tcp: don't update snd_nxt, when a socket is switched from repair mode
[linux/fpc-iii.git] / mm / migrate.c
blobdfc8300ecbb273fe3d7f5ef37e21e20a63b58c84
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
45 #include "internal.h"
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
52 int migrate_prep(void)
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
60 lru_add_drain_all();
62 return 0;
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
68 lru_add_drain();
70 return 0;
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
77 void putback_lru_pages(struct list_head *l)
79 struct page *page;
80 struct page *page2;
82 list_for_each_entry_safe(page, page2, l, lru) {
83 list_del(&page->lru);
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 void putback_movable_pages(struct list_head *l)
99 struct page *page;
100 struct page *page2;
102 list_for_each_entry_safe(page, page2, l, lru) {
103 if (unlikely(PageHuge(page))) {
104 putback_active_hugepage(page);
105 continue;
107 list_del(&page->lru);
108 dec_zone_page_state(page, NR_ISOLATED_ANON +
109 page_is_file_cache(page));
110 if (unlikely(isolated_balloon_page(page)))
111 balloon_page_putback(page);
112 else
113 putback_lru_page(page);
118 * Restore a potential migration pte to a working pte entry
120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121 unsigned long addr, void *old)
123 struct mm_struct *mm = vma->vm_mm;
124 swp_entry_t entry;
125 pmd_t *pmd;
126 pte_t *ptep, pte;
127 spinlock_t *ptl;
129 if (unlikely(PageHuge(new))) {
130 ptep = huge_pte_offset(mm, addr);
131 if (!ptep)
132 goto out;
133 ptl = &mm->page_table_lock;
134 } else {
135 pmd = mm_find_pmd(mm, addr);
136 if (!pmd)
137 goto out;
138 if (pmd_trans_huge(*pmd))
139 goto out;
141 ptep = pte_offset_map(pmd, addr);
144 * Peek to check is_swap_pte() before taking ptlock? No, we
145 * can race mremap's move_ptes(), which skips anon_vma lock.
148 ptl = pte_lockptr(mm, pmd);
151 spin_lock(ptl);
152 pte = *ptep;
153 if (!is_swap_pte(pte))
154 goto unlock;
156 entry = pte_to_swp_entry(pte);
158 if (!is_migration_entry(entry) ||
159 migration_entry_to_page(entry) != old)
160 goto unlock;
162 get_page(new);
163 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164 if (pte_swp_soft_dirty(*ptep))
165 pte = pte_mksoft_dirty(pte);
166 if (is_write_migration_entry(entry))
167 pte = pte_mkwrite(pte);
168 #ifdef CONFIG_HUGETLB_PAGE
169 if (PageHuge(new)) {
170 pte = pte_mkhuge(pte);
171 pte = arch_make_huge_pte(pte, vma, new, 0);
173 #endif
174 flush_dcache_page(new);
175 set_pte_at(mm, addr, ptep, pte);
177 if (PageHuge(new)) {
178 if (PageAnon(new))
179 hugepage_add_anon_rmap(new, vma, addr);
180 else
181 page_dup_rmap(new);
182 } else if (PageAnon(new))
183 page_add_anon_rmap(new, vma, addr);
184 else
185 page_add_file_rmap(new);
187 /* No need to invalidate - it was non-present before */
188 update_mmu_cache(vma, addr, ptep);
189 unlock:
190 pte_unmap_unlock(ptep, ptl);
191 out:
192 return SWAP_AGAIN;
196 * Get rid of all migration entries and replace them by
197 * references to the indicated page.
199 static void remove_migration_ptes(struct page *old, struct page *new)
201 rmap_walk(new, remove_migration_pte, old);
205 * Something used the pte of a page under migration. We need to
206 * get to the page and wait until migration is finished.
207 * When we return from this function the fault will be retried.
209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
210 spinlock_t *ptl)
212 pte_t pte;
213 swp_entry_t entry;
214 struct page *page;
216 spin_lock(ptl);
217 pte = *ptep;
218 if (!is_swap_pte(pte))
219 goto out;
221 entry = pte_to_swp_entry(pte);
222 if (!is_migration_entry(entry))
223 goto out;
225 page = migration_entry_to_page(entry);
228 * Once radix-tree replacement of page migration started, page_count
229 * *must* be zero. And, we don't want to call wait_on_page_locked()
230 * against a page without get_page().
231 * So, we use get_page_unless_zero(), here. Even failed, page fault
232 * will occur again.
234 if (!get_page_unless_zero(page))
235 goto out;
236 pte_unmap_unlock(ptep, ptl);
237 wait_on_page_locked(page);
238 put_page(page);
239 return;
240 out:
241 pte_unmap_unlock(ptep, ptl);
244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
245 unsigned long address)
247 spinlock_t *ptl = pte_lockptr(mm, pmd);
248 pte_t *ptep = pte_offset_map(pmd, address);
249 __migration_entry_wait(mm, ptep, ptl);
252 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
254 spinlock_t *ptl = &(mm)->page_table_lock;
255 __migration_entry_wait(mm, pte, ptl);
258 #ifdef CONFIG_BLOCK
259 /* Returns true if all buffers are successfully locked */
260 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 enum migrate_mode mode)
263 struct buffer_head *bh = head;
265 /* Simple case, sync compaction */
266 if (mode != MIGRATE_ASYNC) {
267 do {
268 get_bh(bh);
269 lock_buffer(bh);
270 bh = bh->b_this_page;
272 } while (bh != head);
274 return true;
277 /* async case, we cannot block on lock_buffer so use trylock_buffer */
278 do {
279 get_bh(bh);
280 if (!trylock_buffer(bh)) {
282 * We failed to lock the buffer and cannot stall in
283 * async migration. Release the taken locks
285 struct buffer_head *failed_bh = bh;
286 put_bh(failed_bh);
287 bh = head;
288 while (bh != failed_bh) {
289 unlock_buffer(bh);
290 put_bh(bh);
291 bh = bh->b_this_page;
293 return false;
296 bh = bh->b_this_page;
297 } while (bh != head);
298 return true;
300 #else
301 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302 enum migrate_mode mode)
304 return true;
306 #endif /* CONFIG_BLOCK */
309 * Replace the page in the mapping.
311 * The number of remaining references must be:
312 * 1 for anonymous pages without a mapping
313 * 2 for pages with a mapping
314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
316 int migrate_page_move_mapping(struct address_space *mapping,
317 struct page *newpage, struct page *page,
318 struct buffer_head *head, enum migrate_mode mode)
320 int expected_count = 0;
321 void **pslot;
323 if (!mapping) {
324 /* Anonymous page without mapping */
325 if (page_count(page) != 1)
326 return -EAGAIN;
327 return MIGRATEPAGE_SUCCESS;
330 spin_lock_irq(&mapping->tree_lock);
332 pslot = radix_tree_lookup_slot(&mapping->page_tree,
333 page_index(page));
335 expected_count = 2 + page_has_private(page);
336 if (page_count(page) != expected_count ||
337 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
338 spin_unlock_irq(&mapping->tree_lock);
339 return -EAGAIN;
342 if (!page_freeze_refs(page, expected_count)) {
343 spin_unlock_irq(&mapping->tree_lock);
344 return -EAGAIN;
348 * In the async migration case of moving a page with buffers, lock the
349 * buffers using trylock before the mapping is moved. If the mapping
350 * was moved, we later failed to lock the buffers and could not move
351 * the mapping back due to an elevated page count, we would have to
352 * block waiting on other references to be dropped.
354 if (mode == MIGRATE_ASYNC && head &&
355 !buffer_migrate_lock_buffers(head, mode)) {
356 page_unfreeze_refs(page, expected_count);
357 spin_unlock_irq(&mapping->tree_lock);
358 return -EAGAIN;
362 * Now we know that no one else is looking at the page.
364 get_page(newpage); /* add cache reference */
365 if (PageSwapCache(page)) {
366 SetPageSwapCache(newpage);
367 set_page_private(newpage, page_private(page));
370 radix_tree_replace_slot(pslot, newpage);
373 * Drop cache reference from old page by unfreezing
374 * to one less reference.
375 * We know this isn't the last reference.
377 page_unfreeze_refs(page, expected_count - 1);
380 * If moved to a different zone then also account
381 * the page for that zone. Other VM counters will be
382 * taken care of when we establish references to the
383 * new page and drop references to the old page.
385 * Note that anonymous pages are accounted for
386 * via NR_FILE_PAGES and NR_ANON_PAGES if they
387 * are mapped to swap space.
389 __dec_zone_page_state(page, NR_FILE_PAGES);
390 __inc_zone_page_state(newpage, NR_FILE_PAGES);
391 if (!PageSwapCache(page) && PageSwapBacked(page)) {
392 __dec_zone_page_state(page, NR_SHMEM);
393 __inc_zone_page_state(newpage, NR_SHMEM);
395 spin_unlock_irq(&mapping->tree_lock);
397 return MIGRATEPAGE_SUCCESS;
401 * The expected number of remaining references is the same as that
402 * of migrate_page_move_mapping().
404 int migrate_huge_page_move_mapping(struct address_space *mapping,
405 struct page *newpage, struct page *page)
407 int expected_count;
408 void **pslot;
410 if (!mapping) {
411 if (page_count(page) != 1)
412 return -EAGAIN;
413 return MIGRATEPAGE_SUCCESS;
416 spin_lock_irq(&mapping->tree_lock);
418 pslot = radix_tree_lookup_slot(&mapping->page_tree,
419 page_index(page));
421 expected_count = 2 + page_has_private(page);
422 if (page_count(page) != expected_count ||
423 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
424 spin_unlock_irq(&mapping->tree_lock);
425 return -EAGAIN;
428 if (!page_freeze_refs(page, expected_count)) {
429 spin_unlock_irq(&mapping->tree_lock);
430 return -EAGAIN;
433 get_page(newpage);
435 radix_tree_replace_slot(pslot, newpage);
437 page_unfreeze_refs(page, expected_count - 1);
439 spin_unlock_irq(&mapping->tree_lock);
440 return MIGRATEPAGE_SUCCESS;
444 * Copy the page to its new location
446 void migrate_page_copy(struct page *newpage, struct page *page)
448 int cpupid;
450 if (PageHuge(page) || PageTransHuge(page))
451 copy_huge_page(newpage, page);
452 else
453 copy_highpage(newpage, page);
455 if (PageError(page))
456 SetPageError(newpage);
457 if (PageReferenced(page))
458 SetPageReferenced(newpage);
459 if (PageUptodate(page))
460 SetPageUptodate(newpage);
461 if (TestClearPageActive(page)) {
462 VM_BUG_ON(PageUnevictable(page));
463 SetPageActive(newpage);
464 } else if (TestClearPageUnevictable(page))
465 SetPageUnevictable(newpage);
466 if (PageChecked(page))
467 SetPageChecked(newpage);
468 if (PageMappedToDisk(page))
469 SetPageMappedToDisk(newpage);
471 if (PageDirty(page)) {
472 clear_page_dirty_for_io(page);
474 * Want to mark the page and the radix tree as dirty, and
475 * redo the accounting that clear_page_dirty_for_io undid,
476 * but we can't use set_page_dirty because that function
477 * is actually a signal that all of the page has become dirty.
478 * Whereas only part of our page may be dirty.
480 if (PageSwapBacked(page))
481 SetPageDirty(newpage);
482 else
483 __set_page_dirty_nobuffers(newpage);
487 * Copy NUMA information to the new page, to prevent over-eager
488 * future migrations of this same page.
490 cpupid = page_cpupid_xchg_last(page, -1);
491 page_cpupid_xchg_last(newpage, cpupid);
493 mlock_migrate_page(newpage, page);
494 ksm_migrate_page(newpage, page);
496 * Please do not reorder this without considering how mm/ksm.c's
497 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
499 ClearPageSwapCache(page);
500 ClearPagePrivate(page);
501 set_page_private(page, 0);
504 * If any waiters have accumulated on the new page then
505 * wake them up.
507 if (PageWriteback(newpage))
508 end_page_writeback(newpage);
511 /************************************************************
512 * Migration functions
513 ***********************************************************/
515 /* Always fail migration. Used for mappings that are not movable */
516 int fail_migrate_page(struct address_space *mapping,
517 struct page *newpage, struct page *page)
519 return -EIO;
521 EXPORT_SYMBOL(fail_migrate_page);
524 * Common logic to directly migrate a single page suitable for
525 * pages that do not use PagePrivate/PagePrivate2.
527 * Pages are locked upon entry and exit.
529 int migrate_page(struct address_space *mapping,
530 struct page *newpage, struct page *page,
531 enum migrate_mode mode)
533 int rc;
535 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
537 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
539 if (rc != MIGRATEPAGE_SUCCESS)
540 return rc;
542 migrate_page_copy(newpage, page);
543 return MIGRATEPAGE_SUCCESS;
545 EXPORT_SYMBOL(migrate_page);
547 #ifdef CONFIG_BLOCK
549 * Migration function for pages with buffers. This function can only be used
550 * if the underlying filesystem guarantees that no other references to "page"
551 * exist.
553 int buffer_migrate_page(struct address_space *mapping,
554 struct page *newpage, struct page *page, enum migrate_mode mode)
556 struct buffer_head *bh, *head;
557 int rc;
559 if (!page_has_buffers(page))
560 return migrate_page(mapping, newpage, page, mode);
562 head = page_buffers(page);
564 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
566 if (rc != MIGRATEPAGE_SUCCESS)
567 return rc;
570 * In the async case, migrate_page_move_mapping locked the buffers
571 * with an IRQ-safe spinlock held. In the sync case, the buffers
572 * need to be locked now
574 if (mode != MIGRATE_ASYNC)
575 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
577 ClearPagePrivate(page);
578 set_page_private(newpage, page_private(page));
579 set_page_private(page, 0);
580 put_page(page);
581 get_page(newpage);
583 bh = head;
584 do {
585 set_bh_page(bh, newpage, bh_offset(bh));
586 bh = bh->b_this_page;
588 } while (bh != head);
590 SetPagePrivate(newpage);
592 migrate_page_copy(newpage, page);
594 bh = head;
595 do {
596 unlock_buffer(bh);
597 put_bh(bh);
598 bh = bh->b_this_page;
600 } while (bh != head);
602 return MIGRATEPAGE_SUCCESS;
604 EXPORT_SYMBOL(buffer_migrate_page);
605 #endif
608 * Writeback a page to clean the dirty state
610 static int writeout(struct address_space *mapping, struct page *page)
612 struct writeback_control wbc = {
613 .sync_mode = WB_SYNC_NONE,
614 .nr_to_write = 1,
615 .range_start = 0,
616 .range_end = LLONG_MAX,
617 .for_reclaim = 1
619 int rc;
621 if (!mapping->a_ops->writepage)
622 /* No write method for the address space */
623 return -EINVAL;
625 if (!clear_page_dirty_for_io(page))
626 /* Someone else already triggered a write */
627 return -EAGAIN;
630 * A dirty page may imply that the underlying filesystem has
631 * the page on some queue. So the page must be clean for
632 * migration. Writeout may mean we loose the lock and the
633 * page state is no longer what we checked for earlier.
634 * At this point we know that the migration attempt cannot
635 * be successful.
637 remove_migration_ptes(page, page);
639 rc = mapping->a_ops->writepage(page, &wbc);
641 if (rc != AOP_WRITEPAGE_ACTIVATE)
642 /* unlocked. Relock */
643 lock_page(page);
645 return (rc < 0) ? -EIO : -EAGAIN;
649 * Default handling if a filesystem does not provide a migration function.
651 static int fallback_migrate_page(struct address_space *mapping,
652 struct page *newpage, struct page *page, enum migrate_mode mode)
654 if (PageDirty(page)) {
655 /* Only writeback pages in full synchronous migration */
656 if (mode != MIGRATE_SYNC)
657 return -EBUSY;
658 return writeout(mapping, page);
662 * Buffers may be managed in a filesystem specific way.
663 * We must have no buffers or drop them.
665 if (page_has_private(page) &&
666 !try_to_release_page(page, GFP_KERNEL))
667 return -EAGAIN;
669 return migrate_page(mapping, newpage, page, mode);
673 * Move a page to a newly allocated page
674 * The page is locked and all ptes have been successfully removed.
676 * The new page will have replaced the old page if this function
677 * is successful.
679 * Return value:
680 * < 0 - error code
681 * MIGRATEPAGE_SUCCESS - success
683 static int move_to_new_page(struct page *newpage, struct page *page,
684 int remap_swapcache, enum migrate_mode mode)
686 struct address_space *mapping;
687 int rc;
690 * Block others from accessing the page when we get around to
691 * establishing additional references. We are the only one
692 * holding a reference to the new page at this point.
694 if (!trylock_page(newpage))
695 BUG();
697 /* Prepare mapping for the new page.*/
698 newpage->index = page->index;
699 newpage->mapping = page->mapping;
700 if (PageSwapBacked(page))
701 SetPageSwapBacked(newpage);
703 mapping = page_mapping(page);
704 if (!mapping)
705 rc = migrate_page(mapping, newpage, page, mode);
706 else if (mapping->a_ops->migratepage)
708 * Most pages have a mapping and most filesystems provide a
709 * migratepage callback. Anonymous pages are part of swap
710 * space which also has its own migratepage callback. This
711 * is the most common path for page migration.
713 rc = mapping->a_ops->migratepage(mapping,
714 newpage, page, mode);
715 else
716 rc = fallback_migrate_page(mapping, newpage, page, mode);
718 if (rc != MIGRATEPAGE_SUCCESS) {
719 newpage->mapping = NULL;
720 } else {
721 if (remap_swapcache)
722 remove_migration_ptes(page, newpage);
723 page->mapping = NULL;
726 unlock_page(newpage);
728 return rc;
731 static int __unmap_and_move(struct page *page, struct page *newpage,
732 int force, enum migrate_mode mode)
734 int rc = -EAGAIN;
735 int remap_swapcache = 1;
736 struct mem_cgroup *mem;
737 struct anon_vma *anon_vma = NULL;
739 if (!trylock_page(page)) {
740 if (!force || mode == MIGRATE_ASYNC)
741 goto out;
744 * It's not safe for direct compaction to call lock_page.
745 * For example, during page readahead pages are added locked
746 * to the LRU. Later, when the IO completes the pages are
747 * marked uptodate and unlocked. However, the queueing
748 * could be merging multiple pages for one bio (e.g.
749 * mpage_readpages). If an allocation happens for the
750 * second or third page, the process can end up locking
751 * the same page twice and deadlocking. Rather than
752 * trying to be clever about what pages can be locked,
753 * avoid the use of lock_page for direct compaction
754 * altogether.
756 if (current->flags & PF_MEMALLOC)
757 goto out;
759 lock_page(page);
762 /* charge against new page */
763 mem_cgroup_prepare_migration(page, newpage, &mem);
765 if (PageWriteback(page)) {
767 * Only in the case of a full synchronous migration is it
768 * necessary to wait for PageWriteback. In the async case,
769 * the retry loop is too short and in the sync-light case,
770 * the overhead of stalling is too much
772 if (mode != MIGRATE_SYNC) {
773 rc = -EBUSY;
774 goto uncharge;
776 if (!force)
777 goto uncharge;
778 wait_on_page_writeback(page);
781 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
782 * we cannot notice that anon_vma is freed while we migrates a page.
783 * This get_anon_vma() delays freeing anon_vma pointer until the end
784 * of migration. File cache pages are no problem because of page_lock()
785 * File Caches may use write_page() or lock_page() in migration, then,
786 * just care Anon page here.
788 if (PageAnon(page) && !PageKsm(page)) {
790 * Only page_lock_anon_vma_read() understands the subtleties of
791 * getting a hold on an anon_vma from outside one of its mms.
793 anon_vma = page_get_anon_vma(page);
794 if (anon_vma) {
796 * Anon page
798 } else if (PageSwapCache(page)) {
800 * We cannot be sure that the anon_vma of an unmapped
801 * swapcache page is safe to use because we don't
802 * know in advance if the VMA that this page belonged
803 * to still exists. If the VMA and others sharing the
804 * data have been freed, then the anon_vma could
805 * already be invalid.
807 * To avoid this possibility, swapcache pages get
808 * migrated but are not remapped when migration
809 * completes
811 remap_swapcache = 0;
812 } else {
813 goto uncharge;
817 if (unlikely(balloon_page_movable(page))) {
819 * A ballooned page does not need any special attention from
820 * physical to virtual reverse mapping procedures.
821 * Skip any attempt to unmap PTEs or to remap swap cache,
822 * in order to avoid burning cycles at rmap level, and perform
823 * the page migration right away (proteced by page lock).
825 rc = balloon_page_migrate(newpage, page, mode);
826 goto uncharge;
830 * Corner case handling:
831 * 1. When a new swap-cache page is read into, it is added to the LRU
832 * and treated as swapcache but it has no rmap yet.
833 * Calling try_to_unmap() against a page->mapping==NULL page will
834 * trigger a BUG. So handle it here.
835 * 2. An orphaned page (see truncate_complete_page) might have
836 * fs-private metadata. The page can be picked up due to memory
837 * offlining. Everywhere else except page reclaim, the page is
838 * invisible to the vm, so the page can not be migrated. So try to
839 * free the metadata, so the page can be freed.
841 if (!page->mapping) {
842 VM_BUG_ON(PageAnon(page));
843 if (page_has_private(page)) {
844 try_to_free_buffers(page);
845 goto uncharge;
847 goto skip_unmap;
850 /* Establish migration ptes or remove ptes */
851 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
853 skip_unmap:
854 if (!page_mapped(page))
855 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
857 if (rc && remap_swapcache)
858 remove_migration_ptes(page, page);
860 /* Drop an anon_vma reference if we took one */
861 if (anon_vma)
862 put_anon_vma(anon_vma);
864 uncharge:
865 mem_cgroup_end_migration(mem, page, newpage,
866 (rc == MIGRATEPAGE_SUCCESS ||
867 rc == MIGRATEPAGE_BALLOON_SUCCESS));
868 unlock_page(page);
869 out:
870 return rc;
874 * Obtain the lock on page, remove all ptes and migrate the page
875 * to the newly allocated page in newpage.
877 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
878 struct page *page, int force, enum migrate_mode mode)
880 int rc = 0;
881 int *result = NULL;
882 struct page *newpage = get_new_page(page, private, &result);
884 if (!newpage)
885 return -ENOMEM;
887 if (page_count(page) == 1) {
888 /* page was freed from under us. So we are done. */
889 goto out;
892 if (unlikely(PageTransHuge(page)))
893 if (unlikely(split_huge_page(page)))
894 goto out;
896 rc = __unmap_and_move(page, newpage, force, mode);
898 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
900 * A ballooned page has been migrated already.
901 * Now, it's the time to wrap-up counters,
902 * handle the page back to Buddy and return.
904 dec_zone_page_state(page, NR_ISOLATED_ANON +
905 page_is_file_cache(page));
906 balloon_page_free(page);
907 return MIGRATEPAGE_SUCCESS;
909 out:
910 if (rc != -EAGAIN) {
912 * A page that has been migrated has all references
913 * removed and will be freed. A page that has not been
914 * migrated will have kepts its references and be
915 * restored.
917 list_del(&page->lru);
918 dec_zone_page_state(page, NR_ISOLATED_ANON +
919 page_is_file_cache(page));
920 putback_lru_page(page);
923 * Move the new page to the LRU. If migration was not successful
924 * then this will free the page.
926 putback_lru_page(newpage);
927 if (result) {
928 if (rc)
929 *result = rc;
930 else
931 *result = page_to_nid(newpage);
933 return rc;
937 * Counterpart of unmap_and_move_page() for hugepage migration.
939 * This function doesn't wait the completion of hugepage I/O
940 * because there is no race between I/O and migration for hugepage.
941 * Note that currently hugepage I/O occurs only in direct I/O
942 * where no lock is held and PG_writeback is irrelevant,
943 * and writeback status of all subpages are counted in the reference
944 * count of the head page (i.e. if all subpages of a 2MB hugepage are
945 * under direct I/O, the reference of the head page is 512 and a bit more.)
946 * This means that when we try to migrate hugepage whose subpages are
947 * doing direct I/O, some references remain after try_to_unmap() and
948 * hugepage migration fails without data corruption.
950 * There is also no race when direct I/O is issued on the page under migration,
951 * because then pte is replaced with migration swap entry and direct I/O code
952 * will wait in the page fault for migration to complete.
954 static int unmap_and_move_huge_page(new_page_t get_new_page,
955 unsigned long private, struct page *hpage,
956 int force, enum migrate_mode mode)
958 int rc = 0;
959 int *result = NULL;
960 struct page *new_hpage = get_new_page(hpage, private, &result);
961 struct anon_vma *anon_vma = NULL;
964 * Movability of hugepages depends on architectures and hugepage size.
965 * This check is necessary because some callers of hugepage migration
966 * like soft offline and memory hotremove don't walk through page
967 * tables or check whether the hugepage is pmd-based or not before
968 * kicking migration.
970 if (!hugepage_migration_support(page_hstate(hpage)))
971 return -ENOSYS;
973 if (!new_hpage)
974 return -ENOMEM;
976 rc = -EAGAIN;
978 if (!trylock_page(hpage)) {
979 if (!force || mode != MIGRATE_SYNC)
980 goto out;
981 lock_page(hpage);
984 if (PageAnon(hpage))
985 anon_vma = page_get_anon_vma(hpage);
987 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
989 if (!page_mapped(hpage))
990 rc = move_to_new_page(new_hpage, hpage, 1, mode);
992 if (rc)
993 remove_migration_ptes(hpage, hpage);
995 if (anon_vma)
996 put_anon_vma(anon_vma);
998 if (!rc)
999 hugetlb_cgroup_migrate(hpage, new_hpage);
1001 unlock_page(hpage);
1002 out:
1003 if (rc != -EAGAIN)
1004 putback_active_hugepage(hpage);
1005 put_page(new_hpage);
1006 if (result) {
1007 if (rc)
1008 *result = rc;
1009 else
1010 *result = page_to_nid(new_hpage);
1012 return rc;
1016 * migrate_pages - migrate the pages specified in a list, to the free pages
1017 * supplied as the target for the page migration
1019 * @from: The list of pages to be migrated.
1020 * @get_new_page: The function used to allocate free pages to be used
1021 * as the target of the page migration.
1022 * @private: Private data to be passed on to get_new_page()
1023 * @mode: The migration mode that specifies the constraints for
1024 * page migration, if any.
1025 * @reason: The reason for page migration.
1027 * The function returns after 10 attempts or if no pages are movable any more
1028 * because the list has become empty or no retryable pages exist any more.
1029 * The caller should call putback_lru_pages() to return pages to the LRU
1030 * or free list only if ret != 0.
1032 * Returns the number of pages that were not migrated, or an error code.
1034 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1035 unsigned long private, enum migrate_mode mode, int reason)
1037 int retry = 1;
1038 int nr_failed = 0;
1039 int nr_succeeded = 0;
1040 int pass = 0;
1041 struct page *page;
1042 struct page *page2;
1043 int swapwrite = current->flags & PF_SWAPWRITE;
1044 int rc;
1046 if (!swapwrite)
1047 current->flags |= PF_SWAPWRITE;
1049 for(pass = 0; pass < 10 && retry; pass++) {
1050 retry = 0;
1052 list_for_each_entry_safe(page, page2, from, lru) {
1053 cond_resched();
1055 if (PageHuge(page))
1056 rc = unmap_and_move_huge_page(get_new_page,
1057 private, page, pass > 2, mode);
1058 else
1059 rc = unmap_and_move(get_new_page, private,
1060 page, pass > 2, mode);
1062 switch(rc) {
1063 case -ENOMEM:
1064 goto out;
1065 case -EAGAIN:
1066 retry++;
1067 break;
1068 case MIGRATEPAGE_SUCCESS:
1069 nr_succeeded++;
1070 break;
1071 default:
1072 /* Permanent failure */
1073 nr_failed++;
1074 break;
1078 rc = nr_failed + retry;
1079 out:
1080 if (nr_succeeded)
1081 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1082 if (nr_failed)
1083 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1084 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1086 if (!swapwrite)
1087 current->flags &= ~PF_SWAPWRITE;
1089 return rc;
1092 #ifdef CONFIG_NUMA
1094 * Move a list of individual pages
1096 struct page_to_node {
1097 unsigned long addr;
1098 struct page *page;
1099 int node;
1100 int status;
1103 static struct page *new_page_node(struct page *p, unsigned long private,
1104 int **result)
1106 struct page_to_node *pm = (struct page_to_node *)private;
1108 while (pm->node != MAX_NUMNODES && pm->page != p)
1109 pm++;
1111 if (pm->node == MAX_NUMNODES)
1112 return NULL;
1114 *result = &pm->status;
1116 if (PageHuge(p))
1117 return alloc_huge_page_node(page_hstate(compound_head(p)),
1118 pm->node);
1119 else
1120 return alloc_pages_exact_node(pm->node,
1121 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1125 * Move a set of pages as indicated in the pm array. The addr
1126 * field must be set to the virtual address of the page to be moved
1127 * and the node number must contain a valid target node.
1128 * The pm array ends with node = MAX_NUMNODES.
1130 static int do_move_page_to_node_array(struct mm_struct *mm,
1131 struct page_to_node *pm,
1132 int migrate_all)
1134 int err;
1135 struct page_to_node *pp;
1136 LIST_HEAD(pagelist);
1138 down_read(&mm->mmap_sem);
1141 * Build a list of pages to migrate
1143 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1144 struct vm_area_struct *vma;
1145 struct page *page;
1147 err = -EFAULT;
1148 vma = find_vma(mm, pp->addr);
1149 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1150 goto set_status;
1152 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1154 err = PTR_ERR(page);
1155 if (IS_ERR(page))
1156 goto set_status;
1158 err = -ENOENT;
1159 if (!page)
1160 goto set_status;
1162 /* Use PageReserved to check for zero page */
1163 if (PageReserved(page))
1164 goto put_and_set;
1166 pp->page = page;
1167 err = page_to_nid(page);
1169 if (err == pp->node)
1171 * Node already in the right place
1173 goto put_and_set;
1175 err = -EACCES;
1176 if (page_mapcount(page) > 1 &&
1177 !migrate_all)
1178 goto put_and_set;
1180 if (PageHuge(page)) {
1181 isolate_huge_page(page, &pagelist);
1182 goto put_and_set;
1185 err = isolate_lru_page(page);
1186 if (!err) {
1187 list_add_tail(&page->lru, &pagelist);
1188 inc_zone_page_state(page, NR_ISOLATED_ANON +
1189 page_is_file_cache(page));
1191 put_and_set:
1193 * Either remove the duplicate refcount from
1194 * isolate_lru_page() or drop the page ref if it was
1195 * not isolated.
1197 put_page(page);
1198 set_status:
1199 pp->status = err;
1202 err = 0;
1203 if (!list_empty(&pagelist)) {
1204 err = migrate_pages(&pagelist, new_page_node,
1205 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1206 if (err)
1207 putback_movable_pages(&pagelist);
1210 up_read(&mm->mmap_sem);
1211 return err;
1215 * Migrate an array of page address onto an array of nodes and fill
1216 * the corresponding array of status.
1218 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1219 unsigned long nr_pages,
1220 const void __user * __user *pages,
1221 const int __user *nodes,
1222 int __user *status, int flags)
1224 struct page_to_node *pm;
1225 unsigned long chunk_nr_pages;
1226 unsigned long chunk_start;
1227 int err;
1229 err = -ENOMEM;
1230 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1231 if (!pm)
1232 goto out;
1234 migrate_prep();
1237 * Store a chunk of page_to_node array in a page,
1238 * but keep the last one as a marker
1240 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1242 for (chunk_start = 0;
1243 chunk_start < nr_pages;
1244 chunk_start += chunk_nr_pages) {
1245 int j;
1247 if (chunk_start + chunk_nr_pages > nr_pages)
1248 chunk_nr_pages = nr_pages - chunk_start;
1250 /* fill the chunk pm with addrs and nodes from user-space */
1251 for (j = 0; j < chunk_nr_pages; j++) {
1252 const void __user *p;
1253 int node;
1255 err = -EFAULT;
1256 if (get_user(p, pages + j + chunk_start))
1257 goto out_pm;
1258 pm[j].addr = (unsigned long) p;
1260 if (get_user(node, nodes + j + chunk_start))
1261 goto out_pm;
1263 err = -ENODEV;
1264 if (node < 0 || node >= MAX_NUMNODES)
1265 goto out_pm;
1267 if (!node_state(node, N_MEMORY))
1268 goto out_pm;
1270 err = -EACCES;
1271 if (!node_isset(node, task_nodes))
1272 goto out_pm;
1274 pm[j].node = node;
1277 /* End marker for this chunk */
1278 pm[chunk_nr_pages].node = MAX_NUMNODES;
1280 /* Migrate this chunk */
1281 err = do_move_page_to_node_array(mm, pm,
1282 flags & MPOL_MF_MOVE_ALL);
1283 if (err < 0)
1284 goto out_pm;
1286 /* Return status information */
1287 for (j = 0; j < chunk_nr_pages; j++)
1288 if (put_user(pm[j].status, status + j + chunk_start)) {
1289 err = -EFAULT;
1290 goto out_pm;
1293 err = 0;
1295 out_pm:
1296 free_page((unsigned long)pm);
1297 out:
1298 return err;
1302 * Determine the nodes of an array of pages and store it in an array of status.
1304 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1305 const void __user **pages, int *status)
1307 unsigned long i;
1309 down_read(&mm->mmap_sem);
1311 for (i = 0; i < nr_pages; i++) {
1312 unsigned long addr = (unsigned long)(*pages);
1313 struct vm_area_struct *vma;
1314 struct page *page;
1315 int err = -EFAULT;
1317 vma = find_vma(mm, addr);
1318 if (!vma || addr < vma->vm_start)
1319 goto set_status;
1321 page = follow_page(vma, addr, 0);
1323 err = PTR_ERR(page);
1324 if (IS_ERR(page))
1325 goto set_status;
1327 err = -ENOENT;
1328 /* Use PageReserved to check for zero page */
1329 if (!page || PageReserved(page))
1330 goto set_status;
1332 err = page_to_nid(page);
1333 set_status:
1334 *status = err;
1336 pages++;
1337 status++;
1340 up_read(&mm->mmap_sem);
1344 * Determine the nodes of a user array of pages and store it in
1345 * a user array of status.
1347 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1348 const void __user * __user *pages,
1349 int __user *status)
1351 #define DO_PAGES_STAT_CHUNK_NR 16
1352 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1353 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1355 while (nr_pages) {
1356 unsigned long chunk_nr;
1358 chunk_nr = nr_pages;
1359 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1360 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1362 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1363 break;
1365 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1367 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1368 break;
1370 pages += chunk_nr;
1371 status += chunk_nr;
1372 nr_pages -= chunk_nr;
1374 return nr_pages ? -EFAULT : 0;
1378 * Move a list of pages in the address space of the currently executing
1379 * process.
1381 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1382 const void __user * __user *, pages,
1383 const int __user *, nodes,
1384 int __user *, status, int, flags)
1386 const struct cred *cred = current_cred(), *tcred;
1387 struct task_struct *task;
1388 struct mm_struct *mm;
1389 int err;
1390 nodemask_t task_nodes;
1392 /* Check flags */
1393 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1394 return -EINVAL;
1396 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1397 return -EPERM;
1399 /* Find the mm_struct */
1400 rcu_read_lock();
1401 task = pid ? find_task_by_vpid(pid) : current;
1402 if (!task) {
1403 rcu_read_unlock();
1404 return -ESRCH;
1406 get_task_struct(task);
1409 * Check if this process has the right to modify the specified
1410 * process. The right exists if the process has administrative
1411 * capabilities, superuser privileges or the same
1412 * userid as the target process.
1414 tcred = __task_cred(task);
1415 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1416 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1417 !capable(CAP_SYS_NICE)) {
1418 rcu_read_unlock();
1419 err = -EPERM;
1420 goto out;
1422 rcu_read_unlock();
1424 err = security_task_movememory(task);
1425 if (err)
1426 goto out;
1428 task_nodes = cpuset_mems_allowed(task);
1429 mm = get_task_mm(task);
1430 put_task_struct(task);
1432 if (!mm)
1433 return -EINVAL;
1435 if (nodes)
1436 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1437 nodes, status, flags);
1438 else
1439 err = do_pages_stat(mm, nr_pages, pages, status);
1441 mmput(mm);
1442 return err;
1444 out:
1445 put_task_struct(task);
1446 return err;
1450 * Call migration functions in the vma_ops that may prepare
1451 * memory in a vm for migration. migration functions may perform
1452 * the migration for vmas that do not have an underlying page struct.
1454 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1455 const nodemask_t *from, unsigned long flags)
1457 struct vm_area_struct *vma;
1458 int err = 0;
1460 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1461 if (vma->vm_ops && vma->vm_ops->migrate) {
1462 err = vma->vm_ops->migrate(vma, to, from, flags);
1463 if (err)
1464 break;
1467 return err;
1470 #ifdef CONFIG_NUMA_BALANCING
1472 * Returns true if this is a safe migration target node for misplaced NUMA
1473 * pages. Currently it only checks the watermarks which crude
1475 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1476 unsigned long nr_migrate_pages)
1478 int z;
1479 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1480 struct zone *zone = pgdat->node_zones + z;
1482 if (!populated_zone(zone))
1483 continue;
1485 if (!zone_reclaimable(zone))
1486 continue;
1488 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1489 if (!zone_watermark_ok(zone, 0,
1490 high_wmark_pages(zone) +
1491 nr_migrate_pages,
1492 0, 0))
1493 continue;
1494 return true;
1496 return false;
1499 static struct page *alloc_misplaced_dst_page(struct page *page,
1500 unsigned long data,
1501 int **result)
1503 int nid = (int) data;
1504 struct page *newpage;
1506 newpage = alloc_pages_exact_node(nid,
1507 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1508 __GFP_NOMEMALLOC | __GFP_NORETRY |
1509 __GFP_NOWARN) &
1510 ~GFP_IOFS, 0);
1511 if (newpage)
1512 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1514 return newpage;
1518 * page migration rate limiting control.
1519 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1520 * window of time. Default here says do not migrate more than 1280M per second.
1521 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1522 * as it is faults that reset the window, pte updates will happen unconditionally
1523 * if there has not been a fault since @pteupdate_interval_millisecs after the
1524 * throttle window closed.
1526 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1527 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1528 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1530 /* Returns true if NUMA migration is currently rate limited */
1531 bool migrate_ratelimited(int node)
1533 pg_data_t *pgdat = NODE_DATA(node);
1535 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1536 msecs_to_jiffies(pteupdate_interval_millisecs)))
1537 return false;
1539 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1540 return false;
1542 return true;
1545 /* Returns true if the node is migrate rate-limited after the update */
1546 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1548 bool rate_limited = false;
1551 * Rate-limit the amount of data that is being migrated to a node.
1552 * Optimal placement is no good if the memory bus is saturated and
1553 * all the time is being spent migrating!
1555 spin_lock(&pgdat->numabalancing_migrate_lock);
1556 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1557 pgdat->numabalancing_migrate_nr_pages = 0;
1558 pgdat->numabalancing_migrate_next_window = jiffies +
1559 msecs_to_jiffies(migrate_interval_millisecs);
1561 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1562 rate_limited = true;
1563 else
1564 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1565 spin_unlock(&pgdat->numabalancing_migrate_lock);
1567 return rate_limited;
1570 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1572 int page_lru;
1574 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1576 /* Avoid migrating to a node that is nearly full */
1577 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1578 return 0;
1580 if (isolate_lru_page(page))
1581 return 0;
1584 * migrate_misplaced_transhuge_page() skips page migration's usual
1585 * check on page_count(), so we must do it here, now that the page
1586 * has been isolated: a GUP pin, or any other pin, prevents migration.
1587 * The expected page count is 3: 1 for page's mapcount and 1 for the
1588 * caller's pin and 1 for the reference taken by isolate_lru_page().
1590 if (PageTransHuge(page) && page_count(page) != 3) {
1591 putback_lru_page(page);
1592 return 0;
1595 page_lru = page_is_file_cache(page);
1596 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1597 hpage_nr_pages(page));
1600 * Isolating the page has taken another reference, so the
1601 * caller's reference can be safely dropped without the page
1602 * disappearing underneath us during migration.
1604 put_page(page);
1605 return 1;
1609 * Attempt to migrate a misplaced page to the specified destination
1610 * node. Caller is expected to have an elevated reference count on
1611 * the page that will be dropped by this function before returning.
1613 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1614 int node)
1616 pg_data_t *pgdat = NODE_DATA(node);
1617 int isolated;
1618 int nr_remaining;
1619 LIST_HEAD(migratepages);
1622 * Don't migrate file pages that are mapped in multiple processes
1623 * with execute permissions as they are probably shared libraries.
1625 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1626 (vma->vm_flags & VM_EXEC))
1627 goto out;
1630 * Rate-limit the amount of data that is being migrated to a node.
1631 * Optimal placement is no good if the memory bus is saturated and
1632 * all the time is being spent migrating!
1634 if (numamigrate_update_ratelimit(pgdat, 1))
1635 goto out;
1637 isolated = numamigrate_isolate_page(pgdat, page);
1638 if (!isolated)
1639 goto out;
1641 list_add(&page->lru, &migratepages);
1642 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1643 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1644 if (nr_remaining) {
1645 putback_lru_pages(&migratepages);
1646 isolated = 0;
1647 } else
1648 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1649 BUG_ON(!list_empty(&migratepages));
1650 return isolated;
1652 out:
1653 put_page(page);
1654 return 0;
1656 #endif /* CONFIG_NUMA_BALANCING */
1658 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1660 * Migrates a THP to a given target node. page must be locked and is unlocked
1661 * before returning.
1663 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1664 struct vm_area_struct *vma,
1665 pmd_t *pmd, pmd_t entry,
1666 unsigned long address,
1667 struct page *page, int node)
1669 unsigned long haddr = address & HPAGE_PMD_MASK;
1670 pg_data_t *pgdat = NODE_DATA(node);
1671 int isolated = 0;
1672 struct page *new_page = NULL;
1673 struct mem_cgroup *memcg = NULL;
1674 int page_lru = page_is_file_cache(page);
1677 * Rate-limit the amount of data that is being migrated to a node.
1678 * Optimal placement is no good if the memory bus is saturated and
1679 * all the time is being spent migrating!
1681 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1682 goto out_dropref;
1684 new_page = alloc_pages_node(node,
1685 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1686 if (!new_page)
1687 goto out_fail;
1689 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1691 isolated = numamigrate_isolate_page(pgdat, page);
1692 if (!isolated) {
1693 put_page(new_page);
1694 goto out_fail;
1697 /* Prepare a page as a migration target */
1698 __set_page_locked(new_page);
1699 SetPageSwapBacked(new_page);
1701 /* anon mapping, we can simply copy page->mapping to the new page: */
1702 new_page->mapping = page->mapping;
1703 new_page->index = page->index;
1704 migrate_page_copy(new_page, page);
1705 WARN_ON(PageLRU(new_page));
1707 /* Recheck the target PMD */
1708 spin_lock(&mm->page_table_lock);
1709 if (unlikely(!pmd_same(*pmd, entry))) {
1710 spin_unlock(&mm->page_table_lock);
1712 /* Reverse changes made by migrate_page_copy() */
1713 if (TestClearPageActive(new_page))
1714 SetPageActive(page);
1715 if (TestClearPageUnevictable(new_page))
1716 SetPageUnevictable(page);
1717 mlock_migrate_page(page, new_page);
1719 unlock_page(new_page);
1720 put_page(new_page); /* Free it */
1722 /* Retake the callers reference and putback on LRU */
1723 get_page(page);
1724 putback_lru_page(page);
1725 mod_zone_page_state(page_zone(page),
1726 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1727 goto out_fail;
1731 * Traditional migration needs to prepare the memcg charge
1732 * transaction early to prevent the old page from being
1733 * uncharged when installing migration entries. Here we can
1734 * save the potential rollback and start the charge transfer
1735 * only when migration is already known to end successfully.
1737 mem_cgroup_prepare_migration(page, new_page, &memcg);
1739 entry = mk_pmd(new_page, vma->vm_page_prot);
1740 entry = pmd_mknonnuma(entry);
1741 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1742 entry = pmd_mkhuge(entry);
1744 pmdp_clear_flush(vma, haddr, pmd);
1745 set_pmd_at(mm, haddr, pmd, entry);
1746 page_add_new_anon_rmap(new_page, vma, haddr);
1747 update_mmu_cache_pmd(vma, address, &entry);
1748 page_remove_rmap(page);
1750 * Finish the charge transaction under the page table lock to
1751 * prevent split_huge_page() from dividing up the charge
1752 * before it's fully transferred to the new page.
1754 mem_cgroup_end_migration(memcg, page, new_page, true);
1755 spin_unlock(&mm->page_table_lock);
1757 unlock_page(new_page);
1758 unlock_page(page);
1759 put_page(page); /* Drop the rmap reference */
1760 put_page(page); /* Drop the LRU isolation reference */
1762 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1763 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1765 mod_zone_page_state(page_zone(page),
1766 NR_ISOLATED_ANON + page_lru,
1767 -HPAGE_PMD_NR);
1768 return isolated;
1770 out_fail:
1771 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1772 out_dropref:
1773 entry = pmd_mknonnuma(entry);
1774 set_pmd_at(mm, haddr, pmd, entry);
1775 update_mmu_cache_pmd(vma, address, &entry);
1777 unlock_page(page);
1778 put_page(page);
1779 return 0;
1781 #endif /* CONFIG_NUMA_BALANCING */
1783 #endif /* CONFIG_NUMA */