mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / rtc / rtc-cmos.c
blob371a7e91dbf6c57cb21206ec5a466b1036ad0c80
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/log2.h>
38 #include <linux/pm.h>
39 #include <linux/of.h>
40 #include <linux/of_platform.h>
41 #include <linux/dmi.h>
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
46 struct cmos_rtc {
47 struct rtc_device *rtc;
48 struct device *dev;
49 int irq;
50 struct resource *iomem;
52 void (*wake_on)(struct device *);
53 void (*wake_off)(struct device *);
55 u8 enabled_wake;
56 u8 suspend_ctrl;
58 /* newer hardware extends the original register set */
59 u8 day_alrm;
60 u8 mon_alrm;
61 u8 century;
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n) ((n) > 0)
67 static const char driver_name[] = "rtc_cmos";
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
75 static inline int is_intr(u8 rtc_intr)
77 if (!(rtc_intr & RTC_IRQF))
78 return 0;
79 return rtc_intr & RTC_IRQMASK;
82 /*----------------------------------------------------------------*/
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode. The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
92 * want to use HPET for anything except those IRQs though...
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
98 static inline int is_hpet_enabled(void)
100 return 0;
103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
105 return 0;
108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
110 return 0;
113 static inline int
114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
116 return 0;
119 static inline int hpet_set_periodic_freq(unsigned long freq)
121 return 0;
124 static inline int hpet_rtc_dropped_irq(void)
126 return 0;
129 static inline int hpet_rtc_timer_init(void)
131 return 0;
134 extern irq_handler_t hpet_rtc_interrupt;
136 static inline int hpet_register_irq_handler(irq_handler_t handler)
138 return 0;
141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
143 return 0;
146 #endif
148 /*----------------------------------------------------------------*/
150 #ifdef RTC_PORT
152 /* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM. Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
156 #define can_bank2 true
158 static inline unsigned char cmos_read_bank2(unsigned char addr)
160 outb(addr, RTC_PORT(2));
161 return inb(RTC_PORT(3));
164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
166 outb(addr, RTC_PORT(2));
167 outb(val, RTC_PORT(3));
170 #else
172 #define can_bank2 false
174 static inline unsigned char cmos_read_bank2(unsigned char addr)
176 return 0;
179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183 #endif
185 /*----------------------------------------------------------------*/
187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
189 /* REVISIT: if the clock has a "century" register, use
190 * that instead of the heuristic in get_rtc_time().
191 * That'll make Y3K compatility (year > 2070) easy!
193 get_rtc_time(t);
194 return 0;
197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
199 /* REVISIT: set the "century" register if available
201 * NOTE: this ignores the issue whereby updating the seconds
202 * takes effect exactly 500ms after we write the register.
203 * (Also queueing and other delays before we get this far.)
205 return set_rtc_time(t);
208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
210 struct cmos_rtc *cmos = dev_get_drvdata(dev);
211 unsigned char rtc_control;
213 if (!is_valid_irq(cmos->irq))
214 return -EIO;
216 /* Basic alarms only support hour, minute, and seconds fields.
217 * Some also support day and month, for alarms up to a year in
218 * the future.
