 raw_tag)
6863 if (unlikely(tag_index >= h->nr_cmds)) {
6864 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6865 return 1;
6867 return 0;
6870 static inline void finish_cmd(struct CommandList *c)
6872 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6873 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6874 || c->cmd_type == CMD_IOACCEL2))
6875 complete_scsi_command(c);
6876 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6877 complete(c->waiting);
6880 /* process completion of an indexed ("direct lookup") command */
6881 static inline void process_indexed_cmd(struct ctlr_info *h,
6882 u32 raw_tag)
6884 u32 tag_index;
6885 struct CommandList *c;
6887 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6888 if (!bad_tag(h, tag_index, raw_tag)) {
6889 c = h->cmd_pool + tag_index;
6890 finish_cmd(c);
6894 /* Some controllers, like p400, will give us one interrupt
6895 * after a soft reset, even if we turned interrupts off.
6896 * Only need to check for this in the hpsa_xxx_discard_completions
6897 * functions.
6899 static int ignore_bogus_interrupt(struct ctlr_info *h)
6901 if (likely(!reset_devices))
6902 return 0;
6904 if (likely(h->interrupts_enabled))
6905 return 0;
6907 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6908 "(known firmware bug.) Ignoring.\n");
6910 return 1;
6914 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6915 * Relies on (h-q[x] == x) being true for x such that
6916 * 0 <= x < MAX_REPLY_QUEUES.
6918 static struct ctlr_info *queue_to_hba(u8 *queue)
6920 return container_of((queue - *queue), struct ctlr_info, q[0]);
6923 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6925 struct ctlr_info *h = queue_to_hba(queue);
6926 u8 q = *(u8 *) queue;
6927 u32 raw_tag;
6929 if (ignore_bogus_interrupt(h))
6930 return IRQ_NONE;
6932 if (interrupt_not_for_us(h))
6933 return IRQ_NONE;
6934 h->last_intr_timestamp = get_jiffies_64();
6935 while (interrupt_pending(h)) {
6936 raw_tag = get_next_completion(h, q);
6937 while (raw_tag != FIFO_EMPTY)
6938 raw_tag = next_command(h, q);
6940 return IRQ_HANDLED;
6943 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6945 struct ctlr_info *h = queue_to_hba(queue);
6946 u32 raw_tag;
6947 u8 q = *(u8 *) queue;
6949 if (ignore_bogus_interrupt(h))
6950 return IRQ_NONE;
6952 h->last_intr_timestamp = get_jiffies_64();
6953 raw_tag = get_next_completion(h, q);
6954 while (raw_tag != FIFO_EMPTY)
6955 raw_tag = next_command(h, q);
6956 return IRQ_HANDLED;
6959 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6961 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6962 u32 raw_tag;
6963 u8 q = *(u8 *) queue;
6965 if (interrupt_not_for_us(h))
6966 return IRQ_NONE;
6967 h->last_intr_timestamp = get_jiffies_64();
6968 while (interrupt_pending(h)) {
6969 raw_tag = get_next_completion(h, q);
6970 while (raw_tag != FIFO_EMPTY) {
6971 process_indexed_cmd(h, raw_tag);
6972 raw_tag = next_command(h, q);
6975 return IRQ_HANDLED;
6978 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6980 struct ctlr_info *h = queue_to_hba(queue);
6981 u32 raw_tag;
6982 u8 q = *(u8 *) queue;
6984 h->last_intr_timestamp = get_jiffies_64();
6985 raw_tag = get_next_completion(h, q);
6986 while (raw_tag != FIFO_EMPTY) {
6987 process_indexed_cmd(h, raw_tag);
6988 raw_tag = next_command(h, q);
6990 return IRQ_HANDLED;
6993 /* Send a message CDB to the firmware. Careful, this only works
6994 * in simple mode, not performant mode due to the tag lookup.
6995 * We only ever use this immediately after a controller reset.
6997 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6998 unsigned char type)
7000 struct Command {
7001 struct CommandListHeader CommandHeader;
7002 struct RequestBlock Request;
7003 struct ErrDescriptor ErrorDescriptor;
7005 struct Command *cmd;
7006 static const size_t cmd_sz = sizeof(*cmd) +
7007 sizeof(cmd->ErrorDescriptor);
7008 dma_addr_t paddr64;
7009 __le32 paddr32;
7010 u32 tag;
7011 void __iomem *vaddr;
7012 int i, err;
7014 vaddr = pci_ioremap_bar(pdev, 0);
7015 if (vaddr == NULL)
7016 return -ENOMEM;
7018 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7019 * CCISS commands, so they must be allocated from the lower 4GiB of
7020 * memory.
7022 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7023 if (err) {
7024 iounmap(vaddr);
7025 return err;
7028 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7029 if (cmd == NULL) {
7030 iounmap(vaddr);
7031 return -ENOMEM;
7034 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7035 * although there's no guarantee, we assume that the address is at
7036 * least 4-byte aligned (most likely, it's page-aligned).
7038 paddr32 = cpu_to_le32(paddr64);
7040 cmd->CommandHeader.ReplyQueue = 0;
7041 cmd->CommandHeader.SGList = 0;
7042 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7043 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7044 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7046 cmd->Request.CDBLen = 16;
7047 cmd->Request.type_attr_dir =
7048 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7049 cmd->Request.Timeout = 0; /* Don't time out */
7050 cmd->Request.CDB[0] = opcode;
7051 cmd->Request.CDB[1] = type;
7052 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7053 cmd->ErrorDescriptor.Addr =
7054 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7055 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7057 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7059 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7060 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7061 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7062 break;
7063 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7066 iounmap(vaddr);
7068 /* we leak the DMA buffer here ... no choice since the controller could
7069 * still complete the command.
7071 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7072 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7073 opcode, type);
7074 return -ETIMEDOUT;
7077 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7079 if (tag & HPSA_ERROR_BIT) {
7080 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7081 opcode, type);
7082 return -EIO;
7085 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7086 opcode, type);
7087 return 0;
7090 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7092 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7093 void __iomem *vaddr, u32 use_doorbell)
7096 if (use_doorbell) {
7097 /* For everything after the P600, the PCI power state method
7098 * of resetting the controller doesn't work, so we have this
7099 * other way using the doorbell register.
7101 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7102 writel(use_doorbell, vaddr + SA5_DOORBELL);
7104 /* PMC hardware guys tell us we need a 10 second delay after
7105 * doorbell reset and before any attempt to talk to the board
7106 * at all to ensure that this actually works and doesn't fall
7107 * over in some weird corner cases.
7109 msleep(10000);
7110 } else { /* Try to do it the PCI power state way */
7112 /* Quoting from the Open CISS Specification: "The Power
7113 * Management Control/Status Register (CSR) controls the power
7114 * state of the device. The normal operating state is D0,
7115 * CSR=00h. The software off state is D3, CSR=03h. To reset
7116 * the controller, place the interface device in D3 then to D0,
7117 * this causes a secondary PCI reset which will reset the
7118 * controller." */
7120 int rc = 0;
7122 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7124 /* enter the D3hot power management state */
7125 rc = pci_set_power_state(pdev, PCI_D3hot);
7126 if (rc)
7127 return rc;
7129 msleep(500);
7131 /* enter the D0 power management state */
7132 rc = pci_set_power_state(pdev, PCI_D0);
7133 if (rc)
7134 return rc;
7137 * The P600 requires a small delay when changing states.
7138 * Otherwise we may think the board did not reset and we bail.
7139 * This for kdump only and is particular to the P600.
7141 msleep(500);
7143 return 0;
7146 static void init_driver_version(char *driver_version, int len)
7148 memset(driver_version, 0, len);
7149 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7152 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7154 char *driver_version;
7155 int i, size = sizeof(cfgtable->driver_version);
7157 driver_version = kmalloc(size, GFP_KERNEL);
7158 if (!driver_version)
7159 return -ENOMEM;
7161 init_driver_version(driver_version, size);
7162 for (i = 0; i < size; i++)
7163 writeb(driver_version[i], &cfgtable->driver_version[i]);
7164 kfree(driver_version);
7165 return 0;
7168 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7169 unsigned char *driver_ver)
7171 int i;
7173 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7174 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7177 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7180 char *driver_ver, *old_driver_ver;
7181 int rc, size = sizeof(cfgtable->driver_version);
7183 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7184 if (!old_driver_ver)
7185 return -ENOMEM;
7186 driver_ver = old_driver_ver + size;
7188 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7189 * should have been changed, otherwise we know the reset failed.
7191 init_driver_version(old_driver_ver, size);
7192 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7193 rc = !memcmp(driver_ver, old_driver_ver, size);
7194 kfree(old_driver_ver);
7195 return rc;
7197 /* This does a hard reset of the controller using PCI power management
7198 * states or the using the doorbell register.
7200 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7202 u64 cfg_offset;
7203 u32 cfg_base_addr;
7204 u64 cfg_base_addr_index;
7205 void __iomem *vaddr;
7206 unsigned long paddr;
7207 u32 misc_fw_support;
7208 int rc;
7209 struct CfgTable __iomem *cfgtable;
7210 u32 use_doorbell;
7211 u16 command_register;
7213 /* For controllers as old as the P600, this is very nearly
7214 * the same thing as
7216 * pci_save_state(pci_dev);
7217 * pci_set_power_state(pci_dev, PCI_D3hot);
7218 * pci_set_power_state(pci_dev, PCI_D0);
7219 * pci_restore_state(pci_dev);
7221 * For controllers newer than the P600, the pci power state
7222 * method of resetting doesn't work so we have another way
7223 * using the doorbell register.
7226 if (!ctlr_is_resettable(board_id)) {
7227 dev_warn(&pdev->dev, "Controller not resettable\n");
7228 return -ENODEV;
7231 /* if controller is soft- but not hard resettable... */
7232 if (!ctlr_is_hard_resettable(board_id))
7233 return -ENOTSUPP; /* try soft reset later. */
7235 /* Save the PCI command register */
7236 pci_read_config_word(pdev, 4, &command_register);
7237 pci_save_state(pdev);
7239 /* find the first memory BAR, so we can find the cfg table */
7240 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7241 if (rc)
7242 return rc;
7243 vaddr = remap_pci_mem(paddr, 0x250);
7244 if (!vaddr)
7245 return -ENOMEM;
7247 /* find cfgtable in order to check if reset via doorbell is supported */
7248 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7249 &cfg_base_addr_index, &cfg_offset);
7250 if (rc)
7251 goto unmap_vaddr;
7252 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7253 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7254 if (!cfgtable) {
7255 rc = -ENOMEM;
7256 goto unmap_vaddr;
7258 rc = write_driver_ver_to_cfgtable(cfgtable);
7259 if (rc)
7260 goto unmap_cfgtable;
7262 /* If reset via doorbell register is supported, use that.
7263 * There are two such methods. Favor the newest method.
7265 misc_fw_support = readl(&cfgtable->misc_fw_support);
7266 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7267 if (use_doorbell) {
7268 use_doorbell = DOORBELL_CTLR_RESET2;
7269 } else {
7270 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7271 if (use_doorbell) {
7272 dev_warn(&pdev->dev,
7273 "Soft reset not supported. Firmware update is required.\n");
7274 rc = -ENOTSUPP; /* try soft reset */
7275 goto unmap_cfgtable;
7279 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7280 if (rc)
7281 goto unmap_cfgtable;
7283 pci_restore_state(pdev);
7284 pci_write_config_word(pdev, 4, command_register);
7286 /* Some devices (notably the HP Smart Array 5i Controller)
7287 need a little pause here */
7288 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7290 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7291 if (rc) {
7292 dev_warn(&pdev->dev,
7293 "Failed waiting for board to become ready after hard reset\n");
7294 goto unmap_cfgtable;
7297 rc = controller_reset_failed(vaddr);
7298 if (rc < 0)
7299 goto unmap_cfgtable;
7300 if (rc) {
7301 dev_warn(&pdev->dev, "Unable to successfully reset "
7302 "controller. Will try soft reset.\n");
7303 rc = -ENOTSUPP;
7304 } else {
7305 dev_info(&pdev->dev, "board ready after hard reset.\n");
7308 unmap_cfgtable:
7309 iounmap(cfgtable);
7311 unmap_vaddr:
7312 iounmap(vaddr);
7313 return rc;
7317 * We cannot read the structure directly, for portability we must use
7318 * the io functions.
7319 * This is for debug only.
7321 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7323 #ifdef HPSA_DEBUG
7324 int i;
7325 char temp_name[17];
7327 dev_info(dev, "Controller Configuration information\n");
7328 dev_info(dev, "------------------------------------\n");
7329 for (i = 0; i < 4; i++)
7330 temp_name[i] = readb(&(tb->Signature[i]));
7331 temp_name[4] = '\0';
7332 dev_info(dev, " Signature = %s\n", temp_name);
7333 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7334 dev_info(dev, " Transport methods supported = 0x%x\n",
7335 readl(&(tb->TransportSupport)));
7336 dev_info(dev, " Transport methods active = 0x%x\n",
7337 readl(&(tb->TransportActive)));
7338 dev_info(dev, " Requested transport Method = 0x%x\n",
7339 readl(&(tb->HostWrite.TransportRequest)));
7340 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7341 readl(&(tb->HostWrite.CoalIntDelay)));
7342 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7343 readl(&(tb->HostWrite.CoalIntCount)));
7344 dev_info(dev, " Max outstanding commands = %d\n",
7345 readl(&(tb->CmdsOutMax)));
7346 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7347 for (i = 0; i < 16; i++)
7348 temp_name[i] = readb(&(tb->ServerName[i]));
7349 temp_name[16] = '\0';
7350 dev_info(dev, " Server Name = %s\n", temp_name);
7351 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7352 readl(&(tb->HeartBeat)));
7353 #endif /* HPSA_DEBUG */
7356 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7358 int i, offset, mem_type, bar_type;
7360 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7361 return 0;
7362 offset = 0;
7363 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7364 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7365 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7366 offset += 4;
7367 else {
7368 mem_type = pci_resource_flags(pdev, i) &
7369 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7370 switch (mem_type) {
7371 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7372 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7373 offset += 4; /* 32 bit */
7374 break;
7375 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7376 offset += 8;
7377 break;
7378 default: /* reserved in PCI 2.2 */
7379 dev_warn(&pdev->dev,
7380 "base address is invalid\n");
7381 return -1;
7382 break;
7385 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7386 return i + 1;
7388 return -1;
7391 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7393 if (h->msix_vector) {
7394 if (h->pdev->msix_enabled)
7395 pci_disable_msix(h->pdev);
7396 h->msix_vector = 0;
7397 } else if (h->msi_vector) {
7398 if (h->pdev->msi_enabled)
7399 pci_disable_msi(h->pdev);
7400 h->msi_vector = 0;
7404 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7405 * controllers that are capable. If not, we use legacy INTx mode.
7407 static void hpsa_interrupt_mode(struct ctlr_info *h)
7409 #ifdef CONFIG_PCI_MSI
7410 int err, i;
7411 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7413 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7414 hpsa_msix_entries[i].vector = 0;
7415 hpsa_msix_entries[i].entry = i;
7418 /* Some boards advertise MSI but don't really support it */
7419 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7420 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7421 goto default_int_mode;
7422 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7423 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7424 h->msix_vector = MAX_REPLY_QUEUES;
7425 if (h->msix_vector > num_online_cpus())
7426 h->msix_vector = num_online_cpus();
7427 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7428 1, h->msix_vector);
7429 if (err < 0) {
7430 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7431 h->msix_vector = 0;
7432 goto single_msi_mode;
7433 } else if (err < h->msix_vector) {
7434 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7435 "available\n", err);
7437 h->msix_vector = err;
7438 for (i = 0; i < h->msix_vector; i++)
7439 h->intr[i] = hpsa_msix_entries[i].vector;
7440 return;
7442 single_msi_mode:
7443 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7444 dev_info(&h->pdev->dev, "MSI capable controller\n");
7445 if (!pci_enable_msi(h->pdev))
7446 h->msi_vector = 1;
7447 else
7448 dev_warn(&h->pdev->dev, "MSI init failed\n");
7450 default_int_mode:
7451 #endif /* CONFIG_PCI_MSI */
7452 /* if we get here we're going to use the default interrupt mode */
7453 h->intr[h->intr_mode] = h->pdev->irq;
7456 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7458 int i;
7459 u32 subsystem_vendor_id, subsystem_device_id;
7461 subsystem_vendor_id = pdev->subsystem_vendor;
7462 subsystem_device_id = pdev->subsystem_device;
7463 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7464 subsystem_vendor_id;
7466 for (i = 0; i < ARRAY_SIZE(products); i++)
7467 if (*board_id == products[i].board_id)
7468 return i;
7470 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7471 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7472 !hpsa_allow_any) {
7473 dev_warn(&pdev->dev, "unrecognized board ID: "
7474 "0x%08x, ignoring.\n", *board_id);
7475 return -ENODEV;
7477 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7480 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7481 unsigned long *memory_bar)
7483 int i;
7485 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7486 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7487 /* addressing mode bits already removed */
7488 *memory_bar = pci_resource_start(pdev, i);
7489 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7490 *memory_bar);
7491 return 0;
7493 dev_warn(&pdev->dev, "no memory BAR found\n");
7494 return -ENODEV;
7497 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7498 int wait_for_ready)
7500 int i, iterations;
7501 u32 scratchpad;
7502 if (wait_for_ready)
7503 iterations = HPSA_BOARD_READY_ITERATIONS;
7504 else
7505 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7507 for (i = 0; i < iterations; i++) {
7508 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7509 if (wait_for_ready) {
7510 if (scratchpad == HPSA_FIRMWARE_READY)
7511 return 0;
7512 } else {
7513 if (scratchpad != HPSA_FIRMWARE_READY)
7514 return 0;
7516 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7518 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7519 return -ENODEV;
7522 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7523 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7524 u64 *cfg_offset)
7526 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7527 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7528 *cfg_base_addr &= (u32) 0x0000ffff;
7529 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7530 if (*cfg_base_addr_index == -1) {
7531 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7532 return -ENODEV;
7534 return 0;
7537 static void hpsa_free_cfgtables(struct ctlr_info *h)
7539 if (h->transtable) {
7540 iounmap(h->transtable);
7541 h->transtable = NULL;
7543 if (h->cfgtable) {
7544 iounmap(h->cfgtable);
7545 h->cfgtable = NULL;
7549 /* Find and map CISS config table and transfer table
7550 + * several items must be unmapped (freed) later
7551 + * */
7552 static int hpsa_find_cfgtables(struct ctlr_info *h)
7554 u64 cfg_offset;
7555 u32 cfg_base_addr;
7556 u64 cfg_base_addr_index;
7557 u32 trans_offset;
7558 int rc;
7560 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7561 &cfg_base_addr_index, &cfg_offset);
7562 if (rc)
7563 return rc;
7564 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7565 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7566 if (!h->cfgtable) {
7567 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7568 return -ENOMEM;
7570 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7571 if (rc)
7572 return rc;
7573 /* Find performant mode table. */
7574 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7575 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7576 cfg_base_addr_index)+cfg_offset+trans_offset,
7577 sizeof(*h->transtable));
7578 if (!h->transtable) {
7579 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7580 hpsa_free_cfgtables(h);
7581 return -ENOMEM;
7583 return 0;
7586 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7588 #define MIN_MAX_COMMANDS 16
7589 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7591 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7593 /* Limit commands in memory limited kdump scenario. */
7594 if (reset_devices && h->max_commands > 32)
7595 h->max_commands = 32;
7597 if (h->max_commands < MIN_MAX_COMMANDS) {
7598 dev_warn(&h->pdev->dev,
7599 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7600 h->max_commands,
7601 MIN_MAX_COMMANDS);
7602 h->max_commands = MIN_MAX_COMMANDS;
7606 /* If the controller reports that the total max sg entries is greater than 512,
7607 * then we know that chained SG blocks work. (Original smart arrays did not
7608 * support chained SG blocks and would return zero for max sg entries.)
7610 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7612 return h->maxsgentries > 512;
7615 /* Interrogate the hardware for some limits:
7616 * max commands, max SG elements without chaining, and with chaining,
7617 * SG chain block size, etc.
7619 static void hpsa_find_board_params(struct ctlr_info *h)
7621 hpsa_get_max_perf_mode_cmds(h);
7622 h->nr_cmds = h->max_commands;
7623 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7624 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7625 if (hpsa_supports_chained_sg_blocks(h)) {
7626 /* Limit in-command s/g elements to 32 save dma'able memory. */
7627 h->max_cmd_sg_entries = 32;
7628 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7629 h->maxsgentries--; /* save one for chain pointer */
7630 } else {
7632 * Original smart arrays supported at most 31 s/g entries
7633 * embedded inline in the command (trying to use more
7634 * would lock up the controller)
7636 h->max_cmd_sg_entries = 31;
7637 h->maxsgentries = 31; /* default to traditional values */
7638 h->chainsize = 0;
7641 /* Find out what task management functions are supported and cache */
7642 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7643 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7644 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7645 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7646 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7647 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7648 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7651 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7653 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7654 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7655 return false;
7657 return true;
7660 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7662 u32 driver_support;
7664 driver_support = readl(&(h->cfgtable->driver_support));
7665 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7666 #ifdef CONFIG_X86
7667 driver_support |= ENABLE_SCSI_PREFETCH;
7668 #endif
7669 driver_support |= ENABLE_UNIT_ATTN;
7670 writel(driver_support, &(h->cfgtable->driver_support));
7673 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7674 * in a prefetch beyond physical memory.
7676 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7678 u32 dma_prefetch;
7680 if (h->board_id != 0x3225103C)
7681 return;
7682 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7683 dma_prefetch |= 0x8000;
7684 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7687 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7689 int i;
7690 u32 doorbell_value;
7691 unsigned long flags;
7692 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7693 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7694 spin_lock_irqsave(&h->lock, flags);
7695 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7696 spin_unlock_irqrestore(&h->lock, flags);
7697 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7698 goto done;
7699 /* delay and try again */
7700 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7702 return -ENODEV;
7703 done:
7704 return 0;
7707 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7709 int i;
7710 u32 doorbell_value;
7711 unsigned long flags;
7713 /* under certain very rare conditions, this can take awhile.
7714 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7715 * as we enter this code.)
7717 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7718 if (h->remove_in_progress)
7719 goto done;
7720 spin_lock_irqsave(&h->lock, flags);
7721 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7722 spin_unlock_irqrestore(&h->lock, flags);
7723 if (!(doorbell_value & CFGTBL_ChangeReq))
7724 goto done;
7725 /* delay and try again */
7726 msleep(MODE_CHANGE_WAIT_INTERVAL);
7728 return -ENODEV;
7729 done:
7730 return 0;
7733 /* return -ENODEV or other reason on error, 0 on success */
7734 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7736 u32 trans_support;
7738 trans_support = readl(&(h->cfgtable->TransportSupport));
7739 if (!(trans_support & SIMPLE_MODE))
7740 return -ENOTSUPP;
7742 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7744 /* Update the field, and then ring the doorbell */
7745 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7746 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7747 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7748 if (hpsa_wait_for_mode_change_ack(h))
7749 goto error;
7750 print_cfg_table(&h->pdev->dev, h->cfgtable);
7751 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7752 goto error;
7753 h->transMethod = CFGTBL_Trans_Simple;
7754 return 0;
7755 error:
7756 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7757 return -ENODEV;
7760 /* free items allocated or mapped by hpsa_pci_init */
7761 static void hpsa_free_pci_init(struct ctlr_info *h)
7763 hpsa_free_cfgtables(h); /* pci_init 4 */
7764 iounmap(h->vaddr); /* pci_init 3 */
7765 h->vaddr = NULL;
7766 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7768 * call pci_disable_device before pci_release_regions per
7769 * Documentation/PCI/pci.txt
7771 pci_disable_device(h->pdev); /* pci_init 1 */
7772 pci_release_regions(h->pdev); /* pci_init 2 */
7775 /* several items must be freed later */
7776 static int hpsa_pci_init(struct ctlr_info *h)
7778 int prod_index, err;
7780 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7781 if (prod_index < 0)
7782 return prod_index;
7783 h->product_name = products[prod_index].product_name;
7784 h->access = *(products[prod_index].access);
7786 h->needs_abort_tags_swizzled =
7787 ctlr_needs_abort_tags_swizzled(h->board_id);
7789 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7790 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7792 err = pci_enable_device(h->pdev);
7793 if (err) {
7794 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7795 pci_disable_device(h->pdev);
7796 return err;
7799 err = pci_request_regions(h->pdev, HPSA);
7800 if (err) {
7801 dev_err(&h->pdev->dev,
7802 "failed to obtain PCI resources\n");
7803 pci_disable_device(h->pdev);
7804 return err;
7807 pci_set_master(h->pdev);
7809 hpsa_interrupt_mode(h);
7810 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7811 if (err)
7812 goto clean2; /* intmode+region, pci */
7813 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7814 if (!h->vaddr) {
7815 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7816 err = -ENOMEM;
7817 goto clean2; /* intmode+region, pci */
7819 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7820 if (err)
7821 goto clean3; /* vaddr, intmode+region, pci */
7822 err = hpsa_find_cfgtables(h);
7823 if (err)
7824 goto clean3; /* vaddr, intmode+region, pci */
7825 hpsa_find_board_params(h);
7827 if (!hpsa_CISS_signature_present(h)) {
7828 err = -ENODEV;
7829 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7831 hpsa_set_driver_support_bits(h);
7832 hpsa_p600_dma_prefetch_quirk(h);
7833 err = hpsa_enter_simple_mode(h);
7834 if (err)
7835 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7836 return 0;
7838 clean4: /* cfgtables, vaddr, intmode+region, pci */
7839 hpsa_free_cfgtables(h);
7840 clean3: /* vaddr, intmode+region, pci */
7841 iounmap(h->vaddr);
7842 h->vaddr = NULL;
7843 clean2: /* intmode+region, pci */
7844 hpsa_disable_interrupt_mode(h);
7846 * call pci_disable_device before pci_release_regions per
7847 * Documentation/PCI/pci.txt
7849 pci_disable_device(h->pdev);
7850 pci_release_regions(h->pdev);
7851 return err;
7854 static void hpsa_hba_inquiry(struct ctlr_info *h)
7856 int rc;
7858 #define HBA_INQUIRY_BYTE_COUNT 64
7859 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7860 if (!h->hba_inquiry_data)
7861 return;
7862 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7863 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7864 if (rc != 0) {
7865 kfree(h->hba_inquiry_data);
7866 h->hba_inquiry_data = NULL;
7870 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7872 int rc, i;
7873 void __iomem *vaddr;
7875 if (!reset_devices)
7876 return 0;
7878 /* kdump kernel is loading, we don't know in which state is
7879 * the pci interface. The dev->enable_cnt is equal zero
7880 * so we call enable+disable, wait a while and switch it on.
7882 rc = pci_enable_device(pdev);
7883 if (rc) {
7884 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7885 return -ENODEV;
7887 pci_disable_device(pdev);
7888 msleep(260); /* a randomly chosen number */
7889 rc = pci_enable_device(pdev);
7890 if (rc) {
7891 dev_warn(&pdev->dev, "failed to enable device.\n");
7892 return -ENODEV;
7895 pci_set_master(pdev);
7897 vaddr = pci_ioremap_bar(pdev, 0);
7898 if (vaddr == NULL) {
7899 rc = -ENOMEM;
7900 goto out_disable;
7902 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7903 iounmap(vaddr);
7905 /* Reset the controller with a PCI power-cycle or via doorbell */
7906 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7908 /* -ENOTSUPP here means we cannot reset the controller
7909 * but it's already (and still) up and running in
7910 * "performant mode". Or, it might be 640x, which can't reset
7911 * due to concerns about shared bbwc between 6402/6404 pair.
7913 if (rc)
7914 goto out_disable;
7916 /* Now try to get the controller to respond to a no-op */
7917 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7918 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7919 if (hpsa_noop(pdev) == 0)
7920 break;
7921 else
7922 dev_warn(&pdev->dev, "no-op failed%s\n",
7923 (i < 11 ? "; re-trying" : ""));
7926 out_disable:
7928 pci_disable_device(pdev);
7929 return rc;
7932 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7934 kfree(h->cmd_pool_bits);
7935 h->cmd_pool_bits = NULL;
7936 if (h->cmd_pool) {
7937 pci_free_consistent(h->pdev,
7938 h->nr_cmds * sizeof(struct CommandList),
7939 h->cmd_pool,
7940 h->cmd_pool_dhandle);
7941 h->cmd_pool = NULL;
7942 h->cmd_pool_dhandle = 0;
7944 if (h->errinfo_pool) {
7945 pci_free_consistent(h->pdev,
7946 h->nr_cmds * sizeof(struct ErrorInfo),
7947 h->errinfo_pool,
7948 h->errinfo_pool_dhandle);
7949 h->errinfo_pool = NULL;
7950 h->errinfo_pool_dhandle = 0;
7954 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7956 h->cmd_pool_bits = kzalloc(
7957 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7958 sizeof(unsigned long), GFP_KERNEL);
7959 h->cmd_pool = pci_alloc_consistent(h->pdev,
7960 h->nr_cmds * sizeof(*h->cmd_pool),
7961 &(h->cmd_pool_dhandle));
7962 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7963 h->nr_cmds * sizeof(*h->errinfo_pool),
7964 &(h->errinfo_pool_dhandle));
7965 if ((h->cmd_pool_bits == NULL)
7966 || (h->cmd_pool == NULL)
7967 || (h->errinfo_pool == NULL)) {
7968 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7969 goto clean_up;
7971 hpsa_preinitialize_commands(h);
7972 return 0;
7973 clean_up:
7974 hpsa_free_cmd_pool(h);
7975 return -ENOMEM;
7978 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7980 int i, cpu;
7982 cpu = cpumask_first(cpu_online_mask);
7983 for (i = 0; i < h->msix_vector; i++) {
7984 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7985 cpu = cpumask_next(cpu, cpu_online_mask);
7989 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7990 static void hpsa_free_irqs(struct ctlr_info *h)
7992 int i;
7994 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7995 /* Single reply queue, only one irq to free */
7996 i = h->intr_mode;
7997 irq_set_affinity_hint(h->intr[i], NULL);
7998 free_irq(h->intr[i], &h->q[i]);
7999 h->q[i] = 0;
8000 return;
8003 for (i = 0; i < h->msix_vector; i++) {
8004 irq_set_affinity_hint(h->intr[i], NULL);
8005 free_irq(h->intr[i], &h->q[i]);
8006 h->q[i] = 0;
8008 for (; i < MAX_REPLY_QUEUES; i++)
8009 h->q[i] = 0;
8012 /* returns 0 on success; cleans up and returns -Enn on error */
8013 static int hpsa_request_irqs(struct ctlr_info *h,
8014 irqreturn_t (*msixhandler)(int, void *),
8015 irqreturn_t (*intxhandler)(int, void *))
8017 int rc, i;
8020 * initialize h->q[x] = x so that interrupt handlers know which
8021 * queue to process.
8023 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8024 h->q[i] = (u8) i;
8026 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8027 /* If performant mode and MSI-X, use multiple reply queues */
8028 for (i = 0; i < h->msix_vector; i++) {
8029 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8030 rc = request_irq(h->intr[i], msixhandler,
8031 0, h->intrname[i],
8032 &h->q[i]);
8033 if (rc) {
8034 int j;
8036 dev_err(&h->pdev->dev,
8037 "failed to get irq %d for %s\n",
8038 h->intr[i], h->devname);
8039 for (j = 0; j < i; j++) {
8040 free_irq(h->intr[j], &h->q[j]);
8041 h->q[j] = 0;
8043 for (; j < MAX_REPLY_QUEUES; j++)
8044 h->q[j] = 0;
8045 return rc;
8048 hpsa_irq_affinity_hints(h);
8049 } else {
8050 /* Use single reply pool */
8051 if (h->msix_vector > 0 || h->msi_vector) {
8052 if (h->msix_vector)
8053 sprintf(h->intrname[h->intr_mode],
8054 "%s-msix", h->devname);
8055 else
8056 sprintf(h->intrname[h->intr_mode],
8057 "%s-msi", h->devname);
8058 rc = request_irq(h->intr[h->intr_mode],
8059 msixhandler, 0,
8060 h->intrname[h->intr_mode],
8061 &h->q[h->intr_mode]);
8062 } else {
8063 sprintf(h->intrname[h->intr_mode],
8064 "%s-intx", h->devname);
8065 rc = request_irq(h->intr[h->intr_mode],
8066 intxhandler, IRQF_SHARED,
8067 h->intrname[h->intr_mode],
8068 &h->q[h->intr_mode]);
8070 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8072 if (rc) {
8073 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8074 h->intr[h->intr_mode], h->devname);
8075 hpsa_free_irqs(h);
8076 return -ENODEV;
8078 return 0;
8081 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8083 int rc;
8084 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8086 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8087 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8088 if (rc) {
8089 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8090 return rc;
8093 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8094 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8095 if (rc) {
8096 dev_warn(&h->pdev->dev, "Board failed to become ready "
8097 "after soft reset.\n");
8098 return rc;
8101 return 0;
8104 static void hpsa_free_reply_queues(struct ctlr_info *h)
8106 int i;
8108 for (i = 0; i < h->nreply_queues; i++) {
8109 if (!h->reply_queue[i].head)
8110 continue;
8111 pci_free_consistent(h->pdev,
8112 h->reply_queue_size,
8113 h->reply_queue[i].head,
8114 h->reply_queue[i].busaddr);
8115 h->reply_queue[i].head = NULL;
8116 h->reply_queue[i].busaddr = 0;
8118 h->reply_queue_size = 0;
8121 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8123 hpsa_free_performant_mode(h); /* init_one 7 */
8124 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8125 hpsa_free_cmd_pool(h); /* init_one 5 */
8126 hpsa_free_irqs(h); /* init_one 4 */
8127 scsi_host_put(h->scsi_host); /* init_one 3 */
8128 h->scsi_host = NULL; /* init_one 3 */
8129 hpsa_free_pci_init(h); /* init_one 2_5 */
8130 free_percpu(h->lockup_detected); /* init_one 2 */
8131 h->lockup_detected = NULL; /* init_one 2 */
8132 if (h->resubmit_wq) {
8133 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8134 h->resubmit_wq = NULL;
8136 if (h->rescan_ctlr_wq) {
8137 destroy_workqueue(h->rescan_ctlr_wq);
8138 h->rescan_ctlr_wq = NULL;
8140 kfree(h); /* init_one 1 */
8143 /* Called when controller lockup detected. */
8144 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8146 int i, refcount;
8147 struct CommandList *c;
8148 int failcount = 0;
8150 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8151 for (i = 0; i < h->nr_cmds; i++) {
8152 c = h->cmd_pool + i;
8153 refcount = atomic_inc_return(&c->refcount);
8154 if (refcount > 1) {
8155 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8156 finish_cmd(c);
8157 atomic_dec(&h->commands_outstanding);
8158 failcount++;
8160 cmd_free(h, c);
8162 dev_warn(&h->pdev->dev,
8163 "failed %d commands in fail_all\n", failcount);
8166 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8168 int cpu;
8170 for_each_online_cpu(cpu) {
8171 u32 *lockup_detected;
8172 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8173 *lockup_detected = value;
8175 wmb(); /* be sure the per-cpu variables are out to memory */
8178 static void controller_lockup_detected(struct ctlr_info *h)
8180 unsigned long flags;
8181 u32 lockup_detected;
8183 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8184 spin_lock_irqsave(&h->lock, flags);
8185 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8186 if (!lockup_detected) {
8187 /* no heartbeat, but controller gave us a zero. */
8188 dev_warn(&h->pdev->dev,
8189 "lockup detected after %d but scratchpad register is zero\n",
8190 h->heartbeat_sample_interval / HZ);
8191 lockup_detected = 0xffffffff;
8193 set_lockup_detected_for_all_cpus(h, lockup_detected);
8194 spin_unlock_irqrestore(&h->lock, flags);
8195 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8196 lockup_detected, h->heartbeat_sample_interval / HZ);
8197 pci_disable_device(h->pdev);
8198 fail_all_outstanding_cmds(h);
8201 static int detect_controller_lockup(struct ctlr_info *h)
8203 u64 now;
8204 u32 heartbeat;
8205 unsigned long flags;
8207 now = get_jiffies_64();
8208 /* If we've received an interrupt recently, we're ok. */
8209 if (time_after64(h->last_intr_timestamp +
8210 (h->heartbeat_sample_interval), now))
8211 return false;
8214 * If we've already checked the heartbeat recently, we're ok.
8215 * This could happen if someone sends us a signal. We
8216 * otherwise don't care about signals in this thread.
8218 if (time_after64(h->last_heartbeat_timestamp +
8219 (h->heartbeat_sample_interval), now))
8220 return false;
8222 /* If heartbeat has not changed since we last looked, we're not ok. */
8223 spin_lock_irqsave(&h->lock, flags);
8224 heartbeat = readl(&h->cfgtable->HeartBeat);
8225 spin_unlock_irqrestore(&h->lock, flags);
8226 if (h->last_heartbeat == heartbeat) {
8227 controller_lockup_detected(h);
8228 return true;
8231 /* We're ok. */
8232 h->last_heartbeat = heartbeat;
8233 h->last_heartbeat_timestamp = now;
8234 return false;
8237 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8239 int i;
8240 char *event_type;
8242 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8243 return;
8245 /* Ask the controller to clear the events we're handling. */
8246 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8247 | CFGTBL_Trans_io_accel2)) &&
8248 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8249 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8251 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8252 event_type = "state change";
8253 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8254 event_type = "configuration change";
8255 /* Stop sending new RAID offload reqs via the IO accelerator */
8256 scsi_block_requests(h->scsi_host);
8257 for (i = 0; i < h->ndevices; i++)
8258 h->dev[i]->offload_enabled = 0;
8259 hpsa_drain_accel_commands(h);
8260 /* Set 'accelerator path config change' bit */
8261 dev_warn(&h->pdev->dev,
8262 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8263 h->events, event_type);
8264 writel(h->events, &(h->cfgtable->clear_event_notify));
8265 /* Set the "clear event notify field update" bit 6 */
8266 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8267 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8268 hpsa_wait_for_clear_event_notify_ack(h);
8269 scsi_unblock_requests(h->scsi_host);
8270 } else {
8271 /* Acknowledge controller notification events. */
8272 writel(h->events, &(h->cfgtable->clear_event_notify));
8273 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8274 hpsa_wait_for_clear_event_notify_ack(h);
8275 #if 0
8276 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8277 hpsa_wait_for_mode_change_ack(h);
8278 #endif
8280 return;
8283 /* Check a register on the controller to see if there are configuration
8284 * changes (added/changed/removed logical drives, etc.) which mean that
8285 * we should rescan the controller for devices.
8286 * Also check flag for driver-initiated rescan.
8288 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8290 if (h->drv_req_rescan) {
8291 h->drv_req_rescan = 0;
8292 return 1;
8295 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8296 return 0;
8298 h->events = readl(&(h->cfgtable->event_notify));
8299 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8303 * Check if any of the offline devices have become ready
8305 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8307 unsigned long flags;
8308 struct offline_device_entry *d;
8309 struct list_head *this, *tmp;
8311 spin_lock_irqsave(&h->offline_device_lock, flags);
8312 list_for_each_safe(this, tmp, &h->offline_device_list) {
8313 d = list_entry(this, struct offline_device_entry,
8314 offline_list);
8315 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8316 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8317 spin_lock_irqsave(&h->offline_device_lock, flags);
8318 list_del(&d->offline_list);
8319 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8320 return 1;
8322 spin_lock_irqsave(&h->offline_device_lock, flags);
8324 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8325 return 0;
8328 static int hpsa_luns_changed(struct ctlr_info *h)
8330 int rc = 1; /* assume there are changes */
8331 struct ReportLUNdata *logdev = NULL;
8333 /* if we can't find out if lun data has changed,
8334 * assume that it has.
8337 if (!h->lastlogicals)
8338 goto out;
8340 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8341 if (!logdev) {
8342 dev_warn(&h->pdev->dev,
8343 "Out of memory, can't track lun changes.\n");
8344 goto out;
8346 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8347 dev_warn(&h->pdev->dev,
8348 "report luns failed, can't track lun changes.\n");
8349 goto out;
8351 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8352 dev_info(&h->pdev->dev,
8353 "Lun changes detected.\n");
8354 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8355 goto out;
8356 } else
8357 rc = 0; /* no changes detected. */
8358 out:
8359 kfree(logdev);
8360 return rc;
8363 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8365 unsigned long flags;
8366 struct ctlr_info *h = container_of(to_delayed_work(work),
8367 struct ctlr_info, rescan_ctlr_work);
8370 if (h->remove_in_progress)
8371 return;
8373 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8374 scsi_host_get(h->scsi_host);
8375 hpsa_ack_ctlr_events(h);
8376 hpsa_scan_start(h->scsi_host);
8377 scsi_host_put(h->scsi_host);
8378 } else if (h->discovery_polling) {
8379 hpsa_disable_rld_caching(h);
8380 if (hpsa_luns_changed(h)) {
8381 struct Scsi_Host *sh = NULL;
8383 dev_info(&h->pdev->dev,
8384 "driver discovery polling rescan.\n");
8385 sh = scsi_host_get(h->scsi_host);
8386 if (sh != NULL) {
8387 hpsa_scan_start(sh);
8388 scsi_host_put(sh);
8392 spin_lock_irqsave(&h->lock, flags);
8393 if (!h->remove_in_progress)
8394 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8395 h->heartbeat_sample_interval);
8396 spin_unlock_irqrestore(&h->lock, flags);
8399 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8401 unsigned long flags;
8402 struct ctlr_info *h = container_of(to_delayed_work(work),
8403 struct ctlr_info, monitor_ctlr_work);
8405 detect_controller_lockup(h);
8406 if (lockup_detected(h))
8407 return;
8409 spin_lock_irqsave(&h->lock, flags);
8410 if (!h->remove_in_progress)
8411 schedule_delayed_work(&h->monitor_ctlr_work,
8412 h->heartbeat_sample_interval);
8413 spin_unlock_irqrestore(&h->lock, flags);
8416 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8417 char *name)
8419 struct workqueue_struct *wq = NULL;
8421 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8422 if (!wq)
8423 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8425 return wq;
8428 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8430 int dac, rc;
8431 struct ctlr_info *h;
8432 int try_soft_reset = 0;
8433 unsigned long flags;
8434 u32 board_id;
8436 if (number_of_controllers == 0)
8437 printk(KERN_INFO DRIVER_NAME "\n");
8439 rc = hpsa_lookup_board_id(pdev, &board_id);
8440 if (rc < 0) {
8441 dev_warn(&pdev->dev, "Board ID not found\n");
8442 return rc;
8445 rc = hpsa_init_reset_devices(pdev, board_id);
8446 if (rc) {
8447 if (rc != -ENOTSUPP)
8448 return rc;
8449 /* If the reset fails in a particular way (it has no way to do
8450 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8451 * a soft reset once we get the controller configured up to the
8452 * point that it can accept a command.
8454 try_soft_reset = 1;
8455 rc = 0;
8458 reinit_after_soft_reset:
8460 /* Command structures must be aligned on a 32-byte boundary because
8461 * the 5 lower bits of the address are used by the hardware. and by
8462 * the driver. See comments in hpsa.h for more info.
8464 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8465 h = kzalloc(sizeof(*h), GFP_KERNEL);
8466 if (!h) {
8467 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8468 return -ENOMEM;
8471 h->pdev = pdev;
8473 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8474 INIT_LIST_HEAD(&h->offline_device_list);
8475 spin_lock_init(&h->lock);
8476 spin_lock_init(&h->offline_device_lock);
8477 spin_lock_init(&h->scan_lock);
8478 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8479 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8481 /* Allocate and clear per-cpu variable lockup_detected */
8482 h->lockup_detected = alloc_percpu(u32);
8483 if (!h->lockup_detected) {
8484 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8485 rc = -ENOMEM;
8486 goto clean1; /* aer/h */
8488 set_lockup_detected_for_all_cpus(h, 0);
8490 rc = hpsa_pci_init(h);
8491 if (rc)
8492 goto clean2; /* lu, aer/h */
8494 /* relies on h-> settings made by hpsa_pci_init, including
8495 * interrupt_mode h->intr */
8496 rc = hpsa_scsi_host_alloc(h);
8497 if (rc)
8498 goto clean2_5; /* pci, lu, aer/h */
8500 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8501 h->ctlr = number_of_controllers;
8502 number_of_controllers++;
8504 /* configure PCI DMA stuff */
8505 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8506 if (rc == 0) {
8507 dac = 1;
8508 } else {
8509 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8510 if (rc == 0) {
8511 dac = 0;
8512 } else {
8513 dev_err(&pdev->dev, "no suitable DMA available\n");
8514 goto clean3; /* shost, pci, lu, aer/h */
8518 /* make sure the board interrupts are off */
8519 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8521 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8522 if (rc)
8523 goto clean3; /* shost, pci, lu, aer/h */
8524 rc = hpsa_alloc_cmd_pool(h);
8525 if (rc)
8526 goto clean4; /* irq, shost, pci, lu, aer/h */
8527 rc = hpsa_alloc_sg_chain_blocks(h);
8528 if (rc)
8529 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8530 init_waitqueue_head(&h->scan_wait_queue);
8531 init_waitqueue_head(&h->abort_cmd_wait_queue);
8532 init_waitqueue_head(&h->event_sync_wait_queue);
8533 mutex_init(&h->reset_mutex);
8534 h->scan_finished = 1; /* no scan currently in progress */
8536 pci_set_drvdata(pdev, h);
8537 h->ndevices = 0;
8539 spin_lock_init(&h->devlock);
8540 rc = hpsa_put_ctlr_into_performant_mode(h);
8541 if (rc)
8542 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8544 /* hook into SCSI subsystem */
8545 rc = hpsa_scsi_add_host(h);
8546 if (rc)
8547 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8549 /* create the resubmit workqueue */
8550 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8551 if (!h->rescan_ctlr_wq) {
8552 rc = -ENOMEM;
8553 goto clean7;
8556 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8557 if (!h->resubmit_wq) {
8558 rc = -ENOMEM;
8559 goto clean7; /* aer/h */
8563 * At this point, the controller is ready to take commands.
8564 * Now, if reset_devices and the hard reset didn't work, try
8565 * the soft reset and see if that works.
8567 if (try_soft_reset) {
8569 /* This is kind of gross. We may or may not get a completion
8570 * from the soft reset command, and if we do, then the value
8571 * from the fifo may or may not be valid. So, we wait 10 secs
8572 * after the reset throwing away any completions we get during
8573 * that time. Unregister the interrupt handler and register
8574 * fake ones to scoop up any residual completions.
8576 spin_lock_irqsave(&h->lock, flags);
8577 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8578 spin_unlock_irqrestore(&h->lock, flags);
8579 hpsa_free_irqs(h);
8580 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8581 hpsa_intx_discard_completions);
8582 if (rc) {
8583 dev_warn(&h->pdev->dev,
8584 "Failed to request_irq after soft reset.\n");
8586 * cannot goto clean7 or free_irqs will be called
8587 * again. Instead, do its work
8589 hpsa_free_performant_mode(h); /* clean7 */
8590 hpsa_free_sg_chain_blocks(h); /* clean6 */
8591 hpsa_free_cmd_pool(h); /* clean5 */
8593 * skip hpsa_free_irqs(h) clean4 since that
8594 * was just called before request_irqs failed
8596 goto clean3;
8599 rc = hpsa_kdump_soft_reset(h);
8600 if (rc)
8601 /* Neither hard nor soft reset worked, we're hosed. */
8602 goto clean7;
8604 dev_info(&h->pdev->dev, "Board READY.\n");
8605 dev_info(&h->pdev->dev,
8606 "Waiting for stale completions to drain.\n");
8607 h->access.set_intr_mask(h, HPSA_INTR_ON);
8608 msleep(10000);
8609 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8611 rc = controller_reset_failed(h->cfgtable);
8612 if (rc)
8613 dev_info(&h->pdev->dev,
8614 "Soft reset appears to have failed.\n");
8616 /* since the controller's reset, we have to go back and re-init
8617 * everything. Easiest to just forget what we've done and do it
8618 * all over again.
8620 hpsa_undo_allocations_after_kdump_soft_reset(h);
8621 try_soft_reset = 0;
8622 if (rc)
8623 /* don't goto clean, we already unallocated */
8624 return -ENODEV;
8626 goto reinit_after_soft_reset;
8629 /* Enable Accelerated IO path at driver layer */
8630 h->acciopath_status = 1;
8631 /* Disable discovery polling.*/
8632 h->discovery_polling = 0;
8635 /* Turn the interrupts on so we can service requests */
8636 h->access.set_intr_mask(h, HPSA_INTR_ON);
8638 hpsa_hba_inquiry(h);
8640 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8641 if (!h->lastlogicals)
8642 dev_info(&h->pdev->dev,
8643 "Can't track change to report lun data\n");
8645 /* Monitor the controller for firmware lockups */
8646 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8647 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8648 schedule_delayed_work(&h->monitor_ctlr_work,
8649 h->heartbeat_sample_interval);
8650 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8651 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8652 h->heartbeat_sample_interval);
8653 return 0;
8655 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8656 hpsa_free_performant_mode(h);
8657 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8658 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8659 hpsa_free_sg_chain_blocks(h);
8660 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8661 hpsa_free_cmd_pool(h);
8662 clean4: /* irq, shost, pci, lu, aer/h */
8663 hpsa_free_irqs(h);
8664 clean3: /* shost, pci, lu, aer/h */
8665 scsi_host_put(h->scsi_host);
8666 h->scsi_host = NULL;
8667 clean2_5: /* pci, lu, aer/h */
8668 hpsa_free_pci_init(h);
8669 clean2: /* lu, aer/h */
8670 if (h->lockup_detected) {
8671 free_percpu(h->lockup_detected);
8672 h->lockup_detected = NULL;
8674 clean1: /* wq/aer/h */
8675 if (h->resubmit_wq) {
8676 destroy_workqueue(h->resubmit_wq);
8677 h->resubmit_wq = NULL;
8679 if (h->rescan_ctlr_wq) {
8680 destroy_workqueue(h->rescan_ctlr_wq);
8681 h->rescan_ctlr_wq = NULL;
8683 kfree(h);
8684 return rc;
8687 static void hpsa_flush_cache(struct ctlr_info *h)
8689 char *flush_buf;
8690 struct CommandList *c;
8691 int rc;
8693 if (unlikely(lockup_detected(h)))
8694 return;
8695 flush_buf = kzalloc(4, GFP_KERNEL);
8696 if (!flush_buf)
8697 return;
8699 c = cmd_alloc(h);
8701 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8702 RAID_CTLR_LUNID, TYPE_CMD)) {
8703 goto out;
8705 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8706 PCI_DMA_TODEVICE, NO_TIMEOUT);
8707 if (rc)
8708 goto out;
8709 if (c->err_info->CommandStatus != 0)
8710 out:
8711 dev_warn(&h->pdev->dev,
8712 "error flushing cache on controller\n");
8713 cmd_free(h, c);
8714 kfree(flush_buf);
8717 /* Make controller gather fresh report lun data each time we
8718 * send down a report luns request
8720 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8722 u32 *options;
8723 struct CommandList *c;
8724 int rc;
8726 /* Don't bother trying to set diag options if locked up */
8727 if (unlikely(h->lockup_detected))
8728 return;
8730 options = kzalloc(sizeof(*options), GFP_KERNEL);
8731 if (!options) {
8732 dev_err(&h->pdev->dev,
8733 "Error: failed to disable rld caching, during alloc.\n");
8734 return;
8737 c = cmd_alloc(h);
8739 /* first, get the current diag options settings */
8740 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8741 RAID_CTLR_LUNID, TYPE_CMD))
8742 goto errout;
8744 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8745 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8746 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8747 goto errout;
8749 /* Now, set the bit for disabling the RLD caching */
8750 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8752 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8753 RAID_CTLR_LUNID, TYPE_CMD))
8754 goto errout;
8756 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8757 PCI_DMA_TODEVICE, NO_TIMEOUT);
8758 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8759 goto errout;
8761 /* Now verify that it got set: */
8762 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8763 RAID_CTLR_LUNID, TYPE_CMD))
8764 goto errout;
8766 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8767 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8768 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8769 goto errout;
8771 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8772 goto out;
8774 errout:
8775 dev_err(&h->pdev->dev,
8776 "Error: failed to disable report lun data caching.\n");
8777 out:
8778 cmd_free(h, c);
8779 kfree(options);
8782 static void hpsa_shutdown(struct pci_dev *pdev)
8784 struct ctlr_info *h;
8786 h = pci_get_drvdata(pdev);
8787 /* Turn board interrupts off and send the flush cache command
8788 * sendcmd will turn off interrupt, and send the flush...
8789 * To write all data in the battery backed cache to disks
8791 hpsa_flush_cache(h);
8792 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8793 hpsa_free_irqs(h); /* init_one 4 */
8794 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8797 static void hpsa_free_device_info(struct ctlr_info *h)
8799 int i;
8801 for (i = 0; i < h->ndevices; i++) {
8802 kfree(h->dev[i]);
8803 h->dev[i] = NULL;
8807 static void hpsa_remove_one(struct pci_dev *pdev)
8809 struct ctlr_info *h;
8810 unsigned long flags;
8812 if (pci_get_drvdata(pdev) == NULL) {
8813 dev_err(&pdev->dev, "unable to remove device\n");
8814 return;
8816 h = pci_get_drvdata(pdev);
8818 /* Get rid of any controller monitoring work items */
8819 spin_lock_irqsave(&h->lock, flags);
8820 h->remove_in_progress = 1;
8821 spin_unlock_irqrestore(&h->lock, flags);
8822 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8823 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8824 destroy_workqueue(h->rescan_ctlr_wq);
8825 destroy_workqueue(h->resubmit_wq);
8828 * Call before disabling interrupts.
8829 * scsi_remove_host can trigger I/O operations especially
8830 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8831 * operations which cannot complete and will hang the system.
8833 if (h->scsi_host)
8834 scsi_remove_host(h->scsi_host); /* init_one 8 */
8835 /* includes hpsa_free_irqs - init_one 4 */
8836 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8837 hpsa_shutdown(pdev);
8839 hpsa_free_device_info(h); /* scan */
8841 kfree(h->hba_inquiry_data); /* init_one 10 */
8842 h->hba_inquiry_data = NULL; /* init_one 10 */
8843 hpsa_free_ioaccel2_sg_chain_blocks(h);
8844 hpsa_free_performant_mode(h); /* init_one 7 */
8845 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8846 hpsa_free_cmd_pool(h); /* init_one 5 */
8847 kfree(h->lastlogicals);
8849 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8851 scsi_host_put(h->scsi_host); /* init_one 3 */
8852 h->scsi_host = NULL; /* init_one 3 */
8854 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8855 hpsa_free_pci_init(h); /* init_one 2.5 */
8857 free_percpu(h->lockup_detected); /* init_one 2 */
8858 h->lockup_detected = NULL; /* init_one 2 */
8859 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8861 hpsa_delete_sas_host(h);
8863 kfree(h); /* init_one 1 */
8866 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8867 __attribute__((unused)) pm_message_t state)
8869 return -ENOSYS;
8872 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8874 return -ENOSYS;
8877 static struct pci_driver hpsa_pci_driver = {
8878 .name = HPSA,
8879 .probe = hpsa_init_one,
8880 .remove = hpsa_remove_one,
8881 .id_table = hpsa_pci_device_id, /* id_table */
8882 .shutdown = hpsa_shutdown,
8883 .suspend = hpsa_suspend,
8884 .resume = hpsa_resume,
8887 /* Fill in bucket_map[], given nsgs (the max number of
8888 * scatter gather elements supported) and bucket[],
8889 * which is an array of 8 integers. The bucket[] array
8890 * contains 8 different DMA transfer sizes (in 16
8891 * byte increments) which the controller uses to fetch
8892 * commands. This function fills in bucket_map[], which
8893 * maps a given number of scatter gather elements to one of
8894 * the 8 DMA transfer sizes. The point of it is to allow the
8895 * controller to only do as much DMA as needed to fetch the
8896 * command, with the DMA transfer size encoded in the lower
8897 * bits of the command address.
8899 static void calc_bucket_map(int bucket[], int num_buckets,
8900 int nsgs, int min_blocks, u32 *bucket_map)
8902 int i, j, b, size;
8904 /* Note, bucket_map must have nsgs+1 entries. */
8905 for (i = 0; i <= nsgs; i++) {
8906 /* Compute size of a command with i SG entries */
8907 size = i + min_blocks;
8908 b = num_buckets; /* Assume the biggest bucket */
8909 /* Find the bucket that is just big enough */
8910 for (j = 0; j < num_buckets; j++) {
8911 if (bucket[j] >= size) {
8912 b = j;
8913 break;
8916 /* for a command with i SG entries, use bucket b. */
8917 bucket_map[i] = b;
8922 * return -ENODEV on err, 0 on success (or no action)
8923 * allocates numerous items that must be freed later
8925 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8927 int i;
8928 unsigned long register_value;
8929 unsigned long transMethod = CFGTBL_Trans_Performant |
8930 (trans_support & CFGTBL_Trans_use_short_tags) |
8931 CFGTBL_Trans_enable_directed_msix |
8932 (trans_support & (CFGTBL_Trans_io_accel1 |
8933 CFGTBL_Trans_io_accel2));
8934 struct access_method access = SA5_performant_access;
8936 /* This is a bit complicated. There are 8 registers on
8937 * the controller which we write to to tell it 8 different
8938 * sizes of commands which there may be. It's a way of
8939 * reducing the DMA done to fetch each command. Encoded into
8940 * each command's tag are 3 bits which communicate to the controller
8941 * which of the eight sizes that command fits within. The size of
8942 * each command depends on how many scatter gather entries there are.
8943 * Each SG entry requires 16 bytes. The eight registers are programmed
8944 * with the number of 16-byte blocks a command of that size requires.
8945 * The smallest command possible requires 5 such 16 byte blocks.
8946 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8947 * blocks. Note, this only extends to the SG entries contained
8948 * within the command block, and does not extend to chained blocks
8949 * of SG elements. bft[] contains the eight values we write to
8950 * the registers. They are not evenly distributed, but have more
8951 * sizes for small commands, and fewer sizes for larger commands.
8953 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8954 #define MIN_IOACCEL2_BFT_ENTRY 5
8955 #define HPSA_IOACCEL2_HEADER_SZ 4
8956 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8957 13, 14, 15, 16, 17, 18, 19,
8958 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8959 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8960 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8961 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8962 16 * MIN_IOACCEL2_BFT_ENTRY);
8963 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8964 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8965 /* 5 = 1 s/g entry or 4k
8966 * 6 = 2 s/g entry or 8k
8967 * 8 = 4 s/g entry or 16k
8968 * 10 = 6 s/g entry or 24k
8971 /* If the controller supports either ioaccel method then
8972 * we can also use the RAID stack submit path that does not
8973 * perform the superfluous readl() after each command submission.
8975 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8976 access = SA5_performant_access_no_read;
8978 /* Controller spec: zero out this buffer. */
8979 for (i = 0; i < h->nreply_queues; i++)
8980 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8982 bft[7] = SG_ENTRIES_IN_CMD + 4;
8983 calc_bucket_map(bft, ARRAY_SIZE(bft),
8984 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8985 for (i = 0; i < 8; i++)
8986 writel(bft[i], &h->transtable->BlockFetch[i]);
8988 /* size of controller ring buffer */
8989 writel(h->max_commands, &h->transtable->RepQSize);
8990 writel(h->nreply_queues, &h->transtable->RepQCount);
8991 writel(0, &h->transtable->RepQCtrAddrLow32);
8992 writel(0, &h->transtable->RepQCtrAddrHigh32);
8994 for (i = 0; i < h->nreply_queues; i++) {
8995 writel(0, &h->transtable->RepQAddr[i].upper);
8996 writel(h->reply_queue[i].busaddr,
8997 &h->transtable->RepQAddr[i].lower);
9000 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9001 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9003 * enable outbound interrupt coalescing in accelerator mode;
9005 if (trans_support & CFGTBL_Trans_io_accel1) {
9006 access = SA5_ioaccel_mode1_access;
9007 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9008 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9009 } else {
9010 if (trans_support & CFGTBL_Trans_io_accel2) {
9011 access = SA5_ioaccel_mode2_access;
9012 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9013 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9016 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9017 if (hpsa_wait_for_mode_change_ack(h)) {
9018 dev_err(&h->pdev->dev,
9019 "performant mode problem - doorbell timeout\n");
9020 return -ENODEV;
9022 register_value = readl(&(h->cfgtable->TransportActive));
9023 if (!(register_value & CFGTBL_Trans_Performant)) {
9024 dev_err(&h->pdev->dev,
9025 "performant mode problem - transport not active\n");
9026 return -ENODEV;
9028 /* Change the access methods to the performant access methods */
9029 h->access = access;
9030 h->transMethod = transMethod;
9032 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9033 (trans_support & CFGTBL_Trans_io_accel2)))
9034 return 0;
9036 if (trans_support & CFGTBL_Trans_io_accel1) {
9037 /* Set up I/O accelerator mode */
9038 for (i = 0; i < h->nreply_queues; i++) {
9039 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9040 h->reply_queue[i].current_entry =
9041 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9043 bft[7] = h->ioaccel_maxsg + 8;
9044 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9045 h->ioaccel1_blockFetchTable);
9047 /* initialize all reply queue entries to unused */
9048 for (i = 0; i < h->nreply_queues; i++)
9049 memset(h->reply_queue[i].head,
9050 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9051 h->reply_queue_size);
9053 /* set all the constant fields in the accelerator command
9054 * frames once at init time to save CPU cycles later.
9056 for (i = 0; i < h->nr_cmds; i++) {
9057 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9059 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9060 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9061 (i * sizeof(struct ErrorInfo)));
9062 cp->err_info_len = sizeof(struct ErrorInfo);
9063 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9064 cp->host_context_flags =
9065 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9066 cp->timeout_sec = 0;
9067 cp->ReplyQueue = 0;
9068 cp->tag =
9069 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9070 cp->host_addr =
9071 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9072 (i * sizeof(struct io_accel1_cmd)));
9074 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9075 u64 cfg_offset, cfg_base_addr_index;
9076 u32 bft2_offset, cfg_base_addr;
9077 int rc;
9079 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9080 &cfg_base_addr_index, &cfg_offset);
9081 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9082 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9083 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9084 4, h->ioaccel2_blockFetchTable);
9085 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9086 BUILD_BUG_ON(offsetof(struct CfgTable,
9087 io_accel_request_size_offset) != 0xb8);
9088 h->ioaccel2_bft2_regs =
9089 remap_pci_mem(pci_resource_start(h->pdev,
9090 cfg_base_addr_index) +
9091 cfg_offset + bft2_offset,
9092 ARRAY_SIZE(bft2) *
9093 sizeof(*h->ioaccel2_bft2_regs));
9094 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9095 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9097 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9098 if (hpsa_wait_for_mode_change_ack(h)) {
9099 dev_err(&h->pdev->dev,
9100 "performant mode problem - enabling ioaccel mode\n");
9101 return -ENODEV;
9103 return 0;
9106 /* Free ioaccel1 mode command blocks and block fetch table */
9107 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9109 if (h->ioaccel_cmd_pool) {
9110 pci_free_consistent(h->pdev,
9111 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9112 h->ioaccel_cmd_pool,
9113 h->ioaccel_cmd_pool_dhandle);
9114 h->ioaccel_cmd_pool = NULL;
9115 h->ioaccel_cmd_pool_dhandle = 0;
9117 kfree(h->ioaccel1_blockFetchTable);
9118 h->ioaccel1_blockFetchTable = NULL;
9121 /* Allocate ioaccel1 mode command blocks and block fetch table */
9122 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9124 h->ioaccel_maxsg =
9125 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9126 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9127 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9129 /* Command structures must be aligned on a 128-byte boundary
9130 * because the 7 lower bits of the address are used by the
9131 * hardware.
9133 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9134 IOACCEL1_COMMANDLIST_ALIGNMENT);
9135 h->ioaccel_cmd_pool =
9136 pci_alloc_consistent(h->pdev,
9137 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9138 &(h->ioaccel_cmd_pool_dhandle));
9140 h->ioaccel1_blockFetchTable =
9141 kmalloc(((h->ioaccel_maxsg + 1) *
9142 sizeof(u32)), GFP_KERNEL);
9144 if ((h->ioaccel_cmd_pool == NULL) ||
9145 (h->ioaccel1_blockFetchTable == NULL))
9146 goto clean_up;
9148 memset(h->ioaccel_cmd_pool, 0,
9149 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9150 return 0;
9152 clean_up:
9153 hpsa_free_ioaccel1_cmd_and_bft(h);
9154 return -ENOMEM;
9157 /* Free ioaccel2 mode command blocks and block fetch table */
9158 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9160 hpsa_free_ioaccel2_sg_chain_blocks(h);
9162 if (h->ioaccel2_cmd_pool) {
9163 pci_free_consistent(h->pdev,
9164 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9165 h->ioaccel2_cmd_pool,
9166 h->ioaccel2_cmd_pool_dhandle);
9167 h->ioaccel2_cmd_pool = NULL;
9168 h->ioaccel2_cmd_pool_dhandle = 0;
9170 kfree(h->ioaccel2_blockFetchTable);
9171 h->ioaccel2_blockFetchTable = NULL;
9174 /* Allocate ioaccel2 mode command blocks and block fetch table */
9175 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9177 int rc;
9179 /* Allocate ioaccel2 mode command blocks and block fetch table */
9181 h->ioaccel_maxsg =
9182 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9183 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9184 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9186 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9187 IOACCEL2_COMMANDLIST_ALIGNMENT);
9188 h->ioaccel2_cmd_pool =
9189 pci_alloc_consistent(h->pdev,
9190 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9191 &(h->ioaccel2_cmd_pool_dhandle));
9193 h->ioaccel2_blockFetchTable =
9194 kmalloc(((h->ioaccel_maxsg + 1) *
9195 sizeof(u32)), GFP_KERNEL);
9197 if ((h->ioaccel2_cmd_pool == NULL) ||
9198 (h->ioaccel2_blockFetchTable == NULL)) {
9199 rc = -ENOMEM;
9200 goto clean_up;
9203 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9204 if (rc)
9205 goto clean_up;
9207 memset(h->ioaccel2_cmd_pool, 0,
9208 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9209 return 0;
9211 clean_up:
9212 hpsa_free_ioaccel2_cmd_and_bft(h);
9213 return rc;
9216 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217 static void hpsa_free_performant_mode(struct ctlr_info *h)
9219 kfree(h->blockFetchTable);
9220 h->blockFetchTable = NULL;
9221 hpsa_free_reply_queues(h);
9222 hpsa_free_ioaccel1_cmd_and_bft(h);
9223 hpsa_free_ioaccel2_cmd_and_bft(h);
9226 /* return -ENODEV on error, 0 on success (or no action)
9227 * allocates numerous items that must be freed later
9229 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9231 u32 trans_support;
9232 unsigned long transMethod = CFGTBL_Trans_Performant |
9233 CFGTBL_Trans_use_short_tags;
9234 int i, rc;
9236 if (hpsa_simple_mode)
9237 return 0;
9239 trans_support = readl(&(h->cfgtable->TransportSupport));
9240 if (!(trans_support & PERFORMANT_MODE))
9241 return 0;
9243 /* Check for I/O accelerator mode support */
9244 if (trans_support & CFGTBL_Trans_io_accel1) {
9245 transMethod |= CFGTBL_Trans_io_accel1 |
9246 CFGTBL_Trans_enable_directed_msix;
9247 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9248 if (rc)
9249 return rc;
9250 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9251 transMethod |= CFGTBL_Trans_io_accel2 |
9252 CFGTBL_Trans_enable_directed_msix;
9253 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9254 if (rc)
9255 return rc;
9258 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9259 hpsa_get_max_perf_mode_cmds(h);
9260 /* Performant mode ring buffer and supporting data structures */
9261 h->reply_queue_size = h->max_commands * sizeof(u64);
9263 for (i = 0; i < h->nreply_queues; i++) {
9264 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9265 h->reply_queue_size,
9266 &(h->reply_queue[i].busaddr));
9267 if (!h->reply_queue[i].head) {
9268 rc = -ENOMEM;
9269 goto clean1; /* rq, ioaccel */
9271 h->reply_queue[i].size = h->max_commands;
9272 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9273 h->reply_queue[i].current_entry = 0;
9276 /* Need a block fetch table for performant mode */
9277 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9278 sizeof(u32)), GFP_KERNEL);
9279 if (!h->blockFetchTable) {
9280 rc = -ENOMEM;
9281 goto clean1; /* rq, ioaccel */
9284 rc = hpsa_enter_performant_mode(h, trans_support);
9285 if (rc)
9286 goto clean2; /* bft, rq, ioaccel */
9287 return 0;
9289 clean2: /* bft, rq, ioaccel */
9290 kfree(h->blockFetchTable);
9291 h->blockFetchTable = NULL;
9292 clean1: /* rq, ioaccel */
9293 hpsa_free_reply_queues(h);
9294 hpsa_free_ioaccel1_cmd_and_bft(h);
9295 hpsa_free_ioaccel2_cmd_and_bft(h);
9296 return rc;
9299 static int is_accelerated_cmd(struct CommandList *c)
9301 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9304 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9306 struct CommandList *c = NULL;
9307 int i, accel_cmds_out;
9308 int refcount;
9310 do { /* wait for all outstanding ioaccel commands to drain out */
9311 accel_cmds_out = 0;
9312 for (i = 0; i < h->nr_cmds; i++) {
9313 c = h->cmd_pool + i;
9314 refcount = atomic_inc_return(&c->refcount);
9315 if (refcount > 1) /* Command is allocated */
9316 accel_cmds_out += is_accelerated_cmd(c);
9317 cmd_free(h, c);
9319 if (accel_cmds_out <= 0)
9320 break;
9321 msleep(100);
9322 } while (1);
9325 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9326 struct hpsa_sas_port *hpsa_sas_port)
9328 struct hpsa_sas_phy *hpsa_sas_phy;
9329 struct sas_phy *phy;
9331 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9332 if (!hpsa_sas_phy)
9333 return NULL;
9335 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9336 hpsa_sas_port->next_phy_index);
9337 if (!phy) {
9338 kfree(hpsa_sas_phy);
9339 return NULL;
9342 hpsa_sas_port->next_phy_index++;
9343 hpsa_sas_phy->phy = phy;
9344 hpsa_sas_phy->parent_port = hpsa_sas_port;
9346 return hpsa_sas_phy;
9349 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9351 struct sas_phy *phy = hpsa_sas_phy->phy;
9353 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9354 sas_phy_free(phy);
9355 if (hpsa_sas_phy->added_to_port)
9356 list_del(&hpsa_sas_phy->phy_list_entry);
9357 kfree(hpsa_sas_phy);
9360 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9362 int rc;
9363 struct hpsa_sas_port *hpsa_sas_port;
9364 struct sas_phy *phy;
9365 struct sas_identify *identify;
9367 hpsa_sas_port = hpsa_sas_phy->parent_port;
9368 phy = hpsa_sas_phy->phy;
9370 identify = &phy->identify;
9371 memset(identify, 0, sizeof(*identify));
9372 identify->sas_address = hpsa_sas_port->sas_address;
9373 identify->device_type = SAS_END_DEVICE;
9374 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9375 identify->target_port_protocols = SAS_PROTOCOL_STP;
9376 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9377 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9378 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9379 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9380 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9382 rc = sas_phy_add(hpsa_sas_phy->phy);
9383 if (rc)
9384 return rc;
9386 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9387 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9388 &hpsa_sas_port->phy_list_head);
9389 hpsa_sas_phy->added_to_port = true;
9391 return 0;
9394 static int
9395 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9396 struct sas_rphy *rphy)
9398 struct sas_identify *identify;
9400 identify = &rphy->identify;
9401 identify->sas_address = hpsa_sas_port->sas_address;
9402 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9403 identify->target_port_protocols = SAS_PROTOCOL_STP;
9405 return sas_rphy_add(rphy);
9408 static struct hpsa_sas_port
9409 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9410 u64 sas_address)
9412 int rc;
9413 struct hpsa_sas_port *hpsa_sas_port;
9414 struct sas_port *port;
9416 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9417 if (!hpsa_sas_port)
9418 return NULL;
9420 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9421 hpsa_sas_port->parent_node = hpsa_sas_node;
9423 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9424 if (!port)
9425 goto free_hpsa_port;
9427 rc = sas_port_add(port);
9428 if (rc)
9429 goto free_sas_port;
9431 hpsa_sas_port->port = port;
9432 hpsa_sas_port->sas_address = sas_address;
9433 list_add_tail(&hpsa_sas_port->port_list_entry,
9434 &hpsa_sas_node->port_list_head);
9436 return hpsa_sas_port;
9438 free_sas_port:
9439 sas_port_free(port);
9440 free_hpsa_port:
9441 kfree(hpsa_sas_port);
9443 return NULL;
9446 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9448 struct hpsa_sas_phy *hpsa_sas_phy;
9449 struct hpsa_sas_phy *next;
9451 list_for_each_entry_safe(hpsa_sas_phy, next,
9452 &hpsa_sas_port->phy_list_head, phy_list_entry)
9453 hpsa_free_sas_phy(hpsa_sas_phy);
9455 sas_port_delete(hpsa_sas_port->port);
9456 list_del(&hpsa_sas_port->port_list_entry);
9457 kfree(hpsa_sas_port);
9460 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9462 struct hpsa_sas_node *hpsa_sas_node;
9464 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9465 if (hpsa_sas_node) {
9466 hpsa_sas_node->parent_dev = parent_dev;
9467 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9470 return hpsa_sas_node;
9473 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9475 struct hpsa_sas_port *hpsa_sas_port;
9476 struct hpsa_sas_port *next;
9478 if (!hpsa_sas_node)
9479 return;
9481 list_for_each_entry_safe(hpsa_sas_port, next,
9482 &hpsa_sas_node->port_list_head, port_list_entry)
9483 hpsa_free_sas_port(hpsa_sas_port);
9485 kfree(hpsa_sas_node);
9488 static struct hpsa_scsi_dev_t
9489 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9490 struct sas_rphy *rphy)
9492 int i;
9493 struct hpsa_scsi_dev_t *device;
9495 for (i = 0; i < h->ndevices; i++) {
9496 device = h->dev[i];
9497 if (!device->sas_port)
9498 continue;
9499 if (device->sas_port->rphy == rphy)
9500 return device;
9503 return NULL;
9506 static int hpsa_add_sas_host(struct ctlr_info *h)
9508 int rc;
9509 struct device *parent_dev;
9510 struct hpsa_sas_node *hpsa_sas_node;
9511 struct hpsa_sas_port *hpsa_sas_port;
9512 struct hpsa_sas_phy *hpsa_sas_phy;
9514 parent_dev = &h->scsi_host->shost_gendev;
9516 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9517 if (!hpsa_sas_node)
9518 return -ENOMEM;
9520 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9521 if (!hpsa_sas_port) {
9522 rc = -ENODEV;
9523 goto free_sas_node;
9526 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9527 if (!hpsa_sas_phy) {
9528 rc = -ENODEV;
9529 goto free_sas_port;
9532 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9533 if (rc)
9534 goto free_sas_phy;
9536 h->sas_host = hpsa_sas_node;
9538 return 0;
9540 free_sas_phy:
9541 hpsa_free_sas_phy(hpsa_sas_phy);
9542 free_sas_port:
9543 hpsa_free_sas_port(hpsa_sas_port);
9544 free_sas_node:
9545 hpsa_free_sas_node(hpsa_sas_node);
9547 return rc;
9550 static void hpsa_delete_sas_host(struct ctlr_info *h)
9552 hpsa_free_sas_node(h->sas_host);
9555 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9556 struct hpsa_scsi_dev_t *device)
9558 int rc;
9559 struct hpsa_sas_port *hpsa_sas_port;
9560 struct sas_rphy *rphy;
9562 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9563 if (!hpsa_sas_port)
9564 return -ENOMEM;
9566 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9567 if (!rphy) {
9568 rc = -ENODEV;
9569 goto free_sas_port;
9572 hpsa_sas_port->rphy = rphy;
9573 device->sas_port = hpsa_sas_port;
9575 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9576 if (rc)
9577 goto free_sas_port;
9579 return 0;
9581 free_sas_port:
9582 hpsa_free_sas_port(hpsa_sas_port);
9583 device->sas_port = NULL;
9585 return rc;
9588 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9590 if (device->sas_port) {
9591 hpsa_free_sas_port(device->sas_port);
9592 device->sas_port = NULL;
9596 static int
9597 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9599 return 0;
9602 static int
9603 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9605 return 0;
9608 static int
9609 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9611 return -ENXIO;
9614 static int
9615 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9617 return 0;
9620 static int
9621 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9623 return 0;
9626 static int
9627 hpsa_sas_phy_setup(struct sas_phy *phy)
9629 return 0;
9632 static void
9633 hpsa_sas_phy_release(struct sas_phy *phy)
9637 static int
9638 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9640 return -EINVAL;
9643 /* SMP = Serial Management Protocol */
9644 static int
9645 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9646 struct request *req)
9648 return -EINVAL;
9651 static struct sas_function_template hpsa_sas_transport_functions = {
9652 .get_linkerrors = hpsa_sas_get_linkerrors,
9653 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9654 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9655 .phy_reset = hpsa_sas_phy_reset,
9656 .phy_enable = hpsa_sas_phy_enable,
9657 .phy_setup = hpsa_sas_phy_setup,
9658 .phy_release = hpsa_sas_phy_release,
9659 .set_phy_speed = hpsa_sas_phy_speed,
9660 .smp_handler = hpsa_sas_smp_handler,
9664 * This is it. Register the PCI driver information for the cards we control
9665 * the OS will call our registered routines when it finds one of our cards.
9667 static int __init hpsa_init(void)
9669 int rc;
9671 hpsa_sas_transport_template =
9672 sas_attach_transport(&hpsa_sas_transport_functions);
9673 if (!hpsa_sas_transport_template)
9674 return -ENODEV;
9676 rc = pci_register_driver(&hpsa_pci_driver);
9678 if (rc)
9679 sas_release_transport(hpsa_sas_transport_template);
9681 return rc;
9684 static void __exit hpsa_cleanup(void)
9686 pci_unregister_driver(&hpsa_pci_driver);
9687 sas_release_transport(hpsa_sas_transport_template);
9690 static void __attribute__((unused)) verify_offsets(void)
9692 #define VERIFY_OFFSET(member, offset) \
9693 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9695 VERIFY_OFFSET(structure_size, 0);
9696 VERIFY_OFFSET(volume_blk_size, 4);
9697 VERIFY_OFFSET(volume_blk_cnt, 8);
9698 VERIFY_OFFSET(phys_blk_shift, 16);
9699 VERIFY_OFFSET(parity_rotation_shift, 17);
9700 VERIFY_OFFSET(strip_size, 18);
9701 VERIFY_OFFSET(disk_starting_blk, 20);
9702 VERIFY_OFFSET(disk_blk_cnt, 28);
9703 VERIFY_OFFSET(data_disks_per_row, 36);
9704 VERIFY_OFFSET(metadata_disks_per_row, 38);
9705 VERIFY_OFFSET(row_cnt, 40);
9706 VERIFY_OFFSET(layout_map_count, 42);
9707 VERIFY_OFFSET(flags, 44);
9708 VERIFY_OFFSET(dekindex, 46);
9709 /* VERIFY_OFFSET(reserved, 48 */
9710 VERIFY_OFFSET(data, 64);
9712 #undef VERIFY_OFFSET
9714 #define VERIFY_OFFSET(member, offset) \
9715 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9717 VERIFY_OFFSET(IU_type, 0);
9718 VERIFY_OFFSET(direction, 1);
9719 VERIFY_OFFSET(reply_queue, 2);
9720 /* VERIFY_OFFSET(reserved1, 3); */
9721 VERIFY_OFFSET(scsi_nexus, 4);
9722 VERIFY_OFFSET(Tag, 8);
9723 VERIFY_OFFSET(cdb, 16);
9724 VERIFY_OFFSET(cciss_lun, 32);
9725 VERIFY_OFFSET(data_len, 40);
9726 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9727 VERIFY_OFFSET(sg_count, 45);
9728 /* VERIFY_OFFSET(reserved3 */
9729 VERIFY_OFFSET(err_ptr, 48);
9730 VERIFY_OFFSET(err_len, 56);
9731 /* VERIFY_OFFSET(reserved4 */
9732 VERIFY_OFFSET(sg, 64);
9734 #undef VERIFY_OFFSET
9736 #define VERIFY_OFFSET(member, offset) \
9737 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9739 VERIFY_OFFSET(dev_handle, 0x00);
9740 VERIFY_OFFSET(reserved1, 0x02);
9741 VERIFY_OFFSET(function, 0x03);
9742 VERIFY_OFFSET(reserved2, 0x04);
9743 VERIFY_OFFSET(err_info, 0x0C);
9744 VERIFY_OFFSET(reserved3, 0x10);
9745 VERIFY_OFFSET(err_info_len, 0x12);
9746 VERIFY_OFFSET(reserved4, 0x13);
9747 VERIFY_OFFSET(sgl_offset, 0x14);
9748 VERIFY_OFFSET(reserved5, 0x15);
9749 VERIFY_OFFSET(transfer_len, 0x1C);
9750 VERIFY_OFFSET(reserved6, 0x20);
9751 VERIFY_OFFSET(io_flags, 0x24);
9752 VERIFY_OFFSET(reserved7, 0x26);
9753 VERIFY_OFFSET(LUN, 0x34);
9754 VERIFY_OFFSET(control, 0x3C);
9755 VERIFY_OFFSET(CDB, 0x40);
9756 VERIFY_OFFSET(reserved8, 0x50);
9757 VERIFY_OFFSET(host_context_flags, 0x60);
9758 VERIFY_OFFSET(timeout_sec, 0x62);
9759 VERIFY_OFFSET(ReplyQueue, 0x64);
9760 VERIFY_OFFSET(reserved9, 0x65);
9761 VERIFY_OFFSET(tag, 0x68);
9762 VERIFY_OFFSET(host_addr, 0x70);
9763 VERIFY_OFFSET(CISS_LUN, 0x78);
9764 VERIFY_OFFSET(SG, 0x78 + 8);
9765 #undef VERIFY_OFFSET
9768 module_init(hpsa_init);
9769 module_exit(hpsa_cleanup);