220 t->time.tm_mday = -1;
221 t->time.tm_mon = -1;
223 spin_lock_irq(&rtc_lock);
224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
228 if (cmos->day_alrm) {
229 /* ignore upper bits on readback per ACPI spec */
230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 if (!t->time.tm_mday)
232 t->time.tm_mday = -1;
234 if (cmos->mon_alrm) {
235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 if (!t->time.tm_mon)
237 t->time.tm_mon = -1;
241 rtc_control = CMOS_READ(RTC_CONTROL);
242 spin_unlock_irq(&rtc_lock);
244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 if (((unsigned)t->time.tm_sec) < 0x60)
246 t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 else
248 t->time.tm_sec = -1;
249 if (((unsigned)t->time.tm_min) < 0x60)
250 t->time.tm_min = bcd2bin(t->time.tm_min);
251 else
252 t->time.tm_min = -1;
253 if (((unsigned)t->time.tm_hour) < 0x24)
254 t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 else
256 t->time.tm_hour = -1;
258 if (cmos->day_alrm) {
259 if (((unsigned)t->time.tm_mday) <= 0x31)
260 t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 else
262 t->time.tm_mday = -1;
264 if (cmos->mon_alrm) {
265 if (((unsigned)t->time.tm_mon) <= 0x12)
266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 else
268 t->time.tm_mon = -1;
272 t->time.tm_year = -1;
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
277 return 0;
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
282 unsigned char rtc_intr;
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
289 if (is_hpet_enabled())
290 return;
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
299 unsigned char rtc_control;
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
311 cmos_checkintr(cmos, rtc_control);
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
316 unsigned char rtc_control;
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
323 cmos_checkintr(cmos, rtc_control);
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
329 unsigned char mon, mday, hrs, min, sec, rtc_control;
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
334 mon = t->time.tm_mon + 1;
335 mday = t->time.tm_mday;
336 hrs = t->time.tm_hour;
337 min = t->time.tm_min;
338 sec = t->time.tm_sec;
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
350 spin_lock_irq(&rtc_lock);
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos, RTC_AIE);
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
375 spin_unlock_irq(&rtc_lock);
377 return 0;
381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
383 static bool alarm_disable_quirk;
385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
387 alarm_disable_quirk = true;
388 pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 pr_info("RTC alarms disabled\n");
390 return 0;
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
396 .callback = set_alarm_disable_quirk,
397 .ident = "IBM Truman",
398 .matches = {
399 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
403 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
405 .callback = set_alarm_disable_quirk,
406 .ident = "Gigabyte GA-990XA-UD3",
407 .matches = {
408 DMI_MATCH(DMI_SYS_VENDOR,
409 "Gigabyte Technology Co., Ltd."),
410 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
413 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
415 .callback = set_alarm_disable_quirk,
416 .ident = "Toshiba Satellite L300",
417 .matches = {
418 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
427 struct cmos_rtc *cmos = dev_get_drvdata(dev);
428 unsigned long flags;
430 if (!is_valid_irq(cmos->irq))
431 return -EINVAL;
433 if (alarm_disable_quirk)
434 return 0;
436 spin_lock_irqsave(&rtc_lock, flags);
438 if (enabled)
439 cmos_irq_enable(cmos, RTC_AIE);
440 else
441 cmos_irq_disable(cmos, RTC_AIE);
443 spin_unlock_irqrestore(&rtc_lock, flags);
444 return 0;
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
451 struct cmos_rtc *cmos = dev_get_drvdata(dev);
452 unsigned char rtc_control, valid;
454 spin_lock_irq(&rtc_lock);
455 rtc_control = CMOS_READ(RTC_CONTROL);
456 valid = CMOS_READ(RTC_VALID);
457 spin_unlock_irq(&rtc_lock);
459 /* NOTE: at least ICH6 reports battery status using a different
460 * (non-RTC) bit; and SQWE is ignored on many current systems.
462 return seq_printf(seq,
463 "periodic_IRQ\t: %s\n"
464 "update_IRQ\t: %s\n"
465 "HPET_emulated\t: %s\n"
466 // "square_wave\t: %s\n"
467 "BCD\t\t: %s\n"
468 "DST_enable\t: %s\n"
469 "periodic_freq\t: %d\n"
470 "batt_status\t: %s\n",
471 (rtc_control & RTC_PIE) ? "yes" : "no",
472 (rtc_control & RTC_UIE) ? "yes" : "no",
473 is_hpet_enabled() ? "yes" : "no",
474 // (rtc_control & RTC_SQWE) ? "yes" : "no",
475 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 (rtc_control & RTC_DST_EN) ? "yes" : "no",
477 cmos->rtc->irq_freq,
478 (valid & RTC_VRT) ? "okay" : "dead");
481 #else
482 #define cmos_procfs NULL
483 #endif
485 static const struct rtc_class_ops cmos_rtc_ops = {
486 .read_time = cmos_read_time,
487 .set_time = cmos_set_time,
488 .read_alarm = cmos_read_alarm,
489 .set_alarm = cmos_set_alarm,
490 .proc = cmos_procfs,
491 .alarm_irq_enable = cmos_alarm_irq_enable,
494 /*----------------------------------------------------------------*/
497 * All these chips have at least 64 bytes of address space, shared by
498 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
499 * by boot firmware. Modern chips have 128 or 256 bytes.
502 #define NVRAM_OFFSET (RTC_REG_D + 1)
504 static ssize_t
505 cmos_nvram_read(struct file *filp, struct kobject *kobj,
506 struct bin_attribute *attr,
507 char *buf, loff_t off, size_t count)
509 int retval;
511 if (unlikely(off >= attr->size))
512 return 0;
513 if (unlikely(off < 0))
514 return -EINVAL;
515 if ((off + count) > attr->size)
516 count = attr->size - off;
518 off += NVRAM_OFFSET;
519 spin_lock_irq(&rtc_lock);
520 for (retval = 0; count; count--, off++, retval++) {
521 if (off < 128)
522 *buf++ = CMOS_READ(off);
523 else if (can_bank2)
524 *buf++ = cmos_read_bank2(off);
525 else
526 break;
528 spin_unlock_irq(&rtc_lock);
530 return retval;
533 static ssize_t
534 cmos_nvram_write(struct file *filp, struct kobject *kobj,
535 struct bin_attribute *attr,
536 char *buf, loff_t off, size_t count)
538 struct cmos_rtc *cmos;
539 int retval;
541 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542 if (unlikely(off >= attr->size))
543 return -EFBIG;
544 if (unlikely(off < 0))
545 return -EINVAL;
546 if ((off + count) > attr->size)
547 count = attr->size - off;
549 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
550 * checksum on part of the NVRAM data. That's currently ignored
551 * here. If userspace is smart enough to know what fields of
552 * NVRAM to update, updating checksums is also part of its job.
554 off += NVRAM_OFFSET;
555 spin_lock_irq(&rtc_lock);
556 for (retval = 0; count; count--, off++, retval++) {
557 /* don't trash RTC registers */
558 if (off == cmos->day_alrm
559 || off == cmos->mon_alrm
560 || off == cmos->century)
561 buf++;
562 else if (off < 128)
563 CMOS_WRITE(*buf++, off);
564 else if (can_bank2)
565 cmos_write_bank2(*buf++, off);
566 else
567 break;
569 spin_unlock_irq(&rtc_lock);
571 return retval;
574 static struct bin_attribute nvram = {
575 .attr = {
576 .name = "nvram",
577 .mode = S_IRUGO | S_IWUSR,
580 .read = cmos_nvram_read,
581 .write = cmos_nvram_write,
582 /* size gets set up later */
585 /*----------------------------------------------------------------*/
587 static struct cmos_rtc cmos_rtc;
589 static irqreturn_t cmos_interrupt(int irq, void *p)
591 u8 irqstat;
592 u8 rtc_control;
594 spin_lock(&rtc_lock);
596 /* When the HPET interrupt handler calls us, the interrupt
597 * status is passed as arg1 instead of the irq number. But
598 * always clear irq status, even when HPET is in the way.
600 * Note that HPET and RTC are almost certainly out of phase,
601 * giving different IRQ status ...
603 irqstat = CMOS_READ(RTC_INTR_FLAGS);
604 rtc_control = CMOS_READ(RTC_CONTROL);
605 if (is_hpet_enabled())
606 irqstat = (unsigned long)irq & 0xF0;
608 /* If we were suspended, RTC_CONTROL may not be accurate since the
609 * bios may have cleared it.
611 if (!cmos_rtc.suspend_ctrl)
612 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
613 else
614 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
616 /* All Linux RTC alarms should be treated as if they were oneshot.
617 * Similar code may be needed in system wakeup paths, in case the
618 * alarm woke the system.
620 if (irqstat & RTC_AIE) {
621 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
622 rtc_control &= ~RTC_AIE;
623 CMOS_WRITE(rtc_control, RTC_CONTROL);
624 hpet_mask_rtc_irq_bit(RTC_AIE);
625 CMOS_READ(RTC_INTR_FLAGS);
627 spin_unlock(&rtc_lock);
629 if (is_intr(irqstat)) {
630 rtc_update_irq(p, 1, irqstat);
631 return IRQ_HANDLED;
632 } else
633 return IRQ_NONE;
636 #ifdef CONFIG_PNP
637 #define INITSECTION
639 #else
640 #define INITSECTION __init
641 #endif
643 static int INITSECTION
644 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
646 struct cmos_rtc_board_info *info = dev->platform_data;
647 int retval = 0;
648 unsigned char rtc_control;
649 unsigned address_space;
651 /* there can be only one ... */
652 if (cmos_rtc.dev)
653 return -EBUSY;
655 if (!ports)
656 return -ENODEV;
658 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
660 * REVISIT non-x86 systems may instead use memory space resources
661 * (needing ioremap etc), not i/o space resources like this ...
663 ports = request_region(ports->start,
664 resource_size(ports),
665 driver_name);
666 if (!ports) {
667 dev_dbg(dev, "i/o registers already in use\n");
668 return -EBUSY;
671 cmos_rtc.irq = rtc_irq;
672 cmos_rtc.iomem = ports;
674 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
675 * driver did, but don't reject unknown configs. Old hardware
676 * won't address 128 bytes. Newer chips have multiple banks,
677 * though they may not be listed in one I/O resource.
679 #if defined(CONFIG_ATARI)
680 address_space = 64;
681 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
682 || defined(__sparc__) || defined(__mips__) \
683 || defined(__powerpc__)
684 address_space = 128;
685 #else
686 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
687 address_space = 128;
688 #endif
689 if (can_bank2 && ports->end > (ports->start + 1))
690 address_space = 256;
692 /* For ACPI systems extension info comes from the FADT. On others,
693 * board specific setup provides it as appropriate. Systems where
694 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
695 * some almost-clones) can provide hooks to make that behave.
697 * Note that ACPI doesn't preclude putting these registers into
698 * "extended" areas of the chip, including some that we won't yet
699 * expect CMOS_READ and friends to handle.
701 if (info) {
702 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
703 cmos_rtc.day_alrm = info->rtc_day_alarm;
704 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
705 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
706 if (info->rtc_century && info->rtc_century < 128)
707 cmos_rtc.century = info->rtc_century;
709 if (info->wake_on && info->wake_off) {
710 cmos_rtc.wake_on = info->wake_on;
711 cmos_rtc.wake_off = info->wake_off;
715 cmos_rtc.dev = dev;
716 dev_set_drvdata(dev, &cmos_rtc);
718 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
719 &cmos_rtc_ops, THIS_MODULE);
720 if (IS_ERR(cmos_rtc.rtc)) {
721 retval = PTR_ERR(cmos_rtc.rtc);
722 goto cleanup0;
725 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
727 spin_lock_irq(&rtc_lock);
729 /* force periodic irq to CMOS reset default of 1024Hz;
731 * REVISIT it's been reported that at least one x86_64 ALI mobo
732 * doesn't use 32KHz here ... for portability we might need to
733 * do something about other clock frequencies.
735 cmos_rtc.rtc->irq_freq = 1024;
736 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
737 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
739 /* disable irqs */
740 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
742 rtc_control = CMOS_READ(RTC_CONTROL);
744 spin_unlock_irq(&rtc_lock);
746 /* FIXME:
747 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
749 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
750 dev_warn(dev, "only 24-hr supported\n");
751 retval = -ENXIO;
752 goto cleanup1;
755 if (is_valid_irq(rtc_irq)) {
756 irq_handler_t rtc_cmos_int_handler;
758 if (is_hpet_enabled()) {
759 int err;
761 rtc_cmos_int_handler = hpet_rtc_interrupt;
762 err = hpet_register_irq_handler(cmos_interrupt);
763 if (err != 0) {
764 dev_warn(dev, "hpet_register_irq_handler "
765 " failed in rtc_init().");
766 goto cleanup1;
768 } else
769 rtc_cmos_int_handler = cmos_interrupt;
771 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
772 0, dev_name(&cmos_rtc.rtc->dev),
773 cmos_rtc.rtc);
774 if (retval < 0) {
775 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
776 goto cleanup1;
779 hpet_rtc_timer_init();
781 /* export at least the first block of NVRAM */
782 nvram.size = address_space - NVRAM_OFFSET;
783 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
784 if (retval < 0) {
785 dev_dbg(dev, "can't create nvram file? %d\n", retval);
786 goto cleanup2;
789 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
790 !is_valid_irq(rtc_irq) ? "no alarms" :
791 cmos_rtc.mon_alrm ? "alarms up to one year" :
792 cmos_rtc.day_alrm ? "alarms up to one month" :
793 "alarms up to one day",
794 cmos_rtc.century ? ", y3k" : "",
795 nvram.size,
796 is_hpet_enabled() ? ", hpet irqs" : "");
798 return 0;
800 cleanup2:
801 if (is_valid_irq(rtc_irq))
802 free_irq(rtc_irq, cmos_rtc.rtc);
803 cleanup1:
804 cmos_rtc.dev = NULL;
805 rtc_device_unregister(cmos_rtc.rtc);
806 cleanup0:
807 release_region(ports->start, resource_size(ports));
808 return retval;
811 static void cmos_do_shutdown(void)
813 spin_lock_irq(&rtc_lock);
814 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
815 spin_unlock_irq(&rtc_lock);
818 static void __exit cmos_do_remove(struct device *dev)
820 struct cmos_rtc *cmos = dev_get_drvdata(dev);
821 struct resource *ports;
823 cmos_do_shutdown();
825 sysfs_remove_bin_file(&dev->kobj, &nvram);
827 if (is_valid_irq(cmos->irq)) {
828 free_irq(cmos->irq, cmos->rtc);
829 hpet_unregister_irq_handler(cmos_interrupt);
832 rtc_device_unregister(cmos->rtc);
833 cmos->rtc = NULL;
835 ports = cmos->iomem;
836 release_region(ports->start, resource_size(ports));
837 cmos->iomem = NULL;
839 cmos->dev = NULL;
840 dev_set_drvdata(dev, NULL);
843 #ifdef CONFIG_PM
845 static int cmos_suspend(struct device *dev)
847 struct cmos_rtc *cmos = dev_get_drvdata(dev);
848 unsigned char tmp;
850 /* only the alarm might be a wakeup event source */
851 spin_lock_irq(&rtc_lock);
852 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
853 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
854 unsigned char mask;
856 if (device_may_wakeup(dev))
857 mask = RTC_IRQMASK & ~RTC_AIE;
858 else
859 mask = RTC_IRQMASK;
860 tmp &= ~mask;
861 CMOS_WRITE(tmp, RTC_CONTROL);
862 hpet_mask_rtc_irq_bit(mask);
864 cmos_checkintr(cmos, tmp);
866 spin_unlock_irq(&rtc_lock);
868 if (tmp & RTC_AIE) {
869 cmos->enabled_wake = 1;
870 if (cmos->wake_on)
871 cmos->wake_on(dev);
872 else
873 enable_irq_wake(cmos->irq);
876 dev_dbg(dev, "suspend%s, ctrl %02x\n",
877 (tmp & RTC_AIE) ? ", alarm may wake" : "",
878 tmp);
880 return 0;
883 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
884 * after a detour through G3 "mechanical off", although the ACPI spec
885 * says wakeup should only work from G1/S4 "hibernate". To most users,
886 * distinctions between S4 and S5 are pointless. So when the hardware
887 * allows, don't draw that distinction.
889 static inline int cmos_poweroff(struct device *dev)
891 return cmos_suspend(dev);
894 static int cmos_resume(struct device *dev)
896 struct cmos_rtc *cmos = dev_get_drvdata(dev);
897 unsigned char tmp;
899 if (cmos->enabled_wake) {
900 if (cmos->wake_off)
901 cmos->wake_off(dev);
902 else
903 disable_irq_wake(cmos->irq);
904 cmos->enabled_wake = 0;
907 spin_lock_irq(&rtc_lock);
908 tmp = cmos->suspend_ctrl;
909 cmos->suspend_ctrl = 0;
910 /* re-enable any irqs previously active */
911 if (tmp & RTC_IRQMASK) {
912 unsigned char mask;
914 if (device_may_wakeup(dev))
915 hpet_rtc_timer_init();
917 do {
918 CMOS_WRITE(tmp, RTC_CONTROL);
919 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
921 mask = CMOS_READ(RTC_INTR_FLAGS);
922 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
923 if (!is_hpet_enabled() || !is_intr(mask))
924 break;
926 /* force one-shot behavior if HPET blocked
927 * the wake alarm's irq
929 rtc_update_irq(cmos->rtc, 1, mask);
930 tmp &= ~RTC_AIE;
931 hpet_mask_rtc_irq_bit(RTC_AIE);
932 } while (mask & RTC_AIE);
934 spin_unlock_irq(&rtc_lock);
936 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
938 return 0;
941 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
943 #else
945 static inline int cmos_poweroff(struct device *dev)
947 return -ENOSYS;
950 #endif
952 /*----------------------------------------------------------------*/
954 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
955 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
956 * probably list them in similar PNPBIOS tables; so PNP is more common.
958 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
959 * predate even PNPBIOS should set up platform_bus devices.
962 #ifdef CONFIG_ACPI
964 #include <linux/acpi.h>
966 static u32 rtc_handler(void *context)
968 struct device *dev = context;
970 pm_wakeup_event(dev, 0);
971 acpi_clear_event(ACPI_EVENT_RTC);
972 acpi_disable_event(ACPI_EVENT_RTC, 0);
973 return ACPI_INTERRUPT_HANDLED;
976 static inline void rtc_wake_setup(struct device *dev)
978 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
980 * After the RTC handler is installed, the Fixed_RTC event should
981 * be disabled. Only when the RTC alarm is set will it be enabled.
983 acpi_clear_event(ACPI_EVENT_RTC);
984 acpi_disable_event(ACPI_EVENT_RTC, 0);
987 static void rtc_wake_on(struct device *dev)
989 acpi_clear_event(ACPI_EVENT_RTC);
990 acpi_enable_event(ACPI_EVENT_RTC, 0);
993 static void rtc_wake_off(struct device *dev)
995 acpi_disable_event(ACPI_EVENT_RTC, 0);
998 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
999 * its device node and pass extra config data. This helps its driver use
1000 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1001 * that this board's RTC is wakeup-capable (per ACPI spec).
1003 static struct cmos_rtc_board_info acpi_rtc_info;
1005 static void cmos_wake_setup(struct device *dev)
1007 if (acpi_disabled)
1008 return;
1010 rtc_wake_setup(dev);
1011 acpi_rtc_info.wake_on = rtc_wake_on;
1012 acpi_rtc_info.wake_off = rtc_wake_off;
1014 /* workaround bug in some ACPI tables */
1015 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1016 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1017 acpi_gbl_FADT.month_alarm);
1018 acpi_gbl_FADT.month_alarm = 0;
1021 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1022 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1023 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1025 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1026 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1027 dev_info(dev, "RTC can wake from S4\n");
1029 dev->platform_data = &acpi_rtc_info;
1031 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1032 device_init_wakeup(dev, 1);
1035 #else
1037 static void cmos_wake_setup(struct device *dev)
1041 #endif
1043 #ifdef CONFIG_PNP
1045 #include <linux/pnp.h>
1047 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1049 cmos_wake_setup(&pnp->dev);
1051 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1052 /* Some machines contain a PNP entry for the RTC, but
1053 * don't define the IRQ. It should always be safe to
1054 * hardcode it in these cases
1056 return cmos_do_probe(&pnp->dev,
1057 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1058 else
1059 return cmos_do_probe(&pnp->dev,
1060 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1061 pnp_irq(pnp, 0));
1064 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1066 cmos_do_remove(&pnp->dev);
1069 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1071 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1072 return;
1074 cmos_do_shutdown();
1077 static const struct pnp_device_id rtc_ids[] = {
1078 { .id = "PNP0b00", },
1079 { .id = "PNP0b01", },
1080 { .id = "PNP0b02", },
1081 { },
1083 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1085 static struct pnp_driver cmos_pnp_driver = {
1086 .name = (char *) driver_name,
1087 .id_table = rtc_ids,
1088 .probe = cmos_pnp_probe,
1089 .remove = __exit_p(cmos_pnp_remove),
1090 .shutdown = cmos_pnp_shutdown,
1092 /* flag ensures resume() gets called, and stops syslog spam */
1093 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1094 #ifdef CONFIG_PM_SLEEP
1095 .driver = {
1096 .pm = &cmos_pm_ops,
1098 #endif
1101 #endif /* CONFIG_PNP */
1103 #ifdef CONFIG_OF
1104 static const struct of_device_id of_cmos_match[] = {
1106 .compatible = "motorola,mc146818",
1108 { },
1110 MODULE_DEVICE_TABLE(of, of_cmos_match);
1112 static __init void cmos_of_init(struct platform_device *pdev)
1114 struct device_node *node = pdev->dev.of_node;
1115 struct rtc_time time;
1116 int ret;
1117 const __be32 *val;
1119 if (!node)
1120 return;
1122 val = of_get_property(node, "ctrl-reg", NULL);
1123 if (val)
1124 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1126 val = of_get_property(node, "freq-reg", NULL);
1127 if (val)
1128 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1130 get_rtc_time(&time);
1131 ret = rtc_valid_tm(&time);
1132 if (ret) {
1133 struct rtc_time def_time = {
1134 .tm_year = 1,
1135 .tm_mday = 1,
1137 set_rtc_time(&def_time);
1140 #else
1141 static inline void cmos_of_init(struct platform_device *pdev) {}
1142 #endif
1143 /*----------------------------------------------------------------*/
1145 /* Platform setup should have set up an RTC device, when PNP is
1146 * unavailable ... this could happen even on (older) PCs.
1149 static int __init cmos_platform_probe(struct platform_device *pdev)
1151 cmos_of_init(pdev);
1152 cmos_wake_setup(&pdev->dev);
1153 return cmos_do_probe(&pdev->dev,
1154 platform_get_resource(pdev, IORESOURCE_IO, 0),
1155 platform_get_irq(pdev, 0));
1158 static int __exit cmos_platform_remove(struct platform_device *pdev)
1160 cmos_do_remove(&pdev->dev);
1161 return 0;
1164 static void cmos_platform_shutdown(struct platform_device *pdev)
1166 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1167 return;
1169 cmos_do_shutdown();
1172 /* work with hotplug and coldplug */
1173 MODULE_ALIAS("platform:rtc_cmos");
1175 static struct platform_driver cmos_platform_driver = {
1176 .remove = __exit_p(cmos_platform_remove),
1177 .shutdown = cmos_platform_shutdown,
1178 .driver = {
1179 .name = (char *) driver_name,
1180 #ifdef CONFIG_PM
1181 .pm = &cmos_pm_ops,
1182 #endif
1183 .of_match_table = of_match_ptr(of_cmos_match),
1187 #ifdef CONFIG_PNP
1188 static bool pnp_driver_registered;
1189 #endif
1190 static bool platform_driver_registered;
1192 static int __init cmos_init(void)
1194 int retval = 0;
1196 #ifdef CONFIG_PNP
1197 retval = pnp_register_driver(&cmos_pnp_driver);
1198 if (retval == 0)
1199 pnp_driver_registered = true;
1200 #endif
1202 if (!cmos_rtc.dev) {
1203 retval = platform_driver_probe(&cmos_platform_driver,
1204 cmos_platform_probe);
1205 if (retval == 0)
1206 platform_driver_registered = true;
1209 dmi_check_system(rtc_quirks);
1211 if (retval == 0)
1212 return 0;
1214 #ifdef CONFIG_PNP
1215 if (pnp_driver_registered)
1216 pnp_unregister_driver(&cmos_pnp_driver);
1217 #endif
1218 return retval;
1220 module_init(cmos_init);
1222 static void __exit cmos_exit(void)
1224 #ifdef CONFIG_PNP
1225 if (pnp_driver_registered)
1226 pnp_unregister_driver(&cmos_pnp_driver);
1227 #endif
1228 if (platform_driver_registered)
1229 platform_driver_unregister(&cmos_platform_driver);
1231 module_exit(cmos_exit);
1234 MODULE_AUTHOR("David Brownell");
1235 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1236 MODULE_LICENSE("GPL